1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/netdev_rx_queue.h> 15 #include <net/page_pool/helpers.h> 16 #include <net/xdp.h> 17 18 #include <linux/dma-direction.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/page-flags.h> 21 #include <linux/mm.h> /* for put_page() */ 22 #include <linux/poison.h> 23 #include <linux/ethtool.h> 24 #include <linux/netdevice.h> 25 26 #include <trace/events/page_pool.h> 27 28 #include "mp_dmabuf_devmem.h" 29 #include "netmem_priv.h" 30 #include "page_pool_priv.h" 31 32 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); 33 34 #define DEFER_TIME (msecs_to_jiffies(1000)) 35 #define DEFER_WARN_INTERVAL (60 * HZ) 36 37 #define BIAS_MAX (LONG_MAX >> 1) 38 39 #ifdef CONFIG_PAGE_POOL_STATS 40 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 41 42 /* alloc_stat_inc is intended to be used in softirq context */ 43 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 44 /* recycle_stat_inc is safe to use when preemption is possible. */ 45 #define recycle_stat_inc(pool, __stat) \ 46 do { \ 47 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 48 this_cpu_inc(s->__stat); \ 49 } while (0) 50 51 #define recycle_stat_add(pool, __stat, val) \ 52 do { \ 53 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 54 this_cpu_add(s->__stat, val); \ 55 } while (0) 56 57 static const char pp_stats[][ETH_GSTRING_LEN] = { 58 "rx_pp_alloc_fast", 59 "rx_pp_alloc_slow", 60 "rx_pp_alloc_slow_ho", 61 "rx_pp_alloc_empty", 62 "rx_pp_alloc_refill", 63 "rx_pp_alloc_waive", 64 "rx_pp_recycle_cached", 65 "rx_pp_recycle_cache_full", 66 "rx_pp_recycle_ring", 67 "rx_pp_recycle_ring_full", 68 "rx_pp_recycle_released_ref", 69 }; 70 71 /** 72 * page_pool_get_stats() - fetch page pool stats 73 * @pool: pool from which page was allocated 74 * @stats: struct page_pool_stats to fill in 75 * 76 * Retrieve statistics about the page_pool. This API is only available 77 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 78 * A pointer to a caller allocated struct page_pool_stats structure 79 * is passed to this API which is filled in. The caller can then report 80 * those stats to the user (perhaps via ethtool, debugfs, etc.). 81 */ 82 bool page_pool_get_stats(const struct page_pool *pool, 83 struct page_pool_stats *stats) 84 { 85 int cpu = 0; 86 87 if (!stats) 88 return false; 89 90 /* The caller is responsible to initialize stats. */ 91 stats->alloc_stats.fast += pool->alloc_stats.fast; 92 stats->alloc_stats.slow += pool->alloc_stats.slow; 93 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 94 stats->alloc_stats.empty += pool->alloc_stats.empty; 95 stats->alloc_stats.refill += pool->alloc_stats.refill; 96 stats->alloc_stats.waive += pool->alloc_stats.waive; 97 98 for_each_possible_cpu(cpu) { 99 const struct page_pool_recycle_stats *pcpu = 100 per_cpu_ptr(pool->recycle_stats, cpu); 101 102 stats->recycle_stats.cached += pcpu->cached; 103 stats->recycle_stats.cache_full += pcpu->cache_full; 104 stats->recycle_stats.ring += pcpu->ring; 105 stats->recycle_stats.ring_full += pcpu->ring_full; 106 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 107 } 108 109 return true; 110 } 111 EXPORT_SYMBOL(page_pool_get_stats); 112 113 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 114 { 115 int i; 116 117 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 118 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 119 data += ETH_GSTRING_LEN; 120 } 121 122 return data; 123 } 124 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 125 126 int page_pool_ethtool_stats_get_count(void) 127 { 128 return ARRAY_SIZE(pp_stats); 129 } 130 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 131 132 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 133 { 134 const struct page_pool_stats *pool_stats = stats; 135 136 *data++ = pool_stats->alloc_stats.fast; 137 *data++ = pool_stats->alloc_stats.slow; 138 *data++ = pool_stats->alloc_stats.slow_high_order; 139 *data++ = pool_stats->alloc_stats.empty; 140 *data++ = pool_stats->alloc_stats.refill; 141 *data++ = pool_stats->alloc_stats.waive; 142 *data++ = pool_stats->recycle_stats.cached; 143 *data++ = pool_stats->recycle_stats.cache_full; 144 *data++ = pool_stats->recycle_stats.ring; 145 *data++ = pool_stats->recycle_stats.ring_full; 146 *data++ = pool_stats->recycle_stats.released_refcnt; 147 148 return data; 149 } 150 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 151 152 #else 153 #define alloc_stat_inc(pool, __stat) 154 #define recycle_stat_inc(pool, __stat) 155 #define recycle_stat_add(pool, __stat, val) 156 #endif 157 158 static bool page_pool_producer_lock(struct page_pool *pool) 159 __acquires(&pool->ring.producer_lock) 160 { 161 bool in_softirq = in_softirq(); 162 163 if (in_softirq) 164 spin_lock(&pool->ring.producer_lock); 165 else 166 spin_lock_bh(&pool->ring.producer_lock); 167 168 return in_softirq; 169 } 170 171 static void page_pool_producer_unlock(struct page_pool *pool, 172 bool in_softirq) 173 __releases(&pool->ring.producer_lock) 174 { 175 if (in_softirq) 176 spin_unlock(&pool->ring.producer_lock); 177 else 178 spin_unlock_bh(&pool->ring.producer_lock); 179 } 180 181 static void page_pool_struct_check(void) 182 { 183 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); 184 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); 185 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); 186 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 187 PAGE_POOL_FRAG_GROUP_ALIGN); 188 } 189 190 static int page_pool_init(struct page_pool *pool, 191 const struct page_pool_params *params, 192 int cpuid) 193 { 194 unsigned int ring_qsize = 1024; /* Default */ 195 struct netdev_rx_queue *rxq; 196 int err; 197 198 page_pool_struct_check(); 199 200 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 201 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 202 203 pool->cpuid = cpuid; 204 205 /* Validate only known flags were used */ 206 if (pool->slow.flags & ~PP_FLAG_ALL) 207 return -EINVAL; 208 209 if (pool->p.pool_size) 210 ring_qsize = pool->p.pool_size; 211 212 /* Sanity limit mem that can be pinned down */ 213 if (ring_qsize > 32768) 214 return -E2BIG; 215 216 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 217 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 218 * which is the XDP_TX use-case. 219 */ 220 if (pool->slow.flags & PP_FLAG_DMA_MAP) { 221 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 222 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 223 return -EINVAL; 224 225 pool->dma_map = true; 226 } 227 228 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { 229 /* In order to request DMA-sync-for-device the page 230 * needs to be mapped 231 */ 232 if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) 233 return -EINVAL; 234 235 if (!pool->p.max_len) 236 return -EINVAL; 237 238 pool->dma_sync = true; 239 240 /* pool->p.offset has to be set according to the address 241 * offset used by the DMA engine to start copying rx data 242 */ 243 } 244 245 pool->has_init_callback = !!pool->slow.init_callback; 246 247 #ifdef CONFIG_PAGE_POOL_STATS 248 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { 249 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 250 if (!pool->recycle_stats) 251 return -ENOMEM; 252 } else { 253 /* For system page pool instance we use a singular stats object 254 * instead of allocating a separate percpu variable for each 255 * (also percpu) page pool instance. 256 */ 257 pool->recycle_stats = &pp_system_recycle_stats; 258 pool->system = true; 259 } 260 #endif 261 262 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 263 #ifdef CONFIG_PAGE_POOL_STATS 264 if (!pool->system) 265 free_percpu(pool->recycle_stats); 266 #endif 267 return -ENOMEM; 268 } 269 270 atomic_set(&pool->pages_state_release_cnt, 0); 271 272 /* Driver calling page_pool_create() also call page_pool_destroy() */ 273 refcount_set(&pool->user_cnt, 1); 274 275 if (pool->dma_map) 276 get_device(pool->p.dev); 277 278 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) { 279 /* We rely on rtnl_lock()ing to make sure netdev_rx_queue 280 * configuration doesn't change while we're initializing 281 * the page_pool. 282 */ 283 ASSERT_RTNL(); 284 rxq = __netif_get_rx_queue(pool->slow.netdev, 285 pool->slow.queue_idx); 286 pool->mp_priv = rxq->mp_params.mp_priv; 287 } 288 289 if (pool->mp_priv) { 290 err = mp_dmabuf_devmem_init(pool); 291 if (err) { 292 pr_warn("%s() mem-provider init failed %d\n", __func__, 293 err); 294 goto free_ptr_ring; 295 } 296 297 static_branch_inc(&page_pool_mem_providers); 298 } 299 300 return 0; 301 302 free_ptr_ring: 303 ptr_ring_cleanup(&pool->ring, NULL); 304 #ifdef CONFIG_PAGE_POOL_STATS 305 if (!pool->system) 306 free_percpu(pool->recycle_stats); 307 #endif 308 return err; 309 } 310 311 static void page_pool_uninit(struct page_pool *pool) 312 { 313 ptr_ring_cleanup(&pool->ring, NULL); 314 315 if (pool->dma_map) 316 put_device(pool->p.dev); 317 318 #ifdef CONFIG_PAGE_POOL_STATS 319 if (!pool->system) 320 free_percpu(pool->recycle_stats); 321 #endif 322 } 323 324 /** 325 * page_pool_create_percpu() - create a page pool for a given cpu. 326 * @params: parameters, see struct page_pool_params 327 * @cpuid: cpu identifier 328 */ 329 struct page_pool * 330 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 331 { 332 struct page_pool *pool; 333 int err; 334 335 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 336 if (!pool) 337 return ERR_PTR(-ENOMEM); 338 339 err = page_pool_init(pool, params, cpuid); 340 if (err < 0) 341 goto err_free; 342 343 err = page_pool_list(pool); 344 if (err) 345 goto err_uninit; 346 347 return pool; 348 349 err_uninit: 350 page_pool_uninit(pool); 351 err_free: 352 pr_warn("%s() gave up with errno %d\n", __func__, err); 353 kfree(pool); 354 return ERR_PTR(err); 355 } 356 EXPORT_SYMBOL(page_pool_create_percpu); 357 358 /** 359 * page_pool_create() - create a page pool 360 * @params: parameters, see struct page_pool_params 361 */ 362 struct page_pool *page_pool_create(const struct page_pool_params *params) 363 { 364 return page_pool_create_percpu(params, -1); 365 } 366 EXPORT_SYMBOL(page_pool_create); 367 368 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem); 369 370 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) 371 { 372 struct ptr_ring *r = &pool->ring; 373 netmem_ref netmem; 374 int pref_nid; /* preferred NUMA node */ 375 376 /* Quicker fallback, avoid locks when ring is empty */ 377 if (__ptr_ring_empty(r)) { 378 alloc_stat_inc(pool, empty); 379 return 0; 380 } 381 382 /* Softirq guarantee CPU and thus NUMA node is stable. This, 383 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 384 */ 385 #ifdef CONFIG_NUMA 386 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 387 #else 388 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 389 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 390 #endif 391 392 /* Refill alloc array, but only if NUMA match */ 393 do { 394 netmem = (__force netmem_ref)__ptr_ring_consume(r); 395 if (unlikely(!netmem)) 396 break; 397 398 if (likely(netmem_is_pref_nid(netmem, pref_nid))) { 399 pool->alloc.cache[pool->alloc.count++] = netmem; 400 } else { 401 /* NUMA mismatch; 402 * (1) release 1 page to page-allocator and 403 * (2) break out to fallthrough to alloc_pages_node. 404 * This limit stress on page buddy alloactor. 405 */ 406 page_pool_return_page(pool, netmem); 407 alloc_stat_inc(pool, waive); 408 netmem = 0; 409 break; 410 } 411 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 412 413 /* Return last page */ 414 if (likely(pool->alloc.count > 0)) { 415 netmem = pool->alloc.cache[--pool->alloc.count]; 416 alloc_stat_inc(pool, refill); 417 } 418 419 return netmem; 420 } 421 422 /* fast path */ 423 static netmem_ref __page_pool_get_cached(struct page_pool *pool) 424 { 425 netmem_ref netmem; 426 427 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 428 if (likely(pool->alloc.count)) { 429 /* Fast-path */ 430 netmem = pool->alloc.cache[--pool->alloc.count]; 431 alloc_stat_inc(pool, fast); 432 } else { 433 netmem = page_pool_refill_alloc_cache(pool); 434 } 435 436 return netmem; 437 } 438 439 static void __page_pool_dma_sync_for_device(const struct page_pool *pool, 440 netmem_ref netmem, 441 u32 dma_sync_size) 442 { 443 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 444 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); 445 446 dma_sync_size = min(dma_sync_size, pool->p.max_len); 447 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, 448 dma_sync_size, pool->p.dma_dir); 449 #endif 450 } 451 452 static __always_inline void 453 page_pool_dma_sync_for_device(const struct page_pool *pool, 454 netmem_ref netmem, 455 u32 dma_sync_size) 456 { 457 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) 458 __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 459 } 460 461 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem) 462 { 463 dma_addr_t dma; 464 465 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 466 * since dma_addr_t can be either 32 or 64 bits and does not always fit 467 * into page private data (i.e 32bit cpu with 64bit DMA caps) 468 * This mapping is kept for lifetime of page, until leaving pool. 469 */ 470 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, 471 (PAGE_SIZE << pool->p.order), pool->p.dma_dir, 472 DMA_ATTR_SKIP_CPU_SYNC | 473 DMA_ATTR_WEAK_ORDERING); 474 if (dma_mapping_error(pool->p.dev, dma)) 475 return false; 476 477 if (page_pool_set_dma_addr_netmem(netmem, dma)) 478 goto unmap_failed; 479 480 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); 481 482 return true; 483 484 unmap_failed: 485 WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); 486 dma_unmap_page_attrs(pool->p.dev, dma, 487 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 488 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 489 return false; 490 } 491 492 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 493 gfp_t gfp) 494 { 495 struct page *page; 496 497 gfp |= __GFP_COMP; 498 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 499 if (unlikely(!page)) 500 return NULL; 501 502 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) { 503 put_page(page); 504 return NULL; 505 } 506 507 alloc_stat_inc(pool, slow_high_order); 508 page_pool_set_pp_info(pool, page_to_netmem(page)); 509 510 /* Track how many pages are held 'in-flight' */ 511 pool->pages_state_hold_cnt++; 512 trace_page_pool_state_hold(pool, page_to_netmem(page), 513 pool->pages_state_hold_cnt); 514 return page; 515 } 516 517 /* slow path */ 518 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool, 519 gfp_t gfp) 520 { 521 const int bulk = PP_ALLOC_CACHE_REFILL; 522 unsigned int pp_order = pool->p.order; 523 bool dma_map = pool->dma_map; 524 netmem_ref netmem; 525 int i, nr_pages; 526 527 /* Don't support bulk alloc for high-order pages */ 528 if (unlikely(pp_order)) 529 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); 530 531 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 532 if (unlikely(pool->alloc.count > 0)) 533 return pool->alloc.cache[--pool->alloc.count]; 534 535 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 536 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 537 538 nr_pages = alloc_pages_bulk_array_node(gfp, 539 pool->p.nid, bulk, 540 (struct page **)pool->alloc.cache); 541 if (unlikely(!nr_pages)) 542 return 0; 543 544 /* Pages have been filled into alloc.cache array, but count is zero and 545 * page element have not been (possibly) DMA mapped. 546 */ 547 for (i = 0; i < nr_pages; i++) { 548 netmem = pool->alloc.cache[i]; 549 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) { 550 put_page(netmem_to_page(netmem)); 551 continue; 552 } 553 554 page_pool_set_pp_info(pool, netmem); 555 pool->alloc.cache[pool->alloc.count++] = netmem; 556 /* Track how many pages are held 'in-flight' */ 557 pool->pages_state_hold_cnt++; 558 trace_page_pool_state_hold(pool, netmem, 559 pool->pages_state_hold_cnt); 560 } 561 562 /* Return last page */ 563 if (likely(pool->alloc.count > 0)) { 564 netmem = pool->alloc.cache[--pool->alloc.count]; 565 alloc_stat_inc(pool, slow); 566 } else { 567 netmem = 0; 568 } 569 570 /* When page just alloc'ed is should/must have refcnt 1. */ 571 return netmem; 572 } 573 574 /* For using page_pool replace: alloc_pages() API calls, but provide 575 * synchronization guarantee for allocation side. 576 */ 577 netmem_ref page_pool_alloc_netmem(struct page_pool *pool, gfp_t gfp) 578 { 579 netmem_ref netmem; 580 581 /* Fast-path: Get a page from cache */ 582 netmem = __page_pool_get_cached(pool); 583 if (netmem) 584 return netmem; 585 586 /* Slow-path: cache empty, do real allocation */ 587 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv) 588 netmem = mp_dmabuf_devmem_alloc_netmems(pool, gfp); 589 else 590 netmem = __page_pool_alloc_pages_slow(pool, gfp); 591 return netmem; 592 } 593 EXPORT_SYMBOL(page_pool_alloc_netmem); 594 595 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 596 { 597 return netmem_to_page(page_pool_alloc_netmem(pool, gfp)); 598 } 599 EXPORT_SYMBOL(page_pool_alloc_pages); 600 ALLOW_ERROR_INJECTION(page_pool_alloc_pages, NULL); 601 602 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 603 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 604 */ 605 #define _distance(a, b) (s32)((a) - (b)) 606 607 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 608 { 609 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 610 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 611 s32 inflight; 612 613 inflight = _distance(hold_cnt, release_cnt); 614 615 if (strict) { 616 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 617 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 618 inflight); 619 } else { 620 inflight = max(0, inflight); 621 } 622 623 return inflight; 624 } 625 626 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) 627 { 628 netmem_set_pp(netmem, pool); 629 netmem_or_pp_magic(netmem, PP_SIGNATURE); 630 631 /* Ensuring all pages have been split into one fragment initially: 632 * page_pool_set_pp_info() is only called once for every page when it 633 * is allocated from the page allocator and page_pool_fragment_page() 634 * is dirtying the same cache line as the page->pp_magic above, so 635 * the overhead is negligible. 636 */ 637 page_pool_fragment_netmem(netmem, 1); 638 if (pool->has_init_callback) 639 pool->slow.init_callback(netmem, pool->slow.init_arg); 640 } 641 642 void page_pool_clear_pp_info(netmem_ref netmem) 643 { 644 netmem_clear_pp_magic(netmem); 645 netmem_set_pp(netmem, NULL); 646 } 647 648 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool, 649 netmem_ref netmem) 650 { 651 dma_addr_t dma; 652 653 if (!pool->dma_map) 654 /* Always account for inflight pages, even if we didn't 655 * map them 656 */ 657 return; 658 659 dma = page_pool_get_dma_addr_netmem(netmem); 660 661 /* When page is unmapped, it cannot be returned to our pool */ 662 dma_unmap_page_attrs(pool->p.dev, dma, 663 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 664 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 665 page_pool_set_dma_addr_netmem(netmem, 0); 666 } 667 668 /* Disconnects a page (from a page_pool). API users can have a need 669 * to disconnect a page (from a page_pool), to allow it to be used as 670 * a regular page (that will eventually be returned to the normal 671 * page-allocator via put_page). 672 */ 673 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem) 674 { 675 int count; 676 bool put; 677 678 put = true; 679 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv) 680 put = mp_dmabuf_devmem_release_page(pool, netmem); 681 else 682 __page_pool_release_page_dma(pool, netmem); 683 684 /* This may be the last page returned, releasing the pool, so 685 * it is not safe to reference pool afterwards. 686 */ 687 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 688 trace_page_pool_state_release(pool, netmem, count); 689 690 if (put) { 691 page_pool_clear_pp_info(netmem); 692 put_page(netmem_to_page(netmem)); 693 } 694 /* An optimization would be to call __free_pages(page, pool->p.order) 695 * knowing page is not part of page-cache (thus avoiding a 696 * __page_cache_release() call). 697 */ 698 } 699 700 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) 701 { 702 int ret; 703 /* BH protection not needed if current is softirq */ 704 if (in_softirq()) 705 ret = ptr_ring_produce(&pool->ring, (__force void *)netmem); 706 else 707 ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem); 708 709 if (!ret) { 710 recycle_stat_inc(pool, ring); 711 return true; 712 } 713 714 return false; 715 } 716 717 /* Only allow direct recycling in special circumstances, into the 718 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 719 * 720 * Caller must provide appropriate safe context. 721 */ 722 static bool page_pool_recycle_in_cache(netmem_ref netmem, 723 struct page_pool *pool) 724 { 725 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 726 recycle_stat_inc(pool, cache_full); 727 return false; 728 } 729 730 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 731 pool->alloc.cache[pool->alloc.count++] = netmem; 732 recycle_stat_inc(pool, cached); 733 return true; 734 } 735 736 static bool __page_pool_page_can_be_recycled(netmem_ref netmem) 737 { 738 return netmem_is_net_iov(netmem) || 739 (page_ref_count(netmem_to_page(netmem)) == 1 && 740 !page_is_pfmemalloc(netmem_to_page(netmem))); 741 } 742 743 /* If the page refcnt == 1, this will try to recycle the page. 744 * If pool->dma_sync is set, we'll try to sync the DMA area for 745 * the configured size min(dma_sync_size, pool->max_len). 746 * If the page refcnt != 1, then the page will be returned to memory 747 * subsystem. 748 */ 749 static __always_inline netmem_ref 750 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, 751 unsigned int dma_sync_size, bool allow_direct) 752 { 753 lockdep_assert_no_hardirq(); 754 755 /* This allocator is optimized for the XDP mode that uses 756 * one-frame-per-page, but have fallbacks that act like the 757 * regular page allocator APIs. 758 * 759 * refcnt == 1 means page_pool owns page, and can recycle it. 760 * 761 * page is NOT reusable when allocated when system is under 762 * some pressure. (page_is_pfmemalloc) 763 */ 764 if (likely(__page_pool_page_can_be_recycled(netmem))) { 765 /* Read barrier done in page_ref_count / READ_ONCE */ 766 767 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 768 769 if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) 770 return 0; 771 772 /* Page found as candidate for recycling */ 773 return netmem; 774 } 775 776 /* Fallback/non-XDP mode: API user have elevated refcnt. 777 * 778 * Many drivers split up the page into fragments, and some 779 * want to keep doing this to save memory and do refcnt based 780 * recycling. Support this use case too, to ease drivers 781 * switching between XDP/non-XDP. 782 * 783 * In-case page_pool maintains the DMA mapping, API user must 784 * call page_pool_put_page once. In this elevated refcnt 785 * case, the DMA is unmapped/released, as driver is likely 786 * doing refcnt based recycle tricks, meaning another process 787 * will be invoking put_page. 788 */ 789 recycle_stat_inc(pool, released_refcnt); 790 page_pool_return_page(pool, netmem); 791 792 return 0; 793 } 794 795 static bool page_pool_napi_local(const struct page_pool *pool) 796 { 797 const struct napi_struct *napi; 798 u32 cpuid; 799 800 if (unlikely(!in_softirq())) 801 return false; 802 803 /* Allow direct recycle if we have reasons to believe that we are 804 * in the same context as the consumer would run, so there's 805 * no possible race. 806 * __page_pool_put_page() makes sure we're not in hardirq context 807 * and interrupts are enabled prior to accessing the cache. 808 */ 809 cpuid = smp_processor_id(); 810 if (READ_ONCE(pool->cpuid) == cpuid) 811 return true; 812 813 napi = READ_ONCE(pool->p.napi); 814 815 return napi && READ_ONCE(napi->list_owner) == cpuid; 816 } 817 818 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, 819 unsigned int dma_sync_size, bool allow_direct) 820 { 821 if (!allow_direct) 822 allow_direct = page_pool_napi_local(pool); 823 824 netmem = 825 __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct); 826 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { 827 /* Cache full, fallback to free pages */ 828 recycle_stat_inc(pool, ring_full); 829 page_pool_return_page(pool, netmem); 830 } 831 } 832 EXPORT_SYMBOL(page_pool_put_unrefed_netmem); 833 834 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 835 unsigned int dma_sync_size, bool allow_direct) 836 { 837 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, 838 allow_direct); 839 } 840 EXPORT_SYMBOL(page_pool_put_unrefed_page); 841 842 /** 843 * page_pool_put_page_bulk() - release references on multiple pages 844 * @pool: pool from which pages were allocated 845 * @data: array holding page pointers 846 * @count: number of pages in @data 847 * 848 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring 849 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk() 850 * will release leftover pages to the page allocator. 851 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx 852 * completion loop for the XDP_REDIRECT use case. 853 * 854 * Please note the caller must not use data area after running 855 * page_pool_put_page_bulk(), as this function overwrites it. 856 */ 857 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 858 int count) 859 { 860 int i, bulk_len = 0; 861 bool allow_direct; 862 bool in_softirq; 863 864 allow_direct = page_pool_napi_local(pool); 865 866 for (i = 0; i < count; i++) { 867 netmem_ref netmem = page_to_netmem(virt_to_head_page(data[i])); 868 869 /* It is not the last user for the page frag case */ 870 if (!page_pool_is_last_ref(netmem)) 871 continue; 872 873 netmem = __page_pool_put_page(pool, netmem, -1, allow_direct); 874 /* Approved for bulk recycling in ptr_ring cache */ 875 if (netmem) 876 data[bulk_len++] = (__force void *)netmem; 877 } 878 879 if (!bulk_len) 880 return; 881 882 /* Bulk producer into ptr_ring page_pool cache */ 883 in_softirq = page_pool_producer_lock(pool); 884 for (i = 0; i < bulk_len; i++) { 885 if (__ptr_ring_produce(&pool->ring, data[i])) { 886 /* ring full */ 887 recycle_stat_inc(pool, ring_full); 888 break; 889 } 890 } 891 recycle_stat_add(pool, ring, i); 892 page_pool_producer_unlock(pool, in_softirq); 893 894 /* Hopefully all pages was return into ptr_ring */ 895 if (likely(i == bulk_len)) 896 return; 897 898 /* ptr_ring cache full, free remaining pages outside producer lock 899 * since put_page() with refcnt == 1 can be an expensive operation 900 */ 901 for (; i < bulk_len; i++) 902 page_pool_return_page(pool, (__force netmem_ref)data[i]); 903 } 904 EXPORT_SYMBOL(page_pool_put_page_bulk); 905 906 static netmem_ref page_pool_drain_frag(struct page_pool *pool, 907 netmem_ref netmem) 908 { 909 long drain_count = BIAS_MAX - pool->frag_users; 910 911 /* Some user is still using the page frag */ 912 if (likely(page_pool_unref_netmem(netmem, drain_count))) 913 return 0; 914 915 if (__page_pool_page_can_be_recycled(netmem)) { 916 page_pool_dma_sync_for_device(pool, netmem, -1); 917 return netmem; 918 } 919 920 page_pool_return_page(pool, netmem); 921 return 0; 922 } 923 924 static void page_pool_free_frag(struct page_pool *pool) 925 { 926 long drain_count = BIAS_MAX - pool->frag_users; 927 netmem_ref netmem = pool->frag_page; 928 929 pool->frag_page = 0; 930 931 if (!netmem || page_pool_unref_netmem(netmem, drain_count)) 932 return; 933 934 page_pool_return_page(pool, netmem); 935 } 936 937 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, 938 unsigned int *offset, unsigned int size, 939 gfp_t gfp) 940 { 941 unsigned int max_size = PAGE_SIZE << pool->p.order; 942 netmem_ref netmem = pool->frag_page; 943 944 if (WARN_ON(size > max_size)) 945 return 0; 946 947 size = ALIGN(size, dma_get_cache_alignment()); 948 *offset = pool->frag_offset; 949 950 if (netmem && *offset + size > max_size) { 951 netmem = page_pool_drain_frag(pool, netmem); 952 if (netmem) { 953 recycle_stat_inc(pool, cached); 954 alloc_stat_inc(pool, fast); 955 goto frag_reset; 956 } 957 } 958 959 if (!netmem) { 960 netmem = page_pool_alloc_netmem(pool, gfp); 961 if (unlikely(!netmem)) { 962 pool->frag_page = 0; 963 return 0; 964 } 965 966 pool->frag_page = netmem; 967 968 frag_reset: 969 pool->frag_users = 1; 970 *offset = 0; 971 pool->frag_offset = size; 972 page_pool_fragment_netmem(netmem, BIAS_MAX); 973 return netmem; 974 } 975 976 pool->frag_users++; 977 pool->frag_offset = *offset + size; 978 return netmem; 979 } 980 EXPORT_SYMBOL(page_pool_alloc_frag_netmem); 981 982 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, 983 unsigned int size, gfp_t gfp) 984 { 985 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, 986 gfp)); 987 } 988 EXPORT_SYMBOL(page_pool_alloc_frag); 989 990 static void page_pool_empty_ring(struct page_pool *pool) 991 { 992 netmem_ref netmem; 993 994 /* Empty recycle ring */ 995 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { 996 /* Verify the refcnt invariant of cached pages */ 997 if (!(netmem_ref_count(netmem) == 1)) 998 pr_crit("%s() page_pool refcnt %d violation\n", 999 __func__, netmem_ref_count(netmem)); 1000 1001 page_pool_return_page(pool, netmem); 1002 } 1003 } 1004 1005 static void __page_pool_destroy(struct page_pool *pool) 1006 { 1007 if (pool->disconnect) 1008 pool->disconnect(pool); 1009 1010 page_pool_unlist(pool); 1011 page_pool_uninit(pool); 1012 1013 if (pool->mp_priv) { 1014 mp_dmabuf_devmem_destroy(pool); 1015 static_branch_dec(&page_pool_mem_providers); 1016 } 1017 1018 kfree(pool); 1019 } 1020 1021 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 1022 { 1023 netmem_ref netmem; 1024 1025 if (pool->destroy_cnt) 1026 return; 1027 1028 /* Empty alloc cache, assume caller made sure this is 1029 * no-longer in use, and page_pool_alloc_pages() cannot be 1030 * call concurrently. 1031 */ 1032 while (pool->alloc.count) { 1033 netmem = pool->alloc.cache[--pool->alloc.count]; 1034 page_pool_return_page(pool, netmem); 1035 } 1036 } 1037 1038 static void page_pool_scrub(struct page_pool *pool) 1039 { 1040 page_pool_empty_alloc_cache_once(pool); 1041 pool->destroy_cnt++; 1042 1043 /* No more consumers should exist, but producers could still 1044 * be in-flight. 1045 */ 1046 page_pool_empty_ring(pool); 1047 } 1048 1049 static int page_pool_release(struct page_pool *pool) 1050 { 1051 int inflight; 1052 1053 page_pool_scrub(pool); 1054 inflight = page_pool_inflight(pool, true); 1055 if (!inflight) 1056 __page_pool_destroy(pool); 1057 1058 return inflight; 1059 } 1060 1061 static void page_pool_release_retry(struct work_struct *wq) 1062 { 1063 struct delayed_work *dwq = to_delayed_work(wq); 1064 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 1065 void *netdev; 1066 int inflight; 1067 1068 inflight = page_pool_release(pool); 1069 if (!inflight) 1070 return; 1071 1072 /* Periodic warning for page pools the user can't see */ 1073 netdev = READ_ONCE(pool->slow.netdev); 1074 if (time_after_eq(jiffies, pool->defer_warn) && 1075 (!netdev || netdev == NET_PTR_POISON)) { 1076 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 1077 1078 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 1079 __func__, pool->user.id, inflight, sec); 1080 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1081 } 1082 1083 /* Still not ready to be disconnected, retry later */ 1084 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1085 } 1086 1087 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 1088 const struct xdp_mem_info *mem) 1089 { 1090 refcount_inc(&pool->user_cnt); 1091 pool->disconnect = disconnect; 1092 pool->xdp_mem_id = mem->id; 1093 } 1094 1095 void page_pool_disable_direct_recycling(struct page_pool *pool) 1096 { 1097 /* Disable direct recycling based on pool->cpuid. 1098 * Paired with READ_ONCE() in page_pool_napi_local(). 1099 */ 1100 WRITE_ONCE(pool->cpuid, -1); 1101 1102 if (!pool->p.napi) 1103 return; 1104 1105 /* To avoid races with recycling and additional barriers make sure 1106 * pool and NAPI are unlinked when NAPI is disabled. 1107 */ 1108 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state)); 1109 WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1); 1110 1111 WRITE_ONCE(pool->p.napi, NULL); 1112 } 1113 EXPORT_SYMBOL(page_pool_disable_direct_recycling); 1114 1115 void page_pool_destroy(struct page_pool *pool) 1116 { 1117 if (!pool) 1118 return; 1119 1120 if (!page_pool_put(pool)) 1121 return; 1122 1123 page_pool_disable_direct_recycling(pool); 1124 page_pool_free_frag(pool); 1125 1126 if (!page_pool_release(pool)) 1127 return; 1128 1129 page_pool_detached(pool); 1130 pool->defer_start = jiffies; 1131 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1132 1133 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1134 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1135 } 1136 EXPORT_SYMBOL(page_pool_destroy); 1137 1138 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1139 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1140 { 1141 netmem_ref netmem; 1142 1143 trace_page_pool_update_nid(pool, new_nid); 1144 pool->p.nid = new_nid; 1145 1146 /* Flush pool alloc cache, as refill will check NUMA node */ 1147 while (pool->alloc.count) { 1148 netmem = pool->alloc.cache[--pool->alloc.count]; 1149 page_pool_return_page(pool, netmem); 1150 } 1151 } 1152 EXPORT_SYMBOL(page_pool_update_nid); 1153