1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/netdev_rx_queue.h> 15 #include <net/page_pool/helpers.h> 16 #include <net/page_pool/memory_provider.h> 17 #include <net/xdp.h> 18 19 #include <linux/dma-direction.h> 20 #include <linux/dma-mapping.h> 21 #include <linux/page-flags.h> 22 #include <linux/mm.h> /* for put_page() */ 23 #include <linux/poison.h> 24 #include <linux/ethtool.h> 25 #include <linux/netdevice.h> 26 27 #include <trace/events/page_pool.h> 28 29 #include "mp_dmabuf_devmem.h" 30 #include "netmem_priv.h" 31 #include "page_pool_priv.h" 32 33 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); 34 35 #define DEFER_TIME (msecs_to_jiffies(1000)) 36 #define DEFER_WARN_INTERVAL (60 * HZ) 37 38 #define BIAS_MAX (LONG_MAX >> 1) 39 40 #ifdef CONFIG_PAGE_POOL_STATS 41 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 42 43 /* alloc_stat_inc is intended to be used in softirq context */ 44 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 45 /* recycle_stat_inc is safe to use when preemption is possible. */ 46 #define recycle_stat_inc(pool, __stat) \ 47 do { \ 48 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 49 this_cpu_inc(s->__stat); \ 50 } while (0) 51 52 #define recycle_stat_add(pool, __stat, val) \ 53 do { \ 54 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 55 this_cpu_add(s->__stat, val); \ 56 } while (0) 57 58 static const char pp_stats[][ETH_GSTRING_LEN] = { 59 "rx_pp_alloc_fast", 60 "rx_pp_alloc_slow", 61 "rx_pp_alloc_slow_ho", 62 "rx_pp_alloc_empty", 63 "rx_pp_alloc_refill", 64 "rx_pp_alloc_waive", 65 "rx_pp_recycle_cached", 66 "rx_pp_recycle_cache_full", 67 "rx_pp_recycle_ring", 68 "rx_pp_recycle_ring_full", 69 "rx_pp_recycle_released_ref", 70 }; 71 72 /** 73 * page_pool_get_stats() - fetch page pool stats 74 * @pool: pool from which page was allocated 75 * @stats: struct page_pool_stats to fill in 76 * 77 * Retrieve statistics about the page_pool. This API is only available 78 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 79 * A pointer to a caller allocated struct page_pool_stats structure 80 * is passed to this API which is filled in. The caller can then report 81 * those stats to the user (perhaps via ethtool, debugfs, etc.). 82 */ 83 bool page_pool_get_stats(const struct page_pool *pool, 84 struct page_pool_stats *stats) 85 { 86 int cpu = 0; 87 88 if (!stats) 89 return false; 90 91 /* The caller is responsible to initialize stats. */ 92 stats->alloc_stats.fast += pool->alloc_stats.fast; 93 stats->alloc_stats.slow += pool->alloc_stats.slow; 94 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 95 stats->alloc_stats.empty += pool->alloc_stats.empty; 96 stats->alloc_stats.refill += pool->alloc_stats.refill; 97 stats->alloc_stats.waive += pool->alloc_stats.waive; 98 99 for_each_possible_cpu(cpu) { 100 const struct page_pool_recycle_stats *pcpu = 101 per_cpu_ptr(pool->recycle_stats, cpu); 102 103 stats->recycle_stats.cached += pcpu->cached; 104 stats->recycle_stats.cache_full += pcpu->cache_full; 105 stats->recycle_stats.ring += pcpu->ring; 106 stats->recycle_stats.ring_full += pcpu->ring_full; 107 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 108 } 109 110 return true; 111 } 112 EXPORT_SYMBOL(page_pool_get_stats); 113 114 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 115 { 116 int i; 117 118 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 119 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 120 data += ETH_GSTRING_LEN; 121 } 122 123 return data; 124 } 125 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 126 127 int page_pool_ethtool_stats_get_count(void) 128 { 129 return ARRAY_SIZE(pp_stats); 130 } 131 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 132 133 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 134 { 135 const struct page_pool_stats *pool_stats = stats; 136 137 *data++ = pool_stats->alloc_stats.fast; 138 *data++ = pool_stats->alloc_stats.slow; 139 *data++ = pool_stats->alloc_stats.slow_high_order; 140 *data++ = pool_stats->alloc_stats.empty; 141 *data++ = pool_stats->alloc_stats.refill; 142 *data++ = pool_stats->alloc_stats.waive; 143 *data++ = pool_stats->recycle_stats.cached; 144 *data++ = pool_stats->recycle_stats.cache_full; 145 *data++ = pool_stats->recycle_stats.ring; 146 *data++ = pool_stats->recycle_stats.ring_full; 147 *data++ = pool_stats->recycle_stats.released_refcnt; 148 149 return data; 150 } 151 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 152 153 #else 154 #define alloc_stat_inc(pool, __stat) 155 #define recycle_stat_inc(pool, __stat) 156 #define recycle_stat_add(pool, __stat, val) 157 #endif 158 159 static bool page_pool_producer_lock(struct page_pool *pool) 160 __acquires(&pool->ring.producer_lock) 161 { 162 bool in_softirq = in_softirq(); 163 164 if (in_softirq) 165 spin_lock(&pool->ring.producer_lock); 166 else 167 spin_lock_bh(&pool->ring.producer_lock); 168 169 return in_softirq; 170 } 171 172 static void page_pool_producer_unlock(struct page_pool *pool, 173 bool in_softirq) 174 __releases(&pool->ring.producer_lock) 175 { 176 if (in_softirq) 177 spin_unlock(&pool->ring.producer_lock); 178 else 179 spin_unlock_bh(&pool->ring.producer_lock); 180 } 181 182 static void page_pool_struct_check(void) 183 { 184 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); 185 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); 186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); 187 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 188 PAGE_POOL_FRAG_GROUP_ALIGN); 189 } 190 191 static int page_pool_init(struct page_pool *pool, 192 const struct page_pool_params *params, 193 int cpuid) 194 { 195 unsigned int ring_qsize = 1024; /* Default */ 196 struct netdev_rx_queue *rxq; 197 int err; 198 199 page_pool_struct_check(); 200 201 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 202 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 203 204 pool->cpuid = cpuid; 205 pool->dma_sync_for_cpu = true; 206 207 /* Validate only known flags were used */ 208 if (pool->slow.flags & ~PP_FLAG_ALL) 209 return -EINVAL; 210 211 if (pool->p.pool_size) 212 ring_qsize = pool->p.pool_size; 213 214 /* Sanity limit mem that can be pinned down */ 215 if (ring_qsize > 32768) 216 return -E2BIG; 217 218 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 219 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 220 * which is the XDP_TX use-case. 221 */ 222 if (pool->slow.flags & PP_FLAG_DMA_MAP) { 223 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 224 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 225 return -EINVAL; 226 227 pool->dma_map = true; 228 } 229 230 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { 231 /* In order to request DMA-sync-for-device the page 232 * needs to be mapped 233 */ 234 if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) 235 return -EINVAL; 236 237 if (!pool->p.max_len) 238 return -EINVAL; 239 240 pool->dma_sync = true; 241 242 /* pool->p.offset has to be set according to the address 243 * offset used by the DMA engine to start copying rx data 244 */ 245 } 246 247 pool->has_init_callback = !!pool->slow.init_callback; 248 249 #ifdef CONFIG_PAGE_POOL_STATS 250 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { 251 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 252 if (!pool->recycle_stats) 253 return -ENOMEM; 254 } else { 255 /* For system page pool instance we use a singular stats object 256 * instead of allocating a separate percpu variable for each 257 * (also percpu) page pool instance. 258 */ 259 pool->recycle_stats = &pp_system_recycle_stats; 260 pool->system = true; 261 } 262 #endif 263 264 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 265 #ifdef CONFIG_PAGE_POOL_STATS 266 if (!pool->system) 267 free_percpu(pool->recycle_stats); 268 #endif 269 return -ENOMEM; 270 } 271 272 atomic_set(&pool->pages_state_release_cnt, 0); 273 274 /* Driver calling page_pool_create() also call page_pool_destroy() */ 275 refcount_set(&pool->user_cnt, 1); 276 277 if (pool->dma_map) 278 get_device(pool->p.dev); 279 280 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) { 281 /* We rely on rtnl_lock()ing to make sure netdev_rx_queue 282 * configuration doesn't change while we're initializing 283 * the page_pool. 284 */ 285 ASSERT_RTNL(); 286 rxq = __netif_get_rx_queue(pool->slow.netdev, 287 pool->slow.queue_idx); 288 pool->mp_priv = rxq->mp_params.mp_priv; 289 pool->mp_ops = rxq->mp_params.mp_ops; 290 } 291 292 if (pool->mp_ops) { 293 if (!pool->dma_map || !pool->dma_sync) 294 return -EOPNOTSUPP; 295 296 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) { 297 err = -EFAULT; 298 goto free_ptr_ring; 299 } 300 301 err = pool->mp_ops->init(pool); 302 if (err) { 303 pr_warn("%s() mem-provider init failed %d\n", __func__, 304 err); 305 goto free_ptr_ring; 306 } 307 308 static_branch_inc(&page_pool_mem_providers); 309 } 310 311 return 0; 312 313 free_ptr_ring: 314 ptr_ring_cleanup(&pool->ring, NULL); 315 #ifdef CONFIG_PAGE_POOL_STATS 316 if (!pool->system) 317 free_percpu(pool->recycle_stats); 318 #endif 319 return err; 320 } 321 322 static void page_pool_uninit(struct page_pool *pool) 323 { 324 ptr_ring_cleanup(&pool->ring, NULL); 325 326 if (pool->dma_map) 327 put_device(pool->p.dev); 328 329 #ifdef CONFIG_PAGE_POOL_STATS 330 if (!pool->system) 331 free_percpu(pool->recycle_stats); 332 #endif 333 } 334 335 /** 336 * page_pool_create_percpu() - create a page pool for a given cpu. 337 * @params: parameters, see struct page_pool_params 338 * @cpuid: cpu identifier 339 */ 340 struct page_pool * 341 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 342 { 343 struct page_pool *pool; 344 int err; 345 346 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 347 if (!pool) 348 return ERR_PTR(-ENOMEM); 349 350 err = page_pool_init(pool, params, cpuid); 351 if (err < 0) 352 goto err_free; 353 354 err = page_pool_list(pool); 355 if (err) 356 goto err_uninit; 357 358 return pool; 359 360 err_uninit: 361 page_pool_uninit(pool); 362 err_free: 363 pr_warn("%s() gave up with errno %d\n", __func__, err); 364 kfree(pool); 365 return ERR_PTR(err); 366 } 367 EXPORT_SYMBOL(page_pool_create_percpu); 368 369 /** 370 * page_pool_create() - create a page pool 371 * @params: parameters, see struct page_pool_params 372 */ 373 struct page_pool *page_pool_create(const struct page_pool_params *params) 374 { 375 return page_pool_create_percpu(params, -1); 376 } 377 EXPORT_SYMBOL(page_pool_create); 378 379 static void page_pool_return_page(struct page_pool *pool, netmem_ref netmem); 380 381 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) 382 { 383 struct ptr_ring *r = &pool->ring; 384 netmem_ref netmem; 385 int pref_nid; /* preferred NUMA node */ 386 387 /* Quicker fallback, avoid locks when ring is empty */ 388 if (__ptr_ring_empty(r)) { 389 alloc_stat_inc(pool, empty); 390 return 0; 391 } 392 393 /* Softirq guarantee CPU and thus NUMA node is stable. This, 394 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 395 */ 396 #ifdef CONFIG_NUMA 397 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 398 #else 399 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 400 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 401 #endif 402 403 /* Refill alloc array, but only if NUMA match */ 404 do { 405 netmem = (__force netmem_ref)__ptr_ring_consume(r); 406 if (unlikely(!netmem)) 407 break; 408 409 if (likely(netmem_is_pref_nid(netmem, pref_nid))) { 410 pool->alloc.cache[pool->alloc.count++] = netmem; 411 } else { 412 /* NUMA mismatch; 413 * (1) release 1 page to page-allocator and 414 * (2) break out to fallthrough to alloc_pages_node. 415 * This limit stress on page buddy alloactor. 416 */ 417 page_pool_return_page(pool, netmem); 418 alloc_stat_inc(pool, waive); 419 netmem = 0; 420 break; 421 } 422 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 423 424 /* Return last page */ 425 if (likely(pool->alloc.count > 0)) { 426 netmem = pool->alloc.cache[--pool->alloc.count]; 427 alloc_stat_inc(pool, refill); 428 } 429 430 return netmem; 431 } 432 433 /* fast path */ 434 static netmem_ref __page_pool_get_cached(struct page_pool *pool) 435 { 436 netmem_ref netmem; 437 438 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 439 if (likely(pool->alloc.count)) { 440 /* Fast-path */ 441 netmem = pool->alloc.cache[--pool->alloc.count]; 442 alloc_stat_inc(pool, fast); 443 } else { 444 netmem = page_pool_refill_alloc_cache(pool); 445 } 446 447 return netmem; 448 } 449 450 static void __page_pool_dma_sync_for_device(const struct page_pool *pool, 451 netmem_ref netmem, 452 u32 dma_sync_size) 453 { 454 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 455 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); 456 457 dma_sync_size = min(dma_sync_size, pool->p.max_len); 458 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, 459 dma_sync_size, pool->p.dma_dir); 460 #endif 461 } 462 463 static __always_inline void 464 page_pool_dma_sync_for_device(const struct page_pool *pool, 465 netmem_ref netmem, 466 u32 dma_sync_size) 467 { 468 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) 469 __page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 470 } 471 472 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem) 473 { 474 dma_addr_t dma; 475 476 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 477 * since dma_addr_t can be either 32 or 64 bits and does not always fit 478 * into page private data (i.e 32bit cpu with 64bit DMA caps) 479 * This mapping is kept for lifetime of page, until leaving pool. 480 */ 481 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, 482 (PAGE_SIZE << pool->p.order), pool->p.dma_dir, 483 DMA_ATTR_SKIP_CPU_SYNC | 484 DMA_ATTR_WEAK_ORDERING); 485 if (dma_mapping_error(pool->p.dev, dma)) 486 return false; 487 488 if (page_pool_set_dma_addr_netmem(netmem, dma)) 489 goto unmap_failed; 490 491 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); 492 493 return true; 494 495 unmap_failed: 496 WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); 497 dma_unmap_page_attrs(pool->p.dev, dma, 498 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 499 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 500 return false; 501 } 502 503 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 504 gfp_t gfp) 505 { 506 struct page *page; 507 508 gfp |= __GFP_COMP; 509 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 510 if (unlikely(!page)) 511 return NULL; 512 513 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page)))) { 514 put_page(page); 515 return NULL; 516 } 517 518 alloc_stat_inc(pool, slow_high_order); 519 page_pool_set_pp_info(pool, page_to_netmem(page)); 520 521 /* Track how many pages are held 'in-flight' */ 522 pool->pages_state_hold_cnt++; 523 trace_page_pool_state_hold(pool, page_to_netmem(page), 524 pool->pages_state_hold_cnt); 525 return page; 526 } 527 528 /* slow path */ 529 static noinline netmem_ref __page_pool_alloc_pages_slow(struct page_pool *pool, 530 gfp_t gfp) 531 { 532 const int bulk = PP_ALLOC_CACHE_REFILL; 533 unsigned int pp_order = pool->p.order; 534 bool dma_map = pool->dma_map; 535 netmem_ref netmem; 536 int i, nr_pages; 537 538 /* Don't support bulk alloc for high-order pages */ 539 if (unlikely(pp_order)) 540 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); 541 542 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 543 if (unlikely(pool->alloc.count > 0)) 544 return pool->alloc.cache[--pool->alloc.count]; 545 546 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */ 547 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 548 549 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk, 550 (struct page **)pool->alloc.cache); 551 if (unlikely(!nr_pages)) 552 return 0; 553 554 /* Pages have been filled into alloc.cache array, but count is zero and 555 * page element have not been (possibly) DMA mapped. 556 */ 557 for (i = 0; i < nr_pages; i++) { 558 netmem = pool->alloc.cache[i]; 559 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem))) { 560 put_page(netmem_to_page(netmem)); 561 continue; 562 } 563 564 page_pool_set_pp_info(pool, netmem); 565 pool->alloc.cache[pool->alloc.count++] = netmem; 566 /* Track how many pages are held 'in-flight' */ 567 pool->pages_state_hold_cnt++; 568 trace_page_pool_state_hold(pool, netmem, 569 pool->pages_state_hold_cnt); 570 } 571 572 /* Return last page */ 573 if (likely(pool->alloc.count > 0)) { 574 netmem = pool->alloc.cache[--pool->alloc.count]; 575 alloc_stat_inc(pool, slow); 576 } else { 577 netmem = 0; 578 } 579 580 /* When page just alloc'ed is should/must have refcnt 1. */ 581 return netmem; 582 } 583 584 /* For using page_pool replace: alloc_pages() API calls, but provide 585 * synchronization guarantee for allocation side. 586 */ 587 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp) 588 { 589 netmem_ref netmem; 590 591 /* Fast-path: Get a page from cache */ 592 netmem = __page_pool_get_cached(pool); 593 if (netmem) 594 return netmem; 595 596 /* Slow-path: cache empty, do real allocation */ 597 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops) 598 netmem = pool->mp_ops->alloc_netmems(pool, gfp); 599 else 600 netmem = __page_pool_alloc_pages_slow(pool, gfp); 601 return netmem; 602 } 603 EXPORT_SYMBOL(page_pool_alloc_netmems); 604 ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL); 605 606 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 607 { 608 return netmem_to_page(page_pool_alloc_netmems(pool, gfp)); 609 } 610 EXPORT_SYMBOL(page_pool_alloc_pages); 611 612 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 613 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 614 */ 615 #define _distance(a, b) (s32)((a) - (b)) 616 617 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 618 { 619 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 620 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 621 s32 inflight; 622 623 inflight = _distance(hold_cnt, release_cnt); 624 625 if (strict) { 626 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 627 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 628 inflight); 629 } else { 630 inflight = max(0, inflight); 631 } 632 633 return inflight; 634 } 635 636 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) 637 { 638 netmem_set_pp(netmem, pool); 639 netmem_or_pp_magic(netmem, PP_SIGNATURE); 640 641 /* Ensuring all pages have been split into one fragment initially: 642 * page_pool_set_pp_info() is only called once for every page when it 643 * is allocated from the page allocator and page_pool_fragment_page() 644 * is dirtying the same cache line as the page->pp_magic above, so 645 * the overhead is negligible. 646 */ 647 page_pool_fragment_netmem(netmem, 1); 648 if (pool->has_init_callback) 649 pool->slow.init_callback(netmem, pool->slow.init_arg); 650 } 651 652 void page_pool_clear_pp_info(netmem_ref netmem) 653 { 654 netmem_clear_pp_magic(netmem); 655 netmem_set_pp(netmem, NULL); 656 } 657 658 static __always_inline void __page_pool_release_page_dma(struct page_pool *pool, 659 netmem_ref netmem) 660 { 661 dma_addr_t dma; 662 663 if (!pool->dma_map) 664 /* Always account for inflight pages, even if we didn't 665 * map them 666 */ 667 return; 668 669 dma = page_pool_get_dma_addr_netmem(netmem); 670 671 /* When page is unmapped, it cannot be returned to our pool */ 672 dma_unmap_page_attrs(pool->p.dev, dma, 673 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 674 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 675 page_pool_set_dma_addr_netmem(netmem, 0); 676 } 677 678 /* Disconnects a page (from a page_pool). API users can have a need 679 * to disconnect a page (from a page_pool), to allow it to be used as 680 * a regular page (that will eventually be returned to the normal 681 * page-allocator via put_page). 682 */ 683 void page_pool_return_page(struct page_pool *pool, netmem_ref netmem) 684 { 685 int count; 686 bool put; 687 688 put = true; 689 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops) 690 put = pool->mp_ops->release_netmem(pool, netmem); 691 else 692 __page_pool_release_page_dma(pool, netmem); 693 694 /* This may be the last page returned, releasing the pool, so 695 * it is not safe to reference pool afterwards. 696 */ 697 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 698 trace_page_pool_state_release(pool, netmem, count); 699 700 if (put) { 701 page_pool_clear_pp_info(netmem); 702 put_page(netmem_to_page(netmem)); 703 } 704 /* An optimization would be to call __free_pages(page, pool->p.order) 705 * knowing page is not part of page-cache (thus avoiding a 706 * __page_cache_release() call). 707 */ 708 } 709 710 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) 711 { 712 int ret; 713 /* BH protection not needed if current is softirq */ 714 if (in_softirq()) 715 ret = ptr_ring_produce(&pool->ring, (__force void *)netmem); 716 else 717 ret = ptr_ring_produce_bh(&pool->ring, (__force void *)netmem); 718 719 if (!ret) { 720 recycle_stat_inc(pool, ring); 721 return true; 722 } 723 724 return false; 725 } 726 727 /* Only allow direct recycling in special circumstances, into the 728 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 729 * 730 * Caller must provide appropriate safe context. 731 */ 732 static bool page_pool_recycle_in_cache(netmem_ref netmem, 733 struct page_pool *pool) 734 { 735 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 736 recycle_stat_inc(pool, cache_full); 737 return false; 738 } 739 740 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 741 pool->alloc.cache[pool->alloc.count++] = netmem; 742 recycle_stat_inc(pool, cached); 743 return true; 744 } 745 746 static bool __page_pool_page_can_be_recycled(netmem_ref netmem) 747 { 748 return netmem_is_net_iov(netmem) || 749 (page_ref_count(netmem_to_page(netmem)) == 1 && 750 !page_is_pfmemalloc(netmem_to_page(netmem))); 751 } 752 753 /* If the page refcnt == 1, this will try to recycle the page. 754 * If pool->dma_sync is set, we'll try to sync the DMA area for 755 * the configured size min(dma_sync_size, pool->max_len). 756 * If the page refcnt != 1, then the page will be returned to memory 757 * subsystem. 758 */ 759 static __always_inline netmem_ref 760 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, 761 unsigned int dma_sync_size, bool allow_direct) 762 { 763 lockdep_assert_no_hardirq(); 764 765 /* This allocator is optimized for the XDP mode that uses 766 * one-frame-per-page, but have fallbacks that act like the 767 * regular page allocator APIs. 768 * 769 * refcnt == 1 means page_pool owns page, and can recycle it. 770 * 771 * page is NOT reusable when allocated when system is under 772 * some pressure. (page_is_pfmemalloc) 773 */ 774 if (likely(__page_pool_page_can_be_recycled(netmem))) { 775 /* Read barrier done in page_ref_count / READ_ONCE */ 776 777 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 778 779 if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) 780 return 0; 781 782 /* Page found as candidate for recycling */ 783 return netmem; 784 } 785 786 /* Fallback/non-XDP mode: API user have elevated refcnt. 787 * 788 * Many drivers split up the page into fragments, and some 789 * want to keep doing this to save memory and do refcnt based 790 * recycling. Support this use case too, to ease drivers 791 * switching between XDP/non-XDP. 792 * 793 * In-case page_pool maintains the DMA mapping, API user must 794 * call page_pool_put_page once. In this elevated refcnt 795 * case, the DMA is unmapped/released, as driver is likely 796 * doing refcnt based recycle tricks, meaning another process 797 * will be invoking put_page. 798 */ 799 recycle_stat_inc(pool, released_refcnt); 800 page_pool_return_page(pool, netmem); 801 802 return 0; 803 } 804 805 static bool page_pool_napi_local(const struct page_pool *pool) 806 { 807 const struct napi_struct *napi; 808 u32 cpuid; 809 810 if (unlikely(!in_softirq())) 811 return false; 812 813 /* Allow direct recycle if we have reasons to believe that we are 814 * in the same context as the consumer would run, so there's 815 * no possible race. 816 * __page_pool_put_page() makes sure we're not in hardirq context 817 * and interrupts are enabled prior to accessing the cache. 818 */ 819 cpuid = smp_processor_id(); 820 if (READ_ONCE(pool->cpuid) == cpuid) 821 return true; 822 823 napi = READ_ONCE(pool->p.napi); 824 825 return napi && READ_ONCE(napi->list_owner) == cpuid; 826 } 827 828 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, 829 unsigned int dma_sync_size, bool allow_direct) 830 { 831 if (!allow_direct) 832 allow_direct = page_pool_napi_local(pool); 833 834 netmem = 835 __page_pool_put_page(pool, netmem, dma_sync_size, allow_direct); 836 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { 837 /* Cache full, fallback to free pages */ 838 recycle_stat_inc(pool, ring_full); 839 page_pool_return_page(pool, netmem); 840 } 841 } 842 EXPORT_SYMBOL(page_pool_put_unrefed_netmem); 843 844 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 845 unsigned int dma_sync_size, bool allow_direct) 846 { 847 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, 848 allow_direct); 849 } 850 EXPORT_SYMBOL(page_pool_put_unrefed_page); 851 852 static void page_pool_recycle_ring_bulk(struct page_pool *pool, 853 netmem_ref *bulk, 854 u32 bulk_len) 855 { 856 bool in_softirq; 857 u32 i; 858 859 /* Bulk produce into ptr_ring page_pool cache */ 860 in_softirq = page_pool_producer_lock(pool); 861 862 for (i = 0; i < bulk_len; i++) { 863 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) { 864 /* ring full */ 865 recycle_stat_inc(pool, ring_full); 866 break; 867 } 868 } 869 870 page_pool_producer_unlock(pool, in_softirq); 871 recycle_stat_add(pool, ring, i); 872 873 /* Hopefully all pages were returned into ptr_ring */ 874 if (likely(i == bulk_len)) 875 return; 876 877 /* 878 * ptr_ring cache is full, free remaining pages outside producer lock 879 * since put_page() with refcnt == 1 can be an expensive operation. 880 */ 881 for (; i < bulk_len; i++) 882 page_pool_return_page(pool, bulk[i]); 883 } 884 885 /** 886 * page_pool_put_netmem_bulk() - release references on multiple netmems 887 * @data: array holding netmem references 888 * @count: number of entries in @data 889 * 890 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring 891 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk() 892 * will release leftover netmems to the memory provider. 893 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx 894 * completion loop for the XDP_REDIRECT use case. 895 * 896 * Please note the caller must not use data area after running 897 * page_pool_put_netmem_bulk(), as this function overwrites it. 898 */ 899 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count) 900 { 901 u32 bulk_len = 0; 902 903 for (u32 i = 0; i < count; i++) { 904 netmem_ref netmem = netmem_compound_head(data[i]); 905 906 if (page_pool_unref_and_test(netmem)) 907 data[bulk_len++] = netmem; 908 } 909 910 count = bulk_len; 911 while (count) { 912 netmem_ref bulk[XDP_BULK_QUEUE_SIZE]; 913 struct page_pool *pool = NULL; 914 bool allow_direct; 915 u32 foreign = 0; 916 917 bulk_len = 0; 918 919 for (u32 i = 0; i < count; i++) { 920 struct page_pool *netmem_pp; 921 netmem_ref netmem = data[i]; 922 923 netmem_pp = netmem_get_pp(netmem); 924 if (unlikely(!pool)) { 925 pool = netmem_pp; 926 allow_direct = page_pool_napi_local(pool); 927 } else if (netmem_pp != pool) { 928 /* 929 * If the netmem belongs to a different 930 * page_pool, save it for another round. 931 */ 932 data[foreign++] = netmem; 933 continue; 934 } 935 936 netmem = __page_pool_put_page(pool, netmem, -1, 937 allow_direct); 938 /* Approved for bulk recycling in ptr_ring cache */ 939 if (netmem) 940 bulk[bulk_len++] = netmem; 941 } 942 943 if (bulk_len) 944 page_pool_recycle_ring_bulk(pool, bulk, bulk_len); 945 946 count = foreign; 947 } 948 } 949 EXPORT_SYMBOL(page_pool_put_netmem_bulk); 950 951 static netmem_ref page_pool_drain_frag(struct page_pool *pool, 952 netmem_ref netmem) 953 { 954 long drain_count = BIAS_MAX - pool->frag_users; 955 956 /* Some user is still using the page frag */ 957 if (likely(page_pool_unref_netmem(netmem, drain_count))) 958 return 0; 959 960 if (__page_pool_page_can_be_recycled(netmem)) { 961 page_pool_dma_sync_for_device(pool, netmem, -1); 962 return netmem; 963 } 964 965 page_pool_return_page(pool, netmem); 966 return 0; 967 } 968 969 static void page_pool_free_frag(struct page_pool *pool) 970 { 971 long drain_count = BIAS_MAX - pool->frag_users; 972 netmem_ref netmem = pool->frag_page; 973 974 pool->frag_page = 0; 975 976 if (!netmem || page_pool_unref_netmem(netmem, drain_count)) 977 return; 978 979 page_pool_return_page(pool, netmem); 980 } 981 982 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, 983 unsigned int *offset, unsigned int size, 984 gfp_t gfp) 985 { 986 unsigned int max_size = PAGE_SIZE << pool->p.order; 987 netmem_ref netmem = pool->frag_page; 988 989 if (WARN_ON(size > max_size)) 990 return 0; 991 992 size = ALIGN(size, dma_get_cache_alignment()); 993 *offset = pool->frag_offset; 994 995 if (netmem && *offset + size > max_size) { 996 netmem = page_pool_drain_frag(pool, netmem); 997 if (netmem) { 998 recycle_stat_inc(pool, cached); 999 alloc_stat_inc(pool, fast); 1000 goto frag_reset; 1001 } 1002 } 1003 1004 if (!netmem) { 1005 netmem = page_pool_alloc_netmems(pool, gfp); 1006 if (unlikely(!netmem)) { 1007 pool->frag_page = 0; 1008 return 0; 1009 } 1010 1011 pool->frag_page = netmem; 1012 1013 frag_reset: 1014 pool->frag_users = 1; 1015 *offset = 0; 1016 pool->frag_offset = size; 1017 page_pool_fragment_netmem(netmem, BIAS_MAX); 1018 return netmem; 1019 } 1020 1021 pool->frag_users++; 1022 pool->frag_offset = *offset + size; 1023 return netmem; 1024 } 1025 EXPORT_SYMBOL(page_pool_alloc_frag_netmem); 1026 1027 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, 1028 unsigned int size, gfp_t gfp) 1029 { 1030 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, 1031 gfp)); 1032 } 1033 EXPORT_SYMBOL(page_pool_alloc_frag); 1034 1035 static void page_pool_empty_ring(struct page_pool *pool) 1036 { 1037 netmem_ref netmem; 1038 1039 /* Empty recycle ring */ 1040 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { 1041 /* Verify the refcnt invariant of cached pages */ 1042 if (!(netmem_ref_count(netmem) == 1)) 1043 pr_crit("%s() page_pool refcnt %d violation\n", 1044 __func__, netmem_ref_count(netmem)); 1045 1046 page_pool_return_page(pool, netmem); 1047 } 1048 } 1049 1050 static void __page_pool_destroy(struct page_pool *pool) 1051 { 1052 if (pool->disconnect) 1053 pool->disconnect(pool); 1054 1055 page_pool_unlist(pool); 1056 page_pool_uninit(pool); 1057 1058 if (pool->mp_ops) { 1059 pool->mp_ops->destroy(pool); 1060 static_branch_dec(&page_pool_mem_providers); 1061 } 1062 1063 kfree(pool); 1064 } 1065 1066 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 1067 { 1068 netmem_ref netmem; 1069 1070 if (pool->destroy_cnt) 1071 return; 1072 1073 /* Empty alloc cache, assume caller made sure this is 1074 * no-longer in use, and page_pool_alloc_pages() cannot be 1075 * call concurrently. 1076 */ 1077 while (pool->alloc.count) { 1078 netmem = pool->alloc.cache[--pool->alloc.count]; 1079 page_pool_return_page(pool, netmem); 1080 } 1081 } 1082 1083 static void page_pool_scrub(struct page_pool *pool) 1084 { 1085 page_pool_empty_alloc_cache_once(pool); 1086 pool->destroy_cnt++; 1087 1088 /* No more consumers should exist, but producers could still 1089 * be in-flight. 1090 */ 1091 page_pool_empty_ring(pool); 1092 } 1093 1094 static int page_pool_release(struct page_pool *pool) 1095 { 1096 int inflight; 1097 1098 page_pool_scrub(pool); 1099 inflight = page_pool_inflight(pool, true); 1100 if (!inflight) 1101 __page_pool_destroy(pool); 1102 1103 return inflight; 1104 } 1105 1106 static void page_pool_release_retry(struct work_struct *wq) 1107 { 1108 struct delayed_work *dwq = to_delayed_work(wq); 1109 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 1110 void *netdev; 1111 int inflight; 1112 1113 inflight = page_pool_release(pool); 1114 if (!inflight) 1115 return; 1116 1117 /* Periodic warning for page pools the user can't see */ 1118 netdev = READ_ONCE(pool->slow.netdev); 1119 if (time_after_eq(jiffies, pool->defer_warn) && 1120 (!netdev || netdev == NET_PTR_POISON)) { 1121 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 1122 1123 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 1124 __func__, pool->user.id, inflight, sec); 1125 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1126 } 1127 1128 /* Still not ready to be disconnected, retry later */ 1129 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1130 } 1131 1132 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 1133 const struct xdp_mem_info *mem) 1134 { 1135 refcount_inc(&pool->user_cnt); 1136 pool->disconnect = disconnect; 1137 pool->xdp_mem_id = mem->id; 1138 } 1139 1140 void page_pool_disable_direct_recycling(struct page_pool *pool) 1141 { 1142 /* Disable direct recycling based on pool->cpuid. 1143 * Paired with READ_ONCE() in page_pool_napi_local(). 1144 */ 1145 WRITE_ONCE(pool->cpuid, -1); 1146 1147 if (!pool->p.napi) 1148 return; 1149 1150 /* To avoid races with recycling and additional barriers make sure 1151 * pool and NAPI are unlinked when NAPI is disabled. 1152 */ 1153 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state)); 1154 WARN_ON(READ_ONCE(pool->p.napi->list_owner) != -1); 1155 1156 mutex_lock(&page_pools_lock); 1157 WRITE_ONCE(pool->p.napi, NULL); 1158 mutex_unlock(&page_pools_lock); 1159 } 1160 EXPORT_SYMBOL(page_pool_disable_direct_recycling); 1161 1162 void page_pool_destroy(struct page_pool *pool) 1163 { 1164 if (!pool) 1165 return; 1166 1167 if (!page_pool_put(pool)) 1168 return; 1169 1170 page_pool_disable_direct_recycling(pool); 1171 page_pool_free_frag(pool); 1172 1173 if (!page_pool_release(pool)) 1174 return; 1175 1176 page_pool_detached(pool); 1177 pool->defer_start = jiffies; 1178 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1179 1180 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1181 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1182 } 1183 EXPORT_SYMBOL(page_pool_destroy); 1184 1185 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1186 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1187 { 1188 netmem_ref netmem; 1189 1190 trace_page_pool_update_nid(pool, new_nid); 1191 pool->p.nid = new_nid; 1192 1193 /* Flush pool alloc cache, as refill will check NUMA node */ 1194 while (pool->alloc.count) { 1195 netmem = pool->alloc.cache[--pool->alloc.count]; 1196 page_pool_return_page(pool, netmem); 1197 } 1198 } 1199 EXPORT_SYMBOL(page_pool_update_nid); 1200 1201 bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr) 1202 { 1203 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr); 1204 } 1205 1206 /* Associate a niov with a page pool. Should follow with a matching 1207 * net_mp_niov_clear_page_pool() 1208 */ 1209 void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov) 1210 { 1211 netmem_ref netmem = net_iov_to_netmem(niov); 1212 1213 page_pool_set_pp_info(pool, netmem); 1214 1215 pool->pages_state_hold_cnt++; 1216 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt); 1217 } 1218 1219 /* Disassociate a niov from a page pool. Should only be used in the 1220 * ->release_netmem() path. 1221 */ 1222 void net_mp_niov_clear_page_pool(struct net_iov *niov) 1223 { 1224 netmem_ref netmem = net_iov_to_netmem(niov); 1225 1226 page_pool_clear_pp_info(netmem); 1227 } 1228