xref: /linux/net/core/page_pool.c (revision 24b10e5f8e0d2bee1a10fc67011ea5d936c1a389)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12 
13 #include <net/page_pool/helpers.h>
14 #include <net/xdp.h>
15 
16 #include <linux/dma-direction.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/page-flags.h>
19 #include <linux/mm.h> /* for put_page() */
20 #include <linux/poison.h>
21 #include <linux/ethtool.h>
22 #include <linux/netdevice.h>
23 
24 #include <trace/events/page_pool.h>
25 
26 #include "page_pool_priv.h"
27 
28 #define DEFER_TIME (msecs_to_jiffies(1000))
29 #define DEFER_WARN_INTERVAL (60 * HZ)
30 
31 #define BIAS_MAX	(LONG_MAX >> 1)
32 
33 #ifdef CONFIG_PAGE_POOL_STATS
34 /* alloc_stat_inc is intended to be used in softirq context */
35 #define alloc_stat_inc(pool, __stat)	(pool->alloc_stats.__stat++)
36 /* recycle_stat_inc is safe to use when preemption is possible. */
37 #define recycle_stat_inc(pool, __stat)							\
38 	do {										\
39 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
40 		this_cpu_inc(s->__stat);						\
41 	} while (0)
42 
43 #define recycle_stat_add(pool, __stat, val)						\
44 	do {										\
45 		struct page_pool_recycle_stats __percpu *s = pool->recycle_stats;	\
46 		this_cpu_add(s->__stat, val);						\
47 	} while (0)
48 
49 static const char pp_stats[][ETH_GSTRING_LEN] = {
50 	"rx_pp_alloc_fast",
51 	"rx_pp_alloc_slow",
52 	"rx_pp_alloc_slow_ho",
53 	"rx_pp_alloc_empty",
54 	"rx_pp_alloc_refill",
55 	"rx_pp_alloc_waive",
56 	"rx_pp_recycle_cached",
57 	"rx_pp_recycle_cache_full",
58 	"rx_pp_recycle_ring",
59 	"rx_pp_recycle_ring_full",
60 	"rx_pp_recycle_released_ref",
61 };
62 
63 /**
64  * page_pool_get_stats() - fetch page pool stats
65  * @pool:	pool from which page was allocated
66  * @stats:	struct page_pool_stats to fill in
67  *
68  * Retrieve statistics about the page_pool. This API is only available
69  * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``.
70  * A pointer to a caller allocated struct page_pool_stats structure
71  * is passed to this API which is filled in. The caller can then report
72  * those stats to the user (perhaps via ethtool, debugfs, etc.).
73  */
74 bool page_pool_get_stats(const struct page_pool *pool,
75 			 struct page_pool_stats *stats)
76 {
77 	int cpu = 0;
78 
79 	if (!stats)
80 		return false;
81 
82 	/* The caller is responsible to initialize stats. */
83 	stats->alloc_stats.fast += pool->alloc_stats.fast;
84 	stats->alloc_stats.slow += pool->alloc_stats.slow;
85 	stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order;
86 	stats->alloc_stats.empty += pool->alloc_stats.empty;
87 	stats->alloc_stats.refill += pool->alloc_stats.refill;
88 	stats->alloc_stats.waive += pool->alloc_stats.waive;
89 
90 	for_each_possible_cpu(cpu) {
91 		const struct page_pool_recycle_stats *pcpu =
92 			per_cpu_ptr(pool->recycle_stats, cpu);
93 
94 		stats->recycle_stats.cached += pcpu->cached;
95 		stats->recycle_stats.cache_full += pcpu->cache_full;
96 		stats->recycle_stats.ring += pcpu->ring;
97 		stats->recycle_stats.ring_full += pcpu->ring_full;
98 		stats->recycle_stats.released_refcnt += pcpu->released_refcnt;
99 	}
100 
101 	return true;
102 }
103 EXPORT_SYMBOL(page_pool_get_stats);
104 
105 u8 *page_pool_ethtool_stats_get_strings(u8 *data)
106 {
107 	int i;
108 
109 	for (i = 0; i < ARRAY_SIZE(pp_stats); i++) {
110 		memcpy(data, pp_stats[i], ETH_GSTRING_LEN);
111 		data += ETH_GSTRING_LEN;
112 	}
113 
114 	return data;
115 }
116 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings);
117 
118 int page_pool_ethtool_stats_get_count(void)
119 {
120 	return ARRAY_SIZE(pp_stats);
121 }
122 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count);
123 
124 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats)
125 {
126 	struct page_pool_stats *pool_stats = stats;
127 
128 	*data++ = pool_stats->alloc_stats.fast;
129 	*data++ = pool_stats->alloc_stats.slow;
130 	*data++ = pool_stats->alloc_stats.slow_high_order;
131 	*data++ = pool_stats->alloc_stats.empty;
132 	*data++ = pool_stats->alloc_stats.refill;
133 	*data++ = pool_stats->alloc_stats.waive;
134 	*data++ = pool_stats->recycle_stats.cached;
135 	*data++ = pool_stats->recycle_stats.cache_full;
136 	*data++ = pool_stats->recycle_stats.ring;
137 	*data++ = pool_stats->recycle_stats.ring_full;
138 	*data++ = pool_stats->recycle_stats.released_refcnt;
139 
140 	return data;
141 }
142 EXPORT_SYMBOL(page_pool_ethtool_stats_get);
143 
144 #else
145 #define alloc_stat_inc(pool, __stat)
146 #define recycle_stat_inc(pool, __stat)
147 #define recycle_stat_add(pool, __stat, val)
148 #endif
149 
150 static bool page_pool_producer_lock(struct page_pool *pool)
151 	__acquires(&pool->ring.producer_lock)
152 {
153 	bool in_softirq = in_softirq();
154 
155 	if (in_softirq)
156 		spin_lock(&pool->ring.producer_lock);
157 	else
158 		spin_lock_bh(&pool->ring.producer_lock);
159 
160 	return in_softirq;
161 }
162 
163 static void page_pool_producer_unlock(struct page_pool *pool,
164 				      bool in_softirq)
165 	__releases(&pool->ring.producer_lock)
166 {
167 	if (in_softirq)
168 		spin_unlock(&pool->ring.producer_lock);
169 	else
170 		spin_unlock_bh(&pool->ring.producer_lock);
171 }
172 
173 static int page_pool_init(struct page_pool *pool,
174 			  const struct page_pool_params *params)
175 {
176 	unsigned int ring_qsize = 1024; /* Default */
177 
178 	memcpy(&pool->p, &params->fast, sizeof(pool->p));
179 	memcpy(&pool->slow, &params->slow, sizeof(pool->slow));
180 
181 	/* Validate only known flags were used */
182 	if (pool->p.flags & ~(PP_FLAG_ALL))
183 		return -EINVAL;
184 
185 	if (pool->p.pool_size)
186 		ring_qsize = pool->p.pool_size;
187 
188 	/* Sanity limit mem that can be pinned down */
189 	if (ring_qsize > 32768)
190 		return -E2BIG;
191 
192 	/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
193 	 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
194 	 * which is the XDP_TX use-case.
195 	 */
196 	if (pool->p.flags & PP_FLAG_DMA_MAP) {
197 		if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
198 		    (pool->p.dma_dir != DMA_BIDIRECTIONAL))
199 			return -EINVAL;
200 	}
201 
202 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
203 		/* In order to request DMA-sync-for-device the page
204 		 * needs to be mapped
205 		 */
206 		if (!(pool->p.flags & PP_FLAG_DMA_MAP))
207 			return -EINVAL;
208 
209 		if (!pool->p.max_len)
210 			return -EINVAL;
211 
212 		/* pool->p.offset has to be set according to the address
213 		 * offset used by the DMA engine to start copying rx data
214 		 */
215 	}
216 
217 	pool->has_init_callback = !!pool->slow.init_callback;
218 
219 #ifdef CONFIG_PAGE_POOL_STATS
220 	pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats);
221 	if (!pool->recycle_stats)
222 		return -ENOMEM;
223 #endif
224 
225 	if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) {
226 #ifdef CONFIG_PAGE_POOL_STATS
227 		free_percpu(pool->recycle_stats);
228 #endif
229 		return -ENOMEM;
230 	}
231 
232 	atomic_set(&pool->pages_state_release_cnt, 0);
233 
234 	/* Driver calling page_pool_create() also call page_pool_destroy() */
235 	refcount_set(&pool->user_cnt, 1);
236 
237 	if (pool->p.flags & PP_FLAG_DMA_MAP)
238 		get_device(pool->p.dev);
239 
240 	return 0;
241 }
242 
243 static void page_pool_uninit(struct page_pool *pool)
244 {
245 	ptr_ring_cleanup(&pool->ring, NULL);
246 
247 	if (pool->p.flags & PP_FLAG_DMA_MAP)
248 		put_device(pool->p.dev);
249 
250 #ifdef CONFIG_PAGE_POOL_STATS
251 	free_percpu(pool->recycle_stats);
252 #endif
253 }
254 
255 /**
256  * page_pool_create() - create a page pool.
257  * @params: parameters, see struct page_pool_params
258  */
259 struct page_pool *page_pool_create(const struct page_pool_params *params)
260 {
261 	struct page_pool *pool;
262 	int err;
263 
264 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
265 	if (!pool)
266 		return ERR_PTR(-ENOMEM);
267 
268 	err = page_pool_init(pool, params);
269 	if (err < 0)
270 		goto err_free;
271 
272 	err = page_pool_list(pool);
273 	if (err)
274 		goto err_uninit;
275 
276 	return pool;
277 
278 err_uninit:
279 	page_pool_uninit(pool);
280 err_free:
281 	pr_warn("%s() gave up with errno %d\n", __func__, err);
282 	kfree(pool);
283 	return ERR_PTR(err);
284 }
285 EXPORT_SYMBOL(page_pool_create);
286 
287 static void page_pool_return_page(struct page_pool *pool, struct page *page);
288 
289 noinline
290 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
291 {
292 	struct ptr_ring *r = &pool->ring;
293 	struct page *page;
294 	int pref_nid; /* preferred NUMA node */
295 
296 	/* Quicker fallback, avoid locks when ring is empty */
297 	if (__ptr_ring_empty(r)) {
298 		alloc_stat_inc(pool, empty);
299 		return NULL;
300 	}
301 
302 	/* Softirq guarantee CPU and thus NUMA node is stable. This,
303 	 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
304 	 */
305 #ifdef CONFIG_NUMA
306 	pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
307 #else
308 	/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
309 	pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
310 #endif
311 
312 	/* Refill alloc array, but only if NUMA match */
313 	do {
314 		page = __ptr_ring_consume(r);
315 		if (unlikely(!page))
316 			break;
317 
318 		if (likely(page_to_nid(page) == pref_nid)) {
319 			pool->alloc.cache[pool->alloc.count++] = page;
320 		} else {
321 			/* NUMA mismatch;
322 			 * (1) release 1 page to page-allocator and
323 			 * (2) break out to fallthrough to alloc_pages_node.
324 			 * This limit stress on page buddy alloactor.
325 			 */
326 			page_pool_return_page(pool, page);
327 			alloc_stat_inc(pool, waive);
328 			page = NULL;
329 			break;
330 		}
331 	} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
332 
333 	/* Return last page */
334 	if (likely(pool->alloc.count > 0)) {
335 		page = pool->alloc.cache[--pool->alloc.count];
336 		alloc_stat_inc(pool, refill);
337 	}
338 
339 	return page;
340 }
341 
342 /* fast path */
343 static struct page *__page_pool_get_cached(struct page_pool *pool)
344 {
345 	struct page *page;
346 
347 	/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
348 	if (likely(pool->alloc.count)) {
349 		/* Fast-path */
350 		page = pool->alloc.cache[--pool->alloc.count];
351 		alloc_stat_inc(pool, fast);
352 	} else {
353 		page = page_pool_refill_alloc_cache(pool);
354 	}
355 
356 	return page;
357 }
358 
359 static void page_pool_dma_sync_for_device(struct page_pool *pool,
360 					  struct page *page,
361 					  unsigned int dma_sync_size)
362 {
363 	dma_addr_t dma_addr = page_pool_get_dma_addr(page);
364 
365 	dma_sync_size = min(dma_sync_size, pool->p.max_len);
366 	dma_sync_single_range_for_device(pool->p.dev, dma_addr,
367 					 pool->p.offset, dma_sync_size,
368 					 pool->p.dma_dir);
369 }
370 
371 static bool page_pool_dma_map(struct page_pool *pool, struct page *page)
372 {
373 	dma_addr_t dma;
374 
375 	/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
376 	 * since dma_addr_t can be either 32 or 64 bits and does not always fit
377 	 * into page private data (i.e 32bit cpu with 64bit DMA caps)
378 	 * This mapping is kept for lifetime of page, until leaving pool.
379 	 */
380 	dma = dma_map_page_attrs(pool->p.dev, page, 0,
381 				 (PAGE_SIZE << pool->p.order),
382 				 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC |
383 						  DMA_ATTR_WEAK_ORDERING);
384 	if (dma_mapping_error(pool->p.dev, dma))
385 		return false;
386 
387 	if (page_pool_set_dma_addr(page, dma))
388 		goto unmap_failed;
389 
390 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
391 		page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
392 
393 	return true;
394 
395 unmap_failed:
396 	WARN_ON_ONCE("unexpected DMA address, please report to netdev@");
397 	dma_unmap_page_attrs(pool->p.dev, dma,
398 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
399 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
400 	return false;
401 }
402 
403 static void page_pool_set_pp_info(struct page_pool *pool,
404 				  struct page *page)
405 {
406 	page->pp = pool;
407 	page->pp_magic |= PP_SIGNATURE;
408 
409 	/* Ensuring all pages have been split into one fragment initially:
410 	 * page_pool_set_pp_info() is only called once for every page when it
411 	 * is allocated from the page allocator and page_pool_fragment_page()
412 	 * is dirtying the same cache line as the page->pp_magic above, so
413 	 * the overhead is negligible.
414 	 */
415 	page_pool_fragment_page(page, 1);
416 	if (pool->has_init_callback)
417 		pool->slow.init_callback(page, pool->slow.init_arg);
418 }
419 
420 static void page_pool_clear_pp_info(struct page *page)
421 {
422 	page->pp_magic = 0;
423 	page->pp = NULL;
424 }
425 
426 static struct page *__page_pool_alloc_page_order(struct page_pool *pool,
427 						 gfp_t gfp)
428 {
429 	struct page *page;
430 
431 	gfp |= __GFP_COMP;
432 	page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
433 	if (unlikely(!page))
434 		return NULL;
435 
436 	if ((pool->p.flags & PP_FLAG_DMA_MAP) &&
437 	    unlikely(!page_pool_dma_map(pool, page))) {
438 		put_page(page);
439 		return NULL;
440 	}
441 
442 	alloc_stat_inc(pool, slow_high_order);
443 	page_pool_set_pp_info(pool, page);
444 
445 	/* Track how many pages are held 'in-flight' */
446 	pool->pages_state_hold_cnt++;
447 	trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
448 	return page;
449 }
450 
451 /* slow path */
452 noinline
453 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
454 						 gfp_t gfp)
455 {
456 	const int bulk = PP_ALLOC_CACHE_REFILL;
457 	unsigned int pp_flags = pool->p.flags;
458 	unsigned int pp_order = pool->p.order;
459 	struct page *page;
460 	int i, nr_pages;
461 
462 	/* Don't support bulk alloc for high-order pages */
463 	if (unlikely(pp_order))
464 		return __page_pool_alloc_page_order(pool, gfp);
465 
466 	/* Unnecessary as alloc cache is empty, but guarantees zero count */
467 	if (unlikely(pool->alloc.count > 0))
468 		return pool->alloc.cache[--pool->alloc.count];
469 
470 	/* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */
471 	memset(&pool->alloc.cache, 0, sizeof(void *) * bulk);
472 
473 	nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk,
474 					       pool->alloc.cache);
475 	if (unlikely(!nr_pages))
476 		return NULL;
477 
478 	/* Pages have been filled into alloc.cache array, but count is zero and
479 	 * page element have not been (possibly) DMA mapped.
480 	 */
481 	for (i = 0; i < nr_pages; i++) {
482 		page = pool->alloc.cache[i];
483 		if ((pp_flags & PP_FLAG_DMA_MAP) &&
484 		    unlikely(!page_pool_dma_map(pool, page))) {
485 			put_page(page);
486 			continue;
487 		}
488 
489 		page_pool_set_pp_info(pool, page);
490 		pool->alloc.cache[pool->alloc.count++] = page;
491 		/* Track how many pages are held 'in-flight' */
492 		pool->pages_state_hold_cnt++;
493 		trace_page_pool_state_hold(pool, page,
494 					   pool->pages_state_hold_cnt);
495 	}
496 
497 	/* Return last page */
498 	if (likely(pool->alloc.count > 0)) {
499 		page = pool->alloc.cache[--pool->alloc.count];
500 		alloc_stat_inc(pool, slow);
501 	} else {
502 		page = NULL;
503 	}
504 
505 	/* When page just alloc'ed is should/must have refcnt 1. */
506 	return page;
507 }
508 
509 /* For using page_pool replace: alloc_pages() API calls, but provide
510  * synchronization guarantee for allocation side.
511  */
512 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
513 {
514 	struct page *page;
515 
516 	/* Fast-path: Get a page from cache */
517 	page = __page_pool_get_cached(pool);
518 	if (page)
519 		return page;
520 
521 	/* Slow-path: cache empty, do real allocation */
522 	page = __page_pool_alloc_pages_slow(pool, gfp);
523 	return page;
524 }
525 EXPORT_SYMBOL(page_pool_alloc_pages);
526 
527 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
528  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
529  */
530 #define _distance(a, b)	(s32)((a) - (b))
531 
532 s32 page_pool_inflight(const struct page_pool *pool, bool strict)
533 {
534 	u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
535 	u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
536 	s32 inflight;
537 
538 	inflight = _distance(hold_cnt, release_cnt);
539 
540 	if (strict) {
541 		trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
542 		WARN(inflight < 0, "Negative(%d) inflight packet-pages",
543 		     inflight);
544 	} else {
545 		inflight = max(0, inflight);
546 	}
547 
548 	return inflight;
549 }
550 
551 static __always_inline
552 void __page_pool_release_page_dma(struct page_pool *pool, struct page *page)
553 {
554 	dma_addr_t dma;
555 
556 	if (!(pool->p.flags & PP_FLAG_DMA_MAP))
557 		/* Always account for inflight pages, even if we didn't
558 		 * map them
559 		 */
560 		return;
561 
562 	dma = page_pool_get_dma_addr(page);
563 
564 	/* When page is unmapped, it cannot be returned to our pool */
565 	dma_unmap_page_attrs(pool->p.dev, dma,
566 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
567 			     DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING);
568 	page_pool_set_dma_addr(page, 0);
569 }
570 
571 /* Disconnects a page (from a page_pool).  API users can have a need
572  * to disconnect a page (from a page_pool), to allow it to be used as
573  * a regular page (that will eventually be returned to the normal
574  * page-allocator via put_page).
575  */
576 void page_pool_return_page(struct page_pool *pool, struct page *page)
577 {
578 	int count;
579 
580 	__page_pool_release_page_dma(pool, page);
581 
582 	page_pool_clear_pp_info(page);
583 
584 	/* This may be the last page returned, releasing the pool, so
585 	 * it is not safe to reference pool afterwards.
586 	 */
587 	count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt);
588 	trace_page_pool_state_release(pool, page, count);
589 
590 	put_page(page);
591 	/* An optimization would be to call __free_pages(page, pool->p.order)
592 	 * knowing page is not part of page-cache (thus avoiding a
593 	 * __page_cache_release() call).
594 	 */
595 }
596 
597 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page)
598 {
599 	int ret;
600 	/* BH protection not needed if current is softirq */
601 	if (in_softirq())
602 		ret = ptr_ring_produce(&pool->ring, page);
603 	else
604 		ret = ptr_ring_produce_bh(&pool->ring, page);
605 
606 	if (!ret) {
607 		recycle_stat_inc(pool, ring);
608 		return true;
609 	}
610 
611 	return false;
612 }
613 
614 /* Only allow direct recycling in special circumstances, into the
615  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
616  *
617  * Caller must provide appropriate safe context.
618  */
619 static bool page_pool_recycle_in_cache(struct page *page,
620 				       struct page_pool *pool)
621 {
622 	if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) {
623 		recycle_stat_inc(pool, cache_full);
624 		return false;
625 	}
626 
627 	/* Caller MUST have verified/know (page_ref_count(page) == 1) */
628 	pool->alloc.cache[pool->alloc.count++] = page;
629 	recycle_stat_inc(pool, cached);
630 	return true;
631 }
632 
633 /* If the page refcnt == 1, this will try to recycle the page.
634  * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for
635  * the configured size min(dma_sync_size, pool->max_len).
636  * If the page refcnt != 1, then the page will be returned to memory
637  * subsystem.
638  */
639 static __always_inline struct page *
640 __page_pool_put_page(struct page_pool *pool, struct page *page,
641 		     unsigned int dma_sync_size, bool allow_direct)
642 {
643 	lockdep_assert_no_hardirq();
644 
645 	/* This allocator is optimized for the XDP mode that uses
646 	 * one-frame-per-page, but have fallbacks that act like the
647 	 * regular page allocator APIs.
648 	 *
649 	 * refcnt == 1 means page_pool owns page, and can recycle it.
650 	 *
651 	 * page is NOT reusable when allocated when system is under
652 	 * some pressure. (page_is_pfmemalloc)
653 	 */
654 	if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) {
655 		/* Read barrier done in page_ref_count / READ_ONCE */
656 
657 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
658 			page_pool_dma_sync_for_device(pool, page,
659 						      dma_sync_size);
660 
661 		if (allow_direct && in_softirq() &&
662 		    page_pool_recycle_in_cache(page, pool))
663 			return NULL;
664 
665 		/* Page found as candidate for recycling */
666 		return page;
667 	}
668 	/* Fallback/non-XDP mode: API user have elevated refcnt.
669 	 *
670 	 * Many drivers split up the page into fragments, and some
671 	 * want to keep doing this to save memory and do refcnt based
672 	 * recycling. Support this use case too, to ease drivers
673 	 * switching between XDP/non-XDP.
674 	 *
675 	 * In-case page_pool maintains the DMA mapping, API user must
676 	 * call page_pool_put_page once.  In this elevated refcnt
677 	 * case, the DMA is unmapped/released, as driver is likely
678 	 * doing refcnt based recycle tricks, meaning another process
679 	 * will be invoking put_page.
680 	 */
681 	recycle_stat_inc(pool, released_refcnt);
682 	page_pool_return_page(pool, page);
683 
684 	return NULL;
685 }
686 
687 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page,
688 				unsigned int dma_sync_size, bool allow_direct)
689 {
690 	page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct);
691 	if (page && !page_pool_recycle_in_ring(pool, page)) {
692 		/* Cache full, fallback to free pages */
693 		recycle_stat_inc(pool, ring_full);
694 		page_pool_return_page(pool, page);
695 	}
696 }
697 EXPORT_SYMBOL(page_pool_put_unrefed_page);
698 
699 /**
700  * page_pool_put_page_bulk() - release references on multiple pages
701  * @pool:	pool from which pages were allocated
702  * @data:	array holding page pointers
703  * @count:	number of pages in @data
704  *
705  * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring
706  * producer lock. If the ptr_ring is full, page_pool_put_page_bulk()
707  * will release leftover pages to the page allocator.
708  * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx
709  * completion loop for the XDP_REDIRECT use case.
710  *
711  * Please note the caller must not use data area after running
712  * page_pool_put_page_bulk(), as this function overwrites it.
713  */
714 void page_pool_put_page_bulk(struct page_pool *pool, void **data,
715 			     int count)
716 {
717 	int i, bulk_len = 0;
718 	bool in_softirq;
719 
720 	for (i = 0; i < count; i++) {
721 		struct page *page = virt_to_head_page(data[i]);
722 
723 		/* It is not the last user for the page frag case */
724 		if (!page_pool_is_last_ref(page))
725 			continue;
726 
727 		page = __page_pool_put_page(pool, page, -1, false);
728 		/* Approved for bulk recycling in ptr_ring cache */
729 		if (page)
730 			data[bulk_len++] = page;
731 	}
732 
733 	if (unlikely(!bulk_len))
734 		return;
735 
736 	/* Bulk producer into ptr_ring page_pool cache */
737 	in_softirq = page_pool_producer_lock(pool);
738 	for (i = 0; i < bulk_len; i++) {
739 		if (__ptr_ring_produce(&pool->ring, data[i])) {
740 			/* ring full */
741 			recycle_stat_inc(pool, ring_full);
742 			break;
743 		}
744 	}
745 	recycle_stat_add(pool, ring, i);
746 	page_pool_producer_unlock(pool, in_softirq);
747 
748 	/* Hopefully all pages was return into ptr_ring */
749 	if (likely(i == bulk_len))
750 		return;
751 
752 	/* ptr_ring cache full, free remaining pages outside producer lock
753 	 * since put_page() with refcnt == 1 can be an expensive operation
754 	 */
755 	for (; i < bulk_len; i++)
756 		page_pool_return_page(pool, data[i]);
757 }
758 EXPORT_SYMBOL(page_pool_put_page_bulk);
759 
760 static struct page *page_pool_drain_frag(struct page_pool *pool,
761 					 struct page *page)
762 {
763 	long drain_count = BIAS_MAX - pool->frag_users;
764 
765 	/* Some user is still using the page frag */
766 	if (likely(page_pool_unref_page(page, drain_count)))
767 		return NULL;
768 
769 	if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) {
770 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
771 			page_pool_dma_sync_for_device(pool, page, -1);
772 
773 		return page;
774 	}
775 
776 	page_pool_return_page(pool, page);
777 	return NULL;
778 }
779 
780 static void page_pool_free_frag(struct page_pool *pool)
781 {
782 	long drain_count = BIAS_MAX - pool->frag_users;
783 	struct page *page = pool->frag_page;
784 
785 	pool->frag_page = NULL;
786 
787 	if (!page || page_pool_unref_page(page, drain_count))
788 		return;
789 
790 	page_pool_return_page(pool, page);
791 }
792 
793 struct page *page_pool_alloc_frag(struct page_pool *pool,
794 				  unsigned int *offset,
795 				  unsigned int size, gfp_t gfp)
796 {
797 	unsigned int max_size = PAGE_SIZE << pool->p.order;
798 	struct page *page = pool->frag_page;
799 
800 	if (WARN_ON(size > max_size))
801 		return NULL;
802 
803 	size = ALIGN(size, dma_get_cache_alignment());
804 	*offset = pool->frag_offset;
805 
806 	if (page && *offset + size > max_size) {
807 		page = page_pool_drain_frag(pool, page);
808 		if (page) {
809 			alloc_stat_inc(pool, fast);
810 			goto frag_reset;
811 		}
812 	}
813 
814 	if (!page) {
815 		page = page_pool_alloc_pages(pool, gfp);
816 		if (unlikely(!page)) {
817 			pool->frag_page = NULL;
818 			return NULL;
819 		}
820 
821 		pool->frag_page = page;
822 
823 frag_reset:
824 		pool->frag_users = 1;
825 		*offset = 0;
826 		pool->frag_offset = size;
827 		page_pool_fragment_page(page, BIAS_MAX);
828 		return page;
829 	}
830 
831 	pool->frag_users++;
832 	pool->frag_offset = *offset + size;
833 	alloc_stat_inc(pool, fast);
834 	return page;
835 }
836 EXPORT_SYMBOL(page_pool_alloc_frag);
837 
838 static void page_pool_empty_ring(struct page_pool *pool)
839 {
840 	struct page *page;
841 
842 	/* Empty recycle ring */
843 	while ((page = ptr_ring_consume_bh(&pool->ring))) {
844 		/* Verify the refcnt invariant of cached pages */
845 		if (!(page_ref_count(page) == 1))
846 			pr_crit("%s() page_pool refcnt %d violation\n",
847 				__func__, page_ref_count(page));
848 
849 		page_pool_return_page(pool, page);
850 	}
851 }
852 
853 static void __page_pool_destroy(struct page_pool *pool)
854 {
855 	if (pool->disconnect)
856 		pool->disconnect(pool);
857 
858 	page_pool_unlist(pool);
859 	page_pool_uninit(pool);
860 	kfree(pool);
861 }
862 
863 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
864 {
865 	struct page *page;
866 
867 	if (pool->destroy_cnt)
868 		return;
869 
870 	/* Empty alloc cache, assume caller made sure this is
871 	 * no-longer in use, and page_pool_alloc_pages() cannot be
872 	 * call concurrently.
873 	 */
874 	while (pool->alloc.count) {
875 		page = pool->alloc.cache[--pool->alloc.count];
876 		page_pool_return_page(pool, page);
877 	}
878 }
879 
880 static void page_pool_scrub(struct page_pool *pool)
881 {
882 	page_pool_empty_alloc_cache_once(pool);
883 	pool->destroy_cnt++;
884 
885 	/* No more consumers should exist, but producers could still
886 	 * be in-flight.
887 	 */
888 	page_pool_empty_ring(pool);
889 }
890 
891 static int page_pool_release(struct page_pool *pool)
892 {
893 	int inflight;
894 
895 	page_pool_scrub(pool);
896 	inflight = page_pool_inflight(pool, true);
897 	if (!inflight)
898 		__page_pool_destroy(pool);
899 
900 	return inflight;
901 }
902 
903 static void page_pool_release_retry(struct work_struct *wq)
904 {
905 	struct delayed_work *dwq = to_delayed_work(wq);
906 	struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
907 	void *netdev;
908 	int inflight;
909 
910 	inflight = page_pool_release(pool);
911 	if (!inflight)
912 		return;
913 
914 	/* Periodic warning for page pools the user can't see */
915 	netdev = READ_ONCE(pool->slow.netdev);
916 	if (time_after_eq(jiffies, pool->defer_warn) &&
917 	    (!netdev || netdev == NET_PTR_POISON)) {
918 		int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
919 
920 		pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n",
921 			__func__, pool->user.id, inflight, sec);
922 		pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
923 	}
924 
925 	/* Still not ready to be disconnected, retry later */
926 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
927 }
928 
929 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *),
930 			   struct xdp_mem_info *mem)
931 {
932 	refcount_inc(&pool->user_cnt);
933 	pool->disconnect = disconnect;
934 	pool->xdp_mem_id = mem->id;
935 }
936 
937 void page_pool_unlink_napi(struct page_pool *pool)
938 {
939 	if (!pool->p.napi)
940 		return;
941 
942 	/* To avoid races with recycling and additional barriers make sure
943 	 * pool and NAPI are unlinked when NAPI is disabled.
944 	 */
945 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) ||
946 		READ_ONCE(pool->p.napi->list_owner) != -1);
947 
948 	WRITE_ONCE(pool->p.napi, NULL);
949 }
950 EXPORT_SYMBOL(page_pool_unlink_napi);
951 
952 void page_pool_destroy(struct page_pool *pool)
953 {
954 	if (!pool)
955 		return;
956 
957 	if (!page_pool_put(pool))
958 		return;
959 
960 	page_pool_unlink_napi(pool);
961 	page_pool_free_frag(pool);
962 
963 	if (!page_pool_release(pool))
964 		return;
965 
966 	page_pool_detached(pool);
967 	pool->defer_start = jiffies;
968 	pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
969 
970 	INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
971 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
972 }
973 EXPORT_SYMBOL(page_pool_destroy);
974 
975 /* Caller must provide appropriate safe context, e.g. NAPI. */
976 void page_pool_update_nid(struct page_pool *pool, int new_nid)
977 {
978 	struct page *page;
979 
980 	trace_page_pool_update_nid(pool, new_nid);
981 	pool->p.nid = new_nid;
982 
983 	/* Flush pool alloc cache, as refill will check NUMA node */
984 	while (pool->alloc.count) {
985 		page = pool->alloc.cache[--pool->alloc.count];
986 		page_pool_return_page(pool, page);
987 	}
988 }
989 EXPORT_SYMBOL(page_pool_update_nid);
990