1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/device.h> 12 13 #include <net/page_pool/helpers.h> 14 #include <net/xdp.h> 15 16 #include <linux/dma-direction.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/page-flags.h> 19 #include <linux/mm.h> /* for put_page() */ 20 #include <linux/poison.h> 21 #include <linux/ethtool.h> 22 #include <linux/netdevice.h> 23 24 #include <trace/events/page_pool.h> 25 26 #define DEFER_TIME (msecs_to_jiffies(1000)) 27 #define DEFER_WARN_INTERVAL (60 * HZ) 28 29 #define BIAS_MAX LONG_MAX 30 31 #ifdef CONFIG_PAGE_POOL_STATS 32 /* alloc_stat_inc is intended to be used in softirq context */ 33 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 34 /* recycle_stat_inc is safe to use when preemption is possible. */ 35 #define recycle_stat_inc(pool, __stat) \ 36 do { \ 37 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 38 this_cpu_inc(s->__stat); \ 39 } while (0) 40 41 #define recycle_stat_add(pool, __stat, val) \ 42 do { \ 43 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 44 this_cpu_add(s->__stat, val); \ 45 } while (0) 46 47 static const char pp_stats[][ETH_GSTRING_LEN] = { 48 "rx_pp_alloc_fast", 49 "rx_pp_alloc_slow", 50 "rx_pp_alloc_slow_ho", 51 "rx_pp_alloc_empty", 52 "rx_pp_alloc_refill", 53 "rx_pp_alloc_waive", 54 "rx_pp_recycle_cached", 55 "rx_pp_recycle_cache_full", 56 "rx_pp_recycle_ring", 57 "rx_pp_recycle_ring_full", 58 "rx_pp_recycle_released_ref", 59 }; 60 61 /** 62 * page_pool_get_stats() - fetch page pool stats 63 * @pool: pool from which page was allocated 64 * @stats: struct page_pool_stats to fill in 65 * 66 * Retrieve statistics about the page_pool. This API is only available 67 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 68 * A pointer to a caller allocated struct page_pool_stats structure 69 * is passed to this API which is filled in. The caller can then report 70 * those stats to the user (perhaps via ethtool, debugfs, etc.). 71 */ 72 bool page_pool_get_stats(struct page_pool *pool, 73 struct page_pool_stats *stats) 74 { 75 int cpu = 0; 76 77 if (!stats) 78 return false; 79 80 /* The caller is responsible to initialize stats. */ 81 stats->alloc_stats.fast += pool->alloc_stats.fast; 82 stats->alloc_stats.slow += pool->alloc_stats.slow; 83 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 84 stats->alloc_stats.empty += pool->alloc_stats.empty; 85 stats->alloc_stats.refill += pool->alloc_stats.refill; 86 stats->alloc_stats.waive += pool->alloc_stats.waive; 87 88 for_each_possible_cpu(cpu) { 89 const struct page_pool_recycle_stats *pcpu = 90 per_cpu_ptr(pool->recycle_stats, cpu); 91 92 stats->recycle_stats.cached += pcpu->cached; 93 stats->recycle_stats.cache_full += pcpu->cache_full; 94 stats->recycle_stats.ring += pcpu->ring; 95 stats->recycle_stats.ring_full += pcpu->ring_full; 96 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 97 } 98 99 return true; 100 } 101 EXPORT_SYMBOL(page_pool_get_stats); 102 103 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 104 { 105 int i; 106 107 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 108 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 109 data += ETH_GSTRING_LEN; 110 } 111 112 return data; 113 } 114 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 115 116 int page_pool_ethtool_stats_get_count(void) 117 { 118 return ARRAY_SIZE(pp_stats); 119 } 120 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 121 122 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) 123 { 124 struct page_pool_stats *pool_stats = stats; 125 126 *data++ = pool_stats->alloc_stats.fast; 127 *data++ = pool_stats->alloc_stats.slow; 128 *data++ = pool_stats->alloc_stats.slow_high_order; 129 *data++ = pool_stats->alloc_stats.empty; 130 *data++ = pool_stats->alloc_stats.refill; 131 *data++ = pool_stats->alloc_stats.waive; 132 *data++ = pool_stats->recycle_stats.cached; 133 *data++ = pool_stats->recycle_stats.cache_full; 134 *data++ = pool_stats->recycle_stats.ring; 135 *data++ = pool_stats->recycle_stats.ring_full; 136 *data++ = pool_stats->recycle_stats.released_refcnt; 137 138 return data; 139 } 140 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 141 142 #else 143 #define alloc_stat_inc(pool, __stat) 144 #define recycle_stat_inc(pool, __stat) 145 #define recycle_stat_add(pool, __stat, val) 146 #endif 147 148 static bool page_pool_producer_lock(struct page_pool *pool) 149 __acquires(&pool->ring.producer_lock) 150 { 151 bool in_softirq = in_softirq(); 152 153 if (in_softirq) 154 spin_lock(&pool->ring.producer_lock); 155 else 156 spin_lock_bh(&pool->ring.producer_lock); 157 158 return in_softirq; 159 } 160 161 static void page_pool_producer_unlock(struct page_pool *pool, 162 bool in_softirq) 163 __releases(&pool->ring.producer_lock) 164 { 165 if (in_softirq) 166 spin_unlock(&pool->ring.producer_lock); 167 else 168 spin_unlock_bh(&pool->ring.producer_lock); 169 } 170 171 static int page_pool_init(struct page_pool *pool, 172 const struct page_pool_params *params) 173 { 174 unsigned int ring_qsize = 1024; /* Default */ 175 176 memcpy(&pool->p, params, sizeof(pool->p)); 177 178 /* Validate only known flags were used */ 179 if (pool->p.flags & ~(PP_FLAG_ALL)) 180 return -EINVAL; 181 182 if (pool->p.pool_size) 183 ring_qsize = pool->p.pool_size; 184 185 /* Sanity limit mem that can be pinned down */ 186 if (ring_qsize > 32768) 187 return -E2BIG; 188 189 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 190 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 191 * which is the XDP_TX use-case. 192 */ 193 if (pool->p.flags & PP_FLAG_DMA_MAP) { 194 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 195 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 196 return -EINVAL; 197 } 198 199 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { 200 /* In order to request DMA-sync-for-device the page 201 * needs to be mapped 202 */ 203 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 204 return -EINVAL; 205 206 if (!pool->p.max_len) 207 return -EINVAL; 208 209 /* pool->p.offset has to be set according to the address 210 * offset used by the DMA engine to start copying rx data 211 */ 212 } 213 214 #ifdef CONFIG_PAGE_POOL_STATS 215 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 216 if (!pool->recycle_stats) 217 return -ENOMEM; 218 #endif 219 220 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 221 #ifdef CONFIG_PAGE_POOL_STATS 222 free_percpu(pool->recycle_stats); 223 #endif 224 return -ENOMEM; 225 } 226 227 atomic_set(&pool->pages_state_release_cnt, 0); 228 229 /* Driver calling page_pool_create() also call page_pool_destroy() */ 230 refcount_set(&pool->user_cnt, 1); 231 232 if (pool->p.flags & PP_FLAG_DMA_MAP) 233 get_device(pool->p.dev); 234 235 return 0; 236 } 237 238 /** 239 * page_pool_create() - create a page pool. 240 * @params: parameters, see struct page_pool_params 241 */ 242 struct page_pool *page_pool_create(const struct page_pool_params *params) 243 { 244 struct page_pool *pool; 245 int err; 246 247 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 248 if (!pool) 249 return ERR_PTR(-ENOMEM); 250 251 err = page_pool_init(pool, params); 252 if (err < 0) { 253 pr_warn("%s() gave up with errno %d\n", __func__, err); 254 kfree(pool); 255 return ERR_PTR(err); 256 } 257 258 return pool; 259 } 260 EXPORT_SYMBOL(page_pool_create); 261 262 static void page_pool_return_page(struct page_pool *pool, struct page *page); 263 264 noinline 265 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) 266 { 267 struct ptr_ring *r = &pool->ring; 268 struct page *page; 269 int pref_nid; /* preferred NUMA node */ 270 271 /* Quicker fallback, avoid locks when ring is empty */ 272 if (__ptr_ring_empty(r)) { 273 alloc_stat_inc(pool, empty); 274 return NULL; 275 } 276 277 /* Softirq guarantee CPU and thus NUMA node is stable. This, 278 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 279 */ 280 #ifdef CONFIG_NUMA 281 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 282 #else 283 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 284 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 285 #endif 286 287 /* Refill alloc array, but only if NUMA match */ 288 do { 289 page = __ptr_ring_consume(r); 290 if (unlikely(!page)) 291 break; 292 293 if (likely(page_to_nid(page) == pref_nid)) { 294 pool->alloc.cache[pool->alloc.count++] = page; 295 } else { 296 /* NUMA mismatch; 297 * (1) release 1 page to page-allocator and 298 * (2) break out to fallthrough to alloc_pages_node. 299 * This limit stress on page buddy alloactor. 300 */ 301 page_pool_return_page(pool, page); 302 alloc_stat_inc(pool, waive); 303 page = NULL; 304 break; 305 } 306 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 307 308 /* Return last page */ 309 if (likely(pool->alloc.count > 0)) { 310 page = pool->alloc.cache[--pool->alloc.count]; 311 alloc_stat_inc(pool, refill); 312 } 313 314 return page; 315 } 316 317 /* fast path */ 318 static struct page *__page_pool_get_cached(struct page_pool *pool) 319 { 320 struct page *page; 321 322 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 323 if (likely(pool->alloc.count)) { 324 /* Fast-path */ 325 page = pool->alloc.cache[--pool->alloc.count]; 326 alloc_stat_inc(pool, fast); 327 } else { 328 page = page_pool_refill_alloc_cache(pool); 329 } 330 331 return page; 332 } 333 334 static void page_pool_dma_sync_for_device(struct page_pool *pool, 335 struct page *page, 336 unsigned int dma_sync_size) 337 { 338 dma_addr_t dma_addr = page_pool_get_dma_addr(page); 339 340 dma_sync_size = min(dma_sync_size, pool->p.max_len); 341 dma_sync_single_range_for_device(pool->p.dev, dma_addr, 342 pool->p.offset, dma_sync_size, 343 pool->p.dma_dir); 344 } 345 346 static bool page_pool_dma_map(struct page_pool *pool, struct page *page) 347 { 348 dma_addr_t dma; 349 350 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 351 * since dma_addr_t can be either 32 or 64 bits and does not always fit 352 * into page private data (i.e 32bit cpu with 64bit DMA caps) 353 * This mapping is kept for lifetime of page, until leaving pool. 354 */ 355 dma = dma_map_page_attrs(pool->p.dev, page, 0, 356 (PAGE_SIZE << pool->p.order), 357 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | 358 DMA_ATTR_WEAK_ORDERING); 359 if (dma_mapping_error(pool->p.dev, dma)) 360 return false; 361 362 if (page_pool_set_dma_addr(page, dma)) 363 goto unmap_failed; 364 365 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 366 page_pool_dma_sync_for_device(pool, page, pool->p.max_len); 367 368 return true; 369 370 unmap_failed: 371 WARN_ON_ONCE("unexpected DMA address, please report to netdev@"); 372 dma_unmap_page_attrs(pool->p.dev, dma, 373 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 374 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 375 return false; 376 } 377 378 static void page_pool_set_pp_info(struct page_pool *pool, 379 struct page *page) 380 { 381 page->pp = pool; 382 page->pp_magic |= PP_SIGNATURE; 383 384 /* Ensuring all pages have been split into one fragment initially: 385 * page_pool_set_pp_info() is only called once for every page when it 386 * is allocated from the page allocator and page_pool_fragment_page() 387 * is dirtying the same cache line as the page->pp_magic above, so 388 * the overhead is negligible. 389 */ 390 page_pool_fragment_page(page, 1); 391 if (pool->p.init_callback) 392 pool->p.init_callback(page, pool->p.init_arg); 393 } 394 395 static void page_pool_clear_pp_info(struct page *page) 396 { 397 page->pp_magic = 0; 398 page->pp = NULL; 399 } 400 401 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 402 gfp_t gfp) 403 { 404 struct page *page; 405 406 gfp |= __GFP_COMP; 407 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 408 if (unlikely(!page)) 409 return NULL; 410 411 if ((pool->p.flags & PP_FLAG_DMA_MAP) && 412 unlikely(!page_pool_dma_map(pool, page))) { 413 put_page(page); 414 return NULL; 415 } 416 417 alloc_stat_inc(pool, slow_high_order); 418 page_pool_set_pp_info(pool, page); 419 420 /* Track how many pages are held 'in-flight' */ 421 pool->pages_state_hold_cnt++; 422 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); 423 return page; 424 } 425 426 /* slow path */ 427 noinline 428 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, 429 gfp_t gfp) 430 { 431 const int bulk = PP_ALLOC_CACHE_REFILL; 432 unsigned int pp_flags = pool->p.flags; 433 unsigned int pp_order = pool->p.order; 434 struct page *page; 435 int i, nr_pages; 436 437 /* Don't support bulk alloc for high-order pages */ 438 if (unlikely(pp_order)) 439 return __page_pool_alloc_page_order(pool, gfp); 440 441 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 442 if (unlikely(pool->alloc.count > 0)) 443 return pool->alloc.cache[--pool->alloc.count]; 444 445 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 446 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 447 448 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, 449 pool->alloc.cache); 450 if (unlikely(!nr_pages)) 451 return NULL; 452 453 /* Pages have been filled into alloc.cache array, but count is zero and 454 * page element have not been (possibly) DMA mapped. 455 */ 456 for (i = 0; i < nr_pages; i++) { 457 page = pool->alloc.cache[i]; 458 if ((pp_flags & PP_FLAG_DMA_MAP) && 459 unlikely(!page_pool_dma_map(pool, page))) { 460 put_page(page); 461 continue; 462 } 463 464 page_pool_set_pp_info(pool, page); 465 pool->alloc.cache[pool->alloc.count++] = page; 466 /* Track how many pages are held 'in-flight' */ 467 pool->pages_state_hold_cnt++; 468 trace_page_pool_state_hold(pool, page, 469 pool->pages_state_hold_cnt); 470 } 471 472 /* Return last page */ 473 if (likely(pool->alloc.count > 0)) { 474 page = pool->alloc.cache[--pool->alloc.count]; 475 alloc_stat_inc(pool, slow); 476 } else { 477 page = NULL; 478 } 479 480 /* When page just alloc'ed is should/must have refcnt 1. */ 481 return page; 482 } 483 484 /* For using page_pool replace: alloc_pages() API calls, but provide 485 * synchronization guarantee for allocation side. 486 */ 487 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 488 { 489 struct page *page; 490 491 /* Fast-path: Get a page from cache */ 492 page = __page_pool_get_cached(pool); 493 if (page) 494 return page; 495 496 /* Slow-path: cache empty, do real allocation */ 497 page = __page_pool_alloc_pages_slow(pool, gfp); 498 return page; 499 } 500 EXPORT_SYMBOL(page_pool_alloc_pages); 501 502 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 503 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 504 */ 505 #define _distance(a, b) (s32)((a) - (b)) 506 507 static s32 page_pool_inflight(struct page_pool *pool) 508 { 509 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 510 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 511 s32 inflight; 512 513 inflight = _distance(hold_cnt, release_cnt); 514 515 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 516 WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); 517 518 return inflight; 519 } 520 521 /* Disconnects a page (from a page_pool). API users can have a need 522 * to disconnect a page (from a page_pool), to allow it to be used as 523 * a regular page (that will eventually be returned to the normal 524 * page-allocator via put_page). 525 */ 526 static void page_pool_return_page(struct page_pool *pool, struct page *page) 527 { 528 dma_addr_t dma; 529 int count; 530 531 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 532 /* Always account for inflight pages, even if we didn't 533 * map them 534 */ 535 goto skip_dma_unmap; 536 537 dma = page_pool_get_dma_addr(page); 538 539 /* When page is unmapped, it cannot be returned to our pool */ 540 dma_unmap_page_attrs(pool->p.dev, dma, 541 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 542 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 543 page_pool_set_dma_addr(page, 0); 544 skip_dma_unmap: 545 page_pool_clear_pp_info(page); 546 547 /* This may be the last page returned, releasing the pool, so 548 * it is not safe to reference pool afterwards. 549 */ 550 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 551 trace_page_pool_state_release(pool, page, count); 552 553 put_page(page); 554 /* An optimization would be to call __free_pages(page, pool->p.order) 555 * knowing page is not part of page-cache (thus avoiding a 556 * __page_cache_release() call). 557 */ 558 } 559 560 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) 561 { 562 int ret; 563 /* BH protection not needed if current is softirq */ 564 if (in_softirq()) 565 ret = ptr_ring_produce(&pool->ring, page); 566 else 567 ret = ptr_ring_produce_bh(&pool->ring, page); 568 569 if (!ret) { 570 recycle_stat_inc(pool, ring); 571 return true; 572 } 573 574 return false; 575 } 576 577 /* Only allow direct recycling in special circumstances, into the 578 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 579 * 580 * Caller must provide appropriate safe context. 581 */ 582 static bool page_pool_recycle_in_cache(struct page *page, 583 struct page_pool *pool) 584 { 585 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 586 recycle_stat_inc(pool, cache_full); 587 return false; 588 } 589 590 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 591 pool->alloc.cache[pool->alloc.count++] = page; 592 recycle_stat_inc(pool, cached); 593 return true; 594 } 595 596 /* If the page refcnt == 1, this will try to recycle the page. 597 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for 598 * the configured size min(dma_sync_size, pool->max_len). 599 * If the page refcnt != 1, then the page will be returned to memory 600 * subsystem. 601 */ 602 static __always_inline struct page * 603 __page_pool_put_page(struct page_pool *pool, struct page *page, 604 unsigned int dma_sync_size, bool allow_direct) 605 { 606 lockdep_assert_no_hardirq(); 607 608 /* This allocator is optimized for the XDP mode that uses 609 * one-frame-per-page, but have fallbacks that act like the 610 * regular page allocator APIs. 611 * 612 * refcnt == 1 means page_pool owns page, and can recycle it. 613 * 614 * page is NOT reusable when allocated when system is under 615 * some pressure. (page_is_pfmemalloc) 616 */ 617 if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) { 618 /* Read barrier done in page_ref_count / READ_ONCE */ 619 620 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 621 page_pool_dma_sync_for_device(pool, page, 622 dma_sync_size); 623 624 if (allow_direct && in_softirq() && 625 page_pool_recycle_in_cache(page, pool)) 626 return NULL; 627 628 /* Page found as candidate for recycling */ 629 return page; 630 } 631 /* Fallback/non-XDP mode: API user have elevated refcnt. 632 * 633 * Many drivers split up the page into fragments, and some 634 * want to keep doing this to save memory and do refcnt based 635 * recycling. Support this use case too, to ease drivers 636 * switching between XDP/non-XDP. 637 * 638 * In-case page_pool maintains the DMA mapping, API user must 639 * call page_pool_put_page once. In this elevated refcnt 640 * case, the DMA is unmapped/released, as driver is likely 641 * doing refcnt based recycle tricks, meaning another process 642 * will be invoking put_page. 643 */ 644 recycle_stat_inc(pool, released_refcnt); 645 page_pool_return_page(pool, page); 646 647 return NULL; 648 } 649 650 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page, 651 unsigned int dma_sync_size, bool allow_direct) 652 { 653 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); 654 if (page && !page_pool_recycle_in_ring(pool, page)) { 655 /* Cache full, fallback to free pages */ 656 recycle_stat_inc(pool, ring_full); 657 page_pool_return_page(pool, page); 658 } 659 } 660 EXPORT_SYMBOL(page_pool_put_defragged_page); 661 662 /** 663 * page_pool_put_page_bulk() - release references on multiple pages 664 * @pool: pool from which pages were allocated 665 * @data: array holding page pointers 666 * @count: number of pages in @data 667 * 668 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring 669 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk() 670 * will release leftover pages to the page allocator. 671 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx 672 * completion loop for the XDP_REDIRECT use case. 673 * 674 * Please note the caller must not use data area after running 675 * page_pool_put_page_bulk(), as this function overwrites it. 676 */ 677 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 678 int count) 679 { 680 int i, bulk_len = 0; 681 bool in_softirq; 682 683 for (i = 0; i < count; i++) { 684 struct page *page = virt_to_head_page(data[i]); 685 686 /* It is not the last user for the page frag case */ 687 if (!page_pool_is_last_frag(page)) 688 continue; 689 690 page = __page_pool_put_page(pool, page, -1, false); 691 /* Approved for bulk recycling in ptr_ring cache */ 692 if (page) 693 data[bulk_len++] = page; 694 } 695 696 if (unlikely(!bulk_len)) 697 return; 698 699 /* Bulk producer into ptr_ring page_pool cache */ 700 in_softirq = page_pool_producer_lock(pool); 701 for (i = 0; i < bulk_len; i++) { 702 if (__ptr_ring_produce(&pool->ring, data[i])) { 703 /* ring full */ 704 recycle_stat_inc(pool, ring_full); 705 break; 706 } 707 } 708 recycle_stat_add(pool, ring, i); 709 page_pool_producer_unlock(pool, in_softirq); 710 711 /* Hopefully all pages was return into ptr_ring */ 712 if (likely(i == bulk_len)) 713 return; 714 715 /* ptr_ring cache full, free remaining pages outside producer lock 716 * since put_page() with refcnt == 1 can be an expensive operation 717 */ 718 for (; i < bulk_len; i++) 719 page_pool_return_page(pool, data[i]); 720 } 721 EXPORT_SYMBOL(page_pool_put_page_bulk); 722 723 static struct page *page_pool_drain_frag(struct page_pool *pool, 724 struct page *page) 725 { 726 long drain_count = BIAS_MAX - pool->frag_users; 727 728 /* Some user is still using the page frag */ 729 if (likely(page_pool_defrag_page(page, drain_count))) 730 return NULL; 731 732 if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) { 733 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 734 page_pool_dma_sync_for_device(pool, page, -1); 735 736 return page; 737 } 738 739 page_pool_return_page(pool, page); 740 return NULL; 741 } 742 743 static void page_pool_free_frag(struct page_pool *pool) 744 { 745 long drain_count = BIAS_MAX - pool->frag_users; 746 struct page *page = pool->frag_page; 747 748 pool->frag_page = NULL; 749 750 if (!page || page_pool_defrag_page(page, drain_count)) 751 return; 752 753 page_pool_return_page(pool, page); 754 } 755 756 struct page *page_pool_alloc_frag(struct page_pool *pool, 757 unsigned int *offset, 758 unsigned int size, gfp_t gfp) 759 { 760 unsigned int max_size = PAGE_SIZE << pool->p.order; 761 struct page *page = pool->frag_page; 762 763 if (WARN_ON(size > max_size)) 764 return NULL; 765 766 size = ALIGN(size, dma_get_cache_alignment()); 767 *offset = pool->frag_offset; 768 769 if (page && *offset + size > max_size) { 770 page = page_pool_drain_frag(pool, page); 771 if (page) { 772 alloc_stat_inc(pool, fast); 773 goto frag_reset; 774 } 775 } 776 777 if (!page) { 778 page = page_pool_alloc_pages(pool, gfp); 779 if (unlikely(!page)) { 780 pool->frag_page = NULL; 781 return NULL; 782 } 783 784 pool->frag_page = page; 785 786 frag_reset: 787 pool->frag_users = 1; 788 *offset = 0; 789 pool->frag_offset = size; 790 page_pool_fragment_page(page, BIAS_MAX); 791 return page; 792 } 793 794 pool->frag_users++; 795 pool->frag_offset = *offset + size; 796 alloc_stat_inc(pool, fast); 797 return page; 798 } 799 EXPORT_SYMBOL(page_pool_alloc_frag); 800 801 static void page_pool_empty_ring(struct page_pool *pool) 802 { 803 struct page *page; 804 805 /* Empty recycle ring */ 806 while ((page = ptr_ring_consume_bh(&pool->ring))) { 807 /* Verify the refcnt invariant of cached pages */ 808 if (!(page_ref_count(page) == 1)) 809 pr_crit("%s() page_pool refcnt %d violation\n", 810 __func__, page_ref_count(page)); 811 812 page_pool_return_page(pool, page); 813 } 814 } 815 816 static void __page_pool_destroy(struct page_pool *pool) 817 { 818 if (pool->disconnect) 819 pool->disconnect(pool); 820 821 ptr_ring_cleanup(&pool->ring, NULL); 822 823 if (pool->p.flags & PP_FLAG_DMA_MAP) 824 put_device(pool->p.dev); 825 826 #ifdef CONFIG_PAGE_POOL_STATS 827 free_percpu(pool->recycle_stats); 828 #endif 829 kfree(pool); 830 } 831 832 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 833 { 834 struct page *page; 835 836 if (pool->destroy_cnt) 837 return; 838 839 /* Empty alloc cache, assume caller made sure this is 840 * no-longer in use, and page_pool_alloc_pages() cannot be 841 * call concurrently. 842 */ 843 while (pool->alloc.count) { 844 page = pool->alloc.cache[--pool->alloc.count]; 845 page_pool_return_page(pool, page); 846 } 847 } 848 849 static void page_pool_scrub(struct page_pool *pool) 850 { 851 page_pool_empty_alloc_cache_once(pool); 852 pool->destroy_cnt++; 853 854 /* No more consumers should exist, but producers could still 855 * be in-flight. 856 */ 857 page_pool_empty_ring(pool); 858 } 859 860 static int page_pool_release(struct page_pool *pool) 861 { 862 int inflight; 863 864 page_pool_scrub(pool); 865 inflight = page_pool_inflight(pool); 866 if (!inflight) 867 __page_pool_destroy(pool); 868 869 return inflight; 870 } 871 872 static void page_pool_release_retry(struct work_struct *wq) 873 { 874 struct delayed_work *dwq = to_delayed_work(wq); 875 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 876 int inflight; 877 878 inflight = page_pool_release(pool); 879 if (!inflight) 880 return; 881 882 /* Periodic warning */ 883 if (time_after_eq(jiffies, pool->defer_warn)) { 884 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 885 886 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n", 887 __func__, inflight, sec); 888 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 889 } 890 891 /* Still not ready to be disconnected, retry later */ 892 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 893 } 894 895 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 896 struct xdp_mem_info *mem) 897 { 898 refcount_inc(&pool->user_cnt); 899 pool->disconnect = disconnect; 900 pool->xdp_mem_id = mem->id; 901 } 902 903 void page_pool_unlink_napi(struct page_pool *pool) 904 { 905 if (!pool->p.napi) 906 return; 907 908 /* To avoid races with recycling and additional barriers make sure 909 * pool and NAPI are unlinked when NAPI is disabled. 910 */ 911 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) || 912 READ_ONCE(pool->p.napi->list_owner) != -1); 913 914 WRITE_ONCE(pool->p.napi, NULL); 915 } 916 EXPORT_SYMBOL(page_pool_unlink_napi); 917 918 void page_pool_destroy(struct page_pool *pool) 919 { 920 if (!pool) 921 return; 922 923 if (!page_pool_put(pool)) 924 return; 925 926 page_pool_unlink_napi(pool); 927 page_pool_free_frag(pool); 928 929 if (!page_pool_release(pool)) 930 return; 931 932 pool->defer_start = jiffies; 933 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 934 935 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 936 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 937 } 938 EXPORT_SYMBOL(page_pool_destroy); 939 940 /* Caller must provide appropriate safe context, e.g. NAPI. */ 941 void page_pool_update_nid(struct page_pool *pool, int new_nid) 942 { 943 struct page *page; 944 945 trace_page_pool_update_nid(pool, new_nid); 946 pool->p.nid = new_nid; 947 948 /* Flush pool alloc cache, as refill will check NUMA node */ 949 while (pool->alloc.count) { 950 page = pool->alloc.cache[--pool->alloc.count]; 951 page_pool_return_page(pool, page); 952 } 953 } 954 EXPORT_SYMBOL(page_pool_update_nid); 955