1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/page_pool/helpers.h> 15 #include <net/xdp.h> 16 17 #include <linux/dma-direction.h> 18 #include <linux/dma-mapping.h> 19 #include <linux/page-flags.h> 20 #include <linux/mm.h> /* for put_page() */ 21 #include <linux/poison.h> 22 #include <linux/ethtool.h> 23 #include <linux/netdevice.h> 24 25 #include <trace/events/page_pool.h> 26 27 #include "netmem_priv.h" 28 #include "page_pool_priv.h" 29 30 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); 31 32 #define DEFER_TIME (msecs_to_jiffies(1000)) 33 #define DEFER_WARN_INTERVAL (60 * HZ) 34 35 #define BIAS_MAX (LONG_MAX >> 1) 36 37 #ifdef CONFIG_PAGE_POOL_STATS 38 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 39 40 /* alloc_stat_inc is intended to be used in softirq context */ 41 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 42 /* recycle_stat_inc is safe to use when preemption is possible. */ 43 #define recycle_stat_inc(pool, __stat) \ 44 do { \ 45 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 46 this_cpu_inc(s->__stat); \ 47 } while (0) 48 49 #define recycle_stat_add(pool, __stat, val) \ 50 do { \ 51 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 52 this_cpu_add(s->__stat, val); \ 53 } while (0) 54 55 static const char pp_stats[][ETH_GSTRING_LEN] = { 56 "rx_pp_alloc_fast", 57 "rx_pp_alloc_slow", 58 "rx_pp_alloc_slow_ho", 59 "rx_pp_alloc_empty", 60 "rx_pp_alloc_refill", 61 "rx_pp_alloc_waive", 62 "rx_pp_recycle_cached", 63 "rx_pp_recycle_cache_full", 64 "rx_pp_recycle_ring", 65 "rx_pp_recycle_ring_full", 66 "rx_pp_recycle_released_ref", 67 }; 68 69 /** 70 * page_pool_get_stats() - fetch page pool stats 71 * @pool: pool from which page was allocated 72 * @stats: struct page_pool_stats to fill in 73 * 74 * Retrieve statistics about the page_pool. This API is only available 75 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 76 * A pointer to a caller allocated struct page_pool_stats structure 77 * is passed to this API which is filled in. The caller can then report 78 * those stats to the user (perhaps via ethtool, debugfs, etc.). 79 */ 80 bool page_pool_get_stats(const struct page_pool *pool, 81 struct page_pool_stats *stats) 82 { 83 int cpu = 0; 84 85 if (!stats) 86 return false; 87 88 /* The caller is responsible to initialize stats. */ 89 stats->alloc_stats.fast += pool->alloc_stats.fast; 90 stats->alloc_stats.slow += pool->alloc_stats.slow; 91 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 92 stats->alloc_stats.empty += pool->alloc_stats.empty; 93 stats->alloc_stats.refill += pool->alloc_stats.refill; 94 stats->alloc_stats.waive += pool->alloc_stats.waive; 95 96 for_each_possible_cpu(cpu) { 97 const struct page_pool_recycle_stats *pcpu = 98 per_cpu_ptr(pool->recycle_stats, cpu); 99 100 stats->recycle_stats.cached += pcpu->cached; 101 stats->recycle_stats.cache_full += pcpu->cache_full; 102 stats->recycle_stats.ring += pcpu->ring; 103 stats->recycle_stats.ring_full += pcpu->ring_full; 104 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 105 } 106 107 return true; 108 } 109 EXPORT_SYMBOL(page_pool_get_stats); 110 111 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 112 { 113 int i; 114 115 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 116 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 117 data += ETH_GSTRING_LEN; 118 } 119 120 return data; 121 } 122 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 123 124 int page_pool_ethtool_stats_get_count(void) 125 { 126 return ARRAY_SIZE(pp_stats); 127 } 128 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 129 130 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 131 { 132 const struct page_pool_stats *pool_stats = stats; 133 134 *data++ = pool_stats->alloc_stats.fast; 135 *data++ = pool_stats->alloc_stats.slow; 136 *data++ = pool_stats->alloc_stats.slow_high_order; 137 *data++ = pool_stats->alloc_stats.empty; 138 *data++ = pool_stats->alloc_stats.refill; 139 *data++ = pool_stats->alloc_stats.waive; 140 *data++ = pool_stats->recycle_stats.cached; 141 *data++ = pool_stats->recycle_stats.cache_full; 142 *data++ = pool_stats->recycle_stats.ring; 143 *data++ = pool_stats->recycle_stats.ring_full; 144 *data++ = pool_stats->recycle_stats.released_refcnt; 145 146 return data; 147 } 148 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 149 150 #else 151 #define alloc_stat_inc(pool, __stat) 152 #define recycle_stat_inc(pool, __stat) 153 #define recycle_stat_add(pool, __stat, val) 154 #endif 155 156 static bool page_pool_producer_lock(struct page_pool *pool) 157 __acquires(&pool->ring.producer_lock) 158 { 159 bool in_softirq = in_softirq(); 160 161 if (in_softirq) 162 spin_lock(&pool->ring.producer_lock); 163 else 164 spin_lock_bh(&pool->ring.producer_lock); 165 166 return in_softirq; 167 } 168 169 static void page_pool_producer_unlock(struct page_pool *pool, 170 bool in_softirq) 171 __releases(&pool->ring.producer_lock) 172 { 173 if (in_softirq) 174 spin_unlock(&pool->ring.producer_lock); 175 else 176 spin_unlock_bh(&pool->ring.producer_lock); 177 } 178 179 static void page_pool_struct_check(void) 180 { 181 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); 182 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); 183 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); 184 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 185 PAGE_POOL_FRAG_GROUP_ALIGN); 186 } 187 188 static int page_pool_init(struct page_pool *pool, 189 const struct page_pool_params *params, 190 int cpuid) 191 { 192 unsigned int ring_qsize = 1024; /* Default */ 193 194 page_pool_struct_check(); 195 196 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 197 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 198 199 pool->cpuid = cpuid; 200 201 /* Validate only known flags were used */ 202 if (pool->slow.flags & ~PP_FLAG_ALL) 203 return -EINVAL; 204 205 if (pool->p.pool_size) 206 ring_qsize = pool->p.pool_size; 207 208 /* Sanity limit mem that can be pinned down */ 209 if (ring_qsize > 32768) 210 return -E2BIG; 211 212 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 213 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 214 * which is the XDP_TX use-case. 215 */ 216 if (pool->slow.flags & PP_FLAG_DMA_MAP) { 217 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 218 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 219 return -EINVAL; 220 221 pool->dma_map = true; 222 } 223 224 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { 225 /* In order to request DMA-sync-for-device the page 226 * needs to be mapped 227 */ 228 if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) 229 return -EINVAL; 230 231 if (!pool->p.max_len) 232 return -EINVAL; 233 234 pool->dma_sync = true; 235 236 /* pool->p.offset has to be set according to the address 237 * offset used by the DMA engine to start copying rx data 238 */ 239 } 240 241 pool->has_init_callback = !!pool->slow.init_callback; 242 243 #ifdef CONFIG_PAGE_POOL_STATS 244 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { 245 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 246 if (!pool->recycle_stats) 247 return -ENOMEM; 248 } else { 249 /* For system page pool instance we use a singular stats object 250 * instead of allocating a separate percpu variable for each 251 * (also percpu) page pool instance. 252 */ 253 pool->recycle_stats = &pp_system_recycle_stats; 254 pool->system = true; 255 } 256 #endif 257 258 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 259 #ifdef CONFIG_PAGE_POOL_STATS 260 if (!pool->system) 261 free_percpu(pool->recycle_stats); 262 #endif 263 return -ENOMEM; 264 } 265 266 atomic_set(&pool->pages_state_release_cnt, 0); 267 268 /* Driver calling page_pool_create() also call page_pool_destroy() */ 269 refcount_set(&pool->user_cnt, 1); 270 271 if (pool->dma_map) 272 get_device(pool->p.dev); 273 274 return 0; 275 } 276 277 static void page_pool_uninit(struct page_pool *pool) 278 { 279 ptr_ring_cleanup(&pool->ring, NULL); 280 281 if (pool->dma_map) 282 put_device(pool->p.dev); 283 284 #ifdef CONFIG_PAGE_POOL_STATS 285 if (!pool->system) 286 free_percpu(pool->recycle_stats); 287 #endif 288 } 289 290 /** 291 * page_pool_create_percpu() - create a page pool for a given cpu. 292 * @params: parameters, see struct page_pool_params 293 * @cpuid: cpu identifier 294 */ 295 struct page_pool * 296 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 297 { 298 struct page_pool *pool; 299 int err; 300 301 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 302 if (!pool) 303 return ERR_PTR(-ENOMEM); 304 305 err = page_pool_init(pool, params, cpuid); 306 if (err < 0) 307 goto err_free; 308 309 err = page_pool_list(pool); 310 if (err) 311 goto err_uninit; 312 313 return pool; 314 315 err_uninit: 316 page_pool_uninit(pool); 317 err_free: 318 pr_warn("%s() gave up with errno %d\n", __func__, err); 319 kfree(pool); 320 return ERR_PTR(err); 321 } 322 EXPORT_SYMBOL(page_pool_create_percpu); 323 324 /** 325 * page_pool_create() - create a page pool 326 * @params: parameters, see struct page_pool_params 327 */ 328 struct page_pool *page_pool_create(const struct page_pool_params *params) 329 { 330 return page_pool_create_percpu(params, -1); 331 } 332 EXPORT_SYMBOL(page_pool_create); 333 334 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem); 335 336 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) 337 { 338 struct ptr_ring *r = &pool->ring; 339 netmem_ref netmem; 340 int pref_nid; /* preferred NUMA node */ 341 342 /* Quicker fallback, avoid locks when ring is empty */ 343 if (__ptr_ring_empty(r)) { 344 alloc_stat_inc(pool, empty); 345 return 0; 346 } 347 348 /* Softirq guarantee CPU and thus NUMA node is stable. This, 349 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 350 */ 351 #ifdef CONFIG_NUMA 352 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 353 #else 354 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 355 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 356 #endif 357 358 /* Refill alloc array, but only if NUMA match */ 359 do { 360 netmem = (__force netmem_ref)__ptr_ring_consume(r); 361 if (unlikely(!netmem)) 362 break; 363 364 if (likely(netmem_is_pref_nid(netmem, pref_nid))) { 365 pool->alloc.cache[pool->alloc.count++] = netmem; 366 } else { 367 /* NUMA mismatch; 368 * (1) release 1 page to page-allocator and 369 * (2) break out to fallthrough to alloc_pages_node. 370 * This limit stress on page buddy alloactor. 371 */ 372 page_pool_return_page(pool, netmem); 373 alloc_stat_inc(pool, waive); 374 netmem = 0; 375 break; 376 } 377 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 378 379 /* Return last page */ 380 if (likely(pool->alloc.count > 0)) { 381 netmem = pool->alloc.cache[--pool->alloc.count]; 382 alloc_stat_inc(pool, refill); 383 } 384 385 return netmem; 386 } 387 388 /* fast path */ 389 static netmem_ref __page_pool_get_cached(struct page_pool *pool) 390 { 391 netmem_ref netmem; 392 393 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 394 if (likely(pool->alloc.count)) { 395 /* Fast-path */ 396 netmem = pool->alloc.cache[--pool->alloc.count]; 397 alloc_stat_inc(pool, fast); 398 } else { 399 netmem = page_pool_refill_alloc_cache(pool); 400 } 401 402 return netmem; 403 } 404 405 static void __page_pool_dma_sync_for_device(const struct page_pool *pool, 406 netmem_ref netmem, 407 u32 dma_sync_size) 408 { 409 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 410 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); 411 412 dma_sync_size = min(dma_sync_size, pool->p.max_len); 413 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, 414 dma_sync_size, pool->p.dma_dir); 415 #endif 416 } 417 418 static __always_inline void 419 page_pool_dma_sync_for_device(const struct page_pool *pool, 420 netmem_ref netmem, 421 u32 dma_sync_size) 422 { 423 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) 424 __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 425 } 426 427 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem) 428 { 429 dma_addr_t dma; 430 431 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 432 * since dma_addr_t can be either 32 or 64 bits and does not always fit 433 * into page private data (i.e 32bit cpu with 64bit DMA caps) 434 * This mapping is kept for lifetime of page, until leaving pool. 435 */ 436 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, 437 (PAGE_SIZE << pool->p.order), pool->p.dma_dir, 438 DMA_ATTR_SKIP_CPU_SYNC | 439 DMA_ATTR_WEAK_ORDERING); 440 if (dma_mapping_error(pool->p.dev, dma)) 441 return false; 442 443 if (page_pool_set_dma_addr_netmem(netmem, dma)) 444 goto unmap_failed; 445 446 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); 447 448 return true; 449 450 unmap_failed: 451 WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); 452 dma_unmap_page_attrs(pool->p.dev, dma, 453 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 454 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 455 return false; 456 } 457 458 static void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) 459 { 460 netmem_set_pp(netmem, pool); 461 netmem_or_pp_magic(netmem, PP_SIGNATURE); 462 463 /* Ensuring all pages have been split into one fragment initially: 464 * page_pool_set_pp_info() is only called once for every page when it 465 * is allocated from the page allocator and page_pool_fragment_page() 466 * is dirtying the same cache line as the page->pp_magic above, so 467 * the overhead is negligible. 468 */ 469 page_pool_fragment_netmem(netmem, 1); 470 if (pool->has_init_callback) 471 pool->slow.init_callback(netmem, pool->slow.init_arg); 472 } 473 474 static void page_pool_clear_pp_info(netmem_ref netmem) 475 { 476 netmem_clear_pp_magic(netmem); 477 netmem_set_pp(netmem, NULL); 478 } 479 480 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 481 gfp_t gfp) 482 { 483 struct page *page; 484 485 gfp |= __GFP_COMP; 486 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 487 if (unlikely(!page)) 488 return NULL; 489 490 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) { 491 put_page(page); 492 return NULL; 493 } 494 495 alloc_stat_inc(pool, slow_high_order); 496 page_pool_set_pp_info(pool, page_to_netmem(page)); 497 498 /* Track how many pages are held 'in-flight' */ 499 pool->pages_state_hold_cnt++; 500 trace_page_pool_state_hold(pool, page_to_netmem(page), 501 pool->pages_state_hold_cnt); 502 return page; 503 } 504 505 /* slow path */ 506 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool, 507 gfp_t gfp) 508 { 509 const int bulk = PP_ALLOC_CACHE_REFILL; 510 unsigned int pp_order = pool->p.order; 511 bool dma_map = pool->dma_map; 512 netmem_ref netmem; 513 int i, nr_pages; 514 515 /* Don't support bulk alloc for high-order pages */ 516 if (unlikely(pp_order)) 517 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); 518 519 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 520 if (unlikely(pool->alloc.count > 0)) 521 return pool->alloc.cache[--pool->alloc.count]; 522 523 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 524 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 525 526 nr_pages = alloc_pages_bulk_array_node(gfp, 527 pool->p.nid, bulk, 528 (struct page **)pool->alloc.cache); 529 if (unlikely(!nr_pages)) 530 return 0; 531 532 /* Pages have been filled into alloc.cache array, but count is zero and 533 * page element have not been (possibly) DMA mapped. 534 */ 535 for (i = 0; i < nr_pages; i++) { 536 netmem = pool->alloc.cache[i]; 537 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) { 538 put_page(netmem_to_page(netmem)); 539 continue; 540 } 541 542 page_pool_set_pp_info(pool, netmem); 543 pool->alloc.cache[pool->alloc.count++] = netmem; 544 /* Track how many pages are held 'in-flight' */ 545 pool->pages_state_hold_cnt++; 546 trace_page_pool_state_hold(pool, netmem, 547 pool->pages_state_hold_cnt); 548 } 549 550 /* Return last page */ 551 if (likely(pool->alloc.count > 0)) { 552 netmem = pool->alloc.cache[--pool->alloc.count]; 553 alloc_stat_inc(pool, slow); 554 } else { 555 netmem = 0; 556 } 557 558 /* When page just alloc'ed is should/must have refcnt 1. */ 559 return netmem; 560 } 561 562 /* For using page_pool replace: alloc_pages() API calls, but provide 563 * synchronization guarantee for allocation side. 564 */ 565 netmem_ref page_pool_alloc_netmem(struct page_pool *pool, gfp_t gfp) 566 { 567 netmem_ref netmem; 568 569 /* Fast-path: Get a page from cache */ 570 netmem = __page_pool_get_cached(pool); 571 if (netmem) 572 return netmem; 573 574 /* Slow-path: cache empty, do real allocation */ 575 netmem = __page_pool_alloc_pages_slow(pool, gfp); 576 return netmem; 577 } 578 EXPORT_SYMBOL(page_pool_alloc_netmem); 579 580 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 581 { 582 return netmem_to_page(page_pool_alloc_netmem(pool, gfp)); 583 } 584 EXPORT_SYMBOL(page_pool_alloc_pages); 585 ALLOW_ERROR_INJECTION(page_pool_alloc_pages, NULL); 586 587 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 588 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 589 */ 590 #define _distance(a, b) (s32)((a) - (b)) 591 592 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 593 { 594 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 595 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 596 s32 inflight; 597 598 inflight = _distance(hold_cnt, release_cnt); 599 600 if (strict) { 601 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 602 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 603 inflight); 604 } else { 605 inflight = max(0, inflight); 606 } 607 608 return inflight; 609 } 610 611 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool, 612 netmem_ref netmem) 613 { 614 dma_addr_t dma; 615 616 if (!pool->dma_map) 617 /* Always account for inflight pages, even if we didn't 618 * map them 619 */ 620 return; 621 622 dma = page_pool_get_dma_addr_netmem(netmem); 623 624 /* When page is unmapped, it cannot be returned to our pool */ 625 dma_unmap_page_attrs(pool->p.dev, dma, 626 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 627 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 628 page_pool_set_dma_addr_netmem(netmem, 0); 629 } 630 631 /* Disconnects a page (from a page_pool). API users can have a need 632 * to disconnect a page (from a page_pool), to allow it to be used as 633 * a regular page (that will eventually be returned to the normal 634 * page-allocator via put_page). 635 */ 636 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem) 637 { 638 int count; 639 640 __page_pool_release_page_dma(pool, netmem); 641 642 /* This may be the last page returned, releasing the pool, so 643 * it is not safe to reference pool afterwards. 644 */ 645 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 646 trace_page_pool_state_release(pool, netmem, count); 647 648 page_pool_clear_pp_info(netmem); 649 put_page(netmem_to_page(netmem)); 650 /* An optimization would be to call __free_pages(page, pool->p.order) 651 * knowing page is not part of page-cache (thus avoiding a 652 * __page_cache_release() call). 653 */ 654 } 655 656 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) 657 { 658 int ret; 659 /* BH protection not needed if current is softirq */ 660 if (in_softirq()) 661 ret = ptr_ring_produce(&pool->ring, (__force void *)netmem); 662 else 663 ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem); 664 665 if (!ret) { 666 recycle_stat_inc(pool, ring); 667 return true; 668 } 669 670 return false; 671 } 672 673 /* Only allow direct recycling in special circumstances, into the 674 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 675 * 676 * Caller must provide appropriate safe context. 677 */ 678 static bool page_pool_recycle_in_cache(netmem_ref netmem, 679 struct page_pool *pool) 680 { 681 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 682 recycle_stat_inc(pool, cache_full); 683 return false; 684 } 685 686 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 687 pool->alloc.cache[pool->alloc.count++] = netmem; 688 recycle_stat_inc(pool, cached); 689 return true; 690 } 691 692 static bool __page_pool_page_can_be_recycled(netmem_ref netmem) 693 { 694 return netmem_is_net_iov(netmem) || 695 (page_ref_count(netmem_to_page(netmem)) == 1 && 696 !page_is_pfmemalloc(netmem_to_page(netmem))); 697 } 698 699 /* If the page refcnt == 1, this will try to recycle the page. 700 * If pool->dma_sync is set, we'll try to sync the DMA area for 701 * the configured size min(dma_sync_size, pool->max_len). 702 * If the page refcnt != 1, then the page will be returned to memory 703 * subsystem. 704 */ 705 static __always_inline netmem_ref 706 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, 707 unsigned int dma_sync_size, bool allow_direct) 708 { 709 lockdep_assert_no_hardirq(); 710 711 /* This allocator is optimized for the XDP mode that uses 712 * one-frame-per-page, but have fallbacks that act like the 713 * regular page allocator APIs. 714 * 715 * refcnt == 1 means page_pool owns page, and can recycle it. 716 * 717 * page is NOT reusable when allocated when system is under 718 * some pressure. (page_is_pfmemalloc) 719 */ 720 if (likely(__page_pool_page_can_be_recycled(netmem))) { 721 /* Read barrier done in page_ref_count / READ_ONCE */ 722 723 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 724 725 if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) 726 return 0; 727 728 /* Page found as candidate for recycling */ 729 return netmem; 730 } 731 732 /* Fallback/non-XDP mode: API user have elevated refcnt. 733 * 734 * Many drivers split up the page into fragments, and some 735 * want to keep doing this to save memory and do refcnt based 736 * recycling. Support this use case too, to ease drivers 737 * switching between XDP/non-XDP. 738 * 739 * In-case page_pool maintains the DMA mapping, API user must 740 * call page_pool_put_page once. In this elevated refcnt 741 * case, the DMA is unmapped/released, as driver is likely 742 * doing refcnt based recycle tricks, meaning another process 743 * will be invoking put_page. 744 */ 745 recycle_stat_inc(pool, released_refcnt); 746 page_pool_return_page(pool, netmem); 747 748 return 0; 749 } 750 751 static bool page_pool_napi_local(const struct page_pool *pool) 752 { 753 const struct napi_struct *napi; 754 u32 cpuid; 755 756 if (unlikely(!in_softirq())) 757 return false; 758 759 /* Allow direct recycle if we have reasons to believe that we are 760 * in the same context as the consumer would run, so there's 761 * no possible race. 762 * __page_pool_put_page() makes sure we're not in hardirq context 763 * and interrupts are enabled prior to accessing the cache. 764 */ 765 cpuid = smp_processor_id(); 766 if (READ_ONCE(pool->cpuid) == cpuid) 767 return true; 768 769 napi = READ_ONCE(pool->p.napi); 770 771 return napi && READ_ONCE(napi->list_owner) == cpuid; 772 } 773 774 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, 775 unsigned int dma_sync_size, bool allow_direct) 776 { 777 if (!allow_direct) 778 allow_direct = page_pool_napi_local(pool); 779 780 netmem = 781 __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct); 782 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { 783 /* Cache full, fallback to free pages */ 784 recycle_stat_inc(pool, ring_full); 785 page_pool_return_page(pool, netmem); 786 } 787 } 788 EXPORT_SYMBOL(page_pool_put_unrefed_netmem); 789 790 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 791 unsigned int dma_sync_size, bool allow_direct) 792 { 793 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, 794 allow_direct); 795 } 796 EXPORT_SYMBOL(page_pool_put_unrefed_page); 797 798 /** 799 * page_pool_put_page_bulk() - release references on multiple pages 800 * @pool: pool from which pages were allocated 801 * @data: array holding page pointers 802 * @count: number of pages in @data 803 * 804 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring 805 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk() 806 * will release leftover pages to the page allocator. 807 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx 808 * completion loop for the XDP_REDIRECT use case. 809 * 810 * Please note the caller must not use data area after running 811 * page_pool_put_page_bulk(), as this function overwrites it. 812 */ 813 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 814 int count) 815 { 816 int i, bulk_len = 0; 817 bool allow_direct; 818 bool in_softirq; 819 820 allow_direct = page_pool_napi_local(pool); 821 822 for (i = 0; i < count; i++) { 823 netmem_ref netmem = page_to_netmem(virt_to_head_page(data[i])); 824 825 /* It is not the last user for the page frag case */ 826 if (!page_pool_is_last_ref(netmem)) 827 continue; 828 829 netmem = __page_pool_put_page(pool, netmem, -1, allow_direct); 830 /* Approved for bulk recycling in ptr_ring cache */ 831 if (netmem) 832 data[bulk_len++] = (__force void *)netmem; 833 } 834 835 if (!bulk_len) 836 return; 837 838 /* Bulk producer into ptr_ring page_pool cache */ 839 in_softirq = page_pool_producer_lock(pool); 840 for (i = 0; i < bulk_len; i++) { 841 if (__ptr_ring_produce(&pool->ring, data[i])) { 842 /* ring full */ 843 recycle_stat_inc(pool, ring_full); 844 break; 845 } 846 } 847 recycle_stat_add(pool, ring, i); 848 page_pool_producer_unlock(pool, in_softirq); 849 850 /* Hopefully all pages was return into ptr_ring */ 851 if (likely(i == bulk_len)) 852 return; 853 854 /* ptr_ring cache full, free remaining pages outside producer lock 855 * since put_page() with refcnt == 1 can be an expensive operation 856 */ 857 for (; i < bulk_len; i++) 858 page_pool_return_page(pool, (__force netmem_ref)data[i]); 859 } 860 EXPORT_SYMBOL(page_pool_put_page_bulk); 861 862 static netmem_ref page_pool_drain_frag(struct page_pool *pool, 863 netmem_ref netmem) 864 { 865 long drain_count = BIAS_MAX - pool->frag_users; 866 867 /* Some user is still using the page frag */ 868 if (likely(page_pool_unref_netmem(netmem, drain_count))) 869 return 0; 870 871 if (__page_pool_page_can_be_recycled(netmem)) { 872 page_pool_dma_sync_for_device(pool, netmem, -1); 873 return netmem; 874 } 875 876 page_pool_return_page(pool, netmem); 877 return 0; 878 } 879 880 static void page_pool_free_frag(struct page_pool *pool) 881 { 882 long drain_count = BIAS_MAX - pool->frag_users; 883 netmem_ref netmem = pool->frag_page; 884 885 pool->frag_page = 0; 886 887 if (!netmem || page_pool_unref_netmem(netmem, drain_count)) 888 return; 889 890 page_pool_return_page(pool, netmem); 891 } 892 893 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, 894 unsigned int *offset, unsigned int size, 895 gfp_t gfp) 896 { 897 unsigned int max_size = PAGE_SIZE << pool->p.order; 898 netmem_ref netmem = pool->frag_page; 899 900 if (WARN_ON(size > max_size)) 901 return 0; 902 903 size = ALIGN(size, dma_get_cache_alignment()); 904 *offset = pool->frag_offset; 905 906 if (netmem && *offset + size > max_size) { 907 netmem = page_pool_drain_frag(pool, netmem); 908 if (netmem) { 909 alloc_stat_inc(pool, fast); 910 goto frag_reset; 911 } 912 } 913 914 if (!netmem) { 915 netmem = page_pool_alloc_netmem(pool, gfp); 916 if (unlikely(!netmem)) { 917 pool->frag_page = 0; 918 return 0; 919 } 920 921 pool->frag_page = netmem; 922 923 frag_reset: 924 pool->frag_users = 1; 925 *offset = 0; 926 pool->frag_offset = size; 927 page_pool_fragment_netmem(netmem, BIAS_MAX); 928 return netmem; 929 } 930 931 pool->frag_users++; 932 pool->frag_offset = *offset + size; 933 alloc_stat_inc(pool, fast); 934 return netmem; 935 } 936 EXPORT_SYMBOL(page_pool_alloc_frag_netmem); 937 938 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, 939 unsigned int size, gfp_t gfp) 940 { 941 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, 942 gfp)); 943 } 944 EXPORT_SYMBOL(page_pool_alloc_frag); 945 946 static void page_pool_empty_ring(struct page_pool *pool) 947 { 948 netmem_ref netmem; 949 950 /* Empty recycle ring */ 951 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { 952 /* Verify the refcnt invariant of cached pages */ 953 if (!(netmem_ref_count(netmem) == 1)) 954 pr_crit("%s() page_pool refcnt %d violation\n", 955 __func__, netmem_ref_count(netmem)); 956 957 page_pool_return_page(pool, netmem); 958 } 959 } 960 961 static void __page_pool_destroy(struct page_pool *pool) 962 { 963 if (pool->disconnect) 964 pool->disconnect(pool); 965 966 page_pool_unlist(pool); 967 page_pool_uninit(pool); 968 kfree(pool); 969 } 970 971 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 972 { 973 netmem_ref netmem; 974 975 if (pool->destroy_cnt) 976 return; 977 978 /* Empty alloc cache, assume caller made sure this is 979 * no-longer in use, and page_pool_alloc_pages() cannot be 980 * call concurrently. 981 */ 982 while (pool->alloc.count) { 983 netmem = pool->alloc.cache[--pool->alloc.count]; 984 page_pool_return_page(pool, netmem); 985 } 986 } 987 988 static void page_pool_scrub(struct page_pool *pool) 989 { 990 page_pool_empty_alloc_cache_once(pool); 991 pool->destroy_cnt++; 992 993 /* No more consumers should exist, but producers could still 994 * be in-flight. 995 */ 996 page_pool_empty_ring(pool); 997 } 998 999 static int page_pool_release(struct page_pool *pool) 1000 { 1001 int inflight; 1002 1003 page_pool_scrub(pool); 1004 inflight = page_pool_inflight(pool, true); 1005 if (!inflight) 1006 __page_pool_destroy(pool); 1007 1008 return inflight; 1009 } 1010 1011 static void page_pool_release_retry(struct work_struct *wq) 1012 { 1013 struct delayed_work *dwq = to_delayed_work(wq); 1014 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 1015 void *netdev; 1016 int inflight; 1017 1018 inflight = page_pool_release(pool); 1019 if (!inflight) 1020 return; 1021 1022 /* Periodic warning for page pools the user can't see */ 1023 netdev = READ_ONCE(pool->slow.netdev); 1024 if (time_after_eq(jiffies, pool->defer_warn) && 1025 (!netdev || netdev == NET_PTR_POISON)) { 1026 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 1027 1028 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 1029 __func__, pool->user.id, inflight, sec); 1030 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1031 } 1032 1033 /* Still not ready to be disconnected, retry later */ 1034 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1035 } 1036 1037 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 1038 const struct xdp_mem_info *mem) 1039 { 1040 refcount_inc(&pool->user_cnt); 1041 pool->disconnect = disconnect; 1042 pool->xdp_mem_id = mem->id; 1043 } 1044 1045 void page_pool_disable_direct_recycling(struct page_pool *pool) 1046 { 1047 /* Disable direct recycling based on pool->cpuid. 1048 * Paired with READ_ONCE() in page_pool_napi_local(). 1049 */ 1050 WRITE_ONCE(pool->cpuid, -1); 1051 1052 if (!pool->p.napi) 1053 return; 1054 1055 /* To avoid races with recycling and additional barriers make sure 1056 * pool and NAPI are unlinked when NAPI is disabled. 1057 */ 1058 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state)); 1059 WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1); 1060 1061 WRITE_ONCE(pool->p.napi, NULL); 1062 } 1063 EXPORT_SYMBOL(page_pool_disable_direct_recycling); 1064 1065 void page_pool_destroy(struct page_pool *pool) 1066 { 1067 if (!pool) 1068 return; 1069 1070 if (!page_pool_put(pool)) 1071 return; 1072 1073 page_pool_disable_direct_recycling(pool); 1074 page_pool_free_frag(pool); 1075 1076 if (!page_pool_release(pool)) 1077 return; 1078 1079 page_pool_detached(pool); 1080 pool->defer_start = jiffies; 1081 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1082 1083 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1084 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1085 } 1086 EXPORT_SYMBOL(page_pool_destroy); 1087 1088 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1089 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1090 { 1091 netmem_ref netmem; 1092 1093 trace_page_pool_update_nid(pool, new_nid); 1094 pool->p.nid = new_nid; 1095 1096 /* Flush pool alloc cache, as refill will check NUMA node */ 1097 while (pool->alloc.count) { 1098 netmem = pool->alloc.cache[--pool->alloc.count]; 1099 page_pool_return_page(pool, netmem); 1100 } 1101 } 1102 EXPORT_SYMBOL(page_pool_update_nid); 1103