1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/netdev_rx_queue.h> 15 #include <net/page_pool/helpers.h> 16 #include <net/xdp.h> 17 18 #include <linux/dma-direction.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/page-flags.h> 21 #include <linux/mm.h> /* for put_page() */ 22 #include <linux/poison.h> 23 #include <linux/ethtool.h> 24 #include <linux/netdevice.h> 25 26 #include <trace/events/page_pool.h> 27 28 #include "mp_dmabuf_devmem.h" 29 #include "netmem_priv.h" 30 #include "page_pool_priv.h" 31 32 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); 33 34 #define DEFER_TIME (msecs_to_jiffies(1000)) 35 #define DEFER_WARN_INTERVAL (60 * HZ) 36 37 #define BIAS_MAX (LONG_MAX >> 1) 38 39 #ifdef CONFIG_PAGE_POOL_STATS 40 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 41 42 /* alloc_stat_inc is intended to be used in softirq context */ 43 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 44 /* recycle_stat_inc is safe to use when preemption is possible. */ 45 #define recycle_stat_inc(pool, __stat) \ 46 do { \ 47 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 48 this_cpu_inc(s->__stat); \ 49 } while (0) 50 51 #define recycle_stat_add(pool, __stat, val) \ 52 do { \ 53 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 54 this_cpu_add(s->__stat, val); \ 55 } while (0) 56 57 static const char pp_stats[][ETH_GSTRING_LEN] = { 58 "rx_pp_alloc_fast", 59 "rx_pp_alloc_slow", 60 "rx_pp_alloc_slow_ho", 61 "rx_pp_alloc_empty", 62 "rx_pp_alloc_refill", 63 "rx_pp_alloc_waive", 64 "rx_pp_recycle_cached", 65 "rx_pp_recycle_cache_full", 66 "rx_pp_recycle_ring", 67 "rx_pp_recycle_ring_full", 68 "rx_pp_recycle_released_ref", 69 }; 70 71 /** 72 * page_pool_get_stats() - fetch page pool stats 73 * @pool: pool from which page was allocated 74 * @stats: struct page_pool_stats to fill in 75 * 76 * Retrieve statistics about the page_pool. This API is only available 77 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 78 * A pointer to a caller allocated struct page_pool_stats structure 79 * is passed to this API which is filled in. The caller can then report 80 * those stats to the user (perhaps via ethtool, debugfs, etc.). 81 */ 82 bool page_pool_get_stats(const struct page_pool *pool, 83 struct page_pool_stats *stats) 84 { 85 int cpu = 0; 86 87 if (!stats) 88 return false; 89 90 /* The caller is responsible to initialize stats. */ 91 stats->alloc_stats.fast += pool->alloc_stats.fast; 92 stats->alloc_stats.slow += pool->alloc_stats.slow; 93 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 94 stats->alloc_stats.empty += pool->alloc_stats.empty; 95 stats->alloc_stats.refill += pool->alloc_stats.refill; 96 stats->alloc_stats.waive += pool->alloc_stats.waive; 97 98 for_each_possible_cpu(cpu) { 99 const struct page_pool_recycle_stats *pcpu = 100 per_cpu_ptr(pool->recycle_stats, cpu); 101 102 stats->recycle_stats.cached += pcpu->cached; 103 stats->recycle_stats.cache_full += pcpu->cache_full; 104 stats->recycle_stats.ring += pcpu->ring; 105 stats->recycle_stats.ring_full += pcpu->ring_full; 106 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 107 } 108 109 return true; 110 } 111 EXPORT_SYMBOL(page_pool_get_stats); 112 113 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 114 { 115 int i; 116 117 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 118 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 119 data += ETH_GSTRING_LEN; 120 } 121 122 return data; 123 } 124 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 125 126 int page_pool_ethtool_stats_get_count(void) 127 { 128 return ARRAY_SIZE(pp_stats); 129 } 130 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 131 132 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 133 { 134 const struct page_pool_stats *pool_stats = stats; 135 136 *data++ = pool_stats->alloc_stats.fast; 137 *data++ = pool_stats->alloc_stats.slow; 138 *data++ = pool_stats->alloc_stats.slow_high_order; 139 *data++ = pool_stats->alloc_stats.empty; 140 *data++ = pool_stats->alloc_stats.refill; 141 *data++ = pool_stats->alloc_stats.waive; 142 *data++ = pool_stats->recycle_stats.cached; 143 *data++ = pool_stats->recycle_stats.cache_full; 144 *data++ = pool_stats->recycle_stats.ring; 145 *data++ = pool_stats->recycle_stats.ring_full; 146 *data++ = pool_stats->recycle_stats.released_refcnt; 147 148 return data; 149 } 150 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 151 152 #else 153 #define alloc_stat_inc(pool, __stat) 154 #define recycle_stat_inc(pool, __stat) 155 #define recycle_stat_add(pool, __stat, val) 156 #endif 157 158 static bool page_pool_producer_lock(struct page_pool *pool) 159 __acquires(&pool->ring.producer_lock) 160 { 161 bool in_softirq = in_softirq(); 162 163 if (in_softirq) 164 spin_lock(&pool->ring.producer_lock); 165 else 166 spin_lock_bh(&pool->ring.producer_lock); 167 168 return in_softirq; 169 } 170 171 static void page_pool_producer_unlock(struct page_pool *pool, 172 bool in_softirq) 173 __releases(&pool->ring.producer_lock) 174 { 175 if (in_softirq) 176 spin_unlock(&pool->ring.producer_lock); 177 else 178 spin_unlock_bh(&pool->ring.producer_lock); 179 } 180 181 static void page_pool_struct_check(void) 182 { 183 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); 184 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); 185 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); 186 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 187 PAGE_POOL_FRAG_GROUP_ALIGN); 188 } 189 190 static int page_pool_init(struct page_pool *pool, 191 const struct page_pool_params *params, 192 int cpuid) 193 { 194 unsigned int ring_qsize = 1024; /* Default */ 195 struct netdev_rx_queue *rxq; 196 int err; 197 198 page_pool_struct_check(); 199 200 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 201 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 202 203 pool->cpuid = cpuid; 204 pool->dma_sync_for_cpu = true; 205 206 /* Validate only known flags were used */ 207 if (pool->slow.flags & ~PP_FLAG_ALL) 208 return -EINVAL; 209 210 if (pool->p.pool_size) 211 ring_qsize = pool->p.pool_size; 212 213 /* Sanity limit mem that can be pinned down */ 214 if (ring_qsize > 32768) 215 return -E2BIG; 216 217 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 218 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 219 * which is the XDP_TX use-case. 220 */ 221 if (pool->slow.flags & PP_FLAG_DMA_MAP) { 222 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 223 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 224 return -EINVAL; 225 226 pool->dma_map = true; 227 } 228 229 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { 230 /* In order to request DMA-sync-for-device the page 231 * needs to be mapped 232 */ 233 if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) 234 return -EINVAL; 235 236 if (!pool->p.max_len) 237 return -EINVAL; 238 239 pool->dma_sync = true; 240 241 /* pool->p.offset has to be set according to the address 242 * offset used by the DMA engine to start copying rx data 243 */ 244 } 245 246 pool->has_init_callback = !!pool->slow.init_callback; 247 248 #ifdef CONFIG_PAGE_POOL_STATS 249 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { 250 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 251 if (!pool->recycle_stats) 252 return -ENOMEM; 253 } else { 254 /* For system page pool instance we use a singular stats object 255 * instead of allocating a separate percpu variable for each 256 * (also percpu) page pool instance. 257 */ 258 pool->recycle_stats = &pp_system_recycle_stats; 259 pool->system = true; 260 } 261 #endif 262 263 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 264 #ifdef CONFIG_PAGE_POOL_STATS 265 if (!pool->system) 266 free_percpu(pool->recycle_stats); 267 #endif 268 return -ENOMEM; 269 } 270 271 atomic_set(&pool->pages_state_release_cnt, 0); 272 273 /* Driver calling page_pool_create() also call page_pool_destroy() */ 274 refcount_set(&pool->user_cnt, 1); 275 276 if (pool->dma_map) 277 get_device(pool->p.dev); 278 279 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) { 280 /* We rely on rtnl_lock()ing to make sure netdev_rx_queue 281 * configuration doesn't change while we're initializing 282 * the page_pool. 283 */ 284 ASSERT_RTNL(); 285 rxq = __netif_get_rx_queue(pool->slow.netdev, 286 pool->slow.queue_idx); 287 pool->mp_priv = rxq->mp_params.mp_priv; 288 } 289 290 if (pool->mp_priv) { 291 if (!pool->dma_map || !pool->dma_sync) 292 return -EOPNOTSUPP; 293 294 err = mp_dmabuf_devmem_init(pool); 295 if (err) { 296 pr_warn("%s() mem-provider init failed %d\n", __func__, 297 err); 298 goto free_ptr_ring; 299 } 300 301 static_branch_inc(&page_pool_mem_providers); 302 } 303 304 return 0; 305 306 free_ptr_ring: 307 ptr_ring_cleanup(&pool->ring, NULL); 308 #ifdef CONFIG_PAGE_POOL_STATS 309 if (!pool->system) 310 free_percpu(pool->recycle_stats); 311 #endif 312 return err; 313 } 314 315 static void page_pool_uninit(struct page_pool *pool) 316 { 317 ptr_ring_cleanup(&pool->ring, NULL); 318 319 if (pool->dma_map) 320 put_device(pool->p.dev); 321 322 #ifdef CONFIG_PAGE_POOL_STATS 323 if (!pool->system) 324 free_percpu(pool->recycle_stats); 325 #endif 326 } 327 328 /** 329 * page_pool_create_percpu() - create a page pool for a given cpu. 330 * @params: parameters, see struct page_pool_params 331 * @cpuid: cpu identifier 332 */ 333 struct page_pool * 334 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 335 { 336 struct page_pool *pool; 337 int err; 338 339 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 340 if (!pool) 341 return ERR_PTR(-ENOMEM); 342 343 err = page_pool_init(pool, params, cpuid); 344 if (err < 0) 345 goto err_free; 346 347 err = page_pool_list(pool); 348 if (err) 349 goto err_uninit; 350 351 return pool; 352 353 err_uninit: 354 page_pool_uninit(pool); 355 err_free: 356 pr_warn("%s() gave up with errno %d\n", __func__, err); 357 kfree(pool); 358 return ERR_PTR(err); 359 } 360 EXPORT_SYMBOL(page_pool_create_percpu); 361 362 /** 363 * page_pool_create() - create a page pool 364 * @params: parameters, see struct page_pool_params 365 */ 366 struct page_pool *page_pool_create(const struct page_pool_params *params) 367 { 368 return page_pool_create_percpu(params, -1); 369 } 370 EXPORT_SYMBOL(page_pool_create); 371 372 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem); 373 374 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) 375 { 376 struct ptr_ring *r = &pool->ring; 377 netmem_ref netmem; 378 int pref_nid; /* preferred NUMA node */ 379 380 /* Quicker fallback, avoid locks when ring is empty */ 381 if (__ptr_ring_empty(r)) { 382 alloc_stat_inc(pool, empty); 383 return 0; 384 } 385 386 /* Softirq guarantee CPU and thus NUMA node is stable. This, 387 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 388 */ 389 #ifdef CONFIG_NUMA 390 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 391 #else 392 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 393 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 394 #endif 395 396 /* Refill alloc array, but only if NUMA match */ 397 do { 398 netmem = (__force netmem_ref)__ptr_ring_consume(r); 399 if (unlikely(!netmem)) 400 break; 401 402 if (likely(netmem_is_pref_nid(netmem, pref_nid))) { 403 pool->alloc.cache[pool->alloc.count++] = netmem; 404 } else { 405 /* NUMA mismatch; 406 * (1) release 1 page to page-allocator and 407 * (2) break out to fallthrough to alloc_pages_node. 408 * This limit stress on page buddy alloactor. 409 */ 410 page_pool_return_page(pool, netmem); 411 alloc_stat_inc(pool, waive); 412 netmem = 0; 413 break; 414 } 415 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 416 417 /* Return last page */ 418 if (likely(pool->alloc.count > 0)) { 419 netmem = pool->alloc.cache[--pool->alloc.count]; 420 alloc_stat_inc(pool, refill); 421 } 422 423 return netmem; 424 } 425 426 /* fast path */ 427 static netmem_ref __page_pool_get_cached(struct page_pool *pool) 428 { 429 netmem_ref netmem; 430 431 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 432 if (likely(pool->alloc.count)) { 433 /* Fast-path */ 434 netmem = pool->alloc.cache[--pool->alloc.count]; 435 alloc_stat_inc(pool, fast); 436 } else { 437 netmem = page_pool_refill_alloc_cache(pool); 438 } 439 440 return netmem; 441 } 442 443 static void __page_pool_dma_sync_for_device(const struct page_pool *pool, 444 netmem_ref netmem, 445 u32 dma_sync_size) 446 { 447 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 448 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); 449 450 dma_sync_size = min(dma_sync_size, pool->p.max_len); 451 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, 452 dma_sync_size, pool->p.dma_dir); 453 #endif 454 } 455 456 static __always_inline void 457 page_pool_dma_sync_for_device(const struct page_pool *pool, 458 netmem_ref netmem, 459 u32 dma_sync_size) 460 { 461 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) 462 __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 463 } 464 465 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem) 466 { 467 dma_addr_t dma; 468 469 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 470 * since dma_addr_t can be either 32 or 64 bits and does not always fit 471 * into page private data (i.e 32bit cpu with 64bit DMA caps) 472 * This mapping is kept for lifetime of page, until leaving pool. 473 */ 474 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, 475 (PAGE_SIZE << pool->p.order), pool->p.dma_dir, 476 DMA_ATTR_SKIP_CPU_SYNC | 477 DMA_ATTR_WEAK_ORDERING); 478 if (dma_mapping_error(pool->p.dev, dma)) 479 return false; 480 481 if (page_pool_set_dma_addr_netmem(netmem, dma)) 482 goto unmap_failed; 483 484 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); 485 486 return true; 487 488 unmap_failed: 489 WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); 490 dma_unmap_page_attrs(pool->p.dev, dma, 491 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 492 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 493 return false; 494 } 495 496 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 497 gfp_t gfp) 498 { 499 struct page *page; 500 501 gfp |= __GFP_COMP; 502 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 503 if (unlikely(!page)) 504 return NULL; 505 506 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) { 507 put_page(page); 508 return NULL; 509 } 510 511 alloc_stat_inc(pool, slow_high_order); 512 page_pool_set_pp_info(pool, page_to_netmem(page)); 513 514 /* Track how many pages are held 'in-flight' */ 515 pool->pages_state_hold_cnt++; 516 trace_page_pool_state_hold(pool, page_to_netmem(page), 517 pool->pages_state_hold_cnt); 518 return page; 519 } 520 521 /* slow path */ 522 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool, 523 gfp_t gfp) 524 { 525 const int bulk = PP_ALLOC_CACHE_REFILL; 526 unsigned int pp_order = pool->p.order; 527 bool dma_map = pool->dma_map; 528 netmem_ref netmem; 529 int i, nr_pages; 530 531 /* Don't support bulk alloc for high-order pages */ 532 if (unlikely(pp_order)) 533 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); 534 535 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 536 if (unlikely(pool->alloc.count > 0)) 537 return pool->alloc.cache[--pool->alloc.count]; 538 539 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 540 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 541 542 nr_pages = alloc_pages_bulk_array_node(gfp, 543 pool->p.nid, bulk, 544 (struct page **)pool->alloc.cache); 545 if (unlikely(!nr_pages)) 546 return 0; 547 548 /* Pages have been filled into alloc.cache array, but count is zero and 549 * page element have not been (possibly) DMA mapped. 550 */ 551 for (i = 0; i < nr_pages; i++) { 552 netmem = pool->alloc.cache[i]; 553 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) { 554 put_page(netmem_to_page(netmem)); 555 continue; 556 } 557 558 page_pool_set_pp_info(pool, netmem); 559 pool->alloc.cache[pool->alloc.count++] = netmem; 560 /* Track how many pages are held 'in-flight' */ 561 pool->pages_state_hold_cnt++; 562 trace_page_pool_state_hold(pool, netmem, 563 pool->pages_state_hold_cnt); 564 } 565 566 /* Return last page */ 567 if (likely(pool->alloc.count > 0)) { 568 netmem = pool->alloc.cache[--pool->alloc.count]; 569 alloc_stat_inc(pool, slow); 570 } else { 571 netmem = 0; 572 } 573 574 /* When page just alloc'ed is should/must have refcnt 1. */ 575 return netmem; 576 } 577 578 /* For using page_pool replace: alloc_pages() API calls, but provide 579 * synchronization guarantee for allocation side. 580 */ 581 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp) 582 { 583 netmem_ref netmem; 584 585 /* Fast-path: Get a page from cache */ 586 netmem = __page_pool_get_cached(pool); 587 if (netmem) 588 return netmem; 589 590 /* Slow-path: cache empty, do real allocation */ 591 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv) 592 netmem = mp_dmabuf_devmem_alloc_netmems(pool, gfp); 593 else 594 netmem = __page_pool_alloc_pages_slow(pool, gfp); 595 return netmem; 596 } 597 EXPORT_SYMBOL(page_pool_alloc_netmems); 598 599 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 600 { 601 return netmem_to_page(page_pool_alloc_netmems(pool, gfp)); 602 } 603 EXPORT_SYMBOL(page_pool_alloc_pages); 604 ALLOW_ERROR_INJECTION(page_pool_alloc_pages, NULL); 605 606 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 607 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 608 */ 609 #define _distance(a, b) (s32)((a) - (b)) 610 611 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 612 { 613 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 614 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 615 s32 inflight; 616 617 inflight = _distance(hold_cnt, release_cnt); 618 619 if (strict) { 620 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 621 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 622 inflight); 623 } else { 624 inflight = max(0, inflight); 625 } 626 627 return inflight; 628 } 629 630 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) 631 { 632 netmem_set_pp(netmem, pool); 633 netmem_or_pp_magic(netmem, PP_SIGNATURE); 634 635 /* Ensuring all pages have been split into one fragment initially: 636 * page_pool_set_pp_info() is only called once for every page when it 637 * is allocated from the page allocator and page_pool_fragment_page() 638 * is dirtying the same cache line as the page->pp_magic above, so 639 * the overhead is negligible. 640 */ 641 page_pool_fragment_netmem(netmem, 1); 642 if (pool->has_init_callback) 643 pool->slow.init_callback(netmem, pool->slow.init_arg); 644 } 645 646 void page_pool_clear_pp_info(netmem_ref netmem) 647 { 648 netmem_clear_pp_magic(netmem); 649 netmem_set_pp(netmem, NULL); 650 } 651 652 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool, 653 netmem_ref netmem) 654 { 655 dma_addr_t dma; 656 657 if (!pool->dma_map) 658 /* Always account for inflight pages, even if we didn't 659 * map them 660 */ 661 return; 662 663 dma = page_pool_get_dma_addr_netmem(netmem); 664 665 /* When page is unmapped, it cannot be returned to our pool */ 666 dma_unmap_page_attrs(pool->p.dev, dma, 667 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 668 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 669 page_pool_set_dma_addr_netmem(netmem, 0); 670 } 671 672 /* Disconnects a page (from a page_pool). API users can have a need 673 * to disconnect a page (from a page_pool), to allow it to be used as 674 * a regular page (that will eventually be returned to the normal 675 * page-allocator via put_page). 676 */ 677 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem) 678 { 679 int count; 680 bool put; 681 682 put = true; 683 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv) 684 put = mp_dmabuf_devmem_release_page(pool, netmem); 685 else 686 __page_pool_release_page_dma(pool, netmem); 687 688 /* This may be the last page returned, releasing the pool, so 689 * it is not safe to reference pool afterwards. 690 */ 691 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 692 trace_page_pool_state_release(pool, netmem, count); 693 694 if (put) { 695 page_pool_clear_pp_info(netmem); 696 put_page(netmem_to_page(netmem)); 697 } 698 /* An optimization would be to call __free_pages(page, pool->p.order) 699 * knowing page is not part of page-cache (thus avoiding a 700 * __page_cache_release() call). 701 */ 702 } 703 704 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) 705 { 706 int ret; 707 /* BH protection not needed if current is softirq */ 708 if (in_softirq()) 709 ret = ptr_ring_produce(&pool->ring, (__force void *)netmem); 710 else 711 ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem); 712 713 if (!ret) { 714 recycle_stat_inc(pool, ring); 715 return true; 716 } 717 718 return false; 719 } 720 721 /* Only allow direct recycling in special circumstances, into the 722 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 723 * 724 * Caller must provide appropriate safe context. 725 */ 726 static bool page_pool_recycle_in_cache(netmem_ref netmem, 727 struct page_pool *pool) 728 { 729 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 730 recycle_stat_inc(pool, cache_full); 731 return false; 732 } 733 734 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 735 pool->alloc.cache[pool->alloc.count++] = netmem; 736 recycle_stat_inc(pool, cached); 737 return true; 738 } 739 740 static bool __page_pool_page_can_be_recycled(netmem_ref netmem) 741 { 742 return netmem_is_net_iov(netmem) || 743 (page_ref_count(netmem_to_page(netmem)) == 1 && 744 !page_is_pfmemalloc(netmem_to_page(netmem))); 745 } 746 747 /* If the page refcnt == 1, this will try to recycle the page. 748 * If pool->dma_sync is set, we'll try to sync the DMA area for 749 * the configured size min(dma_sync_size, pool->max_len). 750 * If the page refcnt != 1, then the page will be returned to memory 751 * subsystem. 752 */ 753 static __always_inline netmem_ref 754 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, 755 unsigned int dma_sync_size, bool allow_direct) 756 { 757 lockdep_assert_no_hardirq(); 758 759 /* This allocator is optimized for the XDP mode that uses 760 * one-frame-per-page, but have fallbacks that act like the 761 * regular page allocator APIs. 762 * 763 * refcnt == 1 means page_pool owns page, and can recycle it. 764 * 765 * page is NOT reusable when allocated when system is under 766 * some pressure. (page_is_pfmemalloc) 767 */ 768 if (likely(__page_pool_page_can_be_recycled(netmem))) { 769 /* Read barrier done in page_ref_count / READ_ONCE */ 770 771 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 772 773 if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) 774 return 0; 775 776 /* Page found as candidate for recycling */ 777 return netmem; 778 } 779 780 /* Fallback/non-XDP mode: API user have elevated refcnt. 781 * 782 * Many drivers split up the page into fragments, and some 783 * want to keep doing this to save memory and do refcnt based 784 * recycling. Support this use case too, to ease drivers 785 * switching between XDP/non-XDP. 786 * 787 * In-case page_pool maintains the DMA mapping, API user must 788 * call page_pool_put_page once. In this elevated refcnt 789 * case, the DMA is unmapped/released, as driver is likely 790 * doing refcnt based recycle tricks, meaning another process 791 * will be invoking put_page. 792 */ 793 recycle_stat_inc(pool, released_refcnt); 794 page_pool_return_page(pool, netmem); 795 796 return 0; 797 } 798 799 static bool page_pool_napi_local(const struct page_pool *pool) 800 { 801 const struct napi_struct *napi; 802 u32 cpuid; 803 804 if (unlikely(!in_softirq())) 805 return false; 806 807 /* Allow direct recycle if we have reasons to believe that we are 808 * in the same context as the consumer would run, so there's 809 * no possible race. 810 * __page_pool_put_page() makes sure we're not in hardirq context 811 * and interrupts are enabled prior to accessing the cache. 812 */ 813 cpuid = smp_processor_id(); 814 if (READ_ONCE(pool->cpuid) == cpuid) 815 return true; 816 817 napi = READ_ONCE(pool->p.napi); 818 819 return napi && READ_ONCE(napi->list_owner) == cpuid; 820 } 821 822 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, 823 unsigned int dma_sync_size, bool allow_direct) 824 { 825 if (!allow_direct) 826 allow_direct = page_pool_napi_local(pool); 827 828 netmem = 829 __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct); 830 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { 831 /* Cache full, fallback to free pages */ 832 recycle_stat_inc(pool, ring_full); 833 page_pool_return_page(pool, netmem); 834 } 835 } 836 EXPORT_SYMBOL(page_pool_put_unrefed_netmem); 837 838 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 839 unsigned int dma_sync_size, bool allow_direct) 840 { 841 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, 842 allow_direct); 843 } 844 EXPORT_SYMBOL(page_pool_put_unrefed_page); 845 846 static void page_pool_recycle_ring_bulk(struct page_pool *pool, 847 netmem_ref *bulk, 848 u32 bulk_len) 849 { 850 bool in_softirq; 851 u32 i; 852 853 /* Bulk produce into ptr_ring page_pool cache */ 854 in_softirq = page_pool_producer_lock(pool); 855 856 for (i = 0; i < bulk_len; i++) { 857 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) { 858 /* ring full */ 859 recycle_stat_inc(pool, ring_full); 860 break; 861 } 862 } 863 864 page_pool_producer_unlock(pool, in_softirq); 865 recycle_stat_add(pool, ring, i); 866 867 /* Hopefully all pages were returned into ptr_ring */ 868 if (likely(i == bulk_len)) 869 return; 870 871 /* 872 * ptr_ring cache is full, free remaining pages outside producer lock 873 * since put_page() with refcnt == 1 can be an expensive operation. 874 */ 875 for (; i < bulk_len; i++) 876 page_pool_return_page(pool, bulk[i]); 877 } 878 879 /** 880 * page_pool_put_netmem_bulk() - release references on multiple netmems 881 * @data: array holding netmem references 882 * @count: number of entries in @data 883 * 884 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring 885 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk() 886 * will release leftover netmems to the memory provider. 887 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx 888 * completion loop for the XDP_REDIRECT use case. 889 * 890 * Please note the caller must not use data area after running 891 * page_pool_put_netmem_bulk(), as this function overwrites it. 892 */ 893 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count) 894 { 895 u32 bulk_len = 0; 896 897 for (u32 i = 0; i < count; i++) { 898 netmem_ref netmem = netmem_compound_head(data[i]); 899 900 if (page_pool_unref_and_test(netmem)) 901 data[bulk_len++] = netmem; 902 } 903 904 count = bulk_len; 905 while (count) { 906 netmem_ref bulk[XDP_BULK_QUEUE_SIZE]; 907 struct page_pool *pool = NULL; 908 bool allow_direct; 909 u32 foreign = 0; 910 911 bulk_len = 0; 912 913 for (u32 i = 0; i < count; i++) { 914 struct page_pool *netmem_pp; 915 netmem_ref netmem = data[i]; 916 917 netmem_pp = netmem_get_pp(netmem); 918 if (unlikely(!pool)) { 919 pool = netmem_pp; 920 allow_direct = page_pool_napi_local(pool); 921 } else if (netmem_pp != pool) { 922 /* 923 * If the netmem belongs to a different 924 * page_pool, save it for another round. 925 */ 926 data[foreign++] = netmem; 927 continue; 928 } 929 930 netmem = __page_pool_put_page(pool, netmem, -1, 931 allow_direct); 932 /* Approved for bulk recycling in ptr_ring cache */ 933 if (netmem) 934 bulk[bulk_len++] = netmem; 935 } 936 937 if (bulk_len) 938 page_pool_recycle_ring_bulk(pool, bulk, bulk_len); 939 940 count = foreign; 941 } 942 } 943 EXPORT_SYMBOL(page_pool_put_netmem_bulk); 944 945 static netmem_ref page_pool_drain_frag(struct page_pool *pool, 946 netmem_ref netmem) 947 { 948 long drain_count = BIAS_MAX - pool->frag_users; 949 950 /* Some user is still using the page frag */ 951 if (likely(page_pool_unref_netmem(netmem, drain_count))) 952 return 0; 953 954 if (__page_pool_page_can_be_recycled(netmem)) { 955 page_pool_dma_sync_for_device(pool, netmem, -1); 956 return netmem; 957 } 958 959 page_pool_return_page(pool, netmem); 960 return 0; 961 } 962 963 static void page_pool_free_frag(struct page_pool *pool) 964 { 965 long drain_count = BIAS_MAX - pool->frag_users; 966 netmem_ref netmem = pool->frag_page; 967 968 pool->frag_page = 0; 969 970 if (!netmem || page_pool_unref_netmem(netmem, drain_count)) 971 return; 972 973 page_pool_return_page(pool, netmem); 974 } 975 976 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, 977 unsigned int *offset, unsigned int size, 978 gfp_t gfp) 979 { 980 unsigned int max_size = PAGE_SIZE << pool->p.order; 981 netmem_ref netmem = pool->frag_page; 982 983 if (WARN_ON(size > max_size)) 984 return 0; 985 986 size = ALIGN(size, dma_get_cache_alignment()); 987 *offset = pool->frag_offset; 988 989 if (netmem && *offset + size > max_size) { 990 netmem = page_pool_drain_frag(pool, netmem); 991 if (netmem) { 992 recycle_stat_inc(pool, cached); 993 alloc_stat_inc(pool, fast); 994 goto frag_reset; 995 } 996 } 997 998 if (!netmem) { 999 netmem = page_pool_alloc_netmems(pool, gfp); 1000 if (unlikely(!netmem)) { 1001 pool->frag_page = 0; 1002 return 0; 1003 } 1004 1005 pool->frag_page = netmem; 1006 1007 frag_reset: 1008 pool->frag_users = 1; 1009 *offset = 0; 1010 pool->frag_offset = size; 1011 page_pool_fragment_netmem(netmem, BIAS_MAX); 1012 return netmem; 1013 } 1014 1015 pool->frag_users++; 1016 pool->frag_offset = *offset + size; 1017 return netmem; 1018 } 1019 EXPORT_SYMBOL(page_pool_alloc_frag_netmem); 1020 1021 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, 1022 unsigned int size, gfp_t gfp) 1023 { 1024 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, 1025 gfp)); 1026 } 1027 EXPORT_SYMBOL(page_pool_alloc_frag); 1028 1029 static void page_pool_empty_ring(struct page_pool *pool) 1030 { 1031 netmem_ref netmem; 1032 1033 /* Empty recycle ring */ 1034 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { 1035 /* Verify the refcnt invariant of cached pages */ 1036 if (!(netmem_ref_count(netmem) == 1)) 1037 pr_crit("%s() page_pool refcnt %d violation\n", 1038 __func__, netmem_ref_count(netmem)); 1039 1040 page_pool_return_page(pool, netmem); 1041 } 1042 } 1043 1044 static void __page_pool_destroy(struct page_pool *pool) 1045 { 1046 if (pool->disconnect) 1047 pool->disconnect(pool); 1048 1049 page_pool_unlist(pool); 1050 page_pool_uninit(pool); 1051 1052 if (pool->mp_priv) { 1053 mp_dmabuf_devmem_destroy(pool); 1054 static_branch_dec(&page_pool_mem_providers); 1055 } 1056 1057 kfree(pool); 1058 } 1059 1060 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 1061 { 1062 netmem_ref netmem; 1063 1064 if (pool->destroy_cnt) 1065 return; 1066 1067 /* Empty alloc cache, assume caller made sure this is 1068 * no-longer in use, and page_pool_alloc_pages() cannot be 1069 * call concurrently. 1070 */ 1071 while (pool->alloc.count) { 1072 netmem = pool->alloc.cache[--pool->alloc.count]; 1073 page_pool_return_page(pool, netmem); 1074 } 1075 } 1076 1077 static void page_pool_scrub(struct page_pool *pool) 1078 { 1079 page_pool_empty_alloc_cache_once(pool); 1080 pool->destroy_cnt++; 1081 1082 /* No more consumers should exist, but producers could still 1083 * be in-flight. 1084 */ 1085 page_pool_empty_ring(pool); 1086 } 1087 1088 static int page_pool_release(struct page_pool *pool) 1089 { 1090 int inflight; 1091 1092 page_pool_scrub(pool); 1093 inflight = page_pool_inflight(pool, true); 1094 if (!inflight) 1095 __page_pool_destroy(pool); 1096 1097 return inflight; 1098 } 1099 1100 static void page_pool_release_retry(struct work_struct *wq) 1101 { 1102 struct delayed_work *dwq = to_delayed_work(wq); 1103 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 1104 void *netdev; 1105 int inflight; 1106 1107 inflight = page_pool_release(pool); 1108 if (!inflight) 1109 return; 1110 1111 /* Periodic warning for page pools the user can't see */ 1112 netdev = READ_ONCE(pool->slow.netdev); 1113 if (time_after_eq(jiffies, pool->defer_warn) && 1114 (!netdev || netdev == NET_PTR_POISON)) { 1115 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 1116 1117 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 1118 __func__, pool->user.id, inflight, sec); 1119 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1120 } 1121 1122 /* Still not ready to be disconnected, retry later */ 1123 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1124 } 1125 1126 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 1127 const struct xdp_mem_info *mem) 1128 { 1129 refcount_inc(&pool->user_cnt); 1130 pool->disconnect = disconnect; 1131 pool->xdp_mem_id = mem->id; 1132 } 1133 1134 void page_pool_disable_direct_recycling(struct page_pool *pool) 1135 { 1136 /* Disable direct recycling based on pool->cpuid. 1137 * Paired with READ_ONCE() in page_pool_napi_local(). 1138 */ 1139 WRITE_ONCE(pool->cpuid, -1); 1140 1141 if (!pool->p.napi) 1142 return; 1143 1144 /* To avoid races with recycling and additional barriers make sure 1145 * pool and NAPI are unlinked when NAPI is disabled. 1146 */ 1147 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state)); 1148 WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1); 1149 1150 WRITE_ONCE(pool->p.napi, NULL); 1151 } 1152 EXPORT_SYMBOL(page_pool_disable_direct_recycling); 1153 1154 void page_pool_destroy(struct page_pool *pool) 1155 { 1156 if (!pool) 1157 return; 1158 1159 if (!page_pool_put(pool)) 1160 return; 1161 1162 page_pool_disable_direct_recycling(pool); 1163 page_pool_free_frag(pool); 1164 1165 if (!page_pool_release(pool)) 1166 return; 1167 1168 page_pool_detached(pool); 1169 pool->defer_start = jiffies; 1170 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1171 1172 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1173 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1174 } 1175 EXPORT_SYMBOL(page_pool_destroy); 1176 1177 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1178 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1179 { 1180 netmem_ref netmem; 1181 1182 trace_page_pool_update_nid(pool, new_nid); 1183 pool->p.nid = new_nid; 1184 1185 /* Flush pool alloc cache, as refill will check NUMA node */ 1186 while (pool->alloc.count) { 1187 netmem = pool->alloc.cache[--pool->alloc.count]; 1188 page_pool_return_page(pool, netmem); 1189 } 1190 } 1191 EXPORT_SYMBOL(page_pool_update_nid); 1192