1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/netdev_lock.h> 15 #include <net/netdev_rx_queue.h> 16 #include <net/page_pool/helpers.h> 17 #include <net/page_pool/memory_provider.h> 18 #include <net/xdp.h> 19 20 #include <linux/dma-direction.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/page-flags.h> 23 #include <linux/mm.h> /* for put_page() */ 24 #include <linux/poison.h> 25 #include <linux/ethtool.h> 26 #include <linux/netdevice.h> 27 28 #include <trace/events/page_pool.h> 29 30 #include "dev.h" 31 #include "mp_dmabuf_devmem.h" 32 #include "netmem_priv.h" 33 #include "page_pool_priv.h" 34 35 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); 36 37 #define DEFER_TIME (msecs_to_jiffies(1000)) 38 #define DEFER_WARN_INTERVAL (60 * HZ) 39 40 #define BIAS_MAX (LONG_MAX >> 1) 41 42 #ifdef CONFIG_PAGE_POOL_STATS 43 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 44 45 /* alloc_stat_inc is intended to be used in softirq context */ 46 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 47 /* recycle_stat_inc is safe to use when preemption is possible. */ 48 #define recycle_stat_inc(pool, __stat) \ 49 do { \ 50 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 51 this_cpu_inc(s->__stat); \ 52 } while (0) 53 54 #define recycle_stat_add(pool, __stat, val) \ 55 do { \ 56 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 57 this_cpu_add(s->__stat, val); \ 58 } while (0) 59 60 static const char pp_stats[][ETH_GSTRING_LEN] = { 61 "rx_pp_alloc_fast", 62 "rx_pp_alloc_slow", 63 "rx_pp_alloc_slow_ho", 64 "rx_pp_alloc_empty", 65 "rx_pp_alloc_refill", 66 "rx_pp_alloc_waive", 67 "rx_pp_recycle_cached", 68 "rx_pp_recycle_cache_full", 69 "rx_pp_recycle_ring", 70 "rx_pp_recycle_ring_full", 71 "rx_pp_recycle_released_ref", 72 }; 73 74 /** 75 * page_pool_get_stats() - fetch page pool stats 76 * @pool: pool from which page was allocated 77 * @stats: struct page_pool_stats to fill in 78 * 79 * Retrieve statistics about the page_pool. This API is only available 80 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 81 * A pointer to a caller allocated struct page_pool_stats structure 82 * is passed to this API which is filled in. The caller can then report 83 * those stats to the user (perhaps via ethtool, debugfs, etc.). 84 */ 85 bool page_pool_get_stats(const struct page_pool *pool, 86 struct page_pool_stats *stats) 87 { 88 int cpu = 0; 89 90 if (!stats) 91 return false; 92 93 /* The caller is responsible to initialize stats. */ 94 stats->alloc_stats.fast += pool->alloc_stats.fast; 95 stats->alloc_stats.slow += pool->alloc_stats.slow; 96 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 97 stats->alloc_stats.empty += pool->alloc_stats.empty; 98 stats->alloc_stats.refill += pool->alloc_stats.refill; 99 stats->alloc_stats.waive += pool->alloc_stats.waive; 100 101 for_each_possible_cpu(cpu) { 102 const struct page_pool_recycle_stats *pcpu = 103 per_cpu_ptr(pool->recycle_stats, cpu); 104 105 stats->recycle_stats.cached += pcpu->cached; 106 stats->recycle_stats.cache_full += pcpu->cache_full; 107 stats->recycle_stats.ring += pcpu->ring; 108 stats->recycle_stats.ring_full += pcpu->ring_full; 109 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 110 } 111 112 return true; 113 } 114 EXPORT_SYMBOL(page_pool_get_stats); 115 116 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 117 { 118 int i; 119 120 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 121 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 122 data += ETH_GSTRING_LEN; 123 } 124 125 return data; 126 } 127 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 128 129 int page_pool_ethtool_stats_get_count(void) 130 { 131 return ARRAY_SIZE(pp_stats); 132 } 133 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 134 135 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 136 { 137 const struct page_pool_stats *pool_stats = stats; 138 139 *data++ = pool_stats->alloc_stats.fast; 140 *data++ = pool_stats->alloc_stats.slow; 141 *data++ = pool_stats->alloc_stats.slow_high_order; 142 *data++ = pool_stats->alloc_stats.empty; 143 *data++ = pool_stats->alloc_stats.refill; 144 *data++ = pool_stats->alloc_stats.waive; 145 *data++ = pool_stats->recycle_stats.cached; 146 *data++ = pool_stats->recycle_stats.cache_full; 147 *data++ = pool_stats->recycle_stats.ring; 148 *data++ = pool_stats->recycle_stats.ring_full; 149 *data++ = pool_stats->recycle_stats.released_refcnt; 150 151 return data; 152 } 153 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 154 155 #else 156 #define alloc_stat_inc(pool, __stat) 157 #define recycle_stat_inc(pool, __stat) 158 #define recycle_stat_add(pool, __stat, val) 159 #endif 160 161 static bool page_pool_producer_lock(struct page_pool *pool) 162 __acquires(&pool->ring.producer_lock) 163 { 164 bool in_softirq = in_softirq(); 165 166 if (in_softirq) 167 spin_lock(&pool->ring.producer_lock); 168 else 169 spin_lock_bh(&pool->ring.producer_lock); 170 171 return in_softirq; 172 } 173 174 static void page_pool_producer_unlock(struct page_pool *pool, 175 bool in_softirq) 176 __releases(&pool->ring.producer_lock) 177 { 178 if (in_softirq) 179 spin_unlock(&pool->ring.producer_lock); 180 else 181 spin_unlock_bh(&pool->ring.producer_lock); 182 } 183 184 static void page_pool_struct_check(void) 185 { 186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); 187 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); 188 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); 189 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 190 PAGE_POOL_FRAG_GROUP_ALIGN); 191 } 192 193 static int page_pool_init(struct page_pool *pool, 194 const struct page_pool_params *params, 195 int cpuid) 196 { 197 unsigned int ring_qsize = 1024; /* Default */ 198 struct netdev_rx_queue *rxq; 199 int err; 200 201 page_pool_struct_check(); 202 203 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 204 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 205 206 pool->cpuid = cpuid; 207 pool->dma_sync_for_cpu = true; 208 209 /* Validate only known flags were used */ 210 if (pool->slow.flags & ~PP_FLAG_ALL) 211 return -EINVAL; 212 213 if (pool->p.pool_size) 214 ring_qsize = pool->p.pool_size; 215 216 /* Sanity limit mem that can be pinned down */ 217 if (ring_qsize > 32768) 218 return -E2BIG; 219 220 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 221 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 222 * which is the XDP_TX use-case. 223 */ 224 if (pool->slow.flags & PP_FLAG_DMA_MAP) { 225 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 226 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 227 return -EINVAL; 228 229 pool->dma_map = true; 230 } 231 232 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { 233 /* In order to request DMA-sync-for-device the page 234 * needs to be mapped 235 */ 236 if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) 237 return -EINVAL; 238 239 if (!pool->p.max_len) 240 return -EINVAL; 241 242 pool->dma_sync = true; 243 244 /* pool->p.offset has to be set according to the address 245 * offset used by the DMA engine to start copying rx data 246 */ 247 } 248 249 pool->has_init_callback = !!pool->slow.init_callback; 250 251 #ifdef CONFIG_PAGE_POOL_STATS 252 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { 253 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 254 if (!pool->recycle_stats) 255 return -ENOMEM; 256 } else { 257 /* For system page pool instance we use a singular stats object 258 * instead of allocating a separate percpu variable for each 259 * (also percpu) page pool instance. 260 */ 261 pool->recycle_stats = &pp_system_recycle_stats; 262 pool->system = true; 263 } 264 #endif 265 266 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 267 #ifdef CONFIG_PAGE_POOL_STATS 268 if (!pool->system) 269 free_percpu(pool->recycle_stats); 270 #endif 271 return -ENOMEM; 272 } 273 274 atomic_set(&pool->pages_state_release_cnt, 0); 275 276 /* Driver calling page_pool_create() also call page_pool_destroy() */ 277 refcount_set(&pool->user_cnt, 1); 278 279 if (pool->dma_map) 280 get_device(pool->p.dev); 281 282 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) { 283 netdev_assert_locked(pool->slow.netdev); 284 rxq = __netif_get_rx_queue(pool->slow.netdev, 285 pool->slow.queue_idx); 286 pool->mp_priv = rxq->mp_params.mp_priv; 287 pool->mp_ops = rxq->mp_params.mp_ops; 288 } 289 290 if (pool->mp_ops) { 291 if (!pool->dma_map || !pool->dma_sync) 292 return -EOPNOTSUPP; 293 294 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) { 295 err = -EFAULT; 296 goto free_ptr_ring; 297 } 298 299 err = pool->mp_ops->init(pool); 300 if (err) { 301 pr_warn("%s() mem-provider init failed %d\n", __func__, 302 err); 303 goto free_ptr_ring; 304 } 305 306 static_branch_inc(&page_pool_mem_providers); 307 } 308 309 return 0; 310 311 free_ptr_ring: 312 ptr_ring_cleanup(&pool->ring, NULL); 313 #ifdef CONFIG_PAGE_POOL_STATS 314 if (!pool->system) 315 free_percpu(pool->recycle_stats); 316 #endif 317 return err; 318 } 319 320 static void page_pool_uninit(struct page_pool *pool) 321 { 322 ptr_ring_cleanup(&pool->ring, NULL); 323 324 if (pool->dma_map) 325 put_device(pool->p.dev); 326 327 #ifdef CONFIG_PAGE_POOL_STATS 328 if (!pool->system) 329 free_percpu(pool->recycle_stats); 330 #endif 331 } 332 333 /** 334 * page_pool_create_percpu() - create a page pool for a given cpu. 335 * @params: parameters, see struct page_pool_params 336 * @cpuid: cpu identifier 337 */ 338 struct page_pool * 339 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 340 { 341 struct page_pool *pool; 342 int err; 343 344 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 345 if (!pool) 346 return ERR_PTR(-ENOMEM); 347 348 err = page_pool_init(pool, params, cpuid); 349 if (err < 0) 350 goto err_free; 351 352 err = page_pool_list(pool); 353 if (err) 354 goto err_uninit; 355 356 return pool; 357 358 err_uninit: 359 page_pool_uninit(pool); 360 err_free: 361 pr_warn("%s() gave up with errno %d\n", __func__, err); 362 kfree(pool); 363 return ERR_PTR(err); 364 } 365 EXPORT_SYMBOL(page_pool_create_percpu); 366 367 /** 368 * page_pool_create() - create a page pool 369 * @params: parameters, see struct page_pool_params 370 */ 371 struct page_pool *page_pool_create(const struct page_pool_params *params) 372 { 373 return page_pool_create_percpu(params, -1); 374 } 375 EXPORT_SYMBOL(page_pool_create); 376 377 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem); 378 379 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) 380 { 381 struct ptr_ring *r = &pool->ring; 382 netmem_ref netmem; 383 int pref_nid; /* preferred NUMA node */ 384 385 /* Quicker fallback, avoid locks when ring is empty */ 386 if (__ptr_ring_empty(r)) { 387 alloc_stat_inc(pool, empty); 388 return 0; 389 } 390 391 /* Softirq guarantee CPU and thus NUMA node is stable. This, 392 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 393 */ 394 #ifdef CONFIG_NUMA 395 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 396 #else 397 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 398 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 399 #endif 400 401 /* Refill alloc array, but only if NUMA match */ 402 do { 403 netmem = (__force netmem_ref)__ptr_ring_consume(r); 404 if (unlikely(!netmem)) 405 break; 406 407 if (likely(netmem_is_pref_nid(netmem, pref_nid))) { 408 pool->alloc.cache[pool->alloc.count++] = netmem; 409 } else { 410 /* NUMA mismatch; 411 * (1) release 1 page to page-allocator and 412 * (2) break out to fallthrough to alloc_pages_node. 413 * This limit stress on page buddy alloactor. 414 */ 415 page_pool_return_page(pool, netmem); 416 alloc_stat_inc(pool, waive); 417 netmem = 0; 418 break; 419 } 420 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 421 422 /* Return last page */ 423 if (likely(pool->alloc.count > 0)) { 424 netmem = pool->alloc.cache[--pool->alloc.count]; 425 alloc_stat_inc(pool, refill); 426 } 427 428 return netmem; 429 } 430 431 /* fast path */ 432 static netmem_ref __page_pool_get_cached(struct page_pool *pool) 433 { 434 netmem_ref netmem; 435 436 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 437 if (likely(pool->alloc.count)) { 438 /* Fast-path */ 439 netmem = pool->alloc.cache[--pool->alloc.count]; 440 alloc_stat_inc(pool, fast); 441 } else { 442 netmem = page_pool_refill_alloc_cache(pool); 443 } 444 445 return netmem; 446 } 447 448 static void __page_pool_dma_sync_for_device(const struct page_pool *pool, 449 netmem_ref netmem, 450 u32 dma_sync_size) 451 { 452 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 453 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); 454 455 dma_sync_size = min(dma_sync_size, pool->p.max_len); 456 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, 457 dma_sync_size, pool->p.dma_dir); 458 #endif 459 } 460 461 static __always_inline void 462 page_pool_dma_sync_for_device(const struct page_pool *pool, 463 netmem_ref netmem, 464 u32 dma_sync_size) 465 { 466 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) 467 __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 468 } 469 470 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem) 471 { 472 dma_addr_t dma; 473 474 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 475 * since dma_addr_t can be either 32 or 64 bits and does not always fit 476 * into page private data (i.e 32bit cpu with 64bit DMA caps) 477 * This mapping is kept for lifetime of page, until leaving pool. 478 */ 479 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, 480 (PAGE_SIZE << pool->p.order), pool->p.dma_dir, 481 DMA_ATTR_SKIP_CPU_SYNC | 482 DMA_ATTR_WEAK_ORDERING); 483 if (dma_mapping_error(pool->p.dev, dma)) 484 return false; 485 486 if (page_pool_set_dma_addr_netmem(netmem, dma)) 487 goto unmap_failed; 488 489 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); 490 491 return true; 492 493 unmap_failed: 494 WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); 495 dma_unmap_page_attrs(pool->p.dev, dma, 496 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 497 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 498 return false; 499 } 500 501 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 502 gfp_t gfp) 503 { 504 struct page *page; 505 506 gfp |= __GFP_COMP; 507 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 508 if (unlikely(!page)) 509 return NULL; 510 511 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) { 512 put_page(page); 513 return NULL; 514 } 515 516 alloc_stat_inc(pool, slow_high_order); 517 page_pool_set_pp_info(pool, page_to_netmem(page)); 518 519 /* Track how many pages are held 'in-flight' */ 520 pool->pages_state_hold_cnt++; 521 trace_page_pool_state_hold(pool, page_to_netmem(page), 522 pool->pages_state_hold_cnt); 523 return page; 524 } 525 526 /* slow path */ 527 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool, 528 gfp_t gfp) 529 { 530 const int bulk = PP_ALLOC_CACHE_REFILL; 531 unsigned int pp_order = pool->p.order; 532 bool dma_map = pool->dma_map; 533 netmem_ref netmem; 534 int i, nr_pages; 535 536 /* Don't support bulk alloc for high-order pages */ 537 if (unlikely(pp_order)) 538 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); 539 540 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 541 if (unlikely(pool->alloc.count > 0)) 542 return pool->alloc.cache[--pool->alloc.count]; 543 544 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */ 545 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 546 547 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk, 548 (struct page **)pool->alloc.cache); 549 if (unlikely(!nr_pages)) 550 return 0; 551 552 /* Pages have been filled into alloc.cache array, but count is zero and 553 * page element have not been (possibly) DMA mapped. 554 */ 555 for (i = 0; i < nr_pages; i++) { 556 netmem = pool->alloc.cache[i]; 557 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) { 558 put_page(netmem_to_page(netmem)); 559 continue; 560 } 561 562 page_pool_set_pp_info(pool, netmem); 563 pool->alloc.cache[pool->alloc.count++] = netmem; 564 /* Track how many pages are held 'in-flight' */ 565 pool->pages_state_hold_cnt++; 566 trace_page_pool_state_hold(pool, netmem, 567 pool->pages_state_hold_cnt); 568 } 569 570 /* Return last page */ 571 if (likely(pool->alloc.count > 0)) { 572 netmem = pool->alloc.cache[--pool->alloc.count]; 573 alloc_stat_inc(pool, slow); 574 } else { 575 netmem = 0; 576 } 577 578 /* When page just alloc'ed is should/must have refcnt 1. */ 579 return netmem; 580 } 581 582 /* For using page_pool replace: alloc_pages() API calls, but provide 583 * synchronization guarantee for allocation side. 584 */ 585 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp) 586 { 587 netmem_ref netmem; 588 589 /* Fast-path: Get a page from cache */ 590 netmem = __page_pool_get_cached(pool); 591 if (netmem) 592 return netmem; 593 594 /* Slow-path: cache empty, do real allocation */ 595 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops) 596 netmem = pool->mp_ops->alloc_netmems(pool, gfp); 597 else 598 netmem = __page_pool_alloc_pages_slow(pool, gfp); 599 return netmem; 600 } 601 EXPORT_SYMBOL(page_pool_alloc_netmems); 602 ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL); 603 604 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 605 { 606 return netmem_to_page(page_pool_alloc_netmems(pool, gfp)); 607 } 608 EXPORT_SYMBOL(page_pool_alloc_pages); 609 610 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 611 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 612 */ 613 #define _distance(a, b) (s32)((a) - (b)) 614 615 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 616 { 617 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 618 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 619 s32 inflight; 620 621 inflight = _distance(hold_cnt, release_cnt); 622 623 if (strict) { 624 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 625 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 626 inflight); 627 } else { 628 inflight = max(0, inflight); 629 } 630 631 return inflight; 632 } 633 634 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) 635 { 636 netmem_set_pp(netmem, pool); 637 netmem_or_pp_magic(netmem, PP_SIGNATURE); 638 639 /* Ensuring all pages have been split into one fragment initially: 640 * page_pool_set_pp_info() is only called once for every page when it 641 * is allocated from the page allocator and page_pool_fragment_page() 642 * is dirtying the same cache line as the page->pp_magic above, so 643 * the overhead is negligible. 644 */ 645 page_pool_fragment_netmem(netmem, 1); 646 if (pool->has_init_callback) 647 pool->slow.init_callback(netmem, pool->slow.init_arg); 648 } 649 650 void page_pool_clear_pp_info(netmem_ref netmem) 651 { 652 netmem_clear_pp_magic(netmem); 653 netmem_set_pp(netmem, NULL); 654 } 655 656 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool, 657 netmem_ref netmem) 658 { 659 dma_addr_t dma; 660 661 if (!pool->dma_map) 662 /* Always account for inflight pages, even if we didn't 663 * map them 664 */ 665 return; 666 667 dma = page_pool_get_dma_addr_netmem(netmem); 668 669 /* When page is unmapped, it cannot be returned to our pool */ 670 dma_unmap_page_attrs(pool->p.dev, dma, 671 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 672 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 673 page_pool_set_dma_addr_netmem(netmem, 0); 674 } 675 676 /* Disconnects a page (from a page_pool). API users can have a need 677 * to disconnect a page (from a page_pool), to allow it to be used as 678 * a regular page (that will eventually be returned to the normal 679 * page-allocator via put_page). 680 */ 681 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem) 682 { 683 int count; 684 bool put; 685 686 put = true; 687 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops) 688 put = pool->mp_ops->release_netmem(pool, netmem); 689 else 690 __page_pool_release_page_dma(pool, netmem); 691 692 /* This may be the last page returned, releasing the pool, so 693 * it is not safe to reference pool afterwards. 694 */ 695 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 696 trace_page_pool_state_release(pool, netmem, count); 697 698 if (put) { 699 page_pool_clear_pp_info(netmem); 700 put_page(netmem_to_page(netmem)); 701 } 702 /* An optimization would be to call __free_pages(page, pool->p.order) 703 * knowing page is not part of page-cache (thus avoiding a 704 * __page_cache_release() call). 705 */ 706 } 707 708 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) 709 { 710 int ret; 711 /* BH protection not needed if current is softirq */ 712 if (in_softirq()) 713 ret = ptr_ring_produce(&pool->ring, (__force void *)netmem); 714 else 715 ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem); 716 717 if (!ret) { 718 recycle_stat_inc(pool, ring); 719 return true; 720 } 721 722 return false; 723 } 724 725 /* Only allow direct recycling in special circumstances, into the 726 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 727 * 728 * Caller must provide appropriate safe context. 729 */ 730 static bool page_pool_recycle_in_cache(netmem_ref netmem, 731 struct page_pool *pool) 732 { 733 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 734 recycle_stat_inc(pool, cache_full); 735 return false; 736 } 737 738 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 739 pool->alloc.cache[pool->alloc.count++] = netmem; 740 recycle_stat_inc(pool, cached); 741 return true; 742 } 743 744 static bool __page_pool_page_can_be_recycled(netmem_ref netmem) 745 { 746 return netmem_is_net_iov(netmem) || 747 (page_ref_count(netmem_to_page(netmem)) == 1 && 748 !page_is_pfmemalloc(netmem_to_page(netmem))); 749 } 750 751 /* If the page refcnt == 1, this will try to recycle the page. 752 * If pool->dma_sync is set, we'll try to sync the DMA area for 753 * the configured size min(dma_sync_size, pool->max_len). 754 * If the page refcnt != 1, then the page will be returned to memory 755 * subsystem. 756 */ 757 static __always_inline netmem_ref 758 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, 759 unsigned int dma_sync_size, bool allow_direct) 760 { 761 lockdep_assert_no_hardirq(); 762 763 /* This allocator is optimized for the XDP mode that uses 764 * one-frame-per-page, but have fallbacks that act like the 765 * regular page allocator APIs. 766 * 767 * refcnt == 1 means page_pool owns page, and can recycle it. 768 * 769 * page is NOT reusable when allocated when system is under 770 * some pressure. (page_is_pfmemalloc) 771 */ 772 if (likely(__page_pool_page_can_be_recycled(netmem))) { 773 /* Read barrier done in page_ref_count / READ_ONCE */ 774 775 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 776 777 if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) 778 return 0; 779 780 /* Page found as candidate for recycling */ 781 return netmem; 782 } 783 784 /* Fallback/non-XDP mode: API user have elevated refcnt. 785 * 786 * Many drivers split up the page into fragments, and some 787 * want to keep doing this to save memory and do refcnt based 788 * recycling. Support this use case too, to ease drivers 789 * switching between XDP/non-XDP. 790 * 791 * In-case page_pool maintains the DMA mapping, API user must 792 * call page_pool_put_page once. In this elevated refcnt 793 * case, the DMA is unmapped/released, as driver is likely 794 * doing refcnt based recycle tricks, meaning another process 795 * will be invoking put_page. 796 */ 797 recycle_stat_inc(pool, released_refcnt); 798 page_pool_return_page(pool, netmem); 799 800 return 0; 801 } 802 803 static bool page_pool_napi_local(const struct page_pool *pool) 804 { 805 const struct napi_struct *napi; 806 u32 cpuid; 807 808 if (unlikely(!in_softirq())) 809 return false; 810 811 /* Allow direct recycle if we have reasons to believe that we are 812 * in the same context as the consumer would run, so there's 813 * no possible race. 814 * __page_pool_put_page() makes sure we're not in hardirq context 815 * and interrupts are enabled prior to accessing the cache. 816 */ 817 cpuid = smp_processor_id(); 818 if (READ_ONCE(pool->cpuid) == cpuid) 819 return true; 820 821 napi = READ_ONCE(pool->p.napi); 822 823 return napi && READ_ONCE(napi->list_owner) == cpuid; 824 } 825 826 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, 827 unsigned int dma_sync_size, bool allow_direct) 828 { 829 if (!allow_direct) 830 allow_direct = page_pool_napi_local(pool); 831 832 netmem = 833 __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct); 834 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { 835 /* Cache full, fallback to free pages */ 836 recycle_stat_inc(pool, ring_full); 837 page_pool_return_page(pool, netmem); 838 } 839 } 840 EXPORT_SYMBOL(page_pool_put_unrefed_netmem); 841 842 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 843 unsigned int dma_sync_size, bool allow_direct) 844 { 845 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, 846 allow_direct); 847 } 848 EXPORT_SYMBOL(page_pool_put_unrefed_page); 849 850 static void page_pool_recycle_ring_bulk(struct page_pool *pool, 851 netmem_ref *bulk, 852 u32 bulk_len) 853 { 854 bool in_softirq; 855 u32 i; 856 857 /* Bulk produce into ptr_ring page_pool cache */ 858 in_softirq = page_pool_producer_lock(pool); 859 860 for (i = 0; i < bulk_len; i++) { 861 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) { 862 /* ring full */ 863 recycle_stat_inc(pool, ring_full); 864 break; 865 } 866 } 867 868 page_pool_producer_unlock(pool, in_softirq); 869 recycle_stat_add(pool, ring, i); 870 871 /* Hopefully all pages were returned into ptr_ring */ 872 if (likely(i == bulk_len)) 873 return; 874 875 /* 876 * ptr_ring cache is full, free remaining pages outside producer lock 877 * since put_page() with refcnt == 1 can be an expensive operation. 878 */ 879 for (; i < bulk_len; i++) 880 page_pool_return_page(pool, bulk[i]); 881 } 882 883 /** 884 * page_pool_put_netmem_bulk() - release references on multiple netmems 885 * @data: array holding netmem references 886 * @count: number of entries in @data 887 * 888 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring 889 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk() 890 * will release leftover netmems to the memory provider. 891 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx 892 * completion loop for the XDP_REDIRECT use case. 893 * 894 * Please note the caller must not use data area after running 895 * page_pool_put_netmem_bulk(), as this function overwrites it. 896 */ 897 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count) 898 { 899 u32 bulk_len = 0; 900 901 for (u32 i = 0; i < count; i++) { 902 netmem_ref netmem = netmem_compound_head(data[i]); 903 904 if (page_pool_unref_and_test(netmem)) 905 data[bulk_len++] = netmem; 906 } 907 908 count = bulk_len; 909 while (count) { 910 netmem_ref bulk[XDP_BULK_QUEUE_SIZE]; 911 struct page_pool *pool = NULL; 912 bool allow_direct; 913 u32 foreign = 0; 914 915 bulk_len = 0; 916 917 for (u32 i = 0; i < count; i++) { 918 struct page_pool *netmem_pp; 919 netmem_ref netmem = data[i]; 920 921 netmem_pp = netmem_get_pp(netmem); 922 if (unlikely(!pool)) { 923 pool = netmem_pp; 924 allow_direct = page_pool_napi_local(pool); 925 } else if (netmem_pp != pool) { 926 /* 927 * If the netmem belongs to a different 928 * page_pool, save it for another round. 929 */ 930 data[foreign++] = netmem; 931 continue; 932 } 933 934 netmem = __page_pool_put_page(pool, netmem, -1, 935 allow_direct); 936 /* Approved for bulk recycling in ptr_ring cache */ 937 if (netmem) 938 bulk[bulk_len++] = netmem; 939 } 940 941 if (bulk_len) 942 page_pool_recycle_ring_bulk(pool, bulk, bulk_len); 943 944 count = foreign; 945 } 946 } 947 EXPORT_SYMBOL(page_pool_put_netmem_bulk); 948 949 static netmem_ref page_pool_drain_frag(struct page_pool *pool, 950 netmem_ref netmem) 951 { 952 long drain_count = BIAS_MAX - pool->frag_users; 953 954 /* Some user is still using the page frag */ 955 if (likely(page_pool_unref_netmem(netmem, drain_count))) 956 return 0; 957 958 if (__page_pool_page_can_be_recycled(netmem)) { 959 page_pool_dma_sync_for_device(pool, netmem, -1); 960 return netmem; 961 } 962 963 page_pool_return_page(pool, netmem); 964 return 0; 965 } 966 967 static void page_pool_free_frag(struct page_pool *pool) 968 { 969 long drain_count = BIAS_MAX - pool->frag_users; 970 netmem_ref netmem = pool->frag_page; 971 972 pool->frag_page = 0; 973 974 if (!netmem || page_pool_unref_netmem(netmem, drain_count)) 975 return; 976 977 page_pool_return_page(pool, netmem); 978 } 979 980 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, 981 unsigned int *offset, unsigned int size, 982 gfp_t gfp) 983 { 984 unsigned int max_size = PAGE_SIZE << pool->p.order; 985 netmem_ref netmem = pool->frag_page; 986 987 if (WARN_ON(size > max_size)) 988 return 0; 989 990 size = ALIGN(size, dma_get_cache_alignment()); 991 *offset = pool->frag_offset; 992 993 if (netmem && *offset + size > max_size) { 994 netmem = page_pool_drain_frag(pool, netmem); 995 if (netmem) { 996 recycle_stat_inc(pool, cached); 997 alloc_stat_inc(pool, fast); 998 goto frag_reset; 999 } 1000 } 1001 1002 if (!netmem) { 1003 netmem = page_pool_alloc_netmems(pool, gfp); 1004 if (unlikely(!netmem)) { 1005 pool->frag_page = 0; 1006 return 0; 1007 } 1008 1009 pool->frag_page = netmem; 1010 1011 frag_reset: 1012 pool->frag_users = 1; 1013 *offset = 0; 1014 pool->frag_offset = size; 1015 page_pool_fragment_netmem(netmem, BIAS_MAX); 1016 return netmem; 1017 } 1018 1019 pool->frag_users++; 1020 pool->frag_offset = *offset + size; 1021 return netmem; 1022 } 1023 EXPORT_SYMBOL(page_pool_alloc_frag_netmem); 1024 1025 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, 1026 unsigned int size, gfp_t gfp) 1027 { 1028 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, 1029 gfp)); 1030 } 1031 EXPORT_SYMBOL(page_pool_alloc_frag); 1032 1033 static void page_pool_empty_ring(struct page_pool *pool) 1034 { 1035 netmem_ref netmem; 1036 1037 /* Empty recycle ring */ 1038 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { 1039 /* Verify the refcnt invariant of cached pages */ 1040 if (!(netmem_ref_count(netmem) == 1)) 1041 pr_crit("%s() page_pool refcnt %d violation\n", 1042 __func__, netmem_ref_count(netmem)); 1043 1044 page_pool_return_page(pool, netmem); 1045 } 1046 } 1047 1048 static void __page_pool_destroy(struct page_pool *pool) 1049 { 1050 if (pool->disconnect) 1051 pool->disconnect(pool); 1052 1053 page_pool_unlist(pool); 1054 page_pool_uninit(pool); 1055 1056 if (pool->mp_ops) { 1057 pool->mp_ops->destroy(pool); 1058 static_branch_dec(&page_pool_mem_providers); 1059 } 1060 1061 kfree(pool); 1062 } 1063 1064 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 1065 { 1066 netmem_ref netmem; 1067 1068 if (pool->destroy_cnt) 1069 return; 1070 1071 /* Empty alloc cache, assume caller made sure this is 1072 * no-longer in use, and page_pool_alloc_pages() cannot be 1073 * call concurrently. 1074 */ 1075 while (pool->alloc.count) { 1076 netmem = pool->alloc.cache[--pool->alloc.count]; 1077 page_pool_return_page(pool, netmem); 1078 } 1079 } 1080 1081 static void page_pool_scrub(struct page_pool *pool) 1082 { 1083 page_pool_empty_alloc_cache_once(pool); 1084 pool->destroy_cnt++; 1085 1086 /* No more consumers should exist, but producers could still 1087 * be in-flight. 1088 */ 1089 page_pool_empty_ring(pool); 1090 } 1091 1092 static int page_pool_release(struct page_pool *pool) 1093 { 1094 int inflight; 1095 1096 page_pool_scrub(pool); 1097 inflight = page_pool_inflight(pool, true); 1098 if (!inflight) 1099 __page_pool_destroy(pool); 1100 1101 return inflight; 1102 } 1103 1104 static void page_pool_release_retry(struct work_struct *wq) 1105 { 1106 struct delayed_work *dwq = to_delayed_work(wq); 1107 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 1108 void *netdev; 1109 int inflight; 1110 1111 inflight = page_pool_release(pool); 1112 /* In rare cases, a driver bug may cause inflight to go negative. 1113 * Don't reschedule release if inflight is 0 or negative. 1114 * - If 0, the page_pool has been destroyed 1115 * - if negative, we will never recover 1116 * in both cases no reschedule is necessary. 1117 */ 1118 if (inflight <= 0) 1119 return; 1120 1121 /* Periodic warning for page pools the user can't see */ 1122 netdev = READ_ONCE(pool->slow.netdev); 1123 if (time_after_eq(jiffies, pool->defer_warn) && 1124 (!netdev || netdev == NET_PTR_POISON)) { 1125 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 1126 1127 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 1128 __func__, pool->user.id, inflight, sec); 1129 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1130 } 1131 1132 /* Still not ready to be disconnected, retry later */ 1133 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1134 } 1135 1136 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 1137 const struct xdp_mem_info *mem) 1138 { 1139 refcount_inc(&pool->user_cnt); 1140 pool->disconnect = disconnect; 1141 pool->xdp_mem_id = mem->id; 1142 } 1143 1144 void page_pool_disable_direct_recycling(struct page_pool *pool) 1145 { 1146 /* Disable direct recycling based on pool->cpuid. 1147 * Paired with READ_ONCE() in page_pool_napi_local(). 1148 */ 1149 WRITE_ONCE(pool->cpuid, -1); 1150 1151 if (!pool->p.napi) 1152 return; 1153 1154 napi_assert_will_not_race(pool->p.napi); 1155 1156 mutex_lock(&page_pools_lock); 1157 WRITE_ONCE(pool->p.napi, NULL); 1158 mutex_unlock(&page_pools_lock); 1159 } 1160 EXPORT_SYMBOL(page_pool_disable_direct_recycling); 1161 1162 void page_pool_destroy(struct page_pool *pool) 1163 { 1164 if (!pool) 1165 return; 1166 1167 if (!page_pool_put(pool)) 1168 return; 1169 1170 page_pool_disable_direct_recycling(pool); 1171 page_pool_free_frag(pool); 1172 1173 if (!page_pool_release(pool)) 1174 return; 1175 1176 page_pool_detached(pool); 1177 pool->defer_start = jiffies; 1178 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1179 1180 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1181 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1182 } 1183 EXPORT_SYMBOL(page_pool_destroy); 1184 1185 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1186 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1187 { 1188 netmem_ref netmem; 1189 1190 trace_page_pool_update_nid(pool, new_nid); 1191 pool->p.nid = new_nid; 1192 1193 /* Flush pool alloc cache, as refill will check NUMA node */ 1194 while (pool->alloc.count) { 1195 netmem = pool->alloc.cache[--pool->alloc.count]; 1196 page_pool_return_page(pool, netmem); 1197 } 1198 } 1199 EXPORT_SYMBOL(page_pool_update_nid); 1200 1201 bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr) 1202 { 1203 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr); 1204 } 1205 1206 /* Associate a niov with a page pool. Should follow with a matching 1207 * net_mp_niov_clear_page_pool() 1208 */ 1209 void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov) 1210 { 1211 netmem_ref netmem = net_iov_to_netmem(niov); 1212 1213 page_pool_set_pp_info(pool, netmem); 1214 1215 pool->pages_state_hold_cnt++; 1216 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt); 1217 } 1218 1219 /* Disassociate a niov from a page pool. Should only be used in the 1220 * ->release_netmem() path. 1221 */ 1222 void net_mp_niov_clear_page_pool(struct net_iov *niov) 1223 { 1224 netmem_ref netmem = net_iov_to_netmem(niov); 1225 1226 page_pool_clear_pp_info(netmem); 1227 } 1228