xref: /linux/net/core/page_pool.c (revision 0a91330b2af9f71ceeeed483f92774182b58f6d9)
1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * page_pool.c
4  *	Author:	Jesper Dangaard Brouer <netoptimizer@brouer.com>
5  *	Copyright (C) 2016 Red Hat, Inc.
6  */
7 
8 #include <linux/types.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/device.h>
12 
13 #include <net/page_pool.h>
14 #include <linux/dma-direction.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/page-flags.h>
17 #include <linux/mm.h> /* for __put_page() */
18 
19 #include <trace/events/page_pool.h>
20 
21 #define DEFER_TIME (msecs_to_jiffies(1000))
22 #define DEFER_WARN_INTERVAL (60 * HZ)
23 
24 static int page_pool_init(struct page_pool *pool,
25 			  const struct page_pool_params *params)
26 {
27 	unsigned int ring_qsize = 1024; /* Default */
28 
29 	memcpy(&pool->p, params, sizeof(pool->p));
30 
31 	/* Validate only known flags were used */
32 	if (pool->p.flags & ~(PP_FLAG_ALL))
33 		return -EINVAL;
34 
35 	if (pool->p.pool_size)
36 		ring_qsize = pool->p.pool_size;
37 
38 	/* Sanity limit mem that can be pinned down */
39 	if (ring_qsize > 32768)
40 		return -E2BIG;
41 
42 	/* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL.
43 	 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending,
44 	 * which is the XDP_TX use-case.
45 	 */
46 	if ((pool->p.dma_dir != DMA_FROM_DEVICE) &&
47 	    (pool->p.dma_dir != DMA_BIDIRECTIONAL))
48 		return -EINVAL;
49 
50 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) {
51 		/* In order to request DMA-sync-for-device the page
52 		 * needs to be mapped
53 		 */
54 		if (!(pool->p.flags & PP_FLAG_DMA_MAP))
55 			return -EINVAL;
56 
57 		if (!pool->p.max_len)
58 			return -EINVAL;
59 
60 		/* pool->p.offset has to be set according to the address
61 		 * offset used by the DMA engine to start copying rx data
62 		 */
63 	}
64 
65 	if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0)
66 		return -ENOMEM;
67 
68 	atomic_set(&pool->pages_state_release_cnt, 0);
69 
70 	/* Driver calling page_pool_create() also call page_pool_destroy() */
71 	refcount_set(&pool->user_cnt, 1);
72 
73 	if (pool->p.flags & PP_FLAG_DMA_MAP)
74 		get_device(pool->p.dev);
75 
76 	return 0;
77 }
78 
79 struct page_pool *page_pool_create(const struct page_pool_params *params)
80 {
81 	struct page_pool *pool;
82 	int err;
83 
84 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid);
85 	if (!pool)
86 		return ERR_PTR(-ENOMEM);
87 
88 	err = page_pool_init(pool, params);
89 	if (err < 0) {
90 		pr_warn("%s() gave up with errno %d\n", __func__, err);
91 		kfree(pool);
92 		return ERR_PTR(err);
93 	}
94 
95 	return pool;
96 }
97 EXPORT_SYMBOL(page_pool_create);
98 
99 static void __page_pool_return_page(struct page_pool *pool, struct page *page);
100 
101 noinline
102 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool)
103 {
104 	struct ptr_ring *r = &pool->ring;
105 	struct page *page;
106 	int pref_nid; /* preferred NUMA node */
107 
108 	/* Quicker fallback, avoid locks when ring is empty */
109 	if (__ptr_ring_empty(r))
110 		return NULL;
111 
112 	/* Softirq guarantee CPU and thus NUMA node is stable. This,
113 	 * assumes CPU refilling driver RX-ring will also run RX-NAPI.
114 	 */
115 #ifdef CONFIG_NUMA
116 	pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid;
117 #else
118 	/* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */
119 	pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */
120 #endif
121 
122 	/* Slower-path: Get pages from locked ring queue */
123 	spin_lock(&r->consumer_lock);
124 
125 	/* Refill alloc array, but only if NUMA match */
126 	do {
127 		page = __ptr_ring_consume(r);
128 		if (unlikely(!page))
129 			break;
130 
131 		if (likely(page_to_nid(page) == pref_nid)) {
132 			pool->alloc.cache[pool->alloc.count++] = page;
133 		} else {
134 			/* NUMA mismatch;
135 			 * (1) release 1 page to page-allocator and
136 			 * (2) break out to fallthrough to alloc_pages_node.
137 			 * This limit stress on page buddy alloactor.
138 			 */
139 			__page_pool_return_page(pool, page);
140 			page = NULL;
141 			break;
142 		}
143 	} while (pool->alloc.count < PP_ALLOC_CACHE_REFILL);
144 
145 	/* Return last page */
146 	if (likely(pool->alloc.count > 0))
147 		page = pool->alloc.cache[--pool->alloc.count];
148 
149 	spin_unlock(&r->consumer_lock);
150 	return page;
151 }
152 
153 /* fast path */
154 static struct page *__page_pool_get_cached(struct page_pool *pool)
155 {
156 	struct page *page;
157 
158 	/* Caller MUST guarantee safe non-concurrent access, e.g. softirq */
159 	if (likely(pool->alloc.count)) {
160 		/* Fast-path */
161 		page = pool->alloc.cache[--pool->alloc.count];
162 	} else {
163 		page = page_pool_refill_alloc_cache(pool);
164 	}
165 
166 	return page;
167 }
168 
169 static void page_pool_dma_sync_for_device(struct page_pool *pool,
170 					  struct page *page,
171 					  unsigned int dma_sync_size)
172 {
173 	dma_sync_size = min(dma_sync_size, pool->p.max_len);
174 	dma_sync_single_range_for_device(pool->p.dev, page->dma_addr,
175 					 pool->p.offset, dma_sync_size,
176 					 pool->p.dma_dir);
177 }
178 
179 /* slow path */
180 noinline
181 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool,
182 						 gfp_t _gfp)
183 {
184 	struct page *page;
185 	gfp_t gfp = _gfp;
186 	dma_addr_t dma;
187 
188 	/* We could always set __GFP_COMP, and avoid this branch, as
189 	 * prep_new_page() can handle order-0 with __GFP_COMP.
190 	 */
191 	if (pool->p.order)
192 		gfp |= __GFP_COMP;
193 
194 	/* FUTURE development:
195 	 *
196 	 * Current slow-path essentially falls back to single page
197 	 * allocations, which doesn't improve performance.  This code
198 	 * need bulk allocation support from the page allocator code.
199 	 */
200 
201 	/* Cache was empty, do real allocation */
202 #ifdef CONFIG_NUMA
203 	page = alloc_pages_node(pool->p.nid, gfp, pool->p.order);
204 #else
205 	page = alloc_pages(gfp, pool->p.order);
206 #endif
207 	if (!page)
208 		return NULL;
209 
210 	if (!(pool->p.flags & PP_FLAG_DMA_MAP))
211 		goto skip_dma_map;
212 
213 	/* Setup DMA mapping: use 'struct page' area for storing DMA-addr
214 	 * since dma_addr_t can be either 32 or 64 bits and does not always fit
215 	 * into page private data (i.e 32bit cpu with 64bit DMA caps)
216 	 * This mapping is kept for lifetime of page, until leaving pool.
217 	 */
218 	dma = dma_map_page_attrs(pool->p.dev, page, 0,
219 				 (PAGE_SIZE << pool->p.order),
220 				 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC);
221 	if (dma_mapping_error(pool->p.dev, dma)) {
222 		put_page(page);
223 		return NULL;
224 	}
225 	page->dma_addr = dma;
226 
227 	if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
228 		page_pool_dma_sync_for_device(pool, page, pool->p.max_len);
229 
230 skip_dma_map:
231 	/* Track how many pages are held 'in-flight' */
232 	pool->pages_state_hold_cnt++;
233 
234 	trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt);
235 
236 	/* When page just alloc'ed is should/must have refcnt 1. */
237 	return page;
238 }
239 
240 /* For using page_pool replace: alloc_pages() API calls, but provide
241  * synchronization guarantee for allocation side.
242  */
243 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp)
244 {
245 	struct page *page;
246 
247 	/* Fast-path: Get a page from cache */
248 	page = __page_pool_get_cached(pool);
249 	if (page)
250 		return page;
251 
252 	/* Slow-path: cache empty, do real allocation */
253 	page = __page_pool_alloc_pages_slow(pool, gfp);
254 	return page;
255 }
256 EXPORT_SYMBOL(page_pool_alloc_pages);
257 
258 /* Calculate distance between two u32 values, valid if distance is below 2^(31)
259  *  https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution
260  */
261 #define _distance(a, b)	(s32)((a) - (b))
262 
263 static s32 page_pool_inflight(struct page_pool *pool)
264 {
265 	u32 release_cnt = atomic_read(&pool->pages_state_release_cnt);
266 	u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt);
267 	s32 inflight;
268 
269 	inflight = _distance(hold_cnt, release_cnt);
270 
271 	trace_page_pool_release(pool, inflight, hold_cnt, release_cnt);
272 	WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight);
273 
274 	return inflight;
275 }
276 
277 /* Cleanup page_pool state from page */
278 static void __page_pool_clean_page(struct page_pool *pool,
279 				   struct page *page)
280 {
281 	dma_addr_t dma;
282 	int count;
283 
284 	if (!(pool->p.flags & PP_FLAG_DMA_MAP))
285 		goto skip_dma_unmap;
286 
287 	dma = page->dma_addr;
288 	/* DMA unmap */
289 	dma_unmap_page_attrs(pool->p.dev, dma,
290 			     PAGE_SIZE << pool->p.order, pool->p.dma_dir,
291 			     DMA_ATTR_SKIP_CPU_SYNC);
292 	page->dma_addr = 0;
293 skip_dma_unmap:
294 	/* This may be the last page returned, releasing the pool, so
295 	 * it is not safe to reference pool afterwards.
296 	 */
297 	count = atomic_inc_return(&pool->pages_state_release_cnt);
298 	trace_page_pool_state_release(pool, page, count);
299 }
300 
301 /* unmap the page and clean our state */
302 void page_pool_unmap_page(struct page_pool *pool, struct page *page)
303 {
304 	/* When page is unmapped, this implies page will not be
305 	 * returned to page_pool.
306 	 */
307 	__page_pool_clean_page(pool, page);
308 }
309 EXPORT_SYMBOL(page_pool_unmap_page);
310 
311 /* Return a page to the page allocator, cleaning up our state */
312 static void __page_pool_return_page(struct page_pool *pool, struct page *page)
313 {
314 	__page_pool_clean_page(pool, page);
315 
316 	put_page(page);
317 	/* An optimization would be to call __free_pages(page, pool->p.order)
318 	 * knowing page is not part of page-cache (thus avoiding a
319 	 * __page_cache_release() call).
320 	 */
321 }
322 
323 static bool __page_pool_recycle_into_ring(struct page_pool *pool,
324 				   struct page *page)
325 {
326 	int ret;
327 	/* BH protection not needed if current is serving softirq */
328 	if (in_serving_softirq())
329 		ret = ptr_ring_produce(&pool->ring, page);
330 	else
331 		ret = ptr_ring_produce_bh(&pool->ring, page);
332 
333 	return (ret == 0) ? true : false;
334 }
335 
336 /* Only allow direct recycling in special circumstances, into the
337  * alloc side cache.  E.g. during RX-NAPI processing for XDP_DROP use-case.
338  *
339  * Caller must provide appropriate safe context.
340  */
341 static bool __page_pool_recycle_direct(struct page *page,
342 				       struct page_pool *pool)
343 {
344 	if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE))
345 		return false;
346 
347 	/* Caller MUST have verified/know (page_ref_count(page) == 1) */
348 	pool->alloc.cache[pool->alloc.count++] = page;
349 	return true;
350 }
351 
352 /* page is NOT reusable when:
353  * 1) allocated when system is under some pressure. (page_is_pfmemalloc)
354  */
355 static bool pool_page_reusable(struct page_pool *pool, struct page *page)
356 {
357 	return !page_is_pfmemalloc(page);
358 }
359 
360 void __page_pool_put_page(struct page_pool *pool, struct page *page,
361 			  unsigned int dma_sync_size, bool allow_direct)
362 {
363 	/* This allocator is optimized for the XDP mode that uses
364 	 * one-frame-per-page, but have fallbacks that act like the
365 	 * regular page allocator APIs.
366 	 *
367 	 * refcnt == 1 means page_pool owns page, and can recycle it.
368 	 */
369 	if (likely(page_ref_count(page) == 1 &&
370 		   pool_page_reusable(pool, page))) {
371 		/* Read barrier done in page_ref_count / READ_ONCE */
372 
373 		if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV)
374 			page_pool_dma_sync_for_device(pool, page,
375 						      dma_sync_size);
376 
377 		if (allow_direct && in_serving_softirq())
378 			if (__page_pool_recycle_direct(page, pool))
379 				return;
380 
381 		if (!__page_pool_recycle_into_ring(pool, page)) {
382 			/* Cache full, fallback to free pages */
383 			__page_pool_return_page(pool, page);
384 		}
385 		return;
386 	}
387 	/* Fallback/non-XDP mode: API user have elevated refcnt.
388 	 *
389 	 * Many drivers split up the page into fragments, and some
390 	 * want to keep doing this to save memory and do refcnt based
391 	 * recycling. Support this use case too, to ease drivers
392 	 * switching between XDP/non-XDP.
393 	 *
394 	 * In-case page_pool maintains the DMA mapping, API user must
395 	 * call page_pool_put_page once.  In this elevated refcnt
396 	 * case, the DMA is unmapped/released, as driver is likely
397 	 * doing refcnt based recycle tricks, meaning another process
398 	 * will be invoking put_page.
399 	 */
400 	__page_pool_clean_page(pool, page);
401 	put_page(page);
402 }
403 EXPORT_SYMBOL(__page_pool_put_page);
404 
405 static void __page_pool_empty_ring(struct page_pool *pool)
406 {
407 	struct page *page;
408 
409 	/* Empty recycle ring */
410 	while ((page = ptr_ring_consume_bh(&pool->ring))) {
411 		/* Verify the refcnt invariant of cached pages */
412 		if (!(page_ref_count(page) == 1))
413 			pr_crit("%s() page_pool refcnt %d violation\n",
414 				__func__, page_ref_count(page));
415 
416 		__page_pool_return_page(pool, page);
417 	}
418 }
419 
420 static void page_pool_free(struct page_pool *pool)
421 {
422 	if (pool->disconnect)
423 		pool->disconnect(pool);
424 
425 	ptr_ring_cleanup(&pool->ring, NULL);
426 
427 	if (pool->p.flags & PP_FLAG_DMA_MAP)
428 		put_device(pool->p.dev);
429 
430 	kfree(pool);
431 }
432 
433 static void page_pool_empty_alloc_cache_once(struct page_pool *pool)
434 {
435 	struct page *page;
436 
437 	if (pool->destroy_cnt)
438 		return;
439 
440 	/* Empty alloc cache, assume caller made sure this is
441 	 * no-longer in use, and page_pool_alloc_pages() cannot be
442 	 * call concurrently.
443 	 */
444 	while (pool->alloc.count) {
445 		page = pool->alloc.cache[--pool->alloc.count];
446 		__page_pool_return_page(pool, page);
447 	}
448 }
449 
450 static void page_pool_scrub(struct page_pool *pool)
451 {
452 	page_pool_empty_alloc_cache_once(pool);
453 	pool->destroy_cnt++;
454 
455 	/* No more consumers should exist, but producers could still
456 	 * be in-flight.
457 	 */
458 	__page_pool_empty_ring(pool);
459 }
460 
461 static int page_pool_release(struct page_pool *pool)
462 {
463 	int inflight;
464 
465 	page_pool_scrub(pool);
466 	inflight = page_pool_inflight(pool);
467 	if (!inflight)
468 		page_pool_free(pool);
469 
470 	return inflight;
471 }
472 
473 static void page_pool_release_retry(struct work_struct *wq)
474 {
475 	struct delayed_work *dwq = to_delayed_work(wq);
476 	struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw);
477 	int inflight;
478 
479 	inflight = page_pool_release(pool);
480 	if (!inflight)
481 		return;
482 
483 	/* Periodic warning */
484 	if (time_after_eq(jiffies, pool->defer_warn)) {
485 		int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ;
486 
487 		pr_warn("%s() stalled pool shutdown %d inflight %d sec\n",
488 			__func__, inflight, sec);
489 		pool->defer_warn = jiffies + DEFER_WARN_INTERVAL;
490 	}
491 
492 	/* Still not ready to be disconnected, retry later */
493 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
494 }
495 
496 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *))
497 {
498 	refcount_inc(&pool->user_cnt);
499 	pool->disconnect = disconnect;
500 }
501 
502 void page_pool_destroy(struct page_pool *pool)
503 {
504 	if (!pool)
505 		return;
506 
507 	if (!page_pool_put(pool))
508 		return;
509 
510 	if (!page_pool_release(pool))
511 		return;
512 
513 	pool->defer_start = jiffies;
514 	pool->defer_warn  = jiffies + DEFER_WARN_INTERVAL;
515 
516 	INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry);
517 	schedule_delayed_work(&pool->release_dw, DEFER_TIME);
518 }
519 EXPORT_SYMBOL(page_pool_destroy);
520 
521 /* Caller must provide appropriate safe context, e.g. NAPI. */
522 void page_pool_update_nid(struct page_pool *pool, int new_nid)
523 {
524 	struct page *page;
525 
526 	trace_page_pool_update_nid(pool, new_nid);
527 	pool->p.nid = new_nid;
528 
529 	/* Flush pool alloc cache, as refill will check NUMA node */
530 	while (pool->alloc.count) {
531 		page = pool->alloc.cache[--pool->alloc.count];
532 		__page_pool_return_page(pool, page);
533 	}
534 }
535 EXPORT_SYMBOL(page_pool_update_nid);
536