1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/netdev_rx_queue.h> 15 #include <net/page_pool/helpers.h> 16 #include <net/xdp.h> 17 18 #include <linux/dma-direction.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/page-flags.h> 21 #include <linux/mm.h> /* for put_page() */ 22 #include <linux/poison.h> 23 #include <linux/ethtool.h> 24 #include <linux/netdevice.h> 25 26 #include <trace/events/page_pool.h> 27 28 #include "mp_dmabuf_devmem.h" 29 #include "netmem_priv.h" 30 #include "page_pool_priv.h" 31 32 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); 33 34 #define DEFER_TIME (msecs_to_jiffies(1000)) 35 #define DEFER_WARN_INTERVAL (60 * HZ) 36 37 #define BIAS_MAX (LONG_MAX >> 1) 38 39 #ifdef CONFIG_PAGE_POOL_STATS 40 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 41 42 /* alloc_stat_inc is intended to be used in softirq context */ 43 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 44 /* recycle_stat_inc is safe to use when preemption is possible. */ 45 #define recycle_stat_inc(pool, __stat) \ 46 do { \ 47 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 48 this_cpu_inc(s->__stat); \ 49 } while (0) 50 51 #define recycle_stat_add(pool, __stat, val) \ 52 do { \ 53 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 54 this_cpu_add(s->__stat, val); \ 55 } while (0) 56 57 static const char pp_stats[][ETH_GSTRING_LEN] = { 58 "rx_pp_alloc_fast", 59 "rx_pp_alloc_slow", 60 "rx_pp_alloc_slow_ho", 61 "rx_pp_alloc_empty", 62 "rx_pp_alloc_refill", 63 "rx_pp_alloc_waive", 64 "rx_pp_recycle_cached", 65 "rx_pp_recycle_cache_full", 66 "rx_pp_recycle_ring", 67 "rx_pp_recycle_ring_full", 68 "rx_pp_recycle_released_ref", 69 }; 70 71 /** 72 * page_pool_get_stats() - fetch page pool stats 73 * @pool: pool from which page was allocated 74 * @stats: struct page_pool_stats to fill in 75 * 76 * Retrieve statistics about the page_pool. This API is only available 77 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 78 * A pointer to a caller allocated struct page_pool_stats structure 79 * is passed to this API which is filled in. The caller can then report 80 * those stats to the user (perhaps via ethtool, debugfs, etc.). 81 */ 82 bool page_pool_get_stats(const struct page_pool *pool, 83 struct page_pool_stats *stats) 84 { 85 int cpu = 0; 86 87 if (!stats) 88 return false; 89 90 /* The caller is responsible to initialize stats. */ 91 stats->alloc_stats.fast += pool->alloc_stats.fast; 92 stats->alloc_stats.slow += pool->alloc_stats.slow; 93 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 94 stats->alloc_stats.empty += pool->alloc_stats.empty; 95 stats->alloc_stats.refill += pool->alloc_stats.refill; 96 stats->alloc_stats.waive += pool->alloc_stats.waive; 97 98 for_each_possible_cpu(cpu) { 99 const struct page_pool_recycle_stats *pcpu = 100 per_cpu_ptr(pool->recycle_stats, cpu); 101 102 stats->recycle_stats.cached += pcpu->cached; 103 stats->recycle_stats.cache_full += pcpu->cache_full; 104 stats->recycle_stats.ring += pcpu->ring; 105 stats->recycle_stats.ring_full += pcpu->ring_full; 106 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 107 } 108 109 return true; 110 } 111 EXPORT_SYMBOL(page_pool_get_stats); 112 113 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 114 { 115 int i; 116 117 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 118 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 119 data += ETH_GSTRING_LEN; 120 } 121 122 return data; 123 } 124 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 125 126 int page_pool_ethtool_stats_get_count(void) 127 { 128 return ARRAY_SIZE(pp_stats); 129 } 130 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 131 132 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 133 { 134 const struct page_pool_stats *pool_stats = stats; 135 136 *data++ = pool_stats->alloc_stats.fast; 137 *data++ = pool_stats->alloc_stats.slow; 138 *data++ = pool_stats->alloc_stats.slow_high_order; 139 *data++ = pool_stats->alloc_stats.empty; 140 *data++ = pool_stats->alloc_stats.refill; 141 *data++ = pool_stats->alloc_stats.waive; 142 *data++ = pool_stats->recycle_stats.cached; 143 *data++ = pool_stats->recycle_stats.cache_full; 144 *data++ = pool_stats->recycle_stats.ring; 145 *data++ = pool_stats->recycle_stats.ring_full; 146 *data++ = pool_stats->recycle_stats.released_refcnt; 147 148 return data; 149 } 150 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 151 152 #else 153 #define alloc_stat_inc(pool, __stat) 154 #define recycle_stat_inc(pool, __stat) 155 #define recycle_stat_add(pool, __stat, val) 156 #endif 157 158 static bool page_pool_producer_lock(struct page_pool *pool) 159 __acquires(&pool->ring.producer_lock) 160 { 161 bool in_softirq = in_softirq(); 162 163 if (in_softirq) 164 spin_lock(&pool->ring.producer_lock); 165 else 166 spin_lock_bh(&pool->ring.producer_lock); 167 168 return in_softirq; 169 } 170 171 static void page_pool_producer_unlock(struct page_pool *pool, 172 bool in_softirq) 173 __releases(&pool->ring.producer_lock) 174 { 175 if (in_softirq) 176 spin_unlock(&pool->ring.producer_lock); 177 else 178 spin_unlock_bh(&pool->ring.producer_lock); 179 } 180 181 static void page_pool_struct_check(void) 182 { 183 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); 184 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); 185 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); 186 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 187 PAGE_POOL_FRAG_GROUP_ALIGN); 188 } 189 190 static int page_pool_init(struct page_pool *pool, 191 const struct page_pool_params *params, 192 int cpuid) 193 { 194 unsigned int ring_qsize = 1024; /* Default */ 195 struct netdev_rx_queue *rxq; 196 int err; 197 198 page_pool_struct_check(); 199 200 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 201 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 202 203 pool->cpuid = cpuid; 204 205 /* Validate only known flags were used */ 206 if (pool->slow.flags & ~PP_FLAG_ALL) 207 return -EINVAL; 208 209 if (pool->p.pool_size) 210 ring_qsize = pool->p.pool_size; 211 212 /* Sanity limit mem that can be pinned down */ 213 if (ring_qsize > 32768) 214 return -E2BIG; 215 216 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 217 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 218 * which is the XDP_TX use-case. 219 */ 220 if (pool->slow.flags & PP_FLAG_DMA_MAP) { 221 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 222 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 223 return -EINVAL; 224 225 pool->dma_map = true; 226 } 227 228 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { 229 /* In order to request DMA-sync-for-device the page 230 * needs to be mapped 231 */ 232 if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) 233 return -EINVAL; 234 235 if (!pool->p.max_len) 236 return -EINVAL; 237 238 pool->dma_sync = true; 239 240 /* pool->p.offset has to be set according to the address 241 * offset used by the DMA engine to start copying rx data 242 */ 243 } 244 245 pool->has_init_callback = !!pool->slow.init_callback; 246 247 #ifdef CONFIG_PAGE_POOL_STATS 248 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { 249 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 250 if (!pool->recycle_stats) 251 return -ENOMEM; 252 } else { 253 /* For system page pool instance we use a singular stats object 254 * instead of allocating a separate percpu variable for each 255 * (also percpu) page pool instance. 256 */ 257 pool->recycle_stats = &pp_system_recycle_stats; 258 pool->system = true; 259 } 260 #endif 261 262 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 263 #ifdef CONFIG_PAGE_POOL_STATS 264 if (!pool->system) 265 free_percpu(pool->recycle_stats); 266 #endif 267 return -ENOMEM; 268 } 269 270 atomic_set(&pool->pages_state_release_cnt, 0); 271 272 /* Driver calling page_pool_create() also call page_pool_destroy() */ 273 refcount_set(&pool->user_cnt, 1); 274 275 if (pool->dma_map) 276 get_device(pool->p.dev); 277 278 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) { 279 /* We rely on rtnl_lock()ing to make sure netdev_rx_queue 280 * configuration doesn't change while we're initializing 281 * the page_pool. 282 */ 283 ASSERT_RTNL(); 284 rxq = __netif_get_rx_queue(pool->slow.netdev, 285 pool->slow.queue_idx); 286 pool->mp_priv = rxq->mp_params.mp_priv; 287 } 288 289 if (pool->mp_priv) { 290 err = mp_dmabuf_devmem_init(pool); 291 if (err) { 292 pr_warn("%s() mem-provider init failed %d\n", __func__, 293 err); 294 goto free_ptr_ring; 295 } 296 297 static_branch_inc(&page_pool_mem_providers); 298 } 299 300 return 0; 301 302 free_ptr_ring: 303 ptr_ring_cleanup(&pool->ring, NULL); 304 #ifdef CONFIG_PAGE_POOL_STATS 305 if (!pool->system) 306 free_percpu(pool->recycle_stats); 307 #endif 308 return err; 309 } 310 311 static void page_pool_uninit(struct page_pool *pool) 312 { 313 ptr_ring_cleanup(&pool->ring, NULL); 314 315 if (pool->dma_map) 316 put_device(pool->p.dev); 317 318 #ifdef CONFIG_PAGE_POOL_STATS 319 if (!pool->system) 320 free_percpu(pool->recycle_stats); 321 #endif 322 } 323 324 /** 325 * page_pool_create_percpu() - create a page pool for a given cpu. 326 * @params: parameters, see struct page_pool_params 327 * @cpuid: cpu identifier 328 */ 329 struct page_pool * 330 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 331 { 332 struct page_pool *pool; 333 int err; 334 335 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 336 if (!pool) 337 return ERR_PTR(-ENOMEM); 338 339 err = page_pool_init(pool, params, cpuid); 340 if (err < 0) 341 goto err_free; 342 343 err = page_pool_list(pool); 344 if (err) 345 goto err_uninit; 346 347 return pool; 348 349 err_uninit: 350 page_pool_uninit(pool); 351 err_free: 352 pr_warn("%s() gave up with errno %d\n", __func__, err); 353 kfree(pool); 354 return ERR_PTR(err); 355 } 356 EXPORT_SYMBOL(page_pool_create_percpu); 357 358 /** 359 * page_pool_create() - create a page pool 360 * @params: parameters, see struct page_pool_params 361 */ 362 struct page_pool *page_pool_create(const struct page_pool_params *params) 363 { 364 return page_pool_create_percpu(params, -1); 365 } 366 EXPORT_SYMBOL(page_pool_create); 367 368 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem); 369 370 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) 371 { 372 struct ptr_ring *r = &pool->ring; 373 netmem_ref netmem; 374 int pref_nid; /* preferred NUMA node */ 375 376 /* Quicker fallback, avoid locks when ring is empty */ 377 if (__ptr_ring_empty(r)) { 378 alloc_stat_inc(pool, empty); 379 return 0; 380 } 381 382 /* Softirq guarantee CPU and thus NUMA node is stable. This, 383 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 384 */ 385 #ifdef CONFIG_NUMA 386 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 387 #else 388 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 389 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 390 #endif 391 392 /* Refill alloc array, but only if NUMA match */ 393 do { 394 netmem = (__force netmem_ref)__ptr_ring_consume(r); 395 if (unlikely(!netmem)) 396 break; 397 398 if (likely(netmem_is_pref_nid(netmem, pref_nid))) { 399 pool->alloc.cache[pool->alloc.count++] = netmem; 400 } else { 401 /* NUMA mismatch; 402 * (1) release 1 page to page-allocator and 403 * (2) break out to fallthrough to alloc_pages_node. 404 * This limit stress on page buddy alloactor. 405 */ 406 page_pool_return_page(pool, netmem); 407 alloc_stat_inc(pool, waive); 408 netmem = 0; 409 break; 410 } 411 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 412 413 /* Return last page */ 414 if (likely(pool->alloc.count > 0)) { 415 netmem = pool->alloc.cache[--pool->alloc.count]; 416 alloc_stat_inc(pool, refill); 417 } 418 419 return netmem; 420 } 421 422 /* fast path */ 423 static netmem_ref __page_pool_get_cached(struct page_pool *pool) 424 { 425 netmem_ref netmem; 426 427 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 428 if (likely(pool->alloc.count)) { 429 /* Fast-path */ 430 netmem = pool->alloc.cache[--pool->alloc.count]; 431 alloc_stat_inc(pool, fast); 432 } else { 433 netmem = page_pool_refill_alloc_cache(pool); 434 } 435 436 return netmem; 437 } 438 439 static void __page_pool_dma_sync_for_device(const struct page_pool *pool, 440 netmem_ref netmem, 441 u32 dma_sync_size) 442 { 443 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 444 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); 445 446 dma_sync_size = min(dma_sync_size, pool->p.max_len); 447 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, 448 dma_sync_size, pool->p.dma_dir); 449 #endif 450 } 451 452 static __always_inline void 453 page_pool_dma_sync_for_device(const struct page_pool *pool, 454 netmem_ref netmem, 455 u32 dma_sync_size) 456 { 457 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) 458 __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 459 } 460 461 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem) 462 { 463 dma_addr_t dma; 464 465 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 466 * since dma_addr_t can be either 32 or 64 bits and does not always fit 467 * into page private data (i.e 32bit cpu with 64bit DMA caps) 468 * This mapping is kept for lifetime of page, until leaving pool. 469 */ 470 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, 471 (PAGE_SIZE << pool->p.order), pool->p.dma_dir, 472 DMA_ATTR_SKIP_CPU_SYNC | 473 DMA_ATTR_WEAK_ORDERING); 474 if (dma_mapping_error(pool->p.dev, dma)) 475 return false; 476 477 if (page_pool_set_dma_addr_netmem(netmem, dma)) 478 goto unmap_failed; 479 480 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); 481 482 return true; 483 484 unmap_failed: 485 WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); 486 dma_unmap_page_attrs(pool->p.dev, dma, 487 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 488 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 489 return false; 490 } 491 492 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 493 gfp_t gfp) 494 { 495 struct page *page; 496 497 gfp |= __GFP_COMP; 498 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 499 if (unlikely(!page)) 500 return NULL; 501 502 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) { 503 put_page(page); 504 return NULL; 505 } 506 507 alloc_stat_inc(pool, slow_high_order); 508 page_pool_set_pp_info(pool, page_to_netmem(page)); 509 510 /* Track how many pages are held 'in-flight' */ 511 pool->pages_state_hold_cnt++; 512 trace_page_pool_state_hold(pool, page_to_netmem(page), 513 pool->pages_state_hold_cnt); 514 return page; 515 } 516 517 /* slow path */ 518 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool, 519 gfp_t gfp) 520 { 521 const int bulk = PP_ALLOC_CACHE_REFILL; 522 unsigned int pp_order = pool->p.order; 523 bool dma_map = pool->dma_map; 524 netmem_ref netmem; 525 int i, nr_pages; 526 527 /* Don't support bulk alloc for high-order pages */ 528 if (unlikely(pp_order)) 529 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); 530 531 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 532 if (unlikely(pool->alloc.count > 0)) 533 return pool->alloc.cache[--pool->alloc.count]; 534 535 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */ 536 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 537 538 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk, 539 (struct page **)pool->alloc.cache); 540 if (unlikely(!nr_pages)) 541 return 0; 542 543 /* Pages have been filled into alloc.cache array, but count is zero and 544 * page element have not been (possibly) DMA mapped. 545 */ 546 for (i = 0; i < nr_pages; i++) { 547 netmem = pool->alloc.cache[i]; 548 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) { 549 put_page(netmem_to_page(netmem)); 550 continue; 551 } 552 553 page_pool_set_pp_info(pool, netmem); 554 pool->alloc.cache[pool->alloc.count++] = netmem; 555 /* Track how many pages are held 'in-flight' */ 556 pool->pages_state_hold_cnt++; 557 trace_page_pool_state_hold(pool, netmem, 558 pool->pages_state_hold_cnt); 559 } 560 561 /* Return last page */ 562 if (likely(pool->alloc.count > 0)) { 563 netmem = pool->alloc.cache[--pool->alloc.count]; 564 alloc_stat_inc(pool, slow); 565 } else { 566 netmem = 0; 567 } 568 569 /* When page just alloc'ed is should/must have refcnt 1. */ 570 return netmem; 571 } 572 573 /* For using page_pool replace: alloc_pages() API calls, but provide 574 * synchronization guarantee for allocation side. 575 */ 576 netmem_ref page_pool_alloc_netmem(struct page_pool *pool, gfp_t gfp) 577 { 578 netmem_ref netmem; 579 580 /* Fast-path: Get a page from cache */ 581 netmem = __page_pool_get_cached(pool); 582 if (netmem) 583 return netmem; 584 585 /* Slow-path: cache empty, do real allocation */ 586 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv) 587 netmem = mp_dmabuf_devmem_alloc_netmems(pool, gfp); 588 else 589 netmem = __page_pool_alloc_pages_slow(pool, gfp); 590 return netmem; 591 } 592 EXPORT_SYMBOL(page_pool_alloc_netmem); 593 594 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 595 { 596 return netmem_to_page(page_pool_alloc_netmem(pool, gfp)); 597 } 598 EXPORT_SYMBOL(page_pool_alloc_pages); 599 ALLOW_ERROR_INJECTION(page_pool_alloc_pages, NULL); 600 601 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 602 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 603 */ 604 #define _distance(a, b) (s32)((a) - (b)) 605 606 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 607 { 608 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 609 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 610 s32 inflight; 611 612 inflight = _distance(hold_cnt, release_cnt); 613 614 if (strict) { 615 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 616 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 617 inflight); 618 } else { 619 inflight = max(0, inflight); 620 } 621 622 return inflight; 623 } 624 625 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) 626 { 627 netmem_set_pp(netmem, pool); 628 netmem_or_pp_magic(netmem, PP_SIGNATURE); 629 630 /* Ensuring all pages have been split into one fragment initially: 631 * page_pool_set_pp_info() is only called once for every page when it 632 * is allocated from the page allocator and page_pool_fragment_page() 633 * is dirtying the same cache line as the page->pp_magic above, so 634 * the overhead is negligible. 635 */ 636 page_pool_fragment_netmem(netmem, 1); 637 if (pool->has_init_callback) 638 pool->slow.init_callback(netmem, pool->slow.init_arg); 639 } 640 641 void page_pool_clear_pp_info(netmem_ref netmem) 642 { 643 netmem_clear_pp_magic(netmem); 644 netmem_set_pp(netmem, NULL); 645 } 646 647 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool, 648 netmem_ref netmem) 649 { 650 dma_addr_t dma; 651 652 if (!pool->dma_map) 653 /* Always account for inflight pages, even if we didn't 654 * map them 655 */ 656 return; 657 658 dma = page_pool_get_dma_addr_netmem(netmem); 659 660 /* When page is unmapped, it cannot be returned to our pool */ 661 dma_unmap_page_attrs(pool->p.dev, dma, 662 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 663 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 664 page_pool_set_dma_addr_netmem(netmem, 0); 665 } 666 667 /* Disconnects a page (from a page_pool). API users can have a need 668 * to disconnect a page (from a page_pool), to allow it to be used as 669 * a regular page (that will eventually be returned to the normal 670 * page-allocator via put_page). 671 */ 672 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem) 673 { 674 int count; 675 bool put; 676 677 put = true; 678 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_priv) 679 put = mp_dmabuf_devmem_release_page(pool, netmem); 680 else 681 __page_pool_release_page_dma(pool, netmem); 682 683 /* This may be the last page returned, releasing the pool, so 684 * it is not safe to reference pool afterwards. 685 */ 686 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 687 trace_page_pool_state_release(pool, netmem, count); 688 689 if (put) { 690 page_pool_clear_pp_info(netmem); 691 put_page(netmem_to_page(netmem)); 692 } 693 /* An optimization would be to call __free_pages(page, pool->p.order) 694 * knowing page is not part of page-cache (thus avoiding a 695 * __page_cache_release() call). 696 */ 697 } 698 699 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) 700 { 701 int ret; 702 /* BH protection not needed if current is softirq */ 703 if (in_softirq()) 704 ret = ptr_ring_produce(&pool->ring, (__force void *)netmem); 705 else 706 ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem); 707 708 if (!ret) { 709 recycle_stat_inc(pool, ring); 710 return true; 711 } 712 713 return false; 714 } 715 716 /* Only allow direct recycling in special circumstances, into the 717 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 718 * 719 * Caller must provide appropriate safe context. 720 */ 721 static bool page_pool_recycle_in_cache(netmem_ref netmem, 722 struct page_pool *pool) 723 { 724 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 725 recycle_stat_inc(pool, cache_full); 726 return false; 727 } 728 729 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 730 pool->alloc.cache[pool->alloc.count++] = netmem; 731 recycle_stat_inc(pool, cached); 732 return true; 733 } 734 735 static bool __page_pool_page_can_be_recycled(netmem_ref netmem) 736 { 737 return netmem_is_net_iov(netmem) || 738 (page_ref_count(netmem_to_page(netmem)) == 1 && 739 !page_is_pfmemalloc(netmem_to_page(netmem))); 740 } 741 742 /* If the page refcnt == 1, this will try to recycle the page. 743 * If pool->dma_sync is set, we'll try to sync the DMA area for 744 * the configured size min(dma_sync_size, pool->max_len). 745 * If the page refcnt != 1, then the page will be returned to memory 746 * subsystem. 747 */ 748 static __always_inline netmem_ref 749 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, 750 unsigned int dma_sync_size, bool allow_direct) 751 { 752 lockdep_assert_no_hardirq(); 753 754 /* This allocator is optimized for the XDP mode that uses 755 * one-frame-per-page, but have fallbacks that act like the 756 * regular page allocator APIs. 757 * 758 * refcnt == 1 means page_pool owns page, and can recycle it. 759 * 760 * page is NOT reusable when allocated when system is under 761 * some pressure. (page_is_pfmemalloc) 762 */ 763 if (likely(__page_pool_page_can_be_recycled(netmem))) { 764 /* Read barrier done in page_ref_count / READ_ONCE */ 765 766 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 767 768 if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) 769 return 0; 770 771 /* Page found as candidate for recycling */ 772 return netmem; 773 } 774 775 /* Fallback/non-XDP mode: API user have elevated refcnt. 776 * 777 * Many drivers split up the page into fragments, and some 778 * want to keep doing this to save memory and do refcnt based 779 * recycling. Support this use case too, to ease drivers 780 * switching between XDP/non-XDP. 781 * 782 * In-case page_pool maintains the DMA mapping, API user must 783 * call page_pool_put_page once. In this elevated refcnt 784 * case, the DMA is unmapped/released, as driver is likely 785 * doing refcnt based recycle tricks, meaning another process 786 * will be invoking put_page. 787 */ 788 recycle_stat_inc(pool, released_refcnt); 789 page_pool_return_page(pool, netmem); 790 791 return 0; 792 } 793 794 static bool page_pool_napi_local(const struct page_pool *pool) 795 { 796 const struct napi_struct *napi; 797 u32 cpuid; 798 799 if (unlikely(!in_softirq())) 800 return false; 801 802 /* Allow direct recycle if we have reasons to believe that we are 803 * in the same context as the consumer would run, so there's 804 * no possible race. 805 * __page_pool_put_page() makes sure we're not in hardirq context 806 * and interrupts are enabled prior to accessing the cache. 807 */ 808 cpuid = smp_processor_id(); 809 if (READ_ONCE(pool->cpuid) == cpuid) 810 return true; 811 812 napi = READ_ONCE(pool->p.napi); 813 814 return napi && READ_ONCE(napi->list_owner) == cpuid; 815 } 816 817 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, 818 unsigned int dma_sync_size, bool allow_direct) 819 { 820 if (!allow_direct) 821 allow_direct = page_pool_napi_local(pool); 822 823 netmem = 824 __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct); 825 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { 826 /* Cache full, fallback to free pages */ 827 recycle_stat_inc(pool, ring_full); 828 page_pool_return_page(pool, netmem); 829 } 830 } 831 EXPORT_SYMBOL(page_pool_put_unrefed_netmem); 832 833 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 834 unsigned int dma_sync_size, bool allow_direct) 835 { 836 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, 837 allow_direct); 838 } 839 EXPORT_SYMBOL(page_pool_put_unrefed_page); 840 841 /** 842 * page_pool_put_page_bulk() - release references on multiple pages 843 * @pool: pool from which pages were allocated 844 * @data: array holding page pointers 845 * @count: number of pages in @data 846 * 847 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring 848 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk() 849 * will release leftover pages to the page allocator. 850 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx 851 * completion loop for the XDP_REDIRECT use case. 852 * 853 * Please note the caller must not use data area after running 854 * page_pool_put_page_bulk(), as this function overwrites it. 855 */ 856 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 857 int count) 858 { 859 int i, bulk_len = 0; 860 bool allow_direct; 861 bool in_softirq; 862 863 allow_direct = page_pool_napi_local(pool); 864 865 for (i = 0; i < count; i++) { 866 netmem_ref netmem = page_to_netmem(virt_to_head_page(data[i])); 867 868 /* It is not the last user for the page frag case */ 869 if (!page_pool_is_last_ref(netmem)) 870 continue; 871 872 netmem = __page_pool_put_page(pool, netmem, -1, allow_direct); 873 /* Approved for bulk recycling in ptr_ring cache */ 874 if (netmem) 875 data[bulk_len++] = (__force void *)netmem; 876 } 877 878 if (!bulk_len) 879 return; 880 881 /* Bulk producer into ptr_ring page_pool cache */ 882 in_softirq = page_pool_producer_lock(pool); 883 for (i = 0; i < bulk_len; i++) { 884 if (__ptr_ring_produce(&pool->ring, data[i])) { 885 /* ring full */ 886 recycle_stat_inc(pool, ring_full); 887 break; 888 } 889 } 890 recycle_stat_add(pool, ring, i); 891 page_pool_producer_unlock(pool, in_softirq); 892 893 /* Hopefully all pages was return into ptr_ring */ 894 if (likely(i == bulk_len)) 895 return; 896 897 /* ptr_ring cache full, free remaining pages outside producer lock 898 * since put_page() with refcnt == 1 can be an expensive operation 899 */ 900 for (; i < bulk_len; i++) 901 page_pool_return_page(pool, (__force netmem_ref)data[i]); 902 } 903 EXPORT_SYMBOL(page_pool_put_page_bulk); 904 905 static netmem_ref page_pool_drain_frag(struct page_pool *pool, 906 netmem_ref netmem) 907 { 908 long drain_count = BIAS_MAX - pool->frag_users; 909 910 /* Some user is still using the page frag */ 911 if (likely(page_pool_unref_netmem(netmem, drain_count))) 912 return 0; 913 914 if (__page_pool_page_can_be_recycled(netmem)) { 915 page_pool_dma_sync_for_device(pool, netmem, -1); 916 return netmem; 917 } 918 919 page_pool_return_page(pool, netmem); 920 return 0; 921 } 922 923 static void page_pool_free_frag(struct page_pool *pool) 924 { 925 long drain_count = BIAS_MAX - pool->frag_users; 926 netmem_ref netmem = pool->frag_page; 927 928 pool->frag_page = 0; 929 930 if (!netmem || page_pool_unref_netmem(netmem, drain_count)) 931 return; 932 933 page_pool_return_page(pool, netmem); 934 } 935 936 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, 937 unsigned int *offset, unsigned int size, 938 gfp_t gfp) 939 { 940 unsigned int max_size = PAGE_SIZE << pool->p.order; 941 netmem_ref netmem = pool->frag_page; 942 943 if (WARN_ON(size > max_size)) 944 return 0; 945 946 size = ALIGN(size, dma_get_cache_alignment()); 947 *offset = pool->frag_offset; 948 949 if (netmem && *offset + size > max_size) { 950 netmem = page_pool_drain_frag(pool, netmem); 951 if (netmem) { 952 recycle_stat_inc(pool, cached); 953 alloc_stat_inc(pool, fast); 954 goto frag_reset; 955 } 956 } 957 958 if (!netmem) { 959 netmem = page_pool_alloc_netmem(pool, gfp); 960 if (unlikely(!netmem)) { 961 pool->frag_page = 0; 962 return 0; 963 } 964 965 pool->frag_page = netmem; 966 967 frag_reset: 968 pool->frag_users = 1; 969 *offset = 0; 970 pool->frag_offset = size; 971 page_pool_fragment_netmem(netmem, BIAS_MAX); 972 return netmem; 973 } 974 975 pool->frag_users++; 976 pool->frag_offset = *offset + size; 977 return netmem; 978 } 979 EXPORT_SYMBOL(page_pool_alloc_frag_netmem); 980 981 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, 982 unsigned int size, gfp_t gfp) 983 { 984 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, 985 gfp)); 986 } 987 EXPORT_SYMBOL(page_pool_alloc_frag); 988 989 static void page_pool_empty_ring(struct page_pool *pool) 990 { 991 netmem_ref netmem; 992 993 /* Empty recycle ring */ 994 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { 995 /* Verify the refcnt invariant of cached pages */ 996 if (!(netmem_ref_count(netmem) == 1)) 997 pr_crit("%s() page_pool refcnt %d violation\n", 998 __func__, netmem_ref_count(netmem)); 999 1000 page_pool_return_page(pool, netmem); 1001 } 1002 } 1003 1004 static void __page_pool_destroy(struct page_pool *pool) 1005 { 1006 if (pool->disconnect) 1007 pool->disconnect(pool); 1008 1009 page_pool_unlist(pool); 1010 page_pool_uninit(pool); 1011 1012 if (pool->mp_priv) { 1013 mp_dmabuf_devmem_destroy(pool); 1014 static_branch_dec(&page_pool_mem_providers); 1015 } 1016 1017 kfree(pool); 1018 } 1019 1020 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 1021 { 1022 netmem_ref netmem; 1023 1024 if (pool->destroy_cnt) 1025 return; 1026 1027 /* Empty alloc cache, assume caller made sure this is 1028 * no-longer in use, and page_pool_alloc_pages() cannot be 1029 * call concurrently. 1030 */ 1031 while (pool->alloc.count) { 1032 netmem = pool->alloc.cache[--pool->alloc.count]; 1033 page_pool_return_page(pool, netmem); 1034 } 1035 } 1036 1037 static void page_pool_scrub(struct page_pool *pool) 1038 { 1039 page_pool_empty_alloc_cache_once(pool); 1040 pool->destroy_cnt++; 1041 1042 /* No more consumers should exist, but producers could still 1043 * be in-flight. 1044 */ 1045 page_pool_empty_ring(pool); 1046 } 1047 1048 static int page_pool_release(struct page_pool *pool) 1049 { 1050 int inflight; 1051 1052 page_pool_scrub(pool); 1053 inflight = page_pool_inflight(pool, true); 1054 if (!inflight) 1055 __page_pool_destroy(pool); 1056 1057 return inflight; 1058 } 1059 1060 static void page_pool_release_retry(struct work_struct *wq) 1061 { 1062 struct delayed_work *dwq = to_delayed_work(wq); 1063 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 1064 void *netdev; 1065 int inflight; 1066 1067 inflight = page_pool_release(pool); 1068 if (!inflight) 1069 return; 1070 1071 /* Periodic warning for page pools the user can't see */ 1072 netdev = READ_ONCE(pool->slow.netdev); 1073 if (time_after_eq(jiffies, pool->defer_warn) && 1074 (!netdev || netdev == NET_PTR_POISON)) { 1075 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 1076 1077 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 1078 __func__, pool->user.id, inflight, sec); 1079 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1080 } 1081 1082 /* Still not ready to be disconnected, retry later */ 1083 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1084 } 1085 1086 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 1087 const struct xdp_mem_info *mem) 1088 { 1089 refcount_inc(&pool->user_cnt); 1090 pool->disconnect = disconnect; 1091 pool->xdp_mem_id = mem->id; 1092 } 1093 1094 void page_pool_disable_direct_recycling(struct page_pool *pool) 1095 { 1096 /* Disable direct recycling based on pool->cpuid. 1097 * Paired with READ_ONCE() in page_pool_napi_local(). 1098 */ 1099 WRITE_ONCE(pool->cpuid, -1); 1100 1101 if (!pool->p.napi) 1102 return; 1103 1104 /* To avoid races with recycling and additional barriers make sure 1105 * pool and NAPI are unlinked when NAPI is disabled. 1106 */ 1107 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state)); 1108 WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1); 1109 1110 WRITE_ONCE(pool->p.napi, NULL); 1111 } 1112 EXPORT_SYMBOL(page_pool_disable_direct_recycling); 1113 1114 void page_pool_destroy(struct page_pool *pool) 1115 { 1116 if (!pool) 1117 return; 1118 1119 if (!page_pool_put(pool)) 1120 return; 1121 1122 page_pool_disable_direct_recycling(pool); 1123 page_pool_free_frag(pool); 1124 1125 if (!page_pool_release(pool)) 1126 return; 1127 1128 page_pool_detached(pool); 1129 pool->defer_start = jiffies; 1130 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1131 1132 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1133 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1134 } 1135 EXPORT_SYMBOL(page_pool_destroy); 1136 1137 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1138 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1139 { 1140 netmem_ref netmem; 1141 1142 trace_page_pool_update_nid(pool, new_nid); 1143 pool->p.nid = new_nid; 1144 1145 /* Flush pool alloc cache, as refill will check NUMA node */ 1146 while (pool->alloc.count) { 1147 netmem = pool->alloc.cache[--pool->alloc.count]; 1148 page_pool_return_page(pool, netmem); 1149 } 1150 } 1151 EXPORT_SYMBOL(page_pool_update_nid); 1152