1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/device.h> 12 13 #include <net/page_pool/helpers.h> 14 #include <net/xdp.h> 15 16 #include <linux/dma-direction.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/page-flags.h> 19 #include <linux/mm.h> /* for put_page() */ 20 #include <linux/poison.h> 21 #include <linux/ethtool.h> 22 #include <linux/netdevice.h> 23 24 #include <trace/events/page_pool.h> 25 26 #define DEFER_TIME (msecs_to_jiffies(1000)) 27 #define DEFER_WARN_INTERVAL (60 * HZ) 28 29 #define BIAS_MAX LONG_MAX 30 31 #ifdef CONFIG_PAGE_POOL_STATS 32 /* alloc_stat_inc is intended to be used in softirq context */ 33 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 34 /* recycle_stat_inc is safe to use when preemption is possible. */ 35 #define recycle_stat_inc(pool, __stat) \ 36 do { \ 37 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 38 this_cpu_inc(s->__stat); \ 39 } while (0) 40 41 #define recycle_stat_add(pool, __stat, val) \ 42 do { \ 43 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 44 this_cpu_add(s->__stat, val); \ 45 } while (0) 46 47 static const char pp_stats[][ETH_GSTRING_LEN] = { 48 "rx_pp_alloc_fast", 49 "rx_pp_alloc_slow", 50 "rx_pp_alloc_slow_ho", 51 "rx_pp_alloc_empty", 52 "rx_pp_alloc_refill", 53 "rx_pp_alloc_waive", 54 "rx_pp_recycle_cached", 55 "rx_pp_recycle_cache_full", 56 "rx_pp_recycle_ring", 57 "rx_pp_recycle_ring_full", 58 "rx_pp_recycle_released_ref", 59 }; 60 61 /** 62 * page_pool_get_stats() - fetch page pool stats 63 * @pool: pool from which page was allocated 64 * @stats: struct page_pool_stats to fill in 65 * 66 * Retrieve statistics about the page_pool. This API is only available 67 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 68 * A pointer to a caller allocated struct page_pool_stats structure 69 * is passed to this API which is filled in. The caller can then report 70 * those stats to the user (perhaps via ethtool, debugfs, etc.). 71 */ 72 bool page_pool_get_stats(struct page_pool *pool, 73 struct page_pool_stats *stats) 74 { 75 int cpu = 0; 76 77 if (!stats) 78 return false; 79 80 /* The caller is responsible to initialize stats. */ 81 stats->alloc_stats.fast += pool->alloc_stats.fast; 82 stats->alloc_stats.slow += pool->alloc_stats.slow; 83 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 84 stats->alloc_stats.empty += pool->alloc_stats.empty; 85 stats->alloc_stats.refill += pool->alloc_stats.refill; 86 stats->alloc_stats.waive += pool->alloc_stats.waive; 87 88 for_each_possible_cpu(cpu) { 89 const struct page_pool_recycle_stats *pcpu = 90 per_cpu_ptr(pool->recycle_stats, cpu); 91 92 stats->recycle_stats.cached += pcpu->cached; 93 stats->recycle_stats.cache_full += pcpu->cache_full; 94 stats->recycle_stats.ring += pcpu->ring; 95 stats->recycle_stats.ring_full += pcpu->ring_full; 96 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 97 } 98 99 return true; 100 } 101 EXPORT_SYMBOL(page_pool_get_stats); 102 103 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 104 { 105 int i; 106 107 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 108 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 109 data += ETH_GSTRING_LEN; 110 } 111 112 return data; 113 } 114 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 115 116 int page_pool_ethtool_stats_get_count(void) 117 { 118 return ARRAY_SIZE(pp_stats); 119 } 120 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 121 122 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) 123 { 124 struct page_pool_stats *pool_stats = stats; 125 126 *data++ = pool_stats->alloc_stats.fast; 127 *data++ = pool_stats->alloc_stats.slow; 128 *data++ = pool_stats->alloc_stats.slow_high_order; 129 *data++ = pool_stats->alloc_stats.empty; 130 *data++ = pool_stats->alloc_stats.refill; 131 *data++ = pool_stats->alloc_stats.waive; 132 *data++ = pool_stats->recycle_stats.cached; 133 *data++ = pool_stats->recycle_stats.cache_full; 134 *data++ = pool_stats->recycle_stats.ring; 135 *data++ = pool_stats->recycle_stats.ring_full; 136 *data++ = pool_stats->recycle_stats.released_refcnt; 137 138 return data; 139 } 140 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 141 142 #else 143 #define alloc_stat_inc(pool, __stat) 144 #define recycle_stat_inc(pool, __stat) 145 #define recycle_stat_add(pool, __stat, val) 146 #endif 147 148 static bool page_pool_producer_lock(struct page_pool *pool) 149 __acquires(&pool->ring.producer_lock) 150 { 151 bool in_softirq = in_softirq(); 152 153 if (in_softirq) 154 spin_lock(&pool->ring.producer_lock); 155 else 156 spin_lock_bh(&pool->ring.producer_lock); 157 158 return in_softirq; 159 } 160 161 static void page_pool_producer_unlock(struct page_pool *pool, 162 bool in_softirq) 163 __releases(&pool->ring.producer_lock) 164 { 165 if (in_softirq) 166 spin_unlock(&pool->ring.producer_lock); 167 else 168 spin_unlock_bh(&pool->ring.producer_lock); 169 } 170 171 static int page_pool_init(struct page_pool *pool, 172 const struct page_pool_params *params) 173 { 174 unsigned int ring_qsize = 1024; /* Default */ 175 176 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 177 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 178 179 /* Validate only known flags were used */ 180 if (pool->p.flags & ~(PP_FLAG_ALL)) 181 return -EINVAL; 182 183 if (pool->p.pool_size) 184 ring_qsize = pool->p.pool_size; 185 186 /* Sanity limit mem that can be pinned down */ 187 if (ring_qsize > 32768) 188 return -E2BIG; 189 190 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 191 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 192 * which is the XDP_TX use-case. 193 */ 194 if (pool->p.flags & PP_FLAG_DMA_MAP) { 195 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 196 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 197 return -EINVAL; 198 } 199 200 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { 201 /* In order to request DMA-sync-for-device the page 202 * needs to be mapped 203 */ 204 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 205 return -EINVAL; 206 207 if (!pool->p.max_len) 208 return -EINVAL; 209 210 /* pool->p.offset has to be set according to the address 211 * offset used by the DMA engine to start copying rx data 212 */ 213 } 214 215 #ifdef CONFIG_PAGE_POOL_STATS 216 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 217 if (!pool->recycle_stats) 218 return -ENOMEM; 219 #endif 220 221 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 222 #ifdef CONFIG_PAGE_POOL_STATS 223 free_percpu(pool->recycle_stats); 224 #endif 225 return -ENOMEM; 226 } 227 228 atomic_set(&pool->pages_state_release_cnt, 0); 229 230 /* Driver calling page_pool_create() also call page_pool_destroy() */ 231 refcount_set(&pool->user_cnt, 1); 232 233 if (pool->p.flags & PP_FLAG_DMA_MAP) 234 get_device(pool->p.dev); 235 236 return 0; 237 } 238 239 /** 240 * page_pool_create() - create a page pool. 241 * @params: parameters, see struct page_pool_params 242 */ 243 struct page_pool *page_pool_create(const struct page_pool_params *params) 244 { 245 struct page_pool *pool; 246 int err; 247 248 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 249 if (!pool) 250 return ERR_PTR(-ENOMEM); 251 252 err = page_pool_init(pool, params); 253 if (err < 0) { 254 pr_warn("%s() gave up with errno %d\n", __func__, err); 255 kfree(pool); 256 return ERR_PTR(err); 257 } 258 259 return pool; 260 } 261 EXPORT_SYMBOL(page_pool_create); 262 263 static void page_pool_return_page(struct page_pool *pool, struct page *page); 264 265 noinline 266 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) 267 { 268 struct ptr_ring *r = &pool->ring; 269 struct page *page; 270 int pref_nid; /* preferred NUMA node */ 271 272 /* Quicker fallback, avoid locks when ring is empty */ 273 if (__ptr_ring_empty(r)) { 274 alloc_stat_inc(pool, empty); 275 return NULL; 276 } 277 278 /* Softirq guarantee CPU and thus NUMA node is stable. This, 279 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 280 */ 281 #ifdef CONFIG_NUMA 282 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 283 #else 284 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 285 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 286 #endif 287 288 /* Refill alloc array, but only if NUMA match */ 289 do { 290 page = __ptr_ring_consume(r); 291 if (unlikely(!page)) 292 break; 293 294 if (likely(page_to_nid(page) == pref_nid)) { 295 pool->alloc.cache[pool->alloc.count++] = page; 296 } else { 297 /* NUMA mismatch; 298 * (1) release 1 page to page-allocator and 299 * (2) break out to fallthrough to alloc_pages_node. 300 * This limit stress on page buddy alloactor. 301 */ 302 page_pool_return_page(pool, page); 303 alloc_stat_inc(pool, waive); 304 page = NULL; 305 break; 306 } 307 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 308 309 /* Return last page */ 310 if (likely(pool->alloc.count > 0)) { 311 page = pool->alloc.cache[--pool->alloc.count]; 312 alloc_stat_inc(pool, refill); 313 } 314 315 return page; 316 } 317 318 /* fast path */ 319 static struct page *__page_pool_get_cached(struct page_pool *pool) 320 { 321 struct page *page; 322 323 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 324 if (likely(pool->alloc.count)) { 325 /* Fast-path */ 326 page = pool->alloc.cache[--pool->alloc.count]; 327 alloc_stat_inc(pool, fast); 328 } else { 329 page = page_pool_refill_alloc_cache(pool); 330 } 331 332 return page; 333 } 334 335 static void page_pool_dma_sync_for_device(struct page_pool *pool, 336 struct page *page, 337 unsigned int dma_sync_size) 338 { 339 dma_addr_t dma_addr = page_pool_get_dma_addr(page); 340 341 dma_sync_size = min(dma_sync_size, pool->p.max_len); 342 dma_sync_single_range_for_device(pool->p.dev, dma_addr, 343 pool->p.offset, dma_sync_size, 344 pool->p.dma_dir); 345 } 346 347 static bool page_pool_dma_map(struct page_pool *pool, struct page *page) 348 { 349 dma_addr_t dma; 350 351 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 352 * since dma_addr_t can be either 32 or 64 bits and does not always fit 353 * into page private data (i.e 32bit cpu with 64bit DMA caps) 354 * This mapping is kept for lifetime of page, until leaving pool. 355 */ 356 dma = dma_map_page_attrs(pool->p.dev, page, 0, 357 (PAGE_SIZE << pool->p.order), 358 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | 359 DMA_ATTR_WEAK_ORDERING); 360 if (dma_mapping_error(pool->p.dev, dma)) 361 return false; 362 363 if (page_pool_set_dma_addr(page, dma)) 364 goto unmap_failed; 365 366 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 367 page_pool_dma_sync_for_device(pool, page, pool->p.max_len); 368 369 return true; 370 371 unmap_failed: 372 WARN_ON_ONCE("unexpected DMA address, please report to netdev@"); 373 dma_unmap_page_attrs(pool->p.dev, dma, 374 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 375 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 376 return false; 377 } 378 379 static void page_pool_set_pp_info(struct page_pool *pool, 380 struct page *page) 381 { 382 page->pp = pool; 383 page->pp_magic |= PP_SIGNATURE; 384 385 /* Ensuring all pages have been split into one fragment initially: 386 * page_pool_set_pp_info() is only called once for every page when it 387 * is allocated from the page allocator and page_pool_fragment_page() 388 * is dirtying the same cache line as the page->pp_magic above, so 389 * the overhead is negligible. 390 */ 391 page_pool_fragment_page(page, 1); 392 if (pool->slow.init_callback) 393 pool->slow.init_callback(page, pool->slow.init_arg); 394 } 395 396 static void page_pool_clear_pp_info(struct page *page) 397 { 398 page->pp_magic = 0; 399 page->pp = NULL; 400 } 401 402 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 403 gfp_t gfp) 404 { 405 struct page *page; 406 407 gfp |= __GFP_COMP; 408 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 409 if (unlikely(!page)) 410 return NULL; 411 412 if ((pool->p.flags & PP_FLAG_DMA_MAP) && 413 unlikely(!page_pool_dma_map(pool, page))) { 414 put_page(page); 415 return NULL; 416 } 417 418 alloc_stat_inc(pool, slow_high_order); 419 page_pool_set_pp_info(pool, page); 420 421 /* Track how many pages are held 'in-flight' */ 422 pool->pages_state_hold_cnt++; 423 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); 424 return page; 425 } 426 427 /* slow path */ 428 noinline 429 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, 430 gfp_t gfp) 431 { 432 const int bulk = PP_ALLOC_CACHE_REFILL; 433 unsigned int pp_flags = pool->p.flags; 434 unsigned int pp_order = pool->p.order; 435 struct page *page; 436 int i, nr_pages; 437 438 /* Don't support bulk alloc for high-order pages */ 439 if (unlikely(pp_order)) 440 return __page_pool_alloc_page_order(pool, gfp); 441 442 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 443 if (unlikely(pool->alloc.count > 0)) 444 return pool->alloc.cache[--pool->alloc.count]; 445 446 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 447 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 448 449 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, 450 pool->alloc.cache); 451 if (unlikely(!nr_pages)) 452 return NULL; 453 454 /* Pages have been filled into alloc.cache array, but count is zero and 455 * page element have not been (possibly) DMA mapped. 456 */ 457 for (i = 0; i < nr_pages; i++) { 458 page = pool->alloc.cache[i]; 459 if ((pp_flags & PP_FLAG_DMA_MAP) && 460 unlikely(!page_pool_dma_map(pool, page))) { 461 put_page(page); 462 continue; 463 } 464 465 page_pool_set_pp_info(pool, page); 466 pool->alloc.cache[pool->alloc.count++] = page; 467 /* Track how many pages are held 'in-flight' */ 468 pool->pages_state_hold_cnt++; 469 trace_page_pool_state_hold(pool, page, 470 pool->pages_state_hold_cnt); 471 } 472 473 /* Return last page */ 474 if (likely(pool->alloc.count > 0)) { 475 page = pool->alloc.cache[--pool->alloc.count]; 476 alloc_stat_inc(pool, slow); 477 } else { 478 page = NULL; 479 } 480 481 /* When page just alloc'ed is should/must have refcnt 1. */ 482 return page; 483 } 484 485 /* For using page_pool replace: alloc_pages() API calls, but provide 486 * synchronization guarantee for allocation side. 487 */ 488 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 489 { 490 struct page *page; 491 492 /* Fast-path: Get a page from cache */ 493 page = __page_pool_get_cached(pool); 494 if (page) 495 return page; 496 497 /* Slow-path: cache empty, do real allocation */ 498 page = __page_pool_alloc_pages_slow(pool, gfp); 499 return page; 500 } 501 EXPORT_SYMBOL(page_pool_alloc_pages); 502 503 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 504 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 505 */ 506 #define _distance(a, b) (s32)((a) - (b)) 507 508 static s32 page_pool_inflight(struct page_pool *pool) 509 { 510 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 511 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 512 s32 inflight; 513 514 inflight = _distance(hold_cnt, release_cnt); 515 516 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 517 WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); 518 519 return inflight; 520 } 521 522 /* Disconnects a page (from a page_pool). API users can have a need 523 * to disconnect a page (from a page_pool), to allow it to be used as 524 * a regular page (that will eventually be returned to the normal 525 * page-allocator via put_page). 526 */ 527 static void page_pool_return_page(struct page_pool *pool, struct page *page) 528 { 529 dma_addr_t dma; 530 int count; 531 532 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 533 /* Always account for inflight pages, even if we didn't 534 * map them 535 */ 536 goto skip_dma_unmap; 537 538 dma = page_pool_get_dma_addr(page); 539 540 /* When page is unmapped, it cannot be returned to our pool */ 541 dma_unmap_page_attrs(pool->p.dev, dma, 542 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 543 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 544 page_pool_set_dma_addr(page, 0); 545 skip_dma_unmap: 546 page_pool_clear_pp_info(page); 547 548 /* This may be the last page returned, releasing the pool, so 549 * it is not safe to reference pool afterwards. 550 */ 551 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 552 trace_page_pool_state_release(pool, page, count); 553 554 put_page(page); 555 /* An optimization would be to call __free_pages(page, pool->p.order) 556 * knowing page is not part of page-cache (thus avoiding a 557 * __page_cache_release() call). 558 */ 559 } 560 561 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) 562 { 563 int ret; 564 /* BH protection not needed if current is softirq */ 565 if (in_softirq()) 566 ret = ptr_ring_produce(&pool->ring, page); 567 else 568 ret = ptr_ring_produce_bh(&pool->ring, page); 569 570 if (!ret) { 571 recycle_stat_inc(pool, ring); 572 return true; 573 } 574 575 return false; 576 } 577 578 /* Only allow direct recycling in special circumstances, into the 579 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 580 * 581 * Caller must provide appropriate safe context. 582 */ 583 static bool page_pool_recycle_in_cache(struct page *page, 584 struct page_pool *pool) 585 { 586 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 587 recycle_stat_inc(pool, cache_full); 588 return false; 589 } 590 591 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 592 pool->alloc.cache[pool->alloc.count++] = page; 593 recycle_stat_inc(pool, cached); 594 return true; 595 } 596 597 /* If the page refcnt == 1, this will try to recycle the page. 598 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for 599 * the configured size min(dma_sync_size, pool->max_len). 600 * If the page refcnt != 1, then the page will be returned to memory 601 * subsystem. 602 */ 603 static __always_inline struct page * 604 __page_pool_put_page(struct page_pool *pool, struct page *page, 605 unsigned int dma_sync_size, bool allow_direct) 606 { 607 lockdep_assert_no_hardirq(); 608 609 /* This allocator is optimized for the XDP mode that uses 610 * one-frame-per-page, but have fallbacks that act like the 611 * regular page allocator APIs. 612 * 613 * refcnt == 1 means page_pool owns page, and can recycle it. 614 * 615 * page is NOT reusable when allocated when system is under 616 * some pressure. (page_is_pfmemalloc) 617 */ 618 if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) { 619 /* Read barrier done in page_ref_count / READ_ONCE */ 620 621 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 622 page_pool_dma_sync_for_device(pool, page, 623 dma_sync_size); 624 625 if (allow_direct && in_softirq() && 626 page_pool_recycle_in_cache(page, pool)) 627 return NULL; 628 629 /* Page found as candidate for recycling */ 630 return page; 631 } 632 /* Fallback/non-XDP mode: API user have elevated refcnt. 633 * 634 * Many drivers split up the page into fragments, and some 635 * want to keep doing this to save memory and do refcnt based 636 * recycling. Support this use case too, to ease drivers 637 * switching between XDP/non-XDP. 638 * 639 * In-case page_pool maintains the DMA mapping, API user must 640 * call page_pool_put_page once. In this elevated refcnt 641 * case, the DMA is unmapped/released, as driver is likely 642 * doing refcnt based recycle tricks, meaning another process 643 * will be invoking put_page. 644 */ 645 recycle_stat_inc(pool, released_refcnt); 646 page_pool_return_page(pool, page); 647 648 return NULL; 649 } 650 651 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page, 652 unsigned int dma_sync_size, bool allow_direct) 653 { 654 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); 655 if (page && !page_pool_recycle_in_ring(pool, page)) { 656 /* Cache full, fallback to free pages */ 657 recycle_stat_inc(pool, ring_full); 658 page_pool_return_page(pool, page); 659 } 660 } 661 EXPORT_SYMBOL(page_pool_put_defragged_page); 662 663 /** 664 * page_pool_put_page_bulk() - release references on multiple pages 665 * @pool: pool from which pages were allocated 666 * @data: array holding page pointers 667 * @count: number of pages in @data 668 * 669 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring 670 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk() 671 * will release leftover pages to the page allocator. 672 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx 673 * completion loop for the XDP_REDIRECT use case. 674 * 675 * Please note the caller must not use data area after running 676 * page_pool_put_page_bulk(), as this function overwrites it. 677 */ 678 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 679 int count) 680 { 681 int i, bulk_len = 0; 682 bool in_softirq; 683 684 for (i = 0; i < count; i++) { 685 struct page *page = virt_to_head_page(data[i]); 686 687 /* It is not the last user for the page frag case */ 688 if (!page_pool_is_last_frag(page)) 689 continue; 690 691 page = __page_pool_put_page(pool, page, -1, false); 692 /* Approved for bulk recycling in ptr_ring cache */ 693 if (page) 694 data[bulk_len++] = page; 695 } 696 697 if (unlikely(!bulk_len)) 698 return; 699 700 /* Bulk producer into ptr_ring page_pool cache */ 701 in_softirq = page_pool_producer_lock(pool); 702 for (i = 0; i < bulk_len; i++) { 703 if (__ptr_ring_produce(&pool->ring, data[i])) { 704 /* ring full */ 705 recycle_stat_inc(pool, ring_full); 706 break; 707 } 708 } 709 recycle_stat_add(pool, ring, i); 710 page_pool_producer_unlock(pool, in_softirq); 711 712 /* Hopefully all pages was return into ptr_ring */ 713 if (likely(i == bulk_len)) 714 return; 715 716 /* ptr_ring cache full, free remaining pages outside producer lock 717 * since put_page() with refcnt == 1 can be an expensive operation 718 */ 719 for (; i < bulk_len; i++) 720 page_pool_return_page(pool, data[i]); 721 } 722 EXPORT_SYMBOL(page_pool_put_page_bulk); 723 724 static struct page *page_pool_drain_frag(struct page_pool *pool, 725 struct page *page) 726 { 727 long drain_count = BIAS_MAX - pool->frag_users; 728 729 /* Some user is still using the page frag */ 730 if (likely(page_pool_defrag_page(page, drain_count))) 731 return NULL; 732 733 if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) { 734 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 735 page_pool_dma_sync_for_device(pool, page, -1); 736 737 return page; 738 } 739 740 page_pool_return_page(pool, page); 741 return NULL; 742 } 743 744 static void page_pool_free_frag(struct page_pool *pool) 745 { 746 long drain_count = BIAS_MAX - pool->frag_users; 747 struct page *page = pool->frag_page; 748 749 pool->frag_page = NULL; 750 751 if (!page || page_pool_defrag_page(page, drain_count)) 752 return; 753 754 page_pool_return_page(pool, page); 755 } 756 757 struct page *page_pool_alloc_frag(struct page_pool *pool, 758 unsigned int *offset, 759 unsigned int size, gfp_t gfp) 760 { 761 unsigned int max_size = PAGE_SIZE << pool->p.order; 762 struct page *page = pool->frag_page; 763 764 if (WARN_ON(size > max_size)) 765 return NULL; 766 767 size = ALIGN(size, dma_get_cache_alignment()); 768 *offset = pool->frag_offset; 769 770 if (page && *offset + size > max_size) { 771 page = page_pool_drain_frag(pool, page); 772 if (page) { 773 alloc_stat_inc(pool, fast); 774 goto frag_reset; 775 } 776 } 777 778 if (!page) { 779 page = page_pool_alloc_pages(pool, gfp); 780 if (unlikely(!page)) { 781 pool->frag_page = NULL; 782 return NULL; 783 } 784 785 pool->frag_page = page; 786 787 frag_reset: 788 pool->frag_users = 1; 789 *offset = 0; 790 pool->frag_offset = size; 791 page_pool_fragment_page(page, BIAS_MAX); 792 return page; 793 } 794 795 pool->frag_users++; 796 pool->frag_offset = *offset + size; 797 alloc_stat_inc(pool, fast); 798 return page; 799 } 800 EXPORT_SYMBOL(page_pool_alloc_frag); 801 802 static void page_pool_empty_ring(struct page_pool *pool) 803 { 804 struct page *page; 805 806 /* Empty recycle ring */ 807 while ((page = ptr_ring_consume_bh(&pool->ring))) { 808 /* Verify the refcnt invariant of cached pages */ 809 if (!(page_ref_count(page) == 1)) 810 pr_crit("%s() page_pool refcnt %d violation\n", 811 __func__, page_ref_count(page)); 812 813 page_pool_return_page(pool, page); 814 } 815 } 816 817 static void __page_pool_destroy(struct page_pool *pool) 818 { 819 if (pool->disconnect) 820 pool->disconnect(pool); 821 822 ptr_ring_cleanup(&pool->ring, NULL); 823 824 if (pool->p.flags & PP_FLAG_DMA_MAP) 825 put_device(pool->p.dev); 826 827 #ifdef CONFIG_PAGE_POOL_STATS 828 free_percpu(pool->recycle_stats); 829 #endif 830 kfree(pool); 831 } 832 833 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 834 { 835 struct page *page; 836 837 if (pool->destroy_cnt) 838 return; 839 840 /* Empty alloc cache, assume caller made sure this is 841 * no-longer in use, and page_pool_alloc_pages() cannot be 842 * call concurrently. 843 */ 844 while (pool->alloc.count) { 845 page = pool->alloc.cache[--pool->alloc.count]; 846 page_pool_return_page(pool, page); 847 } 848 } 849 850 static void page_pool_scrub(struct page_pool *pool) 851 { 852 page_pool_empty_alloc_cache_once(pool); 853 pool->destroy_cnt++; 854 855 /* No more consumers should exist, but producers could still 856 * be in-flight. 857 */ 858 page_pool_empty_ring(pool); 859 } 860 861 static int page_pool_release(struct page_pool *pool) 862 { 863 int inflight; 864 865 page_pool_scrub(pool); 866 inflight = page_pool_inflight(pool); 867 if (!inflight) 868 __page_pool_destroy(pool); 869 870 return inflight; 871 } 872 873 static void page_pool_release_retry(struct work_struct *wq) 874 { 875 struct delayed_work *dwq = to_delayed_work(wq); 876 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 877 int inflight; 878 879 inflight = page_pool_release(pool); 880 if (!inflight) 881 return; 882 883 /* Periodic warning */ 884 if (time_after_eq(jiffies, pool->defer_warn)) { 885 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 886 887 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n", 888 __func__, inflight, sec); 889 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 890 } 891 892 /* Still not ready to be disconnected, retry later */ 893 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 894 } 895 896 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 897 struct xdp_mem_info *mem) 898 { 899 refcount_inc(&pool->user_cnt); 900 pool->disconnect = disconnect; 901 pool->xdp_mem_id = mem->id; 902 } 903 904 void page_pool_unlink_napi(struct page_pool *pool) 905 { 906 if (!pool->p.napi) 907 return; 908 909 /* To avoid races with recycling and additional barriers make sure 910 * pool and NAPI are unlinked when NAPI is disabled. 911 */ 912 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) || 913 READ_ONCE(pool->p.napi->list_owner) != -1); 914 915 WRITE_ONCE(pool->p.napi, NULL); 916 } 917 EXPORT_SYMBOL(page_pool_unlink_napi); 918 919 void page_pool_destroy(struct page_pool *pool) 920 { 921 if (!pool) 922 return; 923 924 if (!page_pool_put(pool)) 925 return; 926 927 page_pool_unlink_napi(pool); 928 page_pool_free_frag(pool); 929 930 if (!page_pool_release(pool)) 931 return; 932 933 pool->defer_start = jiffies; 934 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 935 936 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 937 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 938 } 939 EXPORT_SYMBOL(page_pool_destroy); 940 941 /* Caller must provide appropriate safe context, e.g. NAPI. */ 942 void page_pool_update_nid(struct page_pool *pool, int new_nid) 943 { 944 struct page *page; 945 946 trace_page_pool_update_nid(pool, new_nid); 947 pool->p.nid = new_nid; 948 949 /* Flush pool alloc cache, as refill will check NUMA node */ 950 while (pool->alloc.count) { 951 page = pool->alloc.cache[--pool->alloc.count]; 952 page_pool_return_page(pool, page); 953 } 954 } 955 EXPORT_SYMBOL(page_pool_update_nid); 956