1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/error-injection.h> 9 #include <linux/types.h> 10 #include <linux/kernel.h> 11 #include <linux/slab.h> 12 #include <linux/device.h> 13 14 #include <net/netdev_lock.h> 15 #include <net/netdev_rx_queue.h> 16 #include <net/page_pool/helpers.h> 17 #include <net/page_pool/memory_provider.h> 18 #include <net/xdp.h> 19 20 #include <linux/dma-direction.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/page-flags.h> 23 #include <linux/mm.h> /* for put_page() */ 24 #include <linux/poison.h> 25 #include <linux/ethtool.h> 26 #include <linux/netdevice.h> 27 28 #include <trace/events/page_pool.h> 29 30 #include "dev.h" 31 #include "mp_dmabuf_devmem.h" 32 #include "netmem_priv.h" 33 #include "page_pool_priv.h" 34 35 DEFINE_STATIC_KEY_FALSE(page_pool_mem_providers); 36 37 #define DEFER_TIME (msecs_to_jiffies(1000)) 38 #define DEFER_WARN_INTERVAL (60 * HZ) 39 40 #define BIAS_MAX (LONG_MAX >> 1) 41 42 #ifdef CONFIG_PAGE_POOL_STATS 43 static DEFINE_PER_CPU(struct page_pool_recycle_stats, pp_system_recycle_stats); 44 45 /* alloc_stat_inc is intended to be used in softirq context */ 46 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 47 /* recycle_stat_inc is safe to use when preemption is possible. */ 48 #define recycle_stat_inc(pool, __stat) \ 49 do { \ 50 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 51 this_cpu_inc(s->__stat); \ 52 } while (0) 53 54 #define recycle_stat_add(pool, __stat, val) \ 55 do { \ 56 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 57 this_cpu_add(s->__stat, val); \ 58 } while (0) 59 60 static const char pp_stats[][ETH_GSTRING_LEN] = { 61 "rx_pp_alloc_fast", 62 "rx_pp_alloc_slow", 63 "rx_pp_alloc_slow_ho", 64 "rx_pp_alloc_empty", 65 "rx_pp_alloc_refill", 66 "rx_pp_alloc_waive", 67 "rx_pp_recycle_cached", 68 "rx_pp_recycle_cache_full", 69 "rx_pp_recycle_ring", 70 "rx_pp_recycle_ring_full", 71 "rx_pp_recycle_released_ref", 72 }; 73 74 /** 75 * page_pool_get_stats() - fetch page pool stats 76 * @pool: pool from which page was allocated 77 * @stats: struct page_pool_stats to fill in 78 * 79 * Retrieve statistics about the page_pool. This API is only available 80 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 81 * A pointer to a caller allocated struct page_pool_stats structure 82 * is passed to this API which is filled in. The caller can then report 83 * those stats to the user (perhaps via ethtool, debugfs, etc.). 84 */ 85 bool page_pool_get_stats(const struct page_pool *pool, 86 struct page_pool_stats *stats) 87 { 88 int cpu = 0; 89 90 if (!stats) 91 return false; 92 93 /* The caller is responsible to initialize stats. */ 94 stats->alloc_stats.fast += pool->alloc_stats.fast; 95 stats->alloc_stats.slow += pool->alloc_stats.slow; 96 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 97 stats->alloc_stats.empty += pool->alloc_stats.empty; 98 stats->alloc_stats.refill += pool->alloc_stats.refill; 99 stats->alloc_stats.waive += pool->alloc_stats.waive; 100 101 for_each_possible_cpu(cpu) { 102 const struct page_pool_recycle_stats *pcpu = 103 per_cpu_ptr(pool->recycle_stats, cpu); 104 105 stats->recycle_stats.cached += pcpu->cached; 106 stats->recycle_stats.cache_full += pcpu->cache_full; 107 stats->recycle_stats.ring += pcpu->ring; 108 stats->recycle_stats.ring_full += pcpu->ring_full; 109 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 110 } 111 112 return true; 113 } 114 EXPORT_SYMBOL(page_pool_get_stats); 115 116 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 117 { 118 int i; 119 120 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 121 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 122 data += ETH_GSTRING_LEN; 123 } 124 125 return data; 126 } 127 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 128 129 int page_pool_ethtool_stats_get_count(void) 130 { 131 return ARRAY_SIZE(pp_stats); 132 } 133 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 134 135 u64 *page_pool_ethtool_stats_get(u64 *data, const void *stats) 136 { 137 const struct page_pool_stats *pool_stats = stats; 138 139 *data++ = pool_stats->alloc_stats.fast; 140 *data++ = pool_stats->alloc_stats.slow; 141 *data++ = pool_stats->alloc_stats.slow_high_order; 142 *data++ = pool_stats->alloc_stats.empty; 143 *data++ = pool_stats->alloc_stats.refill; 144 *data++ = pool_stats->alloc_stats.waive; 145 *data++ = pool_stats->recycle_stats.cached; 146 *data++ = pool_stats->recycle_stats.cache_full; 147 *data++ = pool_stats->recycle_stats.ring; 148 *data++ = pool_stats->recycle_stats.ring_full; 149 *data++ = pool_stats->recycle_stats.released_refcnt; 150 151 return data; 152 } 153 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 154 155 #else 156 #define alloc_stat_inc(...) do { } while (0) 157 #define recycle_stat_inc(...) do { } while (0) 158 #define recycle_stat_add(...) do { } while (0) 159 #endif 160 161 static bool page_pool_producer_lock(struct page_pool *pool) 162 __acquires(&pool->ring.producer_lock) 163 { 164 bool in_softirq = in_softirq(); 165 166 if (in_softirq) 167 spin_lock(&pool->ring.producer_lock); 168 else 169 spin_lock_bh(&pool->ring.producer_lock); 170 171 return in_softirq; 172 } 173 174 static void page_pool_producer_unlock(struct page_pool *pool, 175 bool in_softirq) 176 __releases(&pool->ring.producer_lock) 177 { 178 if (in_softirq) 179 spin_unlock(&pool->ring.producer_lock); 180 else 181 spin_unlock_bh(&pool->ring.producer_lock); 182 } 183 184 static void page_pool_struct_check(void) 185 { 186 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_users); 187 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_page); 188 CACHELINE_ASSERT_GROUP_MEMBER(struct page_pool, frag, frag_offset); 189 CACHELINE_ASSERT_GROUP_SIZE(struct page_pool, frag, 190 PAGE_POOL_FRAG_GROUP_ALIGN); 191 } 192 193 static int page_pool_init(struct page_pool *pool, 194 const struct page_pool_params *params, 195 int cpuid) 196 { 197 unsigned int ring_qsize = 1024; /* Default */ 198 struct netdev_rx_queue *rxq; 199 int err; 200 201 page_pool_struct_check(); 202 203 memcpy(&pool->p, ¶ms->fast, sizeof(pool->p)); 204 memcpy(&pool->slow, ¶ms->slow, sizeof(pool->slow)); 205 206 pool->cpuid = cpuid; 207 pool->dma_sync_for_cpu = true; 208 209 /* Validate only known flags were used */ 210 if (pool->slow.flags & ~PP_FLAG_ALL) 211 return -EINVAL; 212 213 if (pool->p.pool_size) 214 ring_qsize = pool->p.pool_size; 215 216 /* Sanity limit mem that can be pinned down */ 217 if (ring_qsize > 32768) 218 return -E2BIG; 219 220 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 221 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 222 * which is the XDP_TX use-case. 223 */ 224 if (pool->slow.flags & PP_FLAG_DMA_MAP) { 225 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 226 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 227 return -EINVAL; 228 229 pool->dma_map = true; 230 } 231 232 if (pool->slow.flags & PP_FLAG_DMA_SYNC_DEV) { 233 /* In order to request DMA-sync-for-device the page 234 * needs to be mapped 235 */ 236 if (!(pool->slow.flags & PP_FLAG_DMA_MAP)) 237 return -EINVAL; 238 239 if (!pool->p.max_len) 240 return -EINVAL; 241 242 pool->dma_sync = true; 243 244 /* pool->p.offset has to be set according to the address 245 * offset used by the DMA engine to start copying rx data 246 */ 247 } 248 249 pool->has_init_callback = !!pool->slow.init_callback; 250 251 #ifdef CONFIG_PAGE_POOL_STATS 252 if (!(pool->slow.flags & PP_FLAG_SYSTEM_POOL)) { 253 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 254 if (!pool->recycle_stats) 255 return -ENOMEM; 256 } else { 257 /* For system page pool instance we use a singular stats object 258 * instead of allocating a separate percpu variable for each 259 * (also percpu) page pool instance. 260 */ 261 pool->recycle_stats = &pp_system_recycle_stats; 262 pool->system = true; 263 } 264 #endif 265 266 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) { 267 #ifdef CONFIG_PAGE_POOL_STATS 268 if (!pool->system) 269 free_percpu(pool->recycle_stats); 270 #endif 271 return -ENOMEM; 272 } 273 274 atomic_set(&pool->pages_state_release_cnt, 0); 275 276 /* Driver calling page_pool_create() also call page_pool_destroy() */ 277 refcount_set(&pool->user_cnt, 1); 278 279 xa_init_flags(&pool->dma_mapped, XA_FLAGS_ALLOC1); 280 281 if (pool->slow.flags & PP_FLAG_ALLOW_UNREADABLE_NETMEM) { 282 netdev_assert_locked(pool->slow.netdev); 283 rxq = __netif_get_rx_queue(pool->slow.netdev, 284 pool->slow.queue_idx); 285 pool->mp_priv = rxq->mp_params.mp_priv; 286 pool->mp_ops = rxq->mp_params.mp_ops; 287 } 288 289 if (pool->mp_ops) { 290 if (!pool->dma_map || !pool->dma_sync) 291 return -EOPNOTSUPP; 292 293 if (WARN_ON(!is_kernel_rodata((unsigned long)pool->mp_ops))) { 294 err = -EFAULT; 295 goto free_ptr_ring; 296 } 297 298 err = pool->mp_ops->init(pool); 299 if (err) { 300 pr_warn("%s() mem-provider init failed %d\n", __func__, 301 err); 302 goto free_ptr_ring; 303 } 304 305 static_branch_inc(&page_pool_mem_providers); 306 } 307 308 return 0; 309 310 free_ptr_ring: 311 ptr_ring_cleanup(&pool->ring, NULL); 312 #ifdef CONFIG_PAGE_POOL_STATS 313 if (!pool->system) 314 free_percpu(pool->recycle_stats); 315 #endif 316 return err; 317 } 318 319 static void page_pool_uninit(struct page_pool *pool) 320 { 321 ptr_ring_cleanup(&pool->ring, NULL); 322 xa_destroy(&pool->dma_mapped); 323 324 #ifdef CONFIG_PAGE_POOL_STATS 325 if (!pool->system) 326 free_percpu(pool->recycle_stats); 327 #endif 328 } 329 330 /** 331 * page_pool_create_percpu() - create a page pool for a given cpu. 332 * @params: parameters, see struct page_pool_params 333 * @cpuid: cpu identifier 334 */ 335 struct page_pool * 336 page_pool_create_percpu(const struct page_pool_params *params, int cpuid) 337 { 338 struct page_pool *pool; 339 int err; 340 341 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 342 if (!pool) 343 return ERR_PTR(-ENOMEM); 344 345 err = page_pool_init(pool, params, cpuid); 346 if (err < 0) 347 goto err_free; 348 349 err = page_pool_list(pool); 350 if (err) 351 goto err_uninit; 352 353 return pool; 354 355 err_uninit: 356 page_pool_uninit(pool); 357 err_free: 358 pr_warn("%s() gave up with errno %d\n", __func__, err); 359 kfree(pool); 360 return ERR_PTR(err); 361 } 362 EXPORT_SYMBOL(page_pool_create_percpu); 363 364 /** 365 * page_pool_create() - create a page pool 366 * @params: parameters, see struct page_pool_params 367 */ 368 struct page_pool *page_pool_create(const struct page_pool_params *params) 369 { 370 return page_pool_create_percpu(params, -1); 371 } 372 EXPORT_SYMBOL(page_pool_create); 373 374 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem); 375 376 static noinline netmem_ref page_pool_refill_alloc_cache(struct page_pool *pool) 377 { 378 struct ptr_ring *r = &pool->ring; 379 netmem_ref netmem; 380 int pref_nid; /* preferred NUMA node */ 381 382 /* Quicker fallback, avoid locks when ring is empty */ 383 if (__ptr_ring_empty(r)) { 384 alloc_stat_inc(pool, empty); 385 return 0; 386 } 387 388 /* Softirq guarantee CPU and thus NUMA node is stable. This, 389 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 390 */ 391 #ifdef CONFIG_NUMA 392 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 393 #else 394 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 395 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 396 #endif 397 398 /* Refill alloc array, but only if NUMA match */ 399 do { 400 netmem = (__force netmem_ref)__ptr_ring_consume(r); 401 if (unlikely(!netmem)) 402 break; 403 404 if (likely(netmem_is_pref_nid(netmem, pref_nid))) { 405 pool->alloc.cache[pool->alloc.count++] = netmem; 406 } else { 407 /* NUMA mismatch; 408 * (1) release 1 page to page-allocator and 409 * (2) break out to fallthrough to alloc_pages_node. 410 * This limit stress on page buddy alloactor. 411 */ 412 page_pool_return_netmem(pool, netmem); 413 alloc_stat_inc(pool, waive); 414 netmem = 0; 415 break; 416 } 417 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 418 419 /* Return last page */ 420 if (likely(pool->alloc.count > 0)) { 421 netmem = pool->alloc.cache[--pool->alloc.count]; 422 alloc_stat_inc(pool, refill); 423 } 424 425 return netmem; 426 } 427 428 /* fast path */ 429 static netmem_ref __page_pool_get_cached(struct page_pool *pool) 430 { 431 netmem_ref netmem; 432 433 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 434 if (likely(pool->alloc.count)) { 435 /* Fast-path */ 436 netmem = pool->alloc.cache[--pool->alloc.count]; 437 alloc_stat_inc(pool, fast); 438 } else { 439 netmem = page_pool_refill_alloc_cache(pool); 440 } 441 442 return netmem; 443 } 444 445 static void __page_pool_dma_sync_for_device(const struct page_pool *pool, 446 netmem_ref netmem, 447 u32 dma_sync_size) 448 { 449 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC) 450 dma_addr_t dma_addr = page_pool_get_dma_addr_netmem(netmem); 451 452 dma_sync_size = min(dma_sync_size, pool->p.max_len); 453 __dma_sync_single_for_device(pool->p.dev, dma_addr + pool->p.offset, 454 dma_sync_size, pool->p.dma_dir); 455 #endif 456 } 457 458 static __always_inline void 459 page_pool_dma_sync_for_device(const struct page_pool *pool, 460 netmem_ref netmem, 461 u32 dma_sync_size) 462 { 463 if (pool->dma_sync && dma_dev_need_sync(pool->p.dev)) { 464 rcu_read_lock(); 465 /* re-check under rcu_read_lock() to sync with page_pool_scrub() */ 466 if (pool->dma_sync) 467 __page_pool_dma_sync_for_device(pool, netmem, 468 dma_sync_size); 469 rcu_read_unlock(); 470 } 471 } 472 473 static bool page_pool_dma_map(struct page_pool *pool, netmem_ref netmem, gfp_t gfp) 474 { 475 dma_addr_t dma; 476 int err; 477 u32 id; 478 479 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 480 * since dma_addr_t can be either 32 or 64 bits and does not always fit 481 * into page private data (i.e 32bit cpu with 64bit DMA caps) 482 * This mapping is kept for lifetime of page, until leaving pool. 483 */ 484 dma = dma_map_page_attrs(pool->p.dev, netmem_to_page(netmem), 0, 485 (PAGE_SIZE << pool->p.order), pool->p.dma_dir, 486 DMA_ATTR_SKIP_CPU_SYNC | 487 DMA_ATTR_WEAK_ORDERING); 488 if (dma_mapping_error(pool->p.dev, dma)) 489 return false; 490 491 if (page_pool_set_dma_addr_netmem(netmem, dma)) { 492 WARN_ONCE(1, "unexpected DMA address, please report to netdev@"); 493 goto unmap_failed; 494 } 495 496 if (in_softirq()) 497 err = xa_alloc(&pool->dma_mapped, &id, netmem_to_page(netmem), 498 PP_DMA_INDEX_LIMIT, gfp); 499 else 500 err = xa_alloc_bh(&pool->dma_mapped, &id, netmem_to_page(netmem), 501 PP_DMA_INDEX_LIMIT, gfp); 502 if (err) { 503 WARN_ONCE(err != -ENOMEM, "couldn't track DMA mapping, please report to netdev@"); 504 goto unset_failed; 505 } 506 507 netmem_set_dma_index(netmem, id); 508 page_pool_dma_sync_for_device(pool, netmem, pool->p.max_len); 509 510 return true; 511 512 unset_failed: 513 page_pool_set_dma_addr_netmem(netmem, 0); 514 unmap_failed: 515 dma_unmap_page_attrs(pool->p.dev, dma, 516 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 517 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 518 return false; 519 } 520 521 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 522 gfp_t gfp) 523 { 524 struct page *page; 525 526 gfp |= __GFP_COMP; 527 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 528 if (unlikely(!page)) 529 return NULL; 530 531 if (pool->dma_map && unlikely(!page_pool_dma_map(pool, page_to_netmem(page), gfp))) { 532 put_page(page); 533 return NULL; 534 } 535 536 alloc_stat_inc(pool, slow_high_order); 537 page_pool_set_pp_info(pool, page_to_netmem(page)); 538 539 /* Track how many pages are held 'in-flight' */ 540 pool->pages_state_hold_cnt++; 541 trace_page_pool_state_hold(pool, page_to_netmem(page), 542 pool->pages_state_hold_cnt); 543 return page; 544 } 545 546 /* slow path */ 547 static noinline netmem_ref __page_pool_alloc_netmems_slow(struct page_pool *pool, 548 gfp_t gfp) 549 { 550 const int bulk = PP_ALLOC_CACHE_REFILL; 551 unsigned int pp_order = pool->p.order; 552 bool dma_map = pool->dma_map; 553 netmem_ref netmem; 554 int i, nr_pages; 555 556 /* Don't support bulk alloc for high-order pages */ 557 if (unlikely(pp_order)) 558 return page_to_netmem(__page_pool_alloc_page_order(pool, gfp)); 559 560 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 561 if (unlikely(pool->alloc.count > 0)) 562 return pool->alloc.cache[--pool->alloc.count]; 563 564 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk */ 565 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 566 567 nr_pages = alloc_pages_bulk_node(gfp, pool->p.nid, bulk, 568 (struct page **)pool->alloc.cache); 569 if (unlikely(!nr_pages)) 570 return 0; 571 572 /* Pages have been filled into alloc.cache array, but count is zero and 573 * page element have not been (possibly) DMA mapped. 574 */ 575 for (i = 0; i < nr_pages; i++) { 576 netmem = pool->alloc.cache[i]; 577 if (dma_map && unlikely(!page_pool_dma_map(pool, netmem, gfp))) { 578 put_page(netmem_to_page(netmem)); 579 continue; 580 } 581 582 page_pool_set_pp_info(pool, netmem); 583 pool->alloc.cache[pool->alloc.count++] = netmem; 584 /* Track how many pages are held 'in-flight' */ 585 pool->pages_state_hold_cnt++; 586 trace_page_pool_state_hold(pool, netmem, 587 pool->pages_state_hold_cnt); 588 } 589 590 /* Return last page */ 591 if (likely(pool->alloc.count > 0)) { 592 netmem = pool->alloc.cache[--pool->alloc.count]; 593 alloc_stat_inc(pool, slow); 594 } else { 595 netmem = 0; 596 } 597 598 /* When page just alloc'ed is should/must have refcnt 1. */ 599 return netmem; 600 } 601 602 /* For using page_pool replace: alloc_pages() API calls, but provide 603 * synchronization guarantee for allocation side. 604 */ 605 netmem_ref page_pool_alloc_netmems(struct page_pool *pool, gfp_t gfp) 606 { 607 netmem_ref netmem; 608 609 /* Fast-path: Get a page from cache */ 610 netmem = __page_pool_get_cached(pool); 611 if (netmem) 612 return netmem; 613 614 /* Slow-path: cache empty, do real allocation */ 615 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops) 616 netmem = pool->mp_ops->alloc_netmems(pool, gfp); 617 else 618 netmem = __page_pool_alloc_netmems_slow(pool, gfp); 619 return netmem; 620 } 621 EXPORT_SYMBOL(page_pool_alloc_netmems); 622 ALLOW_ERROR_INJECTION(page_pool_alloc_netmems, NULL); 623 624 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 625 { 626 return netmem_to_page(page_pool_alloc_netmems(pool, gfp)); 627 } 628 EXPORT_SYMBOL(page_pool_alloc_pages); 629 630 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 631 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 632 */ 633 #define _distance(a, b) (s32)((a) - (b)) 634 635 s32 page_pool_inflight(const struct page_pool *pool, bool strict) 636 { 637 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 638 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 639 s32 inflight; 640 641 inflight = _distance(hold_cnt, release_cnt); 642 643 if (strict) { 644 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 645 WARN(inflight < 0, "Negative(%d) inflight packet-pages", 646 inflight); 647 } else { 648 inflight = max(0, inflight); 649 } 650 651 return inflight; 652 } 653 654 void page_pool_set_pp_info(struct page_pool *pool, netmem_ref netmem) 655 { 656 netmem_set_pp(netmem, pool); 657 netmem_or_pp_magic(netmem, PP_SIGNATURE); 658 659 /* Ensuring all pages have been split into one fragment initially: 660 * page_pool_set_pp_info() is only called once for every page when it 661 * is allocated from the page allocator and page_pool_fragment_page() 662 * is dirtying the same cache line as the page->pp_magic above, so 663 * the overhead is negligible. 664 */ 665 page_pool_fragment_netmem(netmem, 1); 666 if (pool->has_init_callback) 667 pool->slow.init_callback(netmem, pool->slow.init_arg); 668 } 669 670 void page_pool_clear_pp_info(netmem_ref netmem) 671 { 672 netmem_clear_pp_magic(netmem); 673 netmem_set_pp(netmem, NULL); 674 } 675 676 static __always_inline void __page_pool_release_netmem_dma(struct page_pool *pool, 677 netmem_ref netmem) 678 { 679 struct page *old, *page = netmem_to_page(netmem); 680 unsigned long id; 681 dma_addr_t dma; 682 683 if (!pool->dma_map) 684 /* Always account for inflight pages, even if we didn't 685 * map them 686 */ 687 return; 688 689 id = netmem_get_dma_index(netmem); 690 if (!id) 691 return; 692 693 if (in_softirq()) 694 old = xa_cmpxchg(&pool->dma_mapped, id, page, NULL, 0); 695 else 696 old = xa_cmpxchg_bh(&pool->dma_mapped, id, page, NULL, 0); 697 if (old != page) 698 return; 699 700 dma = page_pool_get_dma_addr_netmem(netmem); 701 702 /* When page is unmapped, it cannot be returned to our pool */ 703 dma_unmap_page_attrs(pool->p.dev, dma, 704 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 705 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 706 page_pool_set_dma_addr_netmem(netmem, 0); 707 netmem_set_dma_index(netmem, 0); 708 } 709 710 /* Disconnects a page (from a page_pool). API users can have a need 711 * to disconnect a page (from a page_pool), to allow it to be used as 712 * a regular page (that will eventually be returned to the normal 713 * page-allocator via put_page). 714 */ 715 static void page_pool_return_netmem(struct page_pool *pool, netmem_ref netmem) 716 { 717 int count; 718 bool put; 719 720 put = true; 721 if (static_branch_unlikely(&page_pool_mem_providers) && pool->mp_ops) 722 put = pool->mp_ops->release_netmem(pool, netmem); 723 else 724 __page_pool_release_netmem_dma(pool, netmem); 725 726 /* This may be the last page returned, releasing the pool, so 727 * it is not safe to reference pool afterwards. 728 */ 729 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 730 trace_page_pool_state_release(pool, netmem, count); 731 732 if (put) { 733 page_pool_clear_pp_info(netmem); 734 put_page(netmem_to_page(netmem)); 735 } 736 /* An optimization would be to call __free_pages(page, pool->p.order) 737 * knowing page is not part of page-cache (thus avoiding a 738 * __page_cache_release() call). 739 */ 740 } 741 742 static bool page_pool_recycle_in_ring(struct page_pool *pool, netmem_ref netmem) 743 { 744 bool in_softirq, ret; 745 746 /* BH protection not needed if current is softirq */ 747 in_softirq = page_pool_producer_lock(pool); 748 ret = !__ptr_ring_produce(&pool->ring, (__force void *)netmem); 749 if (ret) 750 recycle_stat_inc(pool, ring); 751 page_pool_producer_unlock(pool, in_softirq); 752 753 return ret; 754 } 755 756 /* Only allow direct recycling in special circumstances, into the 757 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 758 * 759 * Caller must provide appropriate safe context. 760 */ 761 static bool page_pool_recycle_in_cache(netmem_ref netmem, 762 struct page_pool *pool) 763 { 764 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 765 recycle_stat_inc(pool, cache_full); 766 return false; 767 } 768 769 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 770 pool->alloc.cache[pool->alloc.count++] = netmem; 771 recycle_stat_inc(pool, cached); 772 return true; 773 } 774 775 static bool __page_pool_page_can_be_recycled(netmem_ref netmem) 776 { 777 return netmem_is_net_iov(netmem) || 778 (page_ref_count(netmem_to_page(netmem)) == 1 && 779 !page_is_pfmemalloc(netmem_to_page(netmem))); 780 } 781 782 /* If the page refcnt == 1, this will try to recycle the page. 783 * If pool->dma_sync is set, we'll try to sync the DMA area for 784 * the configured size min(dma_sync_size, pool->max_len). 785 * If the page refcnt != 1, then the page will be returned to memory 786 * subsystem. 787 */ 788 static __always_inline netmem_ref 789 __page_pool_put_page(struct page_pool *pool, netmem_ref netmem, 790 unsigned int dma_sync_size, bool allow_direct) 791 { 792 lockdep_assert_no_hardirq(); 793 794 /* This allocator is optimized for the XDP mode that uses 795 * one-frame-per-page, but have fallbacks that act like the 796 * regular page allocator APIs. 797 * 798 * refcnt == 1 means page_pool owns page, and can recycle it. 799 * 800 * page is NOT reusable when allocated when system is under 801 * some pressure. (page_is_pfmemalloc) 802 */ 803 if (likely(__page_pool_page_can_be_recycled(netmem))) { 804 /* Read barrier done in page_ref_count / READ_ONCE */ 805 806 page_pool_dma_sync_for_device(pool, netmem, dma_sync_size); 807 808 if (allow_direct && page_pool_recycle_in_cache(netmem, pool)) 809 return 0; 810 811 /* Page found as candidate for recycling */ 812 return netmem; 813 } 814 815 /* Fallback/non-XDP mode: API user have elevated refcnt. 816 * 817 * Many drivers split up the page into fragments, and some 818 * want to keep doing this to save memory and do refcnt based 819 * recycling. Support this use case too, to ease drivers 820 * switching between XDP/non-XDP. 821 * 822 * In-case page_pool maintains the DMA mapping, API user must 823 * call page_pool_put_page once. In this elevated refcnt 824 * case, the DMA is unmapped/released, as driver is likely 825 * doing refcnt based recycle tricks, meaning another process 826 * will be invoking put_page. 827 */ 828 recycle_stat_inc(pool, released_refcnt); 829 page_pool_return_netmem(pool, netmem); 830 831 return 0; 832 } 833 834 static bool page_pool_napi_local(const struct page_pool *pool) 835 { 836 const struct napi_struct *napi; 837 u32 cpuid; 838 839 /* On PREEMPT_RT the softirq can be preempted by the consumer */ 840 if (IS_ENABLED(CONFIG_PREEMPT_RT)) 841 return false; 842 843 if (unlikely(!in_softirq())) 844 return false; 845 846 /* Allow direct recycle if we have reasons to believe that we are 847 * in the same context as the consumer would run, so there's 848 * no possible race. 849 * __page_pool_put_page() makes sure we're not in hardirq context 850 * and interrupts are enabled prior to accessing the cache. 851 */ 852 cpuid = smp_processor_id(); 853 if (READ_ONCE(pool->cpuid) == cpuid) 854 return true; 855 856 napi = READ_ONCE(pool->p.napi); 857 858 return napi && READ_ONCE(napi->list_owner) == cpuid; 859 } 860 861 void page_pool_put_unrefed_netmem(struct page_pool *pool, netmem_ref netmem, 862 unsigned int dma_sync_size, bool allow_direct) 863 { 864 if (!allow_direct) 865 allow_direct = page_pool_napi_local(pool); 866 867 netmem = __page_pool_put_page(pool, netmem, dma_sync_size, 868 allow_direct); 869 if (netmem && !page_pool_recycle_in_ring(pool, netmem)) { 870 /* Cache full, fallback to free pages */ 871 recycle_stat_inc(pool, ring_full); 872 page_pool_return_netmem(pool, netmem); 873 } 874 } 875 EXPORT_SYMBOL(page_pool_put_unrefed_netmem); 876 877 void page_pool_put_unrefed_page(struct page_pool *pool, struct page *page, 878 unsigned int dma_sync_size, bool allow_direct) 879 { 880 page_pool_put_unrefed_netmem(pool, page_to_netmem(page), dma_sync_size, 881 allow_direct); 882 } 883 EXPORT_SYMBOL(page_pool_put_unrefed_page); 884 885 static void page_pool_recycle_ring_bulk(struct page_pool *pool, 886 netmem_ref *bulk, 887 u32 bulk_len) 888 { 889 bool in_softirq; 890 u32 i; 891 892 /* Bulk produce into ptr_ring page_pool cache */ 893 in_softirq = page_pool_producer_lock(pool); 894 895 for (i = 0; i < bulk_len; i++) { 896 if (__ptr_ring_produce(&pool->ring, (__force void *)bulk[i])) { 897 /* ring full */ 898 recycle_stat_inc(pool, ring_full); 899 break; 900 } 901 } 902 903 page_pool_producer_unlock(pool, in_softirq); 904 recycle_stat_add(pool, ring, i); 905 906 /* Hopefully all pages were returned into ptr_ring */ 907 if (likely(i == bulk_len)) 908 return; 909 910 /* 911 * ptr_ring cache is full, free remaining pages outside producer lock 912 * since put_page() with refcnt == 1 can be an expensive operation. 913 */ 914 for (; i < bulk_len; i++) 915 page_pool_return_netmem(pool, bulk[i]); 916 } 917 918 /** 919 * page_pool_put_netmem_bulk() - release references on multiple netmems 920 * @data: array holding netmem references 921 * @count: number of entries in @data 922 * 923 * Tries to refill a number of netmems into the ptr_ring cache holding ptr_ring 924 * producer lock. If the ptr_ring is full, page_pool_put_netmem_bulk() 925 * will release leftover netmems to the memory provider. 926 * page_pool_put_netmem_bulk() is suitable to be run inside the driver NAPI tx 927 * completion loop for the XDP_REDIRECT use case. 928 * 929 * Please note the caller must not use data area after running 930 * page_pool_put_netmem_bulk(), as this function overwrites it. 931 */ 932 void page_pool_put_netmem_bulk(netmem_ref *data, u32 count) 933 { 934 u32 bulk_len = 0; 935 936 for (u32 i = 0; i < count; i++) { 937 netmem_ref netmem = netmem_compound_head(data[i]); 938 939 if (page_pool_unref_and_test(netmem)) 940 data[bulk_len++] = netmem; 941 } 942 943 count = bulk_len; 944 while (count) { 945 netmem_ref bulk[XDP_BULK_QUEUE_SIZE]; 946 struct page_pool *pool = NULL; 947 bool allow_direct; 948 u32 foreign = 0; 949 950 bulk_len = 0; 951 952 for (u32 i = 0; i < count; i++) { 953 struct page_pool *netmem_pp; 954 netmem_ref netmem = data[i]; 955 956 netmem_pp = netmem_get_pp(netmem); 957 if (unlikely(!pool)) { 958 pool = netmem_pp; 959 allow_direct = page_pool_napi_local(pool); 960 } else if (netmem_pp != pool) { 961 /* 962 * If the netmem belongs to a different 963 * page_pool, save it for another round. 964 */ 965 data[foreign++] = netmem; 966 continue; 967 } 968 969 netmem = __page_pool_put_page(pool, netmem, -1, 970 allow_direct); 971 /* Approved for bulk recycling in ptr_ring cache */ 972 if (netmem) 973 bulk[bulk_len++] = netmem; 974 } 975 976 if (bulk_len) 977 page_pool_recycle_ring_bulk(pool, bulk, bulk_len); 978 979 count = foreign; 980 } 981 } 982 EXPORT_SYMBOL(page_pool_put_netmem_bulk); 983 984 static netmem_ref page_pool_drain_frag(struct page_pool *pool, 985 netmem_ref netmem) 986 { 987 long drain_count = BIAS_MAX - pool->frag_users; 988 989 /* Some user is still using the page frag */ 990 if (likely(page_pool_unref_netmem(netmem, drain_count))) 991 return 0; 992 993 if (__page_pool_page_can_be_recycled(netmem)) { 994 page_pool_dma_sync_for_device(pool, netmem, -1); 995 return netmem; 996 } 997 998 page_pool_return_netmem(pool, netmem); 999 return 0; 1000 } 1001 1002 static void page_pool_free_frag(struct page_pool *pool) 1003 { 1004 long drain_count = BIAS_MAX - pool->frag_users; 1005 netmem_ref netmem = pool->frag_page; 1006 1007 pool->frag_page = 0; 1008 1009 if (!netmem || page_pool_unref_netmem(netmem, drain_count)) 1010 return; 1011 1012 page_pool_return_netmem(pool, netmem); 1013 } 1014 1015 netmem_ref page_pool_alloc_frag_netmem(struct page_pool *pool, 1016 unsigned int *offset, unsigned int size, 1017 gfp_t gfp) 1018 { 1019 unsigned int max_size = PAGE_SIZE << pool->p.order; 1020 netmem_ref netmem = pool->frag_page; 1021 1022 if (WARN_ON(size > max_size)) 1023 return 0; 1024 1025 size = ALIGN(size, dma_get_cache_alignment()); 1026 *offset = pool->frag_offset; 1027 1028 if (netmem && *offset + size > max_size) { 1029 netmem = page_pool_drain_frag(pool, netmem); 1030 if (netmem) { 1031 recycle_stat_inc(pool, cached); 1032 alloc_stat_inc(pool, fast); 1033 goto frag_reset; 1034 } 1035 } 1036 1037 if (!netmem) { 1038 netmem = page_pool_alloc_netmems(pool, gfp); 1039 if (unlikely(!netmem)) { 1040 pool->frag_page = 0; 1041 return 0; 1042 } 1043 1044 pool->frag_page = netmem; 1045 1046 frag_reset: 1047 pool->frag_users = 1; 1048 *offset = 0; 1049 pool->frag_offset = size; 1050 page_pool_fragment_netmem(netmem, BIAS_MAX); 1051 return netmem; 1052 } 1053 1054 pool->frag_users++; 1055 pool->frag_offset = *offset + size; 1056 return netmem; 1057 } 1058 EXPORT_SYMBOL(page_pool_alloc_frag_netmem); 1059 1060 struct page *page_pool_alloc_frag(struct page_pool *pool, unsigned int *offset, 1061 unsigned int size, gfp_t gfp) 1062 { 1063 return netmem_to_page(page_pool_alloc_frag_netmem(pool, offset, size, 1064 gfp)); 1065 } 1066 EXPORT_SYMBOL(page_pool_alloc_frag); 1067 1068 static void page_pool_empty_ring(struct page_pool *pool) 1069 { 1070 netmem_ref netmem; 1071 1072 /* Empty recycle ring */ 1073 while ((netmem = (__force netmem_ref)ptr_ring_consume_bh(&pool->ring))) { 1074 /* Verify the refcnt invariant of cached pages */ 1075 if (!(netmem_ref_count(netmem) == 1)) 1076 pr_crit("%s() page_pool refcnt %d violation\n", 1077 __func__, netmem_ref_count(netmem)); 1078 1079 page_pool_return_netmem(pool, netmem); 1080 } 1081 } 1082 1083 static void __page_pool_destroy(struct page_pool *pool) 1084 { 1085 if (pool->disconnect) 1086 pool->disconnect(pool); 1087 1088 page_pool_unlist(pool); 1089 page_pool_uninit(pool); 1090 1091 if (pool->mp_ops) { 1092 pool->mp_ops->destroy(pool); 1093 static_branch_dec(&page_pool_mem_providers); 1094 } 1095 1096 kfree(pool); 1097 } 1098 1099 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 1100 { 1101 netmem_ref netmem; 1102 1103 if (pool->destroy_cnt) 1104 return; 1105 1106 /* Empty alloc cache, assume caller made sure this is 1107 * no-longer in use, and page_pool_alloc_pages() cannot be 1108 * call concurrently. 1109 */ 1110 while (pool->alloc.count) { 1111 netmem = pool->alloc.cache[--pool->alloc.count]; 1112 page_pool_return_netmem(pool, netmem); 1113 } 1114 } 1115 1116 static void page_pool_scrub(struct page_pool *pool) 1117 { 1118 unsigned long id; 1119 void *ptr; 1120 1121 page_pool_empty_alloc_cache_once(pool); 1122 if (!pool->destroy_cnt++ && pool->dma_map) { 1123 if (pool->dma_sync) { 1124 /* Disable page_pool_dma_sync_for_device() */ 1125 pool->dma_sync = false; 1126 1127 /* Make sure all concurrent returns that may see the old 1128 * value of dma_sync (and thus perform a sync) have 1129 * finished before doing the unmapping below. Skip the 1130 * wait if the device doesn't actually need syncing, or 1131 * if there are no outstanding mapped pages. 1132 */ 1133 if (dma_dev_need_sync(pool->p.dev) && 1134 !xa_empty(&pool->dma_mapped)) 1135 synchronize_net(); 1136 } 1137 1138 xa_for_each(&pool->dma_mapped, id, ptr) 1139 __page_pool_release_netmem_dma(pool, page_to_netmem((struct page *)ptr)); 1140 } 1141 1142 /* No more consumers should exist, but producers could still 1143 * be in-flight. 1144 */ 1145 page_pool_empty_ring(pool); 1146 } 1147 1148 static int page_pool_release(struct page_pool *pool) 1149 { 1150 bool in_softirq; 1151 int inflight; 1152 1153 page_pool_scrub(pool); 1154 inflight = page_pool_inflight(pool, true); 1155 /* Acquire producer lock to make sure producers have exited. */ 1156 in_softirq = page_pool_producer_lock(pool); 1157 page_pool_producer_unlock(pool, in_softirq); 1158 if (!inflight) 1159 __page_pool_destroy(pool); 1160 1161 return inflight; 1162 } 1163 1164 static void page_pool_release_retry(struct work_struct *wq) 1165 { 1166 struct delayed_work *dwq = to_delayed_work(wq); 1167 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 1168 void *netdev; 1169 int inflight; 1170 1171 inflight = page_pool_release(pool); 1172 /* In rare cases, a driver bug may cause inflight to go negative. 1173 * Don't reschedule release if inflight is 0 or negative. 1174 * - If 0, the page_pool has been destroyed 1175 * - if negative, we will never recover 1176 * in both cases no reschedule is necessary. 1177 */ 1178 if (inflight <= 0) 1179 return; 1180 1181 /* Periodic warning for page pools the user can't see */ 1182 netdev = READ_ONCE(pool->slow.netdev); 1183 if (time_after_eq(jiffies, pool->defer_warn) && 1184 (!netdev || netdev == NET_PTR_POISON)) { 1185 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 1186 1187 pr_warn("%s() stalled pool shutdown: id %u, %d inflight %d sec\n", 1188 __func__, pool->user.id, inflight, sec); 1189 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1190 } 1191 1192 /* Still not ready to be disconnected, retry later */ 1193 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1194 } 1195 1196 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 1197 const struct xdp_mem_info *mem) 1198 { 1199 refcount_inc(&pool->user_cnt); 1200 pool->disconnect = disconnect; 1201 pool->xdp_mem_id = mem->id; 1202 } 1203 1204 /** 1205 * page_pool_enable_direct_recycling() - mark page pool as owned by NAPI 1206 * @pool: page pool to modify 1207 * @napi: NAPI instance to associate the page pool with 1208 * 1209 * Associate a page pool with a NAPI instance for lockless page recycling. 1210 * This is useful when a new page pool has to be added to a NAPI instance 1211 * without disabling that NAPI instance, to mark the point at which control 1212 * path "hands over" the page pool to the NAPI instance. In most cases driver 1213 * can simply set the @napi field in struct page_pool_params, and does not 1214 * have to call this helper. 1215 * 1216 * The function is idempotent, but does not implement any refcounting. 1217 * Single page_pool_disable_direct_recycling() will disable recycling, 1218 * no matter how many times enable was called. 1219 */ 1220 void page_pool_enable_direct_recycling(struct page_pool *pool, 1221 struct napi_struct *napi) 1222 { 1223 if (READ_ONCE(pool->p.napi) == napi) 1224 return; 1225 WARN_ON(!napi || pool->p.napi); 1226 1227 mutex_lock(&page_pools_lock); 1228 WRITE_ONCE(pool->p.napi, napi); 1229 mutex_unlock(&page_pools_lock); 1230 } 1231 EXPORT_SYMBOL(page_pool_enable_direct_recycling); 1232 1233 void page_pool_disable_direct_recycling(struct page_pool *pool) 1234 { 1235 /* Disable direct recycling based on pool->cpuid. 1236 * Paired with READ_ONCE() in page_pool_napi_local(). 1237 */ 1238 WRITE_ONCE(pool->cpuid, -1); 1239 1240 if (!pool->p.napi) 1241 return; 1242 1243 napi_assert_will_not_race(pool->p.napi); 1244 1245 mutex_lock(&page_pools_lock); 1246 WRITE_ONCE(pool->p.napi, NULL); 1247 mutex_unlock(&page_pools_lock); 1248 } 1249 EXPORT_SYMBOL(page_pool_disable_direct_recycling); 1250 1251 void page_pool_destroy(struct page_pool *pool) 1252 { 1253 if (!pool) 1254 return; 1255 1256 if (!page_pool_put(pool)) 1257 return; 1258 1259 page_pool_disable_direct_recycling(pool); 1260 page_pool_free_frag(pool); 1261 1262 if (!page_pool_release(pool)) 1263 return; 1264 1265 page_pool_detached(pool); 1266 pool->defer_start = jiffies; 1267 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 1268 1269 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 1270 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 1271 } 1272 EXPORT_SYMBOL(page_pool_destroy); 1273 1274 /* Caller must provide appropriate safe context, e.g. NAPI. */ 1275 void page_pool_update_nid(struct page_pool *pool, int new_nid) 1276 { 1277 netmem_ref netmem; 1278 1279 trace_page_pool_update_nid(pool, new_nid); 1280 pool->p.nid = new_nid; 1281 1282 /* Flush pool alloc cache, as refill will check NUMA node */ 1283 while (pool->alloc.count) { 1284 netmem = pool->alloc.cache[--pool->alloc.count]; 1285 page_pool_return_netmem(pool, netmem); 1286 } 1287 } 1288 EXPORT_SYMBOL(page_pool_update_nid); 1289 1290 bool net_mp_niov_set_dma_addr(struct net_iov *niov, dma_addr_t addr) 1291 { 1292 return page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov), addr); 1293 } 1294 1295 /* Associate a niov with a page pool. Should follow with a matching 1296 * net_mp_niov_clear_page_pool() 1297 */ 1298 void net_mp_niov_set_page_pool(struct page_pool *pool, struct net_iov *niov) 1299 { 1300 netmem_ref netmem = net_iov_to_netmem(niov); 1301 1302 page_pool_set_pp_info(pool, netmem); 1303 1304 pool->pages_state_hold_cnt++; 1305 trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt); 1306 } 1307 1308 /* Disassociate a niov from a page pool. Should only be used in the 1309 * ->release_netmem() path. 1310 */ 1311 void net_mp_niov_clear_page_pool(struct net_iov *niov) 1312 { 1313 netmem_ref netmem = net_iov_to_netmem(niov); 1314 1315 page_pool_clear_pp_info(netmem); 1316 } 1317