xref: /linux/net/core/net_namespace.c (revision eb4f99c56ad30cb0f8c8e93a78b1200f5987e41e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 #include <linux/proc_fs.h>
24 
25 #include <net/sock.h>
26 #include <net/netlink.h>
27 #include <net/net_namespace.h>
28 #include <net/netns/generic.h>
29 
30 /*
31  *	Our network namespace constructor/destructor lists
32  */
33 
34 static LIST_HEAD(pernet_list);
35 static struct list_head *first_device = &pernet_list;
36 
37 LIST_HEAD(net_namespace_list);
38 EXPORT_SYMBOL_GPL(net_namespace_list);
39 
40 /* Protects net_namespace_list. Nests iside rtnl_lock() */
41 DECLARE_RWSEM(net_rwsem);
42 EXPORT_SYMBOL_GPL(net_rwsem);
43 
44 #ifdef CONFIG_KEYS
45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46 #endif
47 
48 struct net init_net;
49 EXPORT_SYMBOL(init_net);
50 
51 static bool init_net_initialized;
52 /*
53  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54  * init_net_initialized and first_device pointer.
55  * This is internal net namespace object. Please, don't use it
56  * outside.
57  */
58 DECLARE_RWSEM(pernet_ops_rwsem);
59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
60 
61 #define MIN_PERNET_OPS_ID	\
62 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
63 
64 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
65 
66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
67 
68 DEFINE_COOKIE(net_cookie);
69 
70 static struct net_generic *net_alloc_generic(void)
71 {
72 	unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
73 	unsigned int generic_size;
74 	struct net_generic *ng;
75 
76 	generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
77 
78 	ng = kzalloc(generic_size, GFP_KERNEL);
79 	if (ng)
80 		ng->s.len = gen_ptrs;
81 
82 	return ng;
83 }
84 
85 static int net_assign_generic(struct net *net, unsigned int id, void *data)
86 {
87 	struct net_generic *ng, *old_ng;
88 
89 	BUG_ON(id < MIN_PERNET_OPS_ID);
90 
91 	old_ng = rcu_dereference_protected(net->gen,
92 					   lockdep_is_held(&pernet_ops_rwsem));
93 	if (old_ng->s.len > id) {
94 		old_ng->ptr[id] = data;
95 		return 0;
96 	}
97 
98 	ng = net_alloc_generic();
99 	if (!ng)
100 		return -ENOMEM;
101 
102 	/*
103 	 * Some synchronisation notes:
104 	 *
105 	 * The net_generic explores the net->gen array inside rcu
106 	 * read section. Besides once set the net->gen->ptr[x]
107 	 * pointer never changes (see rules in netns/generic.h).
108 	 *
109 	 * That said, we simply duplicate this array and schedule
110 	 * the old copy for kfree after a grace period.
111 	 */
112 
113 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
114 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
115 	ng->ptr[id] = data;
116 
117 	rcu_assign_pointer(net->gen, ng);
118 	kfree_rcu(old_ng, s.rcu);
119 	return 0;
120 }
121 
122 static int ops_init(const struct pernet_operations *ops, struct net *net)
123 {
124 	struct net_generic *ng;
125 	int err = -ENOMEM;
126 	void *data = NULL;
127 
128 	if (ops->id) {
129 		data = kzalloc(ops->size, GFP_KERNEL);
130 		if (!data)
131 			goto out;
132 
133 		err = net_assign_generic(net, *ops->id, data);
134 		if (err)
135 			goto cleanup;
136 	}
137 	err = 0;
138 	if (ops->init)
139 		err = ops->init(net);
140 	if (!err)
141 		return 0;
142 
143 	if (ops->id) {
144 		ng = rcu_dereference_protected(net->gen,
145 					       lockdep_is_held(&pernet_ops_rwsem));
146 		ng->ptr[*ops->id] = NULL;
147 	}
148 
149 cleanup:
150 	kfree(data);
151 
152 out:
153 	return err;
154 }
155 
156 static void ops_pre_exit_list(const struct pernet_operations *ops,
157 			      struct list_head *net_exit_list)
158 {
159 	struct net *net;
160 
161 	if (ops->pre_exit) {
162 		list_for_each_entry(net, net_exit_list, exit_list)
163 			ops->pre_exit(net);
164 	}
165 }
166 
167 static void ops_exit_list(const struct pernet_operations *ops,
168 			  struct list_head *net_exit_list)
169 {
170 	struct net *net;
171 	if (ops->exit) {
172 		list_for_each_entry(net, net_exit_list, exit_list) {
173 			ops->exit(net);
174 			cond_resched();
175 		}
176 	}
177 	if (ops->exit_batch)
178 		ops->exit_batch(net_exit_list);
179 }
180 
181 static void ops_free_list(const struct pernet_operations *ops,
182 			  struct list_head *net_exit_list)
183 {
184 	struct net *net;
185 
186 	if (ops->id) {
187 		list_for_each_entry(net, net_exit_list, exit_list)
188 			kfree(net_generic(net, *ops->id));
189 	}
190 }
191 
192 /* should be called with nsid_lock held */
193 static int alloc_netid(struct net *net, struct net *peer, int reqid)
194 {
195 	int min = 0, max = 0;
196 
197 	if (reqid >= 0) {
198 		min = reqid;
199 		max = reqid + 1;
200 	}
201 
202 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
203 }
204 
205 /* This function is used by idr_for_each(). If net is equal to peer, the
206  * function returns the id so that idr_for_each() stops. Because we cannot
207  * returns the id 0 (idr_for_each() will not stop), we return the magic value
208  * NET_ID_ZERO (-1) for it.
209  */
210 #define NET_ID_ZERO -1
211 static int net_eq_idr(int id, void *net, void *peer)
212 {
213 	if (net_eq(net, peer))
214 		return id ? : NET_ID_ZERO;
215 	return 0;
216 }
217 
218 /* Must be called from RCU-critical section or with nsid_lock held */
219 static int __peernet2id(const struct net *net, struct net *peer)
220 {
221 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
222 
223 	/* Magic value for id 0. */
224 	if (id == NET_ID_ZERO)
225 		return 0;
226 	if (id > 0)
227 		return id;
228 
229 	return NETNSA_NSID_NOT_ASSIGNED;
230 }
231 
232 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
233 			      struct nlmsghdr *nlh, gfp_t gfp);
234 /* This function returns the id of a peer netns. If no id is assigned, one will
235  * be allocated and returned.
236  */
237 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
238 {
239 	int id;
240 
241 	if (refcount_read(&net->ns.count) == 0)
242 		return NETNSA_NSID_NOT_ASSIGNED;
243 
244 	spin_lock_bh(&net->nsid_lock);
245 	id = __peernet2id(net, peer);
246 	if (id >= 0) {
247 		spin_unlock_bh(&net->nsid_lock);
248 		return id;
249 	}
250 
251 	/* When peer is obtained from RCU lists, we may race with
252 	 * its cleanup. Check whether it's alive, and this guarantees
253 	 * we never hash a peer back to net->netns_ids, after it has
254 	 * just been idr_remove()'d from there in cleanup_net().
255 	 */
256 	if (!maybe_get_net(peer)) {
257 		spin_unlock_bh(&net->nsid_lock);
258 		return NETNSA_NSID_NOT_ASSIGNED;
259 	}
260 
261 	id = alloc_netid(net, peer, -1);
262 	spin_unlock_bh(&net->nsid_lock);
263 
264 	put_net(peer);
265 	if (id < 0)
266 		return NETNSA_NSID_NOT_ASSIGNED;
267 
268 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
269 
270 	return id;
271 }
272 EXPORT_SYMBOL_GPL(peernet2id_alloc);
273 
274 /* This function returns, if assigned, the id of a peer netns. */
275 int peernet2id(const struct net *net, struct net *peer)
276 {
277 	int id;
278 
279 	rcu_read_lock();
280 	id = __peernet2id(net, peer);
281 	rcu_read_unlock();
282 
283 	return id;
284 }
285 EXPORT_SYMBOL(peernet2id);
286 
287 /* This function returns true is the peer netns has an id assigned into the
288  * current netns.
289  */
290 bool peernet_has_id(const struct net *net, struct net *peer)
291 {
292 	return peernet2id(net, peer) >= 0;
293 }
294 
295 struct net *get_net_ns_by_id(const struct net *net, int id)
296 {
297 	struct net *peer;
298 
299 	if (id < 0)
300 		return NULL;
301 
302 	rcu_read_lock();
303 	peer = idr_find(&net->netns_ids, id);
304 	if (peer)
305 		peer = maybe_get_net(peer);
306 	rcu_read_unlock();
307 
308 	return peer;
309 }
310 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
311 
312 static __net_init void preinit_net_sysctl(struct net *net)
313 {
314 	net->core.sysctl_somaxconn = SOMAXCONN;
315 	/* Limits per socket sk_omem_alloc usage.
316 	 * TCP zerocopy regular usage needs 128 KB.
317 	 */
318 	net->core.sysctl_optmem_max = 128 * 1024;
319 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
320 	net->core.sysctl_tstamp_allow_data = 1;
321 }
322 
323 /* init code that must occur even if setup_net() is not called. */
324 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns)
325 {
326 	refcount_set(&net->passive, 1);
327 	refcount_set(&net->ns.count, 1);
328 	ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt");
329 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt");
330 
331 	get_random_bytes(&net->hash_mix, sizeof(u32));
332 	net->dev_base_seq = 1;
333 	net->user_ns = user_ns;
334 
335 	idr_init(&net->netns_ids);
336 	spin_lock_init(&net->nsid_lock);
337 	mutex_init(&net->ipv4.ra_mutex);
338 
339 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL
340 	mutex_init(&net->rtnl_mutex);
341 	lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL);
342 #endif
343 
344 	preinit_net_sysctl(net);
345 }
346 
347 /*
348  * setup_net runs the initializers for the network namespace object.
349  */
350 static __net_init int setup_net(struct net *net)
351 {
352 	/* Must be called with pernet_ops_rwsem held */
353 	const struct pernet_operations *ops, *saved_ops;
354 	LIST_HEAD(net_exit_list);
355 	LIST_HEAD(dev_kill_list);
356 	int error = 0;
357 
358 	preempt_disable();
359 	net->net_cookie = gen_cookie_next(&net_cookie);
360 	preempt_enable();
361 
362 	list_for_each_entry(ops, &pernet_list, list) {
363 		error = ops_init(ops, net);
364 		if (error < 0)
365 			goto out_undo;
366 	}
367 	down_write(&net_rwsem);
368 	list_add_tail_rcu(&net->list, &net_namespace_list);
369 	up_write(&net_rwsem);
370 out:
371 	return error;
372 
373 out_undo:
374 	/* Walk through the list backwards calling the exit functions
375 	 * for the pernet modules whose init functions did not fail.
376 	 */
377 	list_add(&net->exit_list, &net_exit_list);
378 	saved_ops = ops;
379 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
380 		ops_pre_exit_list(ops, &net_exit_list);
381 
382 	synchronize_rcu();
383 
384 	ops = saved_ops;
385 	rtnl_lock();
386 	list_for_each_entry_continue_reverse(ops, &pernet_list, list) {
387 		if (ops->exit_batch_rtnl)
388 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
389 	}
390 	unregister_netdevice_many(&dev_kill_list);
391 	rtnl_unlock();
392 
393 	ops = saved_ops;
394 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
395 		ops_exit_list(ops, &net_exit_list);
396 
397 	ops = saved_ops;
398 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
399 		ops_free_list(ops, &net_exit_list);
400 
401 	rcu_barrier();
402 	goto out;
403 }
404 
405 #ifdef CONFIG_NET_NS
406 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
407 {
408 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
409 }
410 
411 static void dec_net_namespaces(struct ucounts *ucounts)
412 {
413 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
414 }
415 
416 static struct kmem_cache *net_cachep __ro_after_init;
417 static struct workqueue_struct *netns_wq;
418 
419 static struct net *net_alloc(void)
420 {
421 	struct net *net = NULL;
422 	struct net_generic *ng;
423 
424 	ng = net_alloc_generic();
425 	if (!ng)
426 		goto out;
427 
428 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
429 	if (!net)
430 		goto out_free;
431 
432 #ifdef CONFIG_KEYS
433 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
434 	if (!net->key_domain)
435 		goto out_free_2;
436 	refcount_set(&net->key_domain->usage, 1);
437 #endif
438 
439 	rcu_assign_pointer(net->gen, ng);
440 out:
441 	return net;
442 
443 #ifdef CONFIG_KEYS
444 out_free_2:
445 	kmem_cache_free(net_cachep, net);
446 	net = NULL;
447 #endif
448 out_free:
449 	kfree(ng);
450 	goto out;
451 }
452 
453 static void net_free(struct net *net)
454 {
455 	if (refcount_dec_and_test(&net->passive)) {
456 		kfree(rcu_access_pointer(net->gen));
457 
458 		/* There should not be any trackers left there. */
459 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
460 
461 		kmem_cache_free(net_cachep, net);
462 	}
463 }
464 
465 void net_drop_ns(void *p)
466 {
467 	struct net *net = (struct net *)p;
468 
469 	if (net)
470 		net_free(net);
471 }
472 
473 struct net *copy_net_ns(unsigned long flags,
474 			struct user_namespace *user_ns, struct net *old_net)
475 {
476 	struct ucounts *ucounts;
477 	struct net *net;
478 	int rv;
479 
480 	if (!(flags & CLONE_NEWNET))
481 		return get_net(old_net);
482 
483 	ucounts = inc_net_namespaces(user_ns);
484 	if (!ucounts)
485 		return ERR_PTR(-ENOSPC);
486 
487 	net = net_alloc();
488 	if (!net) {
489 		rv = -ENOMEM;
490 		goto dec_ucounts;
491 	}
492 
493 	preinit_net(net, user_ns);
494 	net->ucounts = ucounts;
495 	get_user_ns(user_ns);
496 
497 	rv = down_read_killable(&pernet_ops_rwsem);
498 	if (rv < 0)
499 		goto put_userns;
500 
501 	rv = setup_net(net);
502 
503 	up_read(&pernet_ops_rwsem);
504 
505 	if (rv < 0) {
506 put_userns:
507 #ifdef CONFIG_KEYS
508 		key_remove_domain(net->key_domain);
509 #endif
510 		put_user_ns(user_ns);
511 		net_free(net);
512 dec_ucounts:
513 		dec_net_namespaces(ucounts);
514 		return ERR_PTR(rv);
515 	}
516 	return net;
517 }
518 
519 /**
520  * net_ns_get_ownership - get sysfs ownership data for @net
521  * @net: network namespace in question (can be NULL)
522  * @uid: kernel user ID for sysfs objects
523  * @gid: kernel group ID for sysfs objects
524  *
525  * Returns the uid/gid pair of root in the user namespace associated with the
526  * given network namespace.
527  */
528 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
529 {
530 	if (net) {
531 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
532 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
533 
534 		if (uid_valid(ns_root_uid))
535 			*uid = ns_root_uid;
536 
537 		if (gid_valid(ns_root_gid))
538 			*gid = ns_root_gid;
539 	} else {
540 		*uid = GLOBAL_ROOT_UID;
541 		*gid = GLOBAL_ROOT_GID;
542 	}
543 }
544 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
545 
546 static void unhash_nsid(struct net *net, struct net *last)
547 {
548 	struct net *tmp;
549 	/* This function is only called from cleanup_net() work,
550 	 * and this work is the only process, that may delete
551 	 * a net from net_namespace_list. So, when the below
552 	 * is executing, the list may only grow. Thus, we do not
553 	 * use for_each_net_rcu() or net_rwsem.
554 	 */
555 	for_each_net(tmp) {
556 		int id;
557 
558 		spin_lock_bh(&tmp->nsid_lock);
559 		id = __peernet2id(tmp, net);
560 		if (id >= 0)
561 			idr_remove(&tmp->netns_ids, id);
562 		spin_unlock_bh(&tmp->nsid_lock);
563 		if (id >= 0)
564 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
565 					  GFP_KERNEL);
566 		if (tmp == last)
567 			break;
568 	}
569 	spin_lock_bh(&net->nsid_lock);
570 	idr_destroy(&net->netns_ids);
571 	spin_unlock_bh(&net->nsid_lock);
572 }
573 
574 static LLIST_HEAD(cleanup_list);
575 
576 static void cleanup_net(struct work_struct *work)
577 {
578 	const struct pernet_operations *ops;
579 	struct net *net, *tmp, *last;
580 	struct llist_node *net_kill_list;
581 	LIST_HEAD(net_exit_list);
582 	LIST_HEAD(dev_kill_list);
583 
584 	/* Atomically snapshot the list of namespaces to cleanup */
585 	net_kill_list = llist_del_all(&cleanup_list);
586 
587 	down_read(&pernet_ops_rwsem);
588 
589 	/* Don't let anyone else find us. */
590 	down_write(&net_rwsem);
591 	llist_for_each_entry(net, net_kill_list, cleanup_list)
592 		list_del_rcu(&net->list);
593 	/* Cache last net. After we unlock rtnl, no one new net
594 	 * added to net_namespace_list can assign nsid pointer
595 	 * to a net from net_kill_list (see peernet2id_alloc()).
596 	 * So, we skip them in unhash_nsid().
597 	 *
598 	 * Note, that unhash_nsid() does not delete nsid links
599 	 * between net_kill_list's nets, as they've already
600 	 * deleted from net_namespace_list. But, this would be
601 	 * useless anyway, as netns_ids are destroyed there.
602 	 */
603 	last = list_last_entry(&net_namespace_list, struct net, list);
604 	up_write(&net_rwsem);
605 
606 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
607 		unhash_nsid(net, last);
608 		list_add_tail(&net->exit_list, &net_exit_list);
609 	}
610 
611 	/* Run all of the network namespace pre_exit methods */
612 	list_for_each_entry_reverse(ops, &pernet_list, list)
613 		ops_pre_exit_list(ops, &net_exit_list);
614 
615 	/*
616 	 * Another CPU might be rcu-iterating the list, wait for it.
617 	 * This needs to be before calling the exit() notifiers, so
618 	 * the rcu_barrier() below isn't sufficient alone.
619 	 * Also the pre_exit() and exit() methods need this barrier.
620 	 */
621 	synchronize_rcu_expedited();
622 
623 	rtnl_lock();
624 	list_for_each_entry_reverse(ops, &pernet_list, list) {
625 		if (ops->exit_batch_rtnl)
626 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
627 	}
628 	unregister_netdevice_many(&dev_kill_list);
629 	rtnl_unlock();
630 
631 	/* Run all of the network namespace exit methods */
632 	list_for_each_entry_reverse(ops, &pernet_list, list)
633 		ops_exit_list(ops, &net_exit_list);
634 
635 	/* Free the net generic variables */
636 	list_for_each_entry_reverse(ops, &pernet_list, list)
637 		ops_free_list(ops, &net_exit_list);
638 
639 	up_read(&pernet_ops_rwsem);
640 
641 	/* Ensure there are no outstanding rcu callbacks using this
642 	 * network namespace.
643 	 */
644 	rcu_barrier();
645 
646 	/* Finally it is safe to free my network namespace structure */
647 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
648 		list_del_init(&net->exit_list);
649 		dec_net_namespaces(net->ucounts);
650 #ifdef CONFIG_KEYS
651 		key_remove_domain(net->key_domain);
652 #endif
653 		put_user_ns(net->user_ns);
654 		net_free(net);
655 	}
656 }
657 
658 /**
659  * net_ns_barrier - wait until concurrent net_cleanup_work is done
660  *
661  * cleanup_net runs from work queue and will first remove namespaces
662  * from the global list, then run net exit functions.
663  *
664  * Call this in module exit path to make sure that all netns
665  * ->exit ops have been invoked before the function is removed.
666  */
667 void net_ns_barrier(void)
668 {
669 	down_write(&pernet_ops_rwsem);
670 	up_write(&pernet_ops_rwsem);
671 }
672 EXPORT_SYMBOL(net_ns_barrier);
673 
674 static DECLARE_WORK(net_cleanup_work, cleanup_net);
675 
676 void __put_net(struct net *net)
677 {
678 	ref_tracker_dir_exit(&net->refcnt_tracker);
679 	/* Cleanup the network namespace in process context */
680 	if (llist_add(&net->cleanup_list, &cleanup_list))
681 		queue_work(netns_wq, &net_cleanup_work);
682 }
683 EXPORT_SYMBOL_GPL(__put_net);
684 
685 /**
686  * get_net_ns - increment the refcount of the network namespace
687  * @ns: common namespace (net)
688  *
689  * Returns the net's common namespace or ERR_PTR() if ref is zero.
690  */
691 struct ns_common *get_net_ns(struct ns_common *ns)
692 {
693 	struct net *net;
694 
695 	net = maybe_get_net(container_of(ns, struct net, ns));
696 	if (net)
697 		return &net->ns;
698 	return ERR_PTR(-EINVAL);
699 }
700 EXPORT_SYMBOL_GPL(get_net_ns);
701 
702 struct net *get_net_ns_by_fd(int fd)
703 {
704 	struct fd f = fdget(fd);
705 	struct net *net = ERR_PTR(-EINVAL);
706 
707 	if (!fd_file(f))
708 		return ERR_PTR(-EBADF);
709 
710 	if (proc_ns_file(fd_file(f))) {
711 		struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
712 		if (ns->ops == &netns_operations)
713 			net = get_net(container_of(ns, struct net, ns));
714 	}
715 	fdput(f);
716 
717 	return net;
718 }
719 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
720 #endif
721 
722 struct net *get_net_ns_by_pid(pid_t pid)
723 {
724 	struct task_struct *tsk;
725 	struct net *net;
726 
727 	/* Lookup the network namespace */
728 	net = ERR_PTR(-ESRCH);
729 	rcu_read_lock();
730 	tsk = find_task_by_vpid(pid);
731 	if (tsk) {
732 		struct nsproxy *nsproxy;
733 		task_lock(tsk);
734 		nsproxy = tsk->nsproxy;
735 		if (nsproxy)
736 			net = get_net(nsproxy->net_ns);
737 		task_unlock(tsk);
738 	}
739 	rcu_read_unlock();
740 	return net;
741 }
742 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
743 
744 static __net_init int net_ns_net_init(struct net *net)
745 {
746 #ifdef CONFIG_NET_NS
747 	net->ns.ops = &netns_operations;
748 #endif
749 	return ns_alloc_inum(&net->ns);
750 }
751 
752 static __net_exit void net_ns_net_exit(struct net *net)
753 {
754 	ns_free_inum(&net->ns);
755 }
756 
757 static struct pernet_operations __net_initdata net_ns_ops = {
758 	.init = net_ns_net_init,
759 	.exit = net_ns_net_exit,
760 };
761 
762 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
763 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
764 	[NETNSA_NSID]		= { .type = NLA_S32 },
765 	[NETNSA_PID]		= { .type = NLA_U32 },
766 	[NETNSA_FD]		= { .type = NLA_U32 },
767 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
768 };
769 
770 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
771 			  struct netlink_ext_ack *extack)
772 {
773 	struct net *net = sock_net(skb->sk);
774 	struct nlattr *tb[NETNSA_MAX + 1];
775 	struct nlattr *nla;
776 	struct net *peer;
777 	int nsid, err;
778 
779 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
780 				     NETNSA_MAX, rtnl_net_policy, extack);
781 	if (err < 0)
782 		return err;
783 	if (!tb[NETNSA_NSID]) {
784 		NL_SET_ERR_MSG(extack, "nsid is missing");
785 		return -EINVAL;
786 	}
787 	nsid = nla_get_s32(tb[NETNSA_NSID]);
788 
789 	if (tb[NETNSA_PID]) {
790 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
791 		nla = tb[NETNSA_PID];
792 	} else if (tb[NETNSA_FD]) {
793 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
794 		nla = tb[NETNSA_FD];
795 	} else {
796 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
797 		return -EINVAL;
798 	}
799 	if (IS_ERR(peer)) {
800 		NL_SET_BAD_ATTR(extack, nla);
801 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
802 		return PTR_ERR(peer);
803 	}
804 
805 	spin_lock_bh(&net->nsid_lock);
806 	if (__peernet2id(net, peer) >= 0) {
807 		spin_unlock_bh(&net->nsid_lock);
808 		err = -EEXIST;
809 		NL_SET_BAD_ATTR(extack, nla);
810 		NL_SET_ERR_MSG(extack,
811 			       "Peer netns already has a nsid assigned");
812 		goto out;
813 	}
814 
815 	err = alloc_netid(net, peer, nsid);
816 	spin_unlock_bh(&net->nsid_lock);
817 	if (err >= 0) {
818 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
819 				  nlh, GFP_KERNEL);
820 		err = 0;
821 	} else if (err == -ENOSPC && nsid >= 0) {
822 		err = -EEXIST;
823 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
824 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
825 	}
826 out:
827 	put_net(peer);
828 	return err;
829 }
830 
831 static int rtnl_net_get_size(void)
832 {
833 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
834 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
835 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
836 	       ;
837 }
838 
839 struct net_fill_args {
840 	u32 portid;
841 	u32 seq;
842 	int flags;
843 	int cmd;
844 	int nsid;
845 	bool add_ref;
846 	int ref_nsid;
847 };
848 
849 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
850 {
851 	struct nlmsghdr *nlh;
852 	struct rtgenmsg *rth;
853 
854 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
855 			args->flags);
856 	if (!nlh)
857 		return -EMSGSIZE;
858 
859 	rth = nlmsg_data(nlh);
860 	rth->rtgen_family = AF_UNSPEC;
861 
862 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
863 		goto nla_put_failure;
864 
865 	if (args->add_ref &&
866 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
867 		goto nla_put_failure;
868 
869 	nlmsg_end(skb, nlh);
870 	return 0;
871 
872 nla_put_failure:
873 	nlmsg_cancel(skb, nlh);
874 	return -EMSGSIZE;
875 }
876 
877 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
878 				    const struct nlmsghdr *nlh,
879 				    struct nlattr **tb,
880 				    struct netlink_ext_ack *extack)
881 {
882 	int i, err;
883 
884 	if (!netlink_strict_get_check(skb))
885 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
886 					      tb, NETNSA_MAX, rtnl_net_policy,
887 					      extack);
888 
889 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
890 					    NETNSA_MAX, rtnl_net_policy,
891 					    extack);
892 	if (err)
893 		return err;
894 
895 	for (i = 0; i <= NETNSA_MAX; i++) {
896 		if (!tb[i])
897 			continue;
898 
899 		switch (i) {
900 		case NETNSA_PID:
901 		case NETNSA_FD:
902 		case NETNSA_NSID:
903 		case NETNSA_TARGET_NSID:
904 			break;
905 		default:
906 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
907 			return -EINVAL;
908 		}
909 	}
910 
911 	return 0;
912 }
913 
914 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
915 			  struct netlink_ext_ack *extack)
916 {
917 	struct net *net = sock_net(skb->sk);
918 	struct nlattr *tb[NETNSA_MAX + 1];
919 	struct net_fill_args fillargs = {
920 		.portid = NETLINK_CB(skb).portid,
921 		.seq = nlh->nlmsg_seq,
922 		.cmd = RTM_NEWNSID,
923 	};
924 	struct net *peer, *target = net;
925 	struct nlattr *nla;
926 	struct sk_buff *msg;
927 	int err;
928 
929 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
930 	if (err < 0)
931 		return err;
932 	if (tb[NETNSA_PID]) {
933 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
934 		nla = tb[NETNSA_PID];
935 	} else if (tb[NETNSA_FD]) {
936 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
937 		nla = tb[NETNSA_FD];
938 	} else if (tb[NETNSA_NSID]) {
939 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
940 		if (!peer)
941 			peer = ERR_PTR(-ENOENT);
942 		nla = tb[NETNSA_NSID];
943 	} else {
944 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
945 		return -EINVAL;
946 	}
947 
948 	if (IS_ERR(peer)) {
949 		NL_SET_BAD_ATTR(extack, nla);
950 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
951 		return PTR_ERR(peer);
952 	}
953 
954 	if (tb[NETNSA_TARGET_NSID]) {
955 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
956 
957 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
958 		if (IS_ERR(target)) {
959 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
960 			NL_SET_ERR_MSG(extack,
961 				       "Target netns reference is invalid");
962 			err = PTR_ERR(target);
963 			goto out;
964 		}
965 		fillargs.add_ref = true;
966 		fillargs.ref_nsid = peernet2id(net, peer);
967 	}
968 
969 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
970 	if (!msg) {
971 		err = -ENOMEM;
972 		goto out;
973 	}
974 
975 	fillargs.nsid = peernet2id(target, peer);
976 	err = rtnl_net_fill(msg, &fillargs);
977 	if (err < 0)
978 		goto err_out;
979 
980 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
981 	goto out;
982 
983 err_out:
984 	nlmsg_free(msg);
985 out:
986 	if (fillargs.add_ref)
987 		put_net(target);
988 	put_net(peer);
989 	return err;
990 }
991 
992 struct rtnl_net_dump_cb {
993 	struct net *tgt_net;
994 	struct net *ref_net;
995 	struct sk_buff *skb;
996 	struct net_fill_args fillargs;
997 	int idx;
998 	int s_idx;
999 };
1000 
1001 /* Runs in RCU-critical section. */
1002 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1003 {
1004 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1005 	int ret;
1006 
1007 	if (net_cb->idx < net_cb->s_idx)
1008 		goto cont;
1009 
1010 	net_cb->fillargs.nsid = id;
1011 	if (net_cb->fillargs.add_ref)
1012 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1013 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1014 	if (ret < 0)
1015 		return ret;
1016 
1017 cont:
1018 	net_cb->idx++;
1019 	return 0;
1020 }
1021 
1022 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1023 				   struct rtnl_net_dump_cb *net_cb,
1024 				   struct netlink_callback *cb)
1025 {
1026 	struct netlink_ext_ack *extack = cb->extack;
1027 	struct nlattr *tb[NETNSA_MAX + 1];
1028 	int err, i;
1029 
1030 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1031 					    NETNSA_MAX, rtnl_net_policy,
1032 					    extack);
1033 	if (err < 0)
1034 		return err;
1035 
1036 	for (i = 0; i <= NETNSA_MAX; i++) {
1037 		if (!tb[i])
1038 			continue;
1039 
1040 		if (i == NETNSA_TARGET_NSID) {
1041 			struct net *net;
1042 
1043 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1044 			if (IS_ERR(net)) {
1045 				NL_SET_BAD_ATTR(extack, tb[i]);
1046 				NL_SET_ERR_MSG(extack,
1047 					       "Invalid target network namespace id");
1048 				return PTR_ERR(net);
1049 			}
1050 			net_cb->fillargs.add_ref = true;
1051 			net_cb->ref_net = net_cb->tgt_net;
1052 			net_cb->tgt_net = net;
1053 		} else {
1054 			NL_SET_BAD_ATTR(extack, tb[i]);
1055 			NL_SET_ERR_MSG(extack,
1056 				       "Unsupported attribute in dump request");
1057 			return -EINVAL;
1058 		}
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1065 {
1066 	struct rtnl_net_dump_cb net_cb = {
1067 		.tgt_net = sock_net(skb->sk),
1068 		.skb = skb,
1069 		.fillargs = {
1070 			.portid = NETLINK_CB(cb->skb).portid,
1071 			.seq = cb->nlh->nlmsg_seq,
1072 			.flags = NLM_F_MULTI,
1073 			.cmd = RTM_NEWNSID,
1074 		},
1075 		.idx = 0,
1076 		.s_idx = cb->args[0],
1077 	};
1078 	int err = 0;
1079 
1080 	if (cb->strict_check) {
1081 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1082 		if (err < 0)
1083 			goto end;
1084 	}
1085 
1086 	rcu_read_lock();
1087 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1088 	rcu_read_unlock();
1089 
1090 	cb->args[0] = net_cb.idx;
1091 end:
1092 	if (net_cb.fillargs.add_ref)
1093 		put_net(net_cb.tgt_net);
1094 	return err;
1095 }
1096 
1097 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1098 			      struct nlmsghdr *nlh, gfp_t gfp)
1099 {
1100 	struct net_fill_args fillargs = {
1101 		.portid = portid,
1102 		.seq = nlh ? nlh->nlmsg_seq : 0,
1103 		.cmd = cmd,
1104 		.nsid = id,
1105 	};
1106 	struct sk_buff *msg;
1107 	int err = -ENOMEM;
1108 
1109 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1110 	if (!msg)
1111 		goto out;
1112 
1113 	err = rtnl_net_fill(msg, &fillargs);
1114 	if (err < 0)
1115 		goto err_out;
1116 
1117 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1118 	return;
1119 
1120 err_out:
1121 	nlmsg_free(msg);
1122 out:
1123 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1124 }
1125 
1126 #ifdef CONFIG_NET_NS
1127 static void __init netns_ipv4_struct_check(void)
1128 {
1129 	/* TX readonly hotpath cache lines */
1130 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1131 				      sysctl_tcp_early_retrans);
1132 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1133 				      sysctl_tcp_tso_win_divisor);
1134 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1135 				      sysctl_tcp_tso_rtt_log);
1136 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1137 				      sysctl_tcp_autocorking);
1138 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1139 				      sysctl_tcp_min_snd_mss);
1140 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1141 				      sysctl_tcp_notsent_lowat);
1142 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1143 				      sysctl_tcp_limit_output_bytes);
1144 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1145 				      sysctl_tcp_min_rtt_wlen);
1146 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1147 				      sysctl_tcp_wmem);
1148 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1149 				      sysctl_ip_fwd_use_pmtu);
1150 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1151 
1152 	/* TXRX readonly hotpath cache lines */
1153 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1154 				      sysctl_tcp_moderate_rcvbuf);
1155 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1156 
1157 	/* RX readonly hotpath cache line */
1158 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1159 				      sysctl_ip_early_demux);
1160 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1161 				      sysctl_tcp_early_demux);
1162 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1163 				      sysctl_tcp_l3mdev_accept);
1164 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1165 				      sysctl_tcp_reordering);
1166 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1167 				      sysctl_tcp_rmem);
1168 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22);
1169 }
1170 #endif
1171 
1172 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = {
1173 	{.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid,
1174 	 .flags = RTNL_FLAG_DOIT_UNLOCKED},
1175 	{.msgtype = RTM_GETNSID, .doit = rtnl_net_getid,
1176 	 .dumpit = rtnl_net_dumpid,
1177 	 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED},
1178 };
1179 
1180 void __init net_ns_init(void)
1181 {
1182 	struct net_generic *ng;
1183 
1184 #ifdef CONFIG_NET_NS
1185 	netns_ipv4_struct_check();
1186 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1187 					SMP_CACHE_BYTES,
1188 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1189 
1190 	/* Create workqueue for cleanup */
1191 	netns_wq = create_singlethread_workqueue("netns");
1192 	if (!netns_wq)
1193 		panic("Could not create netns workq");
1194 #endif
1195 
1196 	ng = net_alloc_generic();
1197 	if (!ng)
1198 		panic("Could not allocate generic netns");
1199 
1200 	rcu_assign_pointer(init_net.gen, ng);
1201 
1202 #ifdef CONFIG_KEYS
1203 	init_net.key_domain = &init_net_key_domain;
1204 #endif
1205 	preinit_net(&init_net, &init_user_ns);
1206 
1207 	down_write(&pernet_ops_rwsem);
1208 	if (setup_net(&init_net))
1209 		panic("Could not setup the initial network namespace");
1210 
1211 	init_net_initialized = true;
1212 	up_write(&pernet_ops_rwsem);
1213 
1214 	if (register_pernet_subsys(&net_ns_ops))
1215 		panic("Could not register network namespace subsystems");
1216 
1217 	rtnl_register_many(net_ns_rtnl_msg_handlers);
1218 }
1219 
1220 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1221 {
1222 	ops_pre_exit_list(ops, net_exit_list);
1223 	synchronize_rcu();
1224 
1225 	if (ops->exit_batch_rtnl) {
1226 		LIST_HEAD(dev_kill_list);
1227 
1228 		rtnl_lock();
1229 		ops->exit_batch_rtnl(net_exit_list, &dev_kill_list);
1230 		unregister_netdevice_many(&dev_kill_list);
1231 		rtnl_unlock();
1232 	}
1233 	ops_exit_list(ops, net_exit_list);
1234 
1235 	ops_free_list(ops, net_exit_list);
1236 }
1237 
1238 #ifdef CONFIG_NET_NS
1239 static int __register_pernet_operations(struct list_head *list,
1240 					struct pernet_operations *ops)
1241 {
1242 	struct net *net;
1243 	int error;
1244 	LIST_HEAD(net_exit_list);
1245 
1246 	list_add_tail(&ops->list, list);
1247 	if (ops->init || ops->id) {
1248 		/* We held write locked pernet_ops_rwsem, and parallel
1249 		 * setup_net() and cleanup_net() are not possible.
1250 		 */
1251 		for_each_net(net) {
1252 			error = ops_init(ops, net);
1253 			if (error)
1254 				goto out_undo;
1255 			list_add_tail(&net->exit_list, &net_exit_list);
1256 		}
1257 	}
1258 	return 0;
1259 
1260 out_undo:
1261 	/* If I have an error cleanup all namespaces I initialized */
1262 	list_del(&ops->list);
1263 	free_exit_list(ops, &net_exit_list);
1264 	return error;
1265 }
1266 
1267 static void __unregister_pernet_operations(struct pernet_operations *ops)
1268 {
1269 	struct net *net;
1270 	LIST_HEAD(net_exit_list);
1271 
1272 	list_del(&ops->list);
1273 	/* See comment in __register_pernet_operations() */
1274 	for_each_net(net)
1275 		list_add_tail(&net->exit_list, &net_exit_list);
1276 
1277 	free_exit_list(ops, &net_exit_list);
1278 }
1279 
1280 #else
1281 
1282 static int __register_pernet_operations(struct list_head *list,
1283 					struct pernet_operations *ops)
1284 {
1285 	if (!init_net_initialized) {
1286 		list_add_tail(&ops->list, list);
1287 		return 0;
1288 	}
1289 
1290 	return ops_init(ops, &init_net);
1291 }
1292 
1293 static void __unregister_pernet_operations(struct pernet_operations *ops)
1294 {
1295 	if (!init_net_initialized) {
1296 		list_del(&ops->list);
1297 	} else {
1298 		LIST_HEAD(net_exit_list);
1299 		list_add(&init_net.exit_list, &net_exit_list);
1300 		free_exit_list(ops, &net_exit_list);
1301 	}
1302 }
1303 
1304 #endif /* CONFIG_NET_NS */
1305 
1306 static DEFINE_IDA(net_generic_ids);
1307 
1308 static int register_pernet_operations(struct list_head *list,
1309 				      struct pernet_operations *ops)
1310 {
1311 	int error;
1312 
1313 	if (WARN_ON(!!ops->id ^ !!ops->size))
1314 		return -EINVAL;
1315 
1316 	if (ops->id) {
1317 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1318 				GFP_KERNEL);
1319 		if (error < 0)
1320 			return error;
1321 		*ops->id = error;
1322 		/* This does not require READ_ONCE as writers already hold
1323 		 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1324 		 * net_alloc_generic.
1325 		 */
1326 		WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1327 	}
1328 	error = __register_pernet_operations(list, ops);
1329 	if (error) {
1330 		rcu_barrier();
1331 		if (ops->id)
1332 			ida_free(&net_generic_ids, *ops->id);
1333 	}
1334 
1335 	return error;
1336 }
1337 
1338 static void unregister_pernet_operations(struct pernet_operations *ops)
1339 {
1340 	__unregister_pernet_operations(ops);
1341 	rcu_barrier();
1342 	if (ops->id)
1343 		ida_free(&net_generic_ids, *ops->id);
1344 }
1345 
1346 /**
1347  *      register_pernet_subsys - register a network namespace subsystem
1348  *	@ops:  pernet operations structure for the subsystem
1349  *
1350  *	Register a subsystem which has init and exit functions
1351  *	that are called when network namespaces are created and
1352  *	destroyed respectively.
1353  *
1354  *	When registered all network namespace init functions are
1355  *	called for every existing network namespace.  Allowing kernel
1356  *	modules to have a race free view of the set of network namespaces.
1357  *
1358  *	When a new network namespace is created all of the init
1359  *	methods are called in the order in which they were registered.
1360  *
1361  *	When a network namespace is destroyed all of the exit methods
1362  *	are called in the reverse of the order with which they were
1363  *	registered.
1364  */
1365 int register_pernet_subsys(struct pernet_operations *ops)
1366 {
1367 	int error;
1368 	down_write(&pernet_ops_rwsem);
1369 	error =  register_pernet_operations(first_device, ops);
1370 	up_write(&pernet_ops_rwsem);
1371 	return error;
1372 }
1373 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1374 
1375 /**
1376  *      unregister_pernet_subsys - unregister a network namespace subsystem
1377  *	@ops: pernet operations structure to manipulate
1378  *
1379  *	Remove the pernet operations structure from the list to be
1380  *	used when network namespaces are created or destroyed.  In
1381  *	addition run the exit method for all existing network
1382  *	namespaces.
1383  */
1384 void unregister_pernet_subsys(struct pernet_operations *ops)
1385 {
1386 	down_write(&pernet_ops_rwsem);
1387 	unregister_pernet_operations(ops);
1388 	up_write(&pernet_ops_rwsem);
1389 }
1390 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1391 
1392 /**
1393  *      register_pernet_device - register a network namespace device
1394  *	@ops:  pernet operations structure for the subsystem
1395  *
1396  *	Register a device which has init and exit functions
1397  *	that are called when network namespaces are created and
1398  *	destroyed respectively.
1399  *
1400  *	When registered all network namespace init functions are
1401  *	called for every existing network namespace.  Allowing kernel
1402  *	modules to have a race free view of the set of network namespaces.
1403  *
1404  *	When a new network namespace is created all of the init
1405  *	methods are called in the order in which they were registered.
1406  *
1407  *	When a network namespace is destroyed all of the exit methods
1408  *	are called in the reverse of the order with which they were
1409  *	registered.
1410  */
1411 int register_pernet_device(struct pernet_operations *ops)
1412 {
1413 	int error;
1414 	down_write(&pernet_ops_rwsem);
1415 	error = register_pernet_operations(&pernet_list, ops);
1416 	if (!error && (first_device == &pernet_list))
1417 		first_device = &ops->list;
1418 	up_write(&pernet_ops_rwsem);
1419 	return error;
1420 }
1421 EXPORT_SYMBOL_GPL(register_pernet_device);
1422 
1423 /**
1424  *      unregister_pernet_device - unregister a network namespace netdevice
1425  *	@ops: pernet operations structure to manipulate
1426  *
1427  *	Remove the pernet operations structure from the list to be
1428  *	used when network namespaces are created or destroyed.  In
1429  *	addition run the exit method for all existing network
1430  *	namespaces.
1431  */
1432 void unregister_pernet_device(struct pernet_operations *ops)
1433 {
1434 	down_write(&pernet_ops_rwsem);
1435 	if (&ops->list == first_device)
1436 		first_device = first_device->next;
1437 	unregister_pernet_operations(ops);
1438 	up_write(&pernet_ops_rwsem);
1439 }
1440 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1441 
1442 #ifdef CONFIG_NET_NS
1443 static struct ns_common *netns_get(struct task_struct *task)
1444 {
1445 	struct net *net = NULL;
1446 	struct nsproxy *nsproxy;
1447 
1448 	task_lock(task);
1449 	nsproxy = task->nsproxy;
1450 	if (nsproxy)
1451 		net = get_net(nsproxy->net_ns);
1452 	task_unlock(task);
1453 
1454 	return net ? &net->ns : NULL;
1455 }
1456 
1457 static inline struct net *to_net_ns(struct ns_common *ns)
1458 {
1459 	return container_of(ns, struct net, ns);
1460 }
1461 
1462 static void netns_put(struct ns_common *ns)
1463 {
1464 	put_net(to_net_ns(ns));
1465 }
1466 
1467 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1468 {
1469 	struct nsproxy *nsproxy = nsset->nsproxy;
1470 	struct net *net = to_net_ns(ns);
1471 
1472 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1473 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1474 		return -EPERM;
1475 
1476 	put_net(nsproxy->net_ns);
1477 	nsproxy->net_ns = get_net(net);
1478 	return 0;
1479 }
1480 
1481 static struct user_namespace *netns_owner(struct ns_common *ns)
1482 {
1483 	return to_net_ns(ns)->user_ns;
1484 }
1485 
1486 const struct proc_ns_operations netns_operations = {
1487 	.name		= "net",
1488 	.type		= CLONE_NEWNET,
1489 	.get		= netns_get,
1490 	.put		= netns_put,
1491 	.install	= netns_install,
1492 	.owner		= netns_owner,
1493 };
1494 #endif
1495