1 /* SPDX-License-Identifier: GPL-2.0 2 * 3 * page_pool.c 4 * Author: Jesper Dangaard Brouer <netoptimizer@brouer.com> 5 * Copyright (C) 2016 Red Hat, Inc. 6 */ 7 8 #include <linux/types.h> 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/device.h> 12 13 #include <net/page_pool/helpers.h> 14 #include <net/xdp.h> 15 16 #include <linux/dma-direction.h> 17 #include <linux/dma-mapping.h> 18 #include <linux/page-flags.h> 19 #include <linux/mm.h> /* for put_page() */ 20 #include <linux/poison.h> 21 #include <linux/ethtool.h> 22 #include <linux/netdevice.h> 23 24 #include <trace/events/page_pool.h> 25 26 #define DEFER_TIME (msecs_to_jiffies(1000)) 27 #define DEFER_WARN_INTERVAL (60 * HZ) 28 29 #define BIAS_MAX LONG_MAX 30 31 #ifdef CONFIG_PAGE_POOL_STATS 32 /* alloc_stat_inc is intended to be used in softirq context */ 33 #define alloc_stat_inc(pool, __stat) (pool->alloc_stats.__stat++) 34 /* recycle_stat_inc is safe to use when preemption is possible. */ 35 #define recycle_stat_inc(pool, __stat) \ 36 do { \ 37 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 38 this_cpu_inc(s->__stat); \ 39 } while (0) 40 41 #define recycle_stat_add(pool, __stat, val) \ 42 do { \ 43 struct page_pool_recycle_stats __percpu *s = pool->recycle_stats; \ 44 this_cpu_add(s->__stat, val); \ 45 } while (0) 46 47 static const char pp_stats[][ETH_GSTRING_LEN] = { 48 "rx_pp_alloc_fast", 49 "rx_pp_alloc_slow", 50 "rx_pp_alloc_slow_ho", 51 "rx_pp_alloc_empty", 52 "rx_pp_alloc_refill", 53 "rx_pp_alloc_waive", 54 "rx_pp_recycle_cached", 55 "rx_pp_recycle_cache_full", 56 "rx_pp_recycle_ring", 57 "rx_pp_recycle_ring_full", 58 "rx_pp_recycle_released_ref", 59 }; 60 61 /** 62 * page_pool_get_stats() - fetch page pool stats 63 * @pool: pool from which page was allocated 64 * @stats: struct page_pool_stats to fill in 65 * 66 * Retrieve statistics about the page_pool. This API is only available 67 * if the kernel has been configured with ``CONFIG_PAGE_POOL_STATS=y``. 68 * A pointer to a caller allocated struct page_pool_stats structure 69 * is passed to this API which is filled in. The caller can then report 70 * those stats to the user (perhaps via ethtool, debugfs, etc.). 71 */ 72 bool page_pool_get_stats(struct page_pool *pool, 73 struct page_pool_stats *stats) 74 { 75 int cpu = 0; 76 77 if (!stats) 78 return false; 79 80 /* The caller is responsible to initialize stats. */ 81 stats->alloc_stats.fast += pool->alloc_stats.fast; 82 stats->alloc_stats.slow += pool->alloc_stats.slow; 83 stats->alloc_stats.slow_high_order += pool->alloc_stats.slow_high_order; 84 stats->alloc_stats.empty += pool->alloc_stats.empty; 85 stats->alloc_stats.refill += pool->alloc_stats.refill; 86 stats->alloc_stats.waive += pool->alloc_stats.waive; 87 88 for_each_possible_cpu(cpu) { 89 const struct page_pool_recycle_stats *pcpu = 90 per_cpu_ptr(pool->recycle_stats, cpu); 91 92 stats->recycle_stats.cached += pcpu->cached; 93 stats->recycle_stats.cache_full += pcpu->cache_full; 94 stats->recycle_stats.ring += pcpu->ring; 95 stats->recycle_stats.ring_full += pcpu->ring_full; 96 stats->recycle_stats.released_refcnt += pcpu->released_refcnt; 97 } 98 99 return true; 100 } 101 EXPORT_SYMBOL(page_pool_get_stats); 102 103 u8 *page_pool_ethtool_stats_get_strings(u8 *data) 104 { 105 int i; 106 107 for (i = 0; i < ARRAY_SIZE(pp_stats); i++) { 108 memcpy(data, pp_stats[i], ETH_GSTRING_LEN); 109 data += ETH_GSTRING_LEN; 110 } 111 112 return data; 113 } 114 EXPORT_SYMBOL(page_pool_ethtool_stats_get_strings); 115 116 int page_pool_ethtool_stats_get_count(void) 117 { 118 return ARRAY_SIZE(pp_stats); 119 } 120 EXPORT_SYMBOL(page_pool_ethtool_stats_get_count); 121 122 u64 *page_pool_ethtool_stats_get(u64 *data, void *stats) 123 { 124 struct page_pool_stats *pool_stats = stats; 125 126 *data++ = pool_stats->alloc_stats.fast; 127 *data++ = pool_stats->alloc_stats.slow; 128 *data++ = pool_stats->alloc_stats.slow_high_order; 129 *data++ = pool_stats->alloc_stats.empty; 130 *data++ = pool_stats->alloc_stats.refill; 131 *data++ = pool_stats->alloc_stats.waive; 132 *data++ = pool_stats->recycle_stats.cached; 133 *data++ = pool_stats->recycle_stats.cache_full; 134 *data++ = pool_stats->recycle_stats.ring; 135 *data++ = pool_stats->recycle_stats.ring_full; 136 *data++ = pool_stats->recycle_stats.released_refcnt; 137 138 return data; 139 } 140 EXPORT_SYMBOL(page_pool_ethtool_stats_get); 141 142 #else 143 #define alloc_stat_inc(pool, __stat) 144 #define recycle_stat_inc(pool, __stat) 145 #define recycle_stat_add(pool, __stat, val) 146 #endif 147 148 static bool page_pool_producer_lock(struct page_pool *pool) 149 __acquires(&pool->ring.producer_lock) 150 { 151 bool in_softirq = in_softirq(); 152 153 if (in_softirq) 154 spin_lock(&pool->ring.producer_lock); 155 else 156 spin_lock_bh(&pool->ring.producer_lock); 157 158 return in_softirq; 159 } 160 161 static void page_pool_producer_unlock(struct page_pool *pool, 162 bool in_softirq) 163 __releases(&pool->ring.producer_lock) 164 { 165 if (in_softirq) 166 spin_unlock(&pool->ring.producer_lock); 167 else 168 spin_unlock_bh(&pool->ring.producer_lock); 169 } 170 171 static int page_pool_init(struct page_pool *pool, 172 const struct page_pool_params *params) 173 { 174 unsigned int ring_qsize = 1024; /* Default */ 175 176 memcpy(&pool->p, params, sizeof(pool->p)); 177 178 /* Validate only known flags were used */ 179 if (pool->p.flags & ~(PP_FLAG_ALL)) 180 return -EINVAL; 181 182 if (pool->p.pool_size) 183 ring_qsize = pool->p.pool_size; 184 185 /* Sanity limit mem that can be pinned down */ 186 if (ring_qsize > 32768) 187 return -E2BIG; 188 189 /* DMA direction is either DMA_FROM_DEVICE or DMA_BIDIRECTIONAL. 190 * DMA_BIDIRECTIONAL is for allowing page used for DMA sending, 191 * which is the XDP_TX use-case. 192 */ 193 if (pool->p.flags & PP_FLAG_DMA_MAP) { 194 if ((pool->p.dma_dir != DMA_FROM_DEVICE) && 195 (pool->p.dma_dir != DMA_BIDIRECTIONAL)) 196 return -EINVAL; 197 } 198 199 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) { 200 /* In order to request DMA-sync-for-device the page 201 * needs to be mapped 202 */ 203 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 204 return -EINVAL; 205 206 if (!pool->p.max_len) 207 return -EINVAL; 208 209 /* pool->p.offset has to be set according to the address 210 * offset used by the DMA engine to start copying rx data 211 */ 212 } 213 214 #ifdef CONFIG_PAGE_POOL_STATS 215 pool->recycle_stats = alloc_percpu(struct page_pool_recycle_stats); 216 if (!pool->recycle_stats) 217 return -ENOMEM; 218 #endif 219 220 if (ptr_ring_init(&pool->ring, ring_qsize, GFP_KERNEL) < 0) 221 return -ENOMEM; 222 223 atomic_set(&pool->pages_state_release_cnt, 0); 224 225 /* Driver calling page_pool_create() also call page_pool_destroy() */ 226 refcount_set(&pool->user_cnt, 1); 227 228 if (pool->p.flags & PP_FLAG_DMA_MAP) 229 get_device(pool->p.dev); 230 231 return 0; 232 } 233 234 /** 235 * page_pool_create() - create a page pool. 236 * @params: parameters, see struct page_pool_params 237 */ 238 struct page_pool *page_pool_create(const struct page_pool_params *params) 239 { 240 struct page_pool *pool; 241 int err; 242 243 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, params->nid); 244 if (!pool) 245 return ERR_PTR(-ENOMEM); 246 247 err = page_pool_init(pool, params); 248 if (err < 0) { 249 pr_warn("%s() gave up with errno %d\n", __func__, err); 250 kfree(pool); 251 return ERR_PTR(err); 252 } 253 254 return pool; 255 } 256 EXPORT_SYMBOL(page_pool_create); 257 258 static void page_pool_return_page(struct page_pool *pool, struct page *page); 259 260 noinline 261 static struct page *page_pool_refill_alloc_cache(struct page_pool *pool) 262 { 263 struct ptr_ring *r = &pool->ring; 264 struct page *page; 265 int pref_nid; /* preferred NUMA node */ 266 267 /* Quicker fallback, avoid locks when ring is empty */ 268 if (__ptr_ring_empty(r)) { 269 alloc_stat_inc(pool, empty); 270 return NULL; 271 } 272 273 /* Softirq guarantee CPU and thus NUMA node is stable. This, 274 * assumes CPU refilling driver RX-ring will also run RX-NAPI. 275 */ 276 #ifdef CONFIG_NUMA 277 pref_nid = (pool->p.nid == NUMA_NO_NODE) ? numa_mem_id() : pool->p.nid; 278 #else 279 /* Ignore pool->p.nid setting if !CONFIG_NUMA, helps compiler */ 280 pref_nid = numa_mem_id(); /* will be zero like page_to_nid() */ 281 #endif 282 283 /* Refill alloc array, but only if NUMA match */ 284 do { 285 page = __ptr_ring_consume(r); 286 if (unlikely(!page)) 287 break; 288 289 if (likely(page_to_nid(page) == pref_nid)) { 290 pool->alloc.cache[pool->alloc.count++] = page; 291 } else { 292 /* NUMA mismatch; 293 * (1) release 1 page to page-allocator and 294 * (2) break out to fallthrough to alloc_pages_node. 295 * This limit stress on page buddy alloactor. 296 */ 297 page_pool_return_page(pool, page); 298 alloc_stat_inc(pool, waive); 299 page = NULL; 300 break; 301 } 302 } while (pool->alloc.count < PP_ALLOC_CACHE_REFILL); 303 304 /* Return last page */ 305 if (likely(pool->alloc.count > 0)) { 306 page = pool->alloc.cache[--pool->alloc.count]; 307 alloc_stat_inc(pool, refill); 308 } 309 310 return page; 311 } 312 313 /* fast path */ 314 static struct page *__page_pool_get_cached(struct page_pool *pool) 315 { 316 struct page *page; 317 318 /* Caller MUST guarantee safe non-concurrent access, e.g. softirq */ 319 if (likely(pool->alloc.count)) { 320 /* Fast-path */ 321 page = pool->alloc.cache[--pool->alloc.count]; 322 alloc_stat_inc(pool, fast); 323 } else { 324 page = page_pool_refill_alloc_cache(pool); 325 } 326 327 return page; 328 } 329 330 static void page_pool_dma_sync_for_device(struct page_pool *pool, 331 struct page *page, 332 unsigned int dma_sync_size) 333 { 334 dma_addr_t dma_addr = page_pool_get_dma_addr(page); 335 336 dma_sync_size = min(dma_sync_size, pool->p.max_len); 337 dma_sync_single_range_for_device(pool->p.dev, dma_addr, 338 pool->p.offset, dma_sync_size, 339 pool->p.dma_dir); 340 } 341 342 static bool page_pool_dma_map(struct page_pool *pool, struct page *page) 343 { 344 dma_addr_t dma; 345 346 /* Setup DMA mapping: use 'struct page' area for storing DMA-addr 347 * since dma_addr_t can be either 32 or 64 bits and does not always fit 348 * into page private data (i.e 32bit cpu with 64bit DMA caps) 349 * This mapping is kept for lifetime of page, until leaving pool. 350 */ 351 dma = dma_map_page_attrs(pool->p.dev, page, 0, 352 (PAGE_SIZE << pool->p.order), 353 pool->p.dma_dir, DMA_ATTR_SKIP_CPU_SYNC | 354 DMA_ATTR_WEAK_ORDERING); 355 if (dma_mapping_error(pool->p.dev, dma)) 356 return false; 357 358 if (page_pool_set_dma_addr(page, dma)) 359 goto unmap_failed; 360 361 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 362 page_pool_dma_sync_for_device(pool, page, pool->p.max_len); 363 364 return true; 365 366 unmap_failed: 367 WARN_ON_ONCE("unexpected DMA address, please report to netdev@"); 368 dma_unmap_page_attrs(pool->p.dev, dma, 369 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 370 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 371 return false; 372 } 373 374 static void page_pool_set_pp_info(struct page_pool *pool, 375 struct page *page) 376 { 377 page->pp = pool; 378 page->pp_magic |= PP_SIGNATURE; 379 380 /* Ensuring all pages have been split into one fragment initially: 381 * page_pool_set_pp_info() is only called once for every page when it 382 * is allocated from the page allocator and page_pool_fragment_page() 383 * is dirtying the same cache line as the page->pp_magic above, so 384 * the overhead is negligible. 385 */ 386 page_pool_fragment_page(page, 1); 387 if (pool->p.init_callback) 388 pool->p.init_callback(page, pool->p.init_arg); 389 } 390 391 static void page_pool_clear_pp_info(struct page *page) 392 { 393 page->pp_magic = 0; 394 page->pp = NULL; 395 } 396 397 static struct page *__page_pool_alloc_page_order(struct page_pool *pool, 398 gfp_t gfp) 399 { 400 struct page *page; 401 402 gfp |= __GFP_COMP; 403 page = alloc_pages_node(pool->p.nid, gfp, pool->p.order); 404 if (unlikely(!page)) 405 return NULL; 406 407 if ((pool->p.flags & PP_FLAG_DMA_MAP) && 408 unlikely(!page_pool_dma_map(pool, page))) { 409 put_page(page); 410 return NULL; 411 } 412 413 alloc_stat_inc(pool, slow_high_order); 414 page_pool_set_pp_info(pool, page); 415 416 /* Track how many pages are held 'in-flight' */ 417 pool->pages_state_hold_cnt++; 418 trace_page_pool_state_hold(pool, page, pool->pages_state_hold_cnt); 419 return page; 420 } 421 422 /* slow path */ 423 noinline 424 static struct page *__page_pool_alloc_pages_slow(struct page_pool *pool, 425 gfp_t gfp) 426 { 427 const int bulk = PP_ALLOC_CACHE_REFILL; 428 unsigned int pp_flags = pool->p.flags; 429 unsigned int pp_order = pool->p.order; 430 struct page *page; 431 int i, nr_pages; 432 433 /* Don't support bulk alloc for high-order pages */ 434 if (unlikely(pp_order)) 435 return __page_pool_alloc_page_order(pool, gfp); 436 437 /* Unnecessary as alloc cache is empty, but guarantees zero count */ 438 if (unlikely(pool->alloc.count > 0)) 439 return pool->alloc.cache[--pool->alloc.count]; 440 441 /* Mark empty alloc.cache slots "empty" for alloc_pages_bulk_array */ 442 memset(&pool->alloc.cache, 0, sizeof(void *) * bulk); 443 444 nr_pages = alloc_pages_bulk_array_node(gfp, pool->p.nid, bulk, 445 pool->alloc.cache); 446 if (unlikely(!nr_pages)) 447 return NULL; 448 449 /* Pages have been filled into alloc.cache array, but count is zero and 450 * page element have not been (possibly) DMA mapped. 451 */ 452 for (i = 0; i < nr_pages; i++) { 453 page = pool->alloc.cache[i]; 454 if ((pp_flags & PP_FLAG_DMA_MAP) && 455 unlikely(!page_pool_dma_map(pool, page))) { 456 put_page(page); 457 continue; 458 } 459 460 page_pool_set_pp_info(pool, page); 461 pool->alloc.cache[pool->alloc.count++] = page; 462 /* Track how many pages are held 'in-flight' */ 463 pool->pages_state_hold_cnt++; 464 trace_page_pool_state_hold(pool, page, 465 pool->pages_state_hold_cnt); 466 } 467 468 /* Return last page */ 469 if (likely(pool->alloc.count > 0)) { 470 page = pool->alloc.cache[--pool->alloc.count]; 471 alloc_stat_inc(pool, slow); 472 } else { 473 page = NULL; 474 } 475 476 /* When page just alloc'ed is should/must have refcnt 1. */ 477 return page; 478 } 479 480 /* For using page_pool replace: alloc_pages() API calls, but provide 481 * synchronization guarantee for allocation side. 482 */ 483 struct page *page_pool_alloc_pages(struct page_pool *pool, gfp_t gfp) 484 { 485 struct page *page; 486 487 /* Fast-path: Get a page from cache */ 488 page = __page_pool_get_cached(pool); 489 if (page) 490 return page; 491 492 /* Slow-path: cache empty, do real allocation */ 493 page = __page_pool_alloc_pages_slow(pool, gfp); 494 return page; 495 } 496 EXPORT_SYMBOL(page_pool_alloc_pages); 497 498 /* Calculate distance between two u32 values, valid if distance is below 2^(31) 499 * https://en.wikipedia.org/wiki/Serial_number_arithmetic#General_Solution 500 */ 501 #define _distance(a, b) (s32)((a) - (b)) 502 503 static s32 page_pool_inflight(struct page_pool *pool) 504 { 505 u32 release_cnt = atomic_read(&pool->pages_state_release_cnt); 506 u32 hold_cnt = READ_ONCE(pool->pages_state_hold_cnt); 507 s32 inflight; 508 509 inflight = _distance(hold_cnt, release_cnt); 510 511 trace_page_pool_release(pool, inflight, hold_cnt, release_cnt); 512 WARN(inflight < 0, "Negative(%d) inflight packet-pages", inflight); 513 514 return inflight; 515 } 516 517 /* Disconnects a page (from a page_pool). API users can have a need 518 * to disconnect a page (from a page_pool), to allow it to be used as 519 * a regular page (that will eventually be returned to the normal 520 * page-allocator via put_page). 521 */ 522 static void page_pool_return_page(struct page_pool *pool, struct page *page) 523 { 524 dma_addr_t dma; 525 int count; 526 527 if (!(pool->p.flags & PP_FLAG_DMA_MAP)) 528 /* Always account for inflight pages, even if we didn't 529 * map them 530 */ 531 goto skip_dma_unmap; 532 533 dma = page_pool_get_dma_addr(page); 534 535 /* When page is unmapped, it cannot be returned to our pool */ 536 dma_unmap_page_attrs(pool->p.dev, dma, 537 PAGE_SIZE << pool->p.order, pool->p.dma_dir, 538 DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING); 539 page_pool_set_dma_addr(page, 0); 540 skip_dma_unmap: 541 page_pool_clear_pp_info(page); 542 543 /* This may be the last page returned, releasing the pool, so 544 * it is not safe to reference pool afterwards. 545 */ 546 count = atomic_inc_return_relaxed(&pool->pages_state_release_cnt); 547 trace_page_pool_state_release(pool, page, count); 548 549 put_page(page); 550 /* An optimization would be to call __free_pages(page, pool->p.order) 551 * knowing page is not part of page-cache (thus avoiding a 552 * __page_cache_release() call). 553 */ 554 } 555 556 static bool page_pool_recycle_in_ring(struct page_pool *pool, struct page *page) 557 { 558 int ret; 559 /* BH protection not needed if current is softirq */ 560 if (in_softirq()) 561 ret = ptr_ring_produce(&pool->ring, page); 562 else 563 ret = ptr_ring_produce_bh(&pool->ring, page); 564 565 if (!ret) { 566 recycle_stat_inc(pool, ring); 567 return true; 568 } 569 570 return false; 571 } 572 573 /* Only allow direct recycling in special circumstances, into the 574 * alloc side cache. E.g. during RX-NAPI processing for XDP_DROP use-case. 575 * 576 * Caller must provide appropriate safe context. 577 */ 578 static bool page_pool_recycle_in_cache(struct page *page, 579 struct page_pool *pool) 580 { 581 if (unlikely(pool->alloc.count == PP_ALLOC_CACHE_SIZE)) { 582 recycle_stat_inc(pool, cache_full); 583 return false; 584 } 585 586 /* Caller MUST have verified/know (page_ref_count(page) == 1) */ 587 pool->alloc.cache[pool->alloc.count++] = page; 588 recycle_stat_inc(pool, cached); 589 return true; 590 } 591 592 /* If the page refcnt == 1, this will try to recycle the page. 593 * if PP_FLAG_DMA_SYNC_DEV is set, we'll try to sync the DMA area for 594 * the configured size min(dma_sync_size, pool->max_len). 595 * If the page refcnt != 1, then the page will be returned to memory 596 * subsystem. 597 */ 598 static __always_inline struct page * 599 __page_pool_put_page(struct page_pool *pool, struct page *page, 600 unsigned int dma_sync_size, bool allow_direct) 601 { 602 lockdep_assert_no_hardirq(); 603 604 /* This allocator is optimized for the XDP mode that uses 605 * one-frame-per-page, but have fallbacks that act like the 606 * regular page allocator APIs. 607 * 608 * refcnt == 1 means page_pool owns page, and can recycle it. 609 * 610 * page is NOT reusable when allocated when system is under 611 * some pressure. (page_is_pfmemalloc) 612 */ 613 if (likely(page_ref_count(page) == 1 && !page_is_pfmemalloc(page))) { 614 /* Read barrier done in page_ref_count / READ_ONCE */ 615 616 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 617 page_pool_dma_sync_for_device(pool, page, 618 dma_sync_size); 619 620 if (allow_direct && in_softirq() && 621 page_pool_recycle_in_cache(page, pool)) 622 return NULL; 623 624 /* Page found as candidate for recycling */ 625 return page; 626 } 627 /* Fallback/non-XDP mode: API user have elevated refcnt. 628 * 629 * Many drivers split up the page into fragments, and some 630 * want to keep doing this to save memory and do refcnt based 631 * recycling. Support this use case too, to ease drivers 632 * switching between XDP/non-XDP. 633 * 634 * In-case page_pool maintains the DMA mapping, API user must 635 * call page_pool_put_page once. In this elevated refcnt 636 * case, the DMA is unmapped/released, as driver is likely 637 * doing refcnt based recycle tricks, meaning another process 638 * will be invoking put_page. 639 */ 640 recycle_stat_inc(pool, released_refcnt); 641 page_pool_return_page(pool, page); 642 643 return NULL; 644 } 645 646 void page_pool_put_defragged_page(struct page_pool *pool, struct page *page, 647 unsigned int dma_sync_size, bool allow_direct) 648 { 649 page = __page_pool_put_page(pool, page, dma_sync_size, allow_direct); 650 if (page && !page_pool_recycle_in_ring(pool, page)) { 651 /* Cache full, fallback to free pages */ 652 recycle_stat_inc(pool, ring_full); 653 page_pool_return_page(pool, page); 654 } 655 } 656 EXPORT_SYMBOL(page_pool_put_defragged_page); 657 658 /** 659 * page_pool_put_page_bulk() - release references on multiple pages 660 * @pool: pool from which pages were allocated 661 * @data: array holding page pointers 662 * @count: number of pages in @data 663 * 664 * Tries to refill a number of pages into the ptr_ring cache holding ptr_ring 665 * producer lock. If the ptr_ring is full, page_pool_put_page_bulk() 666 * will release leftover pages to the page allocator. 667 * page_pool_put_page_bulk() is suitable to be run inside the driver NAPI tx 668 * completion loop for the XDP_REDIRECT use case. 669 * 670 * Please note the caller must not use data area after running 671 * page_pool_put_page_bulk(), as this function overwrites it. 672 */ 673 void page_pool_put_page_bulk(struct page_pool *pool, void **data, 674 int count) 675 { 676 int i, bulk_len = 0; 677 bool in_softirq; 678 679 for (i = 0; i < count; i++) { 680 struct page *page = virt_to_head_page(data[i]); 681 682 /* It is not the last user for the page frag case */ 683 if (!page_pool_is_last_frag(page)) 684 continue; 685 686 page = __page_pool_put_page(pool, page, -1, false); 687 /* Approved for bulk recycling in ptr_ring cache */ 688 if (page) 689 data[bulk_len++] = page; 690 } 691 692 if (unlikely(!bulk_len)) 693 return; 694 695 /* Bulk producer into ptr_ring page_pool cache */ 696 in_softirq = page_pool_producer_lock(pool); 697 for (i = 0; i < bulk_len; i++) { 698 if (__ptr_ring_produce(&pool->ring, data[i])) { 699 /* ring full */ 700 recycle_stat_inc(pool, ring_full); 701 break; 702 } 703 } 704 recycle_stat_add(pool, ring, i); 705 page_pool_producer_unlock(pool, in_softirq); 706 707 /* Hopefully all pages was return into ptr_ring */ 708 if (likely(i == bulk_len)) 709 return; 710 711 /* ptr_ring cache full, free remaining pages outside producer lock 712 * since put_page() with refcnt == 1 can be an expensive operation 713 */ 714 for (; i < bulk_len; i++) 715 page_pool_return_page(pool, data[i]); 716 } 717 EXPORT_SYMBOL(page_pool_put_page_bulk); 718 719 static struct page *page_pool_drain_frag(struct page_pool *pool, 720 struct page *page) 721 { 722 long drain_count = BIAS_MAX - pool->frag_users; 723 724 /* Some user is still using the page frag */ 725 if (likely(page_pool_defrag_page(page, drain_count))) 726 return NULL; 727 728 if (page_ref_count(page) == 1 && !page_is_pfmemalloc(page)) { 729 if (pool->p.flags & PP_FLAG_DMA_SYNC_DEV) 730 page_pool_dma_sync_for_device(pool, page, -1); 731 732 return page; 733 } 734 735 page_pool_return_page(pool, page); 736 return NULL; 737 } 738 739 static void page_pool_free_frag(struct page_pool *pool) 740 { 741 long drain_count = BIAS_MAX - pool->frag_users; 742 struct page *page = pool->frag_page; 743 744 pool->frag_page = NULL; 745 746 if (!page || page_pool_defrag_page(page, drain_count)) 747 return; 748 749 page_pool_return_page(pool, page); 750 } 751 752 struct page *page_pool_alloc_frag(struct page_pool *pool, 753 unsigned int *offset, 754 unsigned int size, gfp_t gfp) 755 { 756 unsigned int max_size = PAGE_SIZE << pool->p.order; 757 struct page *page = pool->frag_page; 758 759 if (WARN_ON(size > max_size)) 760 return NULL; 761 762 size = ALIGN(size, dma_get_cache_alignment()); 763 *offset = pool->frag_offset; 764 765 if (page && *offset + size > max_size) { 766 page = page_pool_drain_frag(pool, page); 767 if (page) { 768 alloc_stat_inc(pool, fast); 769 goto frag_reset; 770 } 771 } 772 773 if (!page) { 774 page = page_pool_alloc_pages(pool, gfp); 775 if (unlikely(!page)) { 776 pool->frag_page = NULL; 777 return NULL; 778 } 779 780 pool->frag_page = page; 781 782 frag_reset: 783 pool->frag_users = 1; 784 *offset = 0; 785 pool->frag_offset = size; 786 page_pool_fragment_page(page, BIAS_MAX); 787 return page; 788 } 789 790 pool->frag_users++; 791 pool->frag_offset = *offset + size; 792 alloc_stat_inc(pool, fast); 793 return page; 794 } 795 EXPORT_SYMBOL(page_pool_alloc_frag); 796 797 static void page_pool_empty_ring(struct page_pool *pool) 798 { 799 struct page *page; 800 801 /* Empty recycle ring */ 802 while ((page = ptr_ring_consume_bh(&pool->ring))) { 803 /* Verify the refcnt invariant of cached pages */ 804 if (!(page_ref_count(page) == 1)) 805 pr_crit("%s() page_pool refcnt %d violation\n", 806 __func__, page_ref_count(page)); 807 808 page_pool_return_page(pool, page); 809 } 810 } 811 812 static void __page_pool_destroy(struct page_pool *pool) 813 { 814 if (pool->disconnect) 815 pool->disconnect(pool); 816 817 ptr_ring_cleanup(&pool->ring, NULL); 818 819 if (pool->p.flags & PP_FLAG_DMA_MAP) 820 put_device(pool->p.dev); 821 822 #ifdef CONFIG_PAGE_POOL_STATS 823 free_percpu(pool->recycle_stats); 824 #endif 825 kfree(pool); 826 } 827 828 static void page_pool_empty_alloc_cache_once(struct page_pool *pool) 829 { 830 struct page *page; 831 832 if (pool->destroy_cnt) 833 return; 834 835 /* Empty alloc cache, assume caller made sure this is 836 * no-longer in use, and page_pool_alloc_pages() cannot be 837 * call concurrently. 838 */ 839 while (pool->alloc.count) { 840 page = pool->alloc.cache[--pool->alloc.count]; 841 page_pool_return_page(pool, page); 842 } 843 } 844 845 static void page_pool_scrub(struct page_pool *pool) 846 { 847 page_pool_empty_alloc_cache_once(pool); 848 pool->destroy_cnt++; 849 850 /* No more consumers should exist, but producers could still 851 * be in-flight. 852 */ 853 page_pool_empty_ring(pool); 854 } 855 856 static int page_pool_release(struct page_pool *pool) 857 { 858 int inflight; 859 860 page_pool_scrub(pool); 861 inflight = page_pool_inflight(pool); 862 if (!inflight) 863 __page_pool_destroy(pool); 864 865 return inflight; 866 } 867 868 static void page_pool_release_retry(struct work_struct *wq) 869 { 870 struct delayed_work *dwq = to_delayed_work(wq); 871 struct page_pool *pool = container_of(dwq, typeof(*pool), release_dw); 872 int inflight; 873 874 inflight = page_pool_release(pool); 875 if (!inflight) 876 return; 877 878 /* Periodic warning */ 879 if (time_after_eq(jiffies, pool->defer_warn)) { 880 int sec = (s32)((u32)jiffies - (u32)pool->defer_start) / HZ; 881 882 pr_warn("%s() stalled pool shutdown %d inflight %d sec\n", 883 __func__, inflight, sec); 884 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 885 } 886 887 /* Still not ready to be disconnected, retry later */ 888 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 889 } 890 891 void page_pool_use_xdp_mem(struct page_pool *pool, void (*disconnect)(void *), 892 struct xdp_mem_info *mem) 893 { 894 refcount_inc(&pool->user_cnt); 895 pool->disconnect = disconnect; 896 pool->xdp_mem_id = mem->id; 897 } 898 899 void page_pool_unlink_napi(struct page_pool *pool) 900 { 901 if (!pool->p.napi) 902 return; 903 904 /* To avoid races with recycling and additional barriers make sure 905 * pool and NAPI are unlinked when NAPI is disabled. 906 */ 907 WARN_ON(!test_bit(NAPI_STATE_SCHED, &pool->p.napi->state) || 908 READ_ONCE(pool->p.napi->list_owner) != -1); 909 910 WRITE_ONCE(pool->p.napi, NULL); 911 } 912 EXPORT_SYMBOL(page_pool_unlink_napi); 913 914 void page_pool_destroy(struct page_pool *pool) 915 { 916 if (!pool) 917 return; 918 919 if (!page_pool_put(pool)) 920 return; 921 922 page_pool_unlink_napi(pool); 923 page_pool_free_frag(pool); 924 925 if (!page_pool_release(pool)) 926 return; 927 928 pool->defer_start = jiffies; 929 pool->defer_warn = jiffies + DEFER_WARN_INTERVAL; 930 931 INIT_DELAYED_WORK(&pool->release_dw, page_pool_release_retry); 932 schedule_delayed_work(&pool->release_dw, DEFER_TIME); 933 } 934 EXPORT_SYMBOL(page_pool_destroy); 935 936 /* Caller must provide appropriate safe context, e.g. NAPI. */ 937 void page_pool_update_nid(struct page_pool *pool, int new_nid) 938 { 939 struct page *page; 940 941 trace_page_pool_update_nid(pool, new_nid); 942 pool->p.nid = new_nid; 943 944 /* Flush pool alloc cache, as refill will check NUMA node */ 945 while (pool->alloc.count) { 946 page = pool->alloc.cache[--pool->alloc.count]; 947 page_pool_return_page(pool, page); 948 } 949 } 950 EXPORT_SYMBOL(page_pool_update_nid); 951