1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 60 61 #define MIN_PERNET_OPS_ID \ 62 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 63 64 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 65 66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 67 68 DEFINE_COOKIE(net_cookie); 69 70 static struct net_generic *net_alloc_generic(void) 71 { 72 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 73 unsigned int generic_size; 74 struct net_generic *ng; 75 76 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 77 78 ng = kzalloc(generic_size, GFP_KERNEL); 79 if (ng) 80 ng->s.len = gen_ptrs; 81 82 return ng; 83 } 84 85 static int net_assign_generic(struct net *net, unsigned int id, void *data) 86 { 87 struct net_generic *ng, *old_ng; 88 89 BUG_ON(id < MIN_PERNET_OPS_ID); 90 91 old_ng = rcu_dereference_protected(net->gen, 92 lockdep_is_held(&pernet_ops_rwsem)); 93 if (old_ng->s.len > id) { 94 old_ng->ptr[id] = data; 95 return 0; 96 } 97 98 ng = net_alloc_generic(); 99 if (!ng) 100 return -ENOMEM; 101 102 /* 103 * Some synchronisation notes: 104 * 105 * The net_generic explores the net->gen array inside rcu 106 * read section. Besides once set the net->gen->ptr[x] 107 * pointer never changes (see rules in netns/generic.h). 108 * 109 * That said, we simply duplicate this array and schedule 110 * the old copy for kfree after a grace period. 111 */ 112 113 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 114 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 115 ng->ptr[id] = data; 116 117 rcu_assign_pointer(net->gen, ng); 118 kfree_rcu(old_ng, s.rcu); 119 return 0; 120 } 121 122 static int ops_init(const struct pernet_operations *ops, struct net *net) 123 { 124 struct net_generic *ng; 125 int err = -ENOMEM; 126 void *data = NULL; 127 128 if (ops->id) { 129 data = kzalloc(ops->size, GFP_KERNEL); 130 if (!data) 131 goto out; 132 133 err = net_assign_generic(net, *ops->id, data); 134 if (err) 135 goto cleanup; 136 } 137 err = 0; 138 if (ops->init) 139 err = ops->init(net); 140 if (!err) 141 return 0; 142 143 if (ops->id) { 144 ng = rcu_dereference_protected(net->gen, 145 lockdep_is_held(&pernet_ops_rwsem)); 146 ng->ptr[*ops->id] = NULL; 147 } 148 149 cleanup: 150 kfree(data); 151 152 out: 153 return err; 154 } 155 156 static void ops_pre_exit_list(const struct pernet_operations *ops, 157 struct list_head *net_exit_list) 158 { 159 struct net *net; 160 161 if (ops->pre_exit) { 162 list_for_each_entry(net, net_exit_list, exit_list) 163 ops->pre_exit(net); 164 } 165 } 166 167 static void ops_exit_list(const struct pernet_operations *ops, 168 struct list_head *net_exit_list) 169 { 170 struct net *net; 171 if (ops->exit) { 172 list_for_each_entry(net, net_exit_list, exit_list) { 173 ops->exit(net); 174 cond_resched(); 175 } 176 } 177 if (ops->exit_batch) 178 ops->exit_batch(net_exit_list); 179 } 180 181 static void ops_free_list(const struct pernet_operations *ops, 182 struct list_head *net_exit_list) 183 { 184 struct net *net; 185 186 if (ops->id) { 187 list_for_each_entry(net, net_exit_list, exit_list) 188 kfree(net_generic(net, *ops->id)); 189 } 190 } 191 192 /* should be called with nsid_lock held */ 193 static int alloc_netid(struct net *net, struct net *peer, int reqid) 194 { 195 int min = 0, max = 0; 196 197 if (reqid >= 0) { 198 min = reqid; 199 max = reqid + 1; 200 } 201 202 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 203 } 204 205 /* This function is used by idr_for_each(). If net is equal to peer, the 206 * function returns the id so that idr_for_each() stops. Because we cannot 207 * returns the id 0 (idr_for_each() will not stop), we return the magic value 208 * NET_ID_ZERO (-1) for it. 209 */ 210 #define NET_ID_ZERO -1 211 static int net_eq_idr(int id, void *net, void *peer) 212 { 213 if (net_eq(net, peer)) 214 return id ? : NET_ID_ZERO; 215 return 0; 216 } 217 218 /* Must be called from RCU-critical section or with nsid_lock held */ 219 static int __peernet2id(const struct net *net, struct net *peer) 220 { 221 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 222 223 /* Magic value for id 0. */ 224 if (id == NET_ID_ZERO) 225 return 0; 226 if (id > 0) 227 return id; 228 229 return NETNSA_NSID_NOT_ASSIGNED; 230 } 231 232 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 233 struct nlmsghdr *nlh, gfp_t gfp); 234 /* This function returns the id of a peer netns. If no id is assigned, one will 235 * be allocated and returned. 236 */ 237 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 238 { 239 int id; 240 241 if (refcount_read(&net->ns.count) == 0) 242 return NETNSA_NSID_NOT_ASSIGNED; 243 244 spin_lock_bh(&net->nsid_lock); 245 id = __peernet2id(net, peer); 246 if (id >= 0) { 247 spin_unlock_bh(&net->nsid_lock); 248 return id; 249 } 250 251 /* When peer is obtained from RCU lists, we may race with 252 * its cleanup. Check whether it's alive, and this guarantees 253 * we never hash a peer back to net->netns_ids, after it has 254 * just been idr_remove()'d from there in cleanup_net(). 255 */ 256 if (!maybe_get_net(peer)) { 257 spin_unlock_bh(&net->nsid_lock); 258 return NETNSA_NSID_NOT_ASSIGNED; 259 } 260 261 id = alloc_netid(net, peer, -1); 262 spin_unlock_bh(&net->nsid_lock); 263 264 put_net(peer); 265 if (id < 0) 266 return NETNSA_NSID_NOT_ASSIGNED; 267 268 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 269 270 return id; 271 } 272 EXPORT_SYMBOL_GPL(peernet2id_alloc); 273 274 /* This function returns, if assigned, the id of a peer netns. */ 275 int peernet2id(const struct net *net, struct net *peer) 276 { 277 int id; 278 279 rcu_read_lock(); 280 id = __peernet2id(net, peer); 281 rcu_read_unlock(); 282 283 return id; 284 } 285 EXPORT_SYMBOL(peernet2id); 286 287 /* This function returns true is the peer netns has an id assigned into the 288 * current netns. 289 */ 290 bool peernet_has_id(const struct net *net, struct net *peer) 291 { 292 return peernet2id(net, peer) >= 0; 293 } 294 295 struct net *get_net_ns_by_id(const struct net *net, int id) 296 { 297 struct net *peer; 298 299 if (id < 0) 300 return NULL; 301 302 rcu_read_lock(); 303 peer = idr_find(&net->netns_ids, id); 304 if (peer) 305 peer = maybe_get_net(peer); 306 rcu_read_unlock(); 307 308 return peer; 309 } 310 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 311 312 static __net_init void preinit_net_sysctl(struct net *net) 313 { 314 net->core.sysctl_somaxconn = SOMAXCONN; 315 /* Limits per socket sk_omem_alloc usage. 316 * TCP zerocopy regular usage needs 128 KB. 317 */ 318 net->core.sysctl_optmem_max = 128 * 1024; 319 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 320 } 321 322 /* init code that must occur even if setup_net() is not called. */ 323 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 324 { 325 refcount_set(&net->passive, 1); 326 refcount_set(&net->ns.count, 1); 327 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 328 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 329 330 get_random_bytes(&net->hash_mix, sizeof(u32)); 331 net->dev_base_seq = 1; 332 net->user_ns = user_ns; 333 334 idr_init(&net->netns_ids); 335 spin_lock_init(&net->nsid_lock); 336 mutex_init(&net->ipv4.ra_mutex); 337 preinit_net_sysctl(net); 338 } 339 340 /* 341 * setup_net runs the initializers for the network namespace object. 342 */ 343 static __net_init int setup_net(struct net *net) 344 { 345 /* Must be called with pernet_ops_rwsem held */ 346 const struct pernet_operations *ops, *saved_ops; 347 LIST_HEAD(net_exit_list); 348 LIST_HEAD(dev_kill_list); 349 int error = 0; 350 351 preempt_disable(); 352 net->net_cookie = gen_cookie_next(&net_cookie); 353 preempt_enable(); 354 355 list_for_each_entry(ops, &pernet_list, list) { 356 error = ops_init(ops, net); 357 if (error < 0) 358 goto out_undo; 359 } 360 down_write(&net_rwsem); 361 list_add_tail_rcu(&net->list, &net_namespace_list); 362 up_write(&net_rwsem); 363 out: 364 return error; 365 366 out_undo: 367 /* Walk through the list backwards calling the exit functions 368 * for the pernet modules whose init functions did not fail. 369 */ 370 list_add(&net->exit_list, &net_exit_list); 371 saved_ops = ops; 372 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 373 ops_pre_exit_list(ops, &net_exit_list); 374 375 synchronize_rcu(); 376 377 ops = saved_ops; 378 rtnl_lock(); 379 list_for_each_entry_continue_reverse(ops, &pernet_list, list) { 380 if (ops->exit_batch_rtnl) 381 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 382 } 383 unregister_netdevice_many(&dev_kill_list); 384 rtnl_unlock(); 385 386 ops = saved_ops; 387 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 388 ops_exit_list(ops, &net_exit_list); 389 390 ops = saved_ops; 391 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 392 ops_free_list(ops, &net_exit_list); 393 394 rcu_barrier(); 395 goto out; 396 } 397 398 #ifdef CONFIG_NET_NS 399 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 400 { 401 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 402 } 403 404 static void dec_net_namespaces(struct ucounts *ucounts) 405 { 406 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 407 } 408 409 static struct kmem_cache *net_cachep __ro_after_init; 410 static struct workqueue_struct *netns_wq; 411 412 static struct net *net_alloc(void) 413 { 414 struct net *net = NULL; 415 struct net_generic *ng; 416 417 ng = net_alloc_generic(); 418 if (!ng) 419 goto out; 420 421 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 422 if (!net) 423 goto out_free; 424 425 #ifdef CONFIG_KEYS 426 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 427 if (!net->key_domain) 428 goto out_free_2; 429 refcount_set(&net->key_domain->usage, 1); 430 #endif 431 432 rcu_assign_pointer(net->gen, ng); 433 out: 434 return net; 435 436 #ifdef CONFIG_KEYS 437 out_free_2: 438 kmem_cache_free(net_cachep, net); 439 net = NULL; 440 #endif 441 out_free: 442 kfree(ng); 443 goto out; 444 } 445 446 static void net_free(struct net *net) 447 { 448 if (refcount_dec_and_test(&net->passive)) { 449 kfree(rcu_access_pointer(net->gen)); 450 451 /* There should not be any trackers left there. */ 452 ref_tracker_dir_exit(&net->notrefcnt_tracker); 453 454 kmem_cache_free(net_cachep, net); 455 } 456 } 457 458 void net_drop_ns(void *p) 459 { 460 struct net *net = (struct net *)p; 461 462 if (net) 463 net_free(net); 464 } 465 466 struct net *copy_net_ns(unsigned long flags, 467 struct user_namespace *user_ns, struct net *old_net) 468 { 469 struct ucounts *ucounts; 470 struct net *net; 471 int rv; 472 473 if (!(flags & CLONE_NEWNET)) 474 return get_net(old_net); 475 476 ucounts = inc_net_namespaces(user_ns); 477 if (!ucounts) 478 return ERR_PTR(-ENOSPC); 479 480 net = net_alloc(); 481 if (!net) { 482 rv = -ENOMEM; 483 goto dec_ucounts; 484 } 485 486 preinit_net(net, user_ns); 487 net->ucounts = ucounts; 488 get_user_ns(user_ns); 489 490 rv = down_read_killable(&pernet_ops_rwsem); 491 if (rv < 0) 492 goto put_userns; 493 494 rv = setup_net(net); 495 496 up_read(&pernet_ops_rwsem); 497 498 if (rv < 0) { 499 put_userns: 500 #ifdef CONFIG_KEYS 501 key_remove_domain(net->key_domain); 502 #endif 503 put_user_ns(user_ns); 504 net_free(net); 505 dec_ucounts: 506 dec_net_namespaces(ucounts); 507 return ERR_PTR(rv); 508 } 509 return net; 510 } 511 512 /** 513 * net_ns_get_ownership - get sysfs ownership data for @net 514 * @net: network namespace in question (can be NULL) 515 * @uid: kernel user ID for sysfs objects 516 * @gid: kernel group ID for sysfs objects 517 * 518 * Returns the uid/gid pair of root in the user namespace associated with the 519 * given network namespace. 520 */ 521 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 522 { 523 if (net) { 524 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 525 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 526 527 if (uid_valid(ns_root_uid)) 528 *uid = ns_root_uid; 529 530 if (gid_valid(ns_root_gid)) 531 *gid = ns_root_gid; 532 } else { 533 *uid = GLOBAL_ROOT_UID; 534 *gid = GLOBAL_ROOT_GID; 535 } 536 } 537 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 538 539 static void unhash_nsid(struct net *net, struct net *last) 540 { 541 struct net *tmp; 542 /* This function is only called from cleanup_net() work, 543 * and this work is the only process, that may delete 544 * a net from net_namespace_list. So, when the below 545 * is executing, the list may only grow. Thus, we do not 546 * use for_each_net_rcu() or net_rwsem. 547 */ 548 for_each_net(tmp) { 549 int id; 550 551 spin_lock_bh(&tmp->nsid_lock); 552 id = __peernet2id(tmp, net); 553 if (id >= 0) 554 idr_remove(&tmp->netns_ids, id); 555 spin_unlock_bh(&tmp->nsid_lock); 556 if (id >= 0) 557 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 558 GFP_KERNEL); 559 if (tmp == last) 560 break; 561 } 562 spin_lock_bh(&net->nsid_lock); 563 idr_destroy(&net->netns_ids); 564 spin_unlock_bh(&net->nsid_lock); 565 } 566 567 static LLIST_HEAD(cleanup_list); 568 569 static void cleanup_net(struct work_struct *work) 570 { 571 const struct pernet_operations *ops; 572 struct net *net, *tmp, *last; 573 struct llist_node *net_kill_list; 574 LIST_HEAD(net_exit_list); 575 LIST_HEAD(dev_kill_list); 576 577 /* Atomically snapshot the list of namespaces to cleanup */ 578 net_kill_list = llist_del_all(&cleanup_list); 579 580 down_read(&pernet_ops_rwsem); 581 582 /* Don't let anyone else find us. */ 583 down_write(&net_rwsem); 584 llist_for_each_entry(net, net_kill_list, cleanup_list) 585 list_del_rcu(&net->list); 586 /* Cache last net. After we unlock rtnl, no one new net 587 * added to net_namespace_list can assign nsid pointer 588 * to a net from net_kill_list (see peernet2id_alloc()). 589 * So, we skip them in unhash_nsid(). 590 * 591 * Note, that unhash_nsid() does not delete nsid links 592 * between net_kill_list's nets, as they've already 593 * deleted from net_namespace_list. But, this would be 594 * useless anyway, as netns_ids are destroyed there. 595 */ 596 last = list_last_entry(&net_namespace_list, struct net, list); 597 up_write(&net_rwsem); 598 599 llist_for_each_entry(net, net_kill_list, cleanup_list) { 600 unhash_nsid(net, last); 601 list_add_tail(&net->exit_list, &net_exit_list); 602 } 603 604 /* Run all of the network namespace pre_exit methods */ 605 list_for_each_entry_reverse(ops, &pernet_list, list) 606 ops_pre_exit_list(ops, &net_exit_list); 607 608 /* 609 * Another CPU might be rcu-iterating the list, wait for it. 610 * This needs to be before calling the exit() notifiers, so 611 * the rcu_barrier() below isn't sufficient alone. 612 * Also the pre_exit() and exit() methods need this barrier. 613 */ 614 synchronize_rcu_expedited(); 615 616 rtnl_lock(); 617 list_for_each_entry_reverse(ops, &pernet_list, list) { 618 if (ops->exit_batch_rtnl) 619 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 620 } 621 unregister_netdevice_many(&dev_kill_list); 622 rtnl_unlock(); 623 624 /* Run all of the network namespace exit methods */ 625 list_for_each_entry_reverse(ops, &pernet_list, list) 626 ops_exit_list(ops, &net_exit_list); 627 628 /* Free the net generic variables */ 629 list_for_each_entry_reverse(ops, &pernet_list, list) 630 ops_free_list(ops, &net_exit_list); 631 632 up_read(&pernet_ops_rwsem); 633 634 /* Ensure there are no outstanding rcu callbacks using this 635 * network namespace. 636 */ 637 rcu_barrier(); 638 639 /* Finally it is safe to free my network namespace structure */ 640 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 641 list_del_init(&net->exit_list); 642 dec_net_namespaces(net->ucounts); 643 #ifdef CONFIG_KEYS 644 key_remove_domain(net->key_domain); 645 #endif 646 put_user_ns(net->user_ns); 647 net_free(net); 648 } 649 } 650 651 /** 652 * net_ns_barrier - wait until concurrent net_cleanup_work is done 653 * 654 * cleanup_net runs from work queue and will first remove namespaces 655 * from the global list, then run net exit functions. 656 * 657 * Call this in module exit path to make sure that all netns 658 * ->exit ops have been invoked before the function is removed. 659 */ 660 void net_ns_barrier(void) 661 { 662 down_write(&pernet_ops_rwsem); 663 up_write(&pernet_ops_rwsem); 664 } 665 EXPORT_SYMBOL(net_ns_barrier); 666 667 static DECLARE_WORK(net_cleanup_work, cleanup_net); 668 669 void __put_net(struct net *net) 670 { 671 ref_tracker_dir_exit(&net->refcnt_tracker); 672 /* Cleanup the network namespace in process context */ 673 if (llist_add(&net->cleanup_list, &cleanup_list)) 674 queue_work(netns_wq, &net_cleanup_work); 675 } 676 EXPORT_SYMBOL_GPL(__put_net); 677 678 /** 679 * get_net_ns - increment the refcount of the network namespace 680 * @ns: common namespace (net) 681 * 682 * Returns the net's common namespace or ERR_PTR() if ref is zero. 683 */ 684 struct ns_common *get_net_ns(struct ns_common *ns) 685 { 686 struct net *net; 687 688 net = maybe_get_net(container_of(ns, struct net, ns)); 689 if (net) 690 return &net->ns; 691 return ERR_PTR(-EINVAL); 692 } 693 EXPORT_SYMBOL_GPL(get_net_ns); 694 695 struct net *get_net_ns_by_fd(int fd) 696 { 697 CLASS(fd, f)(fd); 698 699 if (fd_empty(f)) 700 return ERR_PTR(-EBADF); 701 702 if (proc_ns_file(fd_file(f))) { 703 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 704 if (ns->ops == &netns_operations) 705 return get_net(container_of(ns, struct net, ns)); 706 } 707 708 return ERR_PTR(-EINVAL); 709 } 710 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 711 #endif 712 713 struct net *get_net_ns_by_pid(pid_t pid) 714 { 715 struct task_struct *tsk; 716 struct net *net; 717 718 /* Lookup the network namespace */ 719 net = ERR_PTR(-ESRCH); 720 rcu_read_lock(); 721 tsk = find_task_by_vpid(pid); 722 if (tsk) { 723 struct nsproxy *nsproxy; 724 task_lock(tsk); 725 nsproxy = tsk->nsproxy; 726 if (nsproxy) 727 net = get_net(nsproxy->net_ns); 728 task_unlock(tsk); 729 } 730 rcu_read_unlock(); 731 return net; 732 } 733 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 734 735 static __net_init int net_ns_net_init(struct net *net) 736 { 737 #ifdef CONFIG_NET_NS 738 net->ns.ops = &netns_operations; 739 #endif 740 return ns_alloc_inum(&net->ns); 741 } 742 743 static __net_exit void net_ns_net_exit(struct net *net) 744 { 745 ns_free_inum(&net->ns); 746 } 747 748 static struct pernet_operations __net_initdata net_ns_ops = { 749 .init = net_ns_net_init, 750 .exit = net_ns_net_exit, 751 }; 752 753 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 754 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 755 [NETNSA_NSID] = { .type = NLA_S32 }, 756 [NETNSA_PID] = { .type = NLA_U32 }, 757 [NETNSA_FD] = { .type = NLA_U32 }, 758 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 759 }; 760 761 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 762 struct netlink_ext_ack *extack) 763 { 764 struct net *net = sock_net(skb->sk); 765 struct nlattr *tb[NETNSA_MAX + 1]; 766 struct nlattr *nla; 767 struct net *peer; 768 int nsid, err; 769 770 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 771 NETNSA_MAX, rtnl_net_policy, extack); 772 if (err < 0) 773 return err; 774 if (!tb[NETNSA_NSID]) { 775 NL_SET_ERR_MSG(extack, "nsid is missing"); 776 return -EINVAL; 777 } 778 nsid = nla_get_s32(tb[NETNSA_NSID]); 779 780 if (tb[NETNSA_PID]) { 781 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 782 nla = tb[NETNSA_PID]; 783 } else if (tb[NETNSA_FD]) { 784 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 785 nla = tb[NETNSA_FD]; 786 } else { 787 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 788 return -EINVAL; 789 } 790 if (IS_ERR(peer)) { 791 NL_SET_BAD_ATTR(extack, nla); 792 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 793 return PTR_ERR(peer); 794 } 795 796 spin_lock_bh(&net->nsid_lock); 797 if (__peernet2id(net, peer) >= 0) { 798 spin_unlock_bh(&net->nsid_lock); 799 err = -EEXIST; 800 NL_SET_BAD_ATTR(extack, nla); 801 NL_SET_ERR_MSG(extack, 802 "Peer netns already has a nsid assigned"); 803 goto out; 804 } 805 806 err = alloc_netid(net, peer, nsid); 807 spin_unlock_bh(&net->nsid_lock); 808 if (err >= 0) { 809 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 810 nlh, GFP_KERNEL); 811 err = 0; 812 } else if (err == -ENOSPC && nsid >= 0) { 813 err = -EEXIST; 814 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 815 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 816 } 817 out: 818 put_net(peer); 819 return err; 820 } 821 822 static int rtnl_net_get_size(void) 823 { 824 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 825 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 826 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 827 ; 828 } 829 830 struct net_fill_args { 831 u32 portid; 832 u32 seq; 833 int flags; 834 int cmd; 835 int nsid; 836 bool add_ref; 837 int ref_nsid; 838 }; 839 840 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 841 { 842 struct nlmsghdr *nlh; 843 struct rtgenmsg *rth; 844 845 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 846 args->flags); 847 if (!nlh) 848 return -EMSGSIZE; 849 850 rth = nlmsg_data(nlh); 851 rth->rtgen_family = AF_UNSPEC; 852 853 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 854 goto nla_put_failure; 855 856 if (args->add_ref && 857 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 858 goto nla_put_failure; 859 860 nlmsg_end(skb, nlh); 861 return 0; 862 863 nla_put_failure: 864 nlmsg_cancel(skb, nlh); 865 return -EMSGSIZE; 866 } 867 868 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 869 const struct nlmsghdr *nlh, 870 struct nlattr **tb, 871 struct netlink_ext_ack *extack) 872 { 873 int i, err; 874 875 if (!netlink_strict_get_check(skb)) 876 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 877 tb, NETNSA_MAX, rtnl_net_policy, 878 extack); 879 880 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 881 NETNSA_MAX, rtnl_net_policy, 882 extack); 883 if (err) 884 return err; 885 886 for (i = 0; i <= NETNSA_MAX; i++) { 887 if (!tb[i]) 888 continue; 889 890 switch (i) { 891 case NETNSA_PID: 892 case NETNSA_FD: 893 case NETNSA_NSID: 894 case NETNSA_TARGET_NSID: 895 break; 896 default: 897 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 898 return -EINVAL; 899 } 900 } 901 902 return 0; 903 } 904 905 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 906 struct netlink_ext_ack *extack) 907 { 908 struct net *net = sock_net(skb->sk); 909 struct nlattr *tb[NETNSA_MAX + 1]; 910 struct net_fill_args fillargs = { 911 .portid = NETLINK_CB(skb).portid, 912 .seq = nlh->nlmsg_seq, 913 .cmd = RTM_NEWNSID, 914 }; 915 struct net *peer, *target = net; 916 struct nlattr *nla; 917 struct sk_buff *msg; 918 int err; 919 920 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 921 if (err < 0) 922 return err; 923 if (tb[NETNSA_PID]) { 924 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 925 nla = tb[NETNSA_PID]; 926 } else if (tb[NETNSA_FD]) { 927 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 928 nla = tb[NETNSA_FD]; 929 } else if (tb[NETNSA_NSID]) { 930 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 931 if (!peer) 932 peer = ERR_PTR(-ENOENT); 933 nla = tb[NETNSA_NSID]; 934 } else { 935 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 936 return -EINVAL; 937 } 938 939 if (IS_ERR(peer)) { 940 NL_SET_BAD_ATTR(extack, nla); 941 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 942 return PTR_ERR(peer); 943 } 944 945 if (tb[NETNSA_TARGET_NSID]) { 946 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 947 948 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 949 if (IS_ERR(target)) { 950 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 951 NL_SET_ERR_MSG(extack, 952 "Target netns reference is invalid"); 953 err = PTR_ERR(target); 954 goto out; 955 } 956 fillargs.add_ref = true; 957 fillargs.ref_nsid = peernet2id(net, peer); 958 } 959 960 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 961 if (!msg) { 962 err = -ENOMEM; 963 goto out; 964 } 965 966 fillargs.nsid = peernet2id(target, peer); 967 err = rtnl_net_fill(msg, &fillargs); 968 if (err < 0) 969 goto err_out; 970 971 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 972 goto out; 973 974 err_out: 975 nlmsg_free(msg); 976 out: 977 if (fillargs.add_ref) 978 put_net(target); 979 put_net(peer); 980 return err; 981 } 982 983 struct rtnl_net_dump_cb { 984 struct net *tgt_net; 985 struct net *ref_net; 986 struct sk_buff *skb; 987 struct net_fill_args fillargs; 988 int idx; 989 int s_idx; 990 }; 991 992 /* Runs in RCU-critical section. */ 993 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 994 { 995 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 996 int ret; 997 998 if (net_cb->idx < net_cb->s_idx) 999 goto cont; 1000 1001 net_cb->fillargs.nsid = id; 1002 if (net_cb->fillargs.add_ref) 1003 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1004 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1005 if (ret < 0) 1006 return ret; 1007 1008 cont: 1009 net_cb->idx++; 1010 return 0; 1011 } 1012 1013 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1014 struct rtnl_net_dump_cb *net_cb, 1015 struct netlink_callback *cb) 1016 { 1017 struct netlink_ext_ack *extack = cb->extack; 1018 struct nlattr *tb[NETNSA_MAX + 1]; 1019 int err, i; 1020 1021 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1022 NETNSA_MAX, rtnl_net_policy, 1023 extack); 1024 if (err < 0) 1025 return err; 1026 1027 for (i = 0; i <= NETNSA_MAX; i++) { 1028 if (!tb[i]) 1029 continue; 1030 1031 if (i == NETNSA_TARGET_NSID) { 1032 struct net *net; 1033 1034 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1035 if (IS_ERR(net)) { 1036 NL_SET_BAD_ATTR(extack, tb[i]); 1037 NL_SET_ERR_MSG(extack, 1038 "Invalid target network namespace id"); 1039 return PTR_ERR(net); 1040 } 1041 net_cb->fillargs.add_ref = true; 1042 net_cb->ref_net = net_cb->tgt_net; 1043 net_cb->tgt_net = net; 1044 } else { 1045 NL_SET_BAD_ATTR(extack, tb[i]); 1046 NL_SET_ERR_MSG(extack, 1047 "Unsupported attribute in dump request"); 1048 return -EINVAL; 1049 } 1050 } 1051 1052 return 0; 1053 } 1054 1055 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1056 { 1057 struct rtnl_net_dump_cb net_cb = { 1058 .tgt_net = sock_net(skb->sk), 1059 .skb = skb, 1060 .fillargs = { 1061 .portid = NETLINK_CB(cb->skb).portid, 1062 .seq = cb->nlh->nlmsg_seq, 1063 .flags = NLM_F_MULTI, 1064 .cmd = RTM_NEWNSID, 1065 }, 1066 .idx = 0, 1067 .s_idx = cb->args[0], 1068 }; 1069 int err = 0; 1070 1071 if (cb->strict_check) { 1072 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1073 if (err < 0) 1074 goto end; 1075 } 1076 1077 rcu_read_lock(); 1078 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1079 rcu_read_unlock(); 1080 1081 cb->args[0] = net_cb.idx; 1082 end: 1083 if (net_cb.fillargs.add_ref) 1084 put_net(net_cb.tgt_net); 1085 return err; 1086 } 1087 1088 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1089 struct nlmsghdr *nlh, gfp_t gfp) 1090 { 1091 struct net_fill_args fillargs = { 1092 .portid = portid, 1093 .seq = nlh ? nlh->nlmsg_seq : 0, 1094 .cmd = cmd, 1095 .nsid = id, 1096 }; 1097 struct sk_buff *msg; 1098 int err = -ENOMEM; 1099 1100 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1101 if (!msg) 1102 goto out; 1103 1104 err = rtnl_net_fill(msg, &fillargs); 1105 if (err < 0) 1106 goto err_out; 1107 1108 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1109 return; 1110 1111 err_out: 1112 nlmsg_free(msg); 1113 out: 1114 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1115 } 1116 1117 #ifdef CONFIG_NET_NS 1118 static void __init netns_ipv4_struct_check(void) 1119 { 1120 /* TX readonly hotpath cache lines */ 1121 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1122 sysctl_tcp_early_retrans); 1123 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1124 sysctl_tcp_tso_win_divisor); 1125 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1126 sysctl_tcp_tso_rtt_log); 1127 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1128 sysctl_tcp_autocorking); 1129 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1130 sysctl_tcp_min_snd_mss); 1131 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1132 sysctl_tcp_notsent_lowat); 1133 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1134 sysctl_tcp_limit_output_bytes); 1135 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1136 sysctl_tcp_min_rtt_wlen); 1137 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1138 sysctl_tcp_wmem); 1139 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1140 sysctl_ip_fwd_use_pmtu); 1141 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1142 1143 /* TXRX readonly hotpath cache lines */ 1144 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1145 sysctl_tcp_moderate_rcvbuf); 1146 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1147 1148 /* RX readonly hotpath cache line */ 1149 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1150 sysctl_ip_early_demux); 1151 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1152 sysctl_tcp_early_demux); 1153 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1154 sysctl_tcp_reordering); 1155 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1156 sysctl_tcp_rmem); 1157 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 18); 1158 } 1159 #endif 1160 1161 void __init net_ns_init(void) 1162 { 1163 struct net_generic *ng; 1164 1165 #ifdef CONFIG_NET_NS 1166 netns_ipv4_struct_check(); 1167 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1168 SMP_CACHE_BYTES, 1169 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1170 1171 /* Create workqueue for cleanup */ 1172 netns_wq = create_singlethread_workqueue("netns"); 1173 if (!netns_wq) 1174 panic("Could not create netns workq"); 1175 #endif 1176 1177 ng = net_alloc_generic(); 1178 if (!ng) 1179 panic("Could not allocate generic netns"); 1180 1181 rcu_assign_pointer(init_net.gen, ng); 1182 1183 #ifdef CONFIG_KEYS 1184 init_net.key_domain = &init_net_key_domain; 1185 #endif 1186 preinit_net(&init_net, &init_user_ns); 1187 1188 down_write(&pernet_ops_rwsem); 1189 if (setup_net(&init_net)) 1190 panic("Could not setup the initial network namespace"); 1191 1192 init_net_initialized = true; 1193 up_write(&pernet_ops_rwsem); 1194 1195 if (register_pernet_subsys(&net_ns_ops)) 1196 panic("Could not register network namespace subsystems"); 1197 1198 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1199 RTNL_FLAG_DOIT_UNLOCKED); 1200 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1201 RTNL_FLAG_DOIT_UNLOCKED | 1202 RTNL_FLAG_DUMP_UNLOCKED); 1203 } 1204 1205 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1206 { 1207 ops_pre_exit_list(ops, net_exit_list); 1208 synchronize_rcu(); 1209 1210 if (ops->exit_batch_rtnl) { 1211 LIST_HEAD(dev_kill_list); 1212 1213 rtnl_lock(); 1214 ops->exit_batch_rtnl(net_exit_list, &dev_kill_list); 1215 unregister_netdevice_many(&dev_kill_list); 1216 rtnl_unlock(); 1217 } 1218 ops_exit_list(ops, net_exit_list); 1219 1220 ops_free_list(ops, net_exit_list); 1221 } 1222 1223 #ifdef CONFIG_NET_NS 1224 static int __register_pernet_operations(struct list_head *list, 1225 struct pernet_operations *ops) 1226 { 1227 struct net *net; 1228 int error; 1229 LIST_HEAD(net_exit_list); 1230 1231 list_add_tail(&ops->list, list); 1232 if (ops->init || ops->id) { 1233 /* We held write locked pernet_ops_rwsem, and parallel 1234 * setup_net() and cleanup_net() are not possible. 1235 */ 1236 for_each_net(net) { 1237 error = ops_init(ops, net); 1238 if (error) 1239 goto out_undo; 1240 list_add_tail(&net->exit_list, &net_exit_list); 1241 } 1242 } 1243 return 0; 1244 1245 out_undo: 1246 /* If I have an error cleanup all namespaces I initialized */ 1247 list_del(&ops->list); 1248 free_exit_list(ops, &net_exit_list); 1249 return error; 1250 } 1251 1252 static void __unregister_pernet_operations(struct pernet_operations *ops) 1253 { 1254 struct net *net; 1255 LIST_HEAD(net_exit_list); 1256 1257 list_del(&ops->list); 1258 /* See comment in __register_pernet_operations() */ 1259 for_each_net(net) 1260 list_add_tail(&net->exit_list, &net_exit_list); 1261 1262 free_exit_list(ops, &net_exit_list); 1263 } 1264 1265 #else 1266 1267 static int __register_pernet_operations(struct list_head *list, 1268 struct pernet_operations *ops) 1269 { 1270 if (!init_net_initialized) { 1271 list_add_tail(&ops->list, list); 1272 return 0; 1273 } 1274 1275 return ops_init(ops, &init_net); 1276 } 1277 1278 static void __unregister_pernet_operations(struct pernet_operations *ops) 1279 { 1280 if (!init_net_initialized) { 1281 list_del(&ops->list); 1282 } else { 1283 LIST_HEAD(net_exit_list); 1284 list_add(&init_net.exit_list, &net_exit_list); 1285 free_exit_list(ops, &net_exit_list); 1286 } 1287 } 1288 1289 #endif /* CONFIG_NET_NS */ 1290 1291 static DEFINE_IDA(net_generic_ids); 1292 1293 static int register_pernet_operations(struct list_head *list, 1294 struct pernet_operations *ops) 1295 { 1296 int error; 1297 1298 if (WARN_ON(!!ops->id ^ !!ops->size)) 1299 return -EINVAL; 1300 1301 if (ops->id) { 1302 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1303 GFP_KERNEL); 1304 if (error < 0) 1305 return error; 1306 *ops->id = error; 1307 /* This does not require READ_ONCE as writers already hold 1308 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1309 * net_alloc_generic. 1310 */ 1311 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1312 } 1313 error = __register_pernet_operations(list, ops); 1314 if (error) { 1315 rcu_barrier(); 1316 if (ops->id) 1317 ida_free(&net_generic_ids, *ops->id); 1318 } 1319 1320 return error; 1321 } 1322 1323 static void unregister_pernet_operations(struct pernet_operations *ops) 1324 { 1325 __unregister_pernet_operations(ops); 1326 rcu_barrier(); 1327 if (ops->id) 1328 ida_free(&net_generic_ids, *ops->id); 1329 } 1330 1331 /** 1332 * register_pernet_subsys - register a network namespace subsystem 1333 * @ops: pernet operations structure for the subsystem 1334 * 1335 * Register a subsystem which has init and exit functions 1336 * that are called when network namespaces are created and 1337 * destroyed respectively. 1338 * 1339 * When registered all network namespace init functions are 1340 * called for every existing network namespace. Allowing kernel 1341 * modules to have a race free view of the set of network namespaces. 1342 * 1343 * When a new network namespace is created all of the init 1344 * methods are called in the order in which they were registered. 1345 * 1346 * When a network namespace is destroyed all of the exit methods 1347 * are called in the reverse of the order with which they were 1348 * registered. 1349 */ 1350 int register_pernet_subsys(struct pernet_operations *ops) 1351 { 1352 int error; 1353 down_write(&pernet_ops_rwsem); 1354 error = register_pernet_operations(first_device, ops); 1355 up_write(&pernet_ops_rwsem); 1356 return error; 1357 } 1358 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1359 1360 /** 1361 * unregister_pernet_subsys - unregister a network namespace subsystem 1362 * @ops: pernet operations structure to manipulate 1363 * 1364 * Remove the pernet operations structure from the list to be 1365 * used when network namespaces are created or destroyed. In 1366 * addition run the exit method for all existing network 1367 * namespaces. 1368 */ 1369 void unregister_pernet_subsys(struct pernet_operations *ops) 1370 { 1371 down_write(&pernet_ops_rwsem); 1372 unregister_pernet_operations(ops); 1373 up_write(&pernet_ops_rwsem); 1374 } 1375 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1376 1377 /** 1378 * register_pernet_device - register a network namespace device 1379 * @ops: pernet operations structure for the subsystem 1380 * 1381 * Register a device which has init and exit functions 1382 * that are called when network namespaces are created and 1383 * destroyed respectively. 1384 * 1385 * When registered all network namespace init functions are 1386 * called for every existing network namespace. Allowing kernel 1387 * modules to have a race free view of the set of network namespaces. 1388 * 1389 * When a new network namespace is created all of the init 1390 * methods are called in the order in which they were registered. 1391 * 1392 * When a network namespace is destroyed all of the exit methods 1393 * are called in the reverse of the order with which they were 1394 * registered. 1395 */ 1396 int register_pernet_device(struct pernet_operations *ops) 1397 { 1398 int error; 1399 down_write(&pernet_ops_rwsem); 1400 error = register_pernet_operations(&pernet_list, ops); 1401 if (!error && (first_device == &pernet_list)) 1402 first_device = &ops->list; 1403 up_write(&pernet_ops_rwsem); 1404 return error; 1405 } 1406 EXPORT_SYMBOL_GPL(register_pernet_device); 1407 1408 /** 1409 * unregister_pernet_device - unregister a network namespace netdevice 1410 * @ops: pernet operations structure to manipulate 1411 * 1412 * Remove the pernet operations structure from the list to be 1413 * used when network namespaces are created or destroyed. In 1414 * addition run the exit method for all existing network 1415 * namespaces. 1416 */ 1417 void unregister_pernet_device(struct pernet_operations *ops) 1418 { 1419 down_write(&pernet_ops_rwsem); 1420 if (&ops->list == first_device) 1421 first_device = first_device->next; 1422 unregister_pernet_operations(ops); 1423 up_write(&pernet_ops_rwsem); 1424 } 1425 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1426 1427 #ifdef CONFIG_NET_NS 1428 static struct ns_common *netns_get(struct task_struct *task) 1429 { 1430 struct net *net = NULL; 1431 struct nsproxy *nsproxy; 1432 1433 task_lock(task); 1434 nsproxy = task->nsproxy; 1435 if (nsproxy) 1436 net = get_net(nsproxy->net_ns); 1437 task_unlock(task); 1438 1439 return net ? &net->ns : NULL; 1440 } 1441 1442 static inline struct net *to_net_ns(struct ns_common *ns) 1443 { 1444 return container_of(ns, struct net, ns); 1445 } 1446 1447 static void netns_put(struct ns_common *ns) 1448 { 1449 put_net(to_net_ns(ns)); 1450 } 1451 1452 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1453 { 1454 struct nsproxy *nsproxy = nsset->nsproxy; 1455 struct net *net = to_net_ns(ns); 1456 1457 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1458 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1459 return -EPERM; 1460 1461 put_net(nsproxy->net_ns); 1462 nsproxy->net_ns = get_net(net); 1463 return 0; 1464 } 1465 1466 static struct user_namespace *netns_owner(struct ns_common *ns) 1467 { 1468 return to_net_ns(ns)->user_ns; 1469 } 1470 1471 const struct proc_ns_operations netns_operations = { 1472 .name = "net", 1473 .type = CLONE_NEWNET, 1474 .get = netns_get, 1475 .put = netns_put, 1476 .install = netns_install, 1477 .owner = netns_owner, 1478 }; 1479 #endif 1480