1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 60 61 #define MIN_PERNET_OPS_ID \ 62 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 63 64 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 65 66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 67 68 DEFINE_COOKIE(net_cookie); 69 70 static struct net_generic *net_alloc_generic(void) 71 { 72 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 73 unsigned int generic_size; 74 struct net_generic *ng; 75 76 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 77 78 ng = kzalloc(generic_size, GFP_KERNEL); 79 if (ng) 80 ng->s.len = gen_ptrs; 81 82 return ng; 83 } 84 85 static int net_assign_generic(struct net *net, unsigned int id, void *data) 86 { 87 struct net_generic *ng, *old_ng; 88 89 BUG_ON(id < MIN_PERNET_OPS_ID); 90 91 old_ng = rcu_dereference_protected(net->gen, 92 lockdep_is_held(&pernet_ops_rwsem)); 93 if (old_ng->s.len > id) { 94 old_ng->ptr[id] = data; 95 return 0; 96 } 97 98 ng = net_alloc_generic(); 99 if (!ng) 100 return -ENOMEM; 101 102 /* 103 * Some synchronisation notes: 104 * 105 * The net_generic explores the net->gen array inside rcu 106 * read section. Besides once set the net->gen->ptr[x] 107 * pointer never changes (see rules in netns/generic.h). 108 * 109 * That said, we simply duplicate this array and schedule 110 * the old copy for kfree after a grace period. 111 */ 112 113 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 114 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 115 ng->ptr[id] = data; 116 117 rcu_assign_pointer(net->gen, ng); 118 kfree_rcu(old_ng, s.rcu); 119 return 0; 120 } 121 122 static int ops_init(const struct pernet_operations *ops, struct net *net) 123 { 124 struct net_generic *ng; 125 int err = -ENOMEM; 126 void *data = NULL; 127 128 if (ops->id) { 129 data = kzalloc(ops->size, GFP_KERNEL); 130 if (!data) 131 goto out; 132 133 err = net_assign_generic(net, *ops->id, data); 134 if (err) 135 goto cleanup; 136 } 137 err = 0; 138 if (ops->init) 139 err = ops->init(net); 140 if (!err) 141 return 0; 142 143 if (ops->id) { 144 ng = rcu_dereference_protected(net->gen, 145 lockdep_is_held(&pernet_ops_rwsem)); 146 ng->ptr[*ops->id] = NULL; 147 } 148 149 cleanup: 150 kfree(data); 151 152 out: 153 return err; 154 } 155 156 static void ops_pre_exit_list(const struct pernet_operations *ops, 157 struct list_head *net_exit_list) 158 { 159 struct net *net; 160 161 if (ops->pre_exit) { 162 list_for_each_entry(net, net_exit_list, exit_list) 163 ops->pre_exit(net); 164 } 165 } 166 167 static void ops_exit_list(const struct pernet_operations *ops, 168 struct list_head *net_exit_list) 169 { 170 struct net *net; 171 if (ops->exit) { 172 list_for_each_entry(net, net_exit_list, exit_list) { 173 ops->exit(net); 174 cond_resched(); 175 } 176 } 177 if (ops->exit_batch) 178 ops->exit_batch(net_exit_list); 179 } 180 181 static void ops_free_list(const struct pernet_operations *ops, 182 struct list_head *net_exit_list) 183 { 184 struct net *net; 185 186 if (ops->id) { 187 list_for_each_entry(net, net_exit_list, exit_list) 188 kfree(net_generic(net, *ops->id)); 189 } 190 } 191 192 /* should be called with nsid_lock held */ 193 static int alloc_netid(struct net *net, struct net *peer, int reqid) 194 { 195 int min = 0, max = 0; 196 197 if (reqid >= 0) { 198 min = reqid; 199 max = reqid + 1; 200 } 201 202 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 203 } 204 205 /* This function is used by idr_for_each(). If net is equal to peer, the 206 * function returns the id so that idr_for_each() stops. Because we cannot 207 * returns the id 0 (idr_for_each() will not stop), we return the magic value 208 * NET_ID_ZERO (-1) for it. 209 */ 210 #define NET_ID_ZERO -1 211 static int net_eq_idr(int id, void *net, void *peer) 212 { 213 if (net_eq(net, peer)) 214 return id ? : NET_ID_ZERO; 215 return 0; 216 } 217 218 /* Must be called from RCU-critical section or with nsid_lock held */ 219 static int __peernet2id(const struct net *net, struct net *peer) 220 { 221 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 222 223 /* Magic value for id 0. */ 224 if (id == NET_ID_ZERO) 225 return 0; 226 if (id > 0) 227 return id; 228 229 return NETNSA_NSID_NOT_ASSIGNED; 230 } 231 232 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 233 struct nlmsghdr *nlh, gfp_t gfp); 234 /* This function returns the id of a peer netns. If no id is assigned, one will 235 * be allocated and returned. 236 */ 237 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 238 { 239 int id; 240 241 if (refcount_read(&net->ns.count) == 0) 242 return NETNSA_NSID_NOT_ASSIGNED; 243 244 spin_lock_bh(&net->nsid_lock); 245 id = __peernet2id(net, peer); 246 if (id >= 0) { 247 spin_unlock_bh(&net->nsid_lock); 248 return id; 249 } 250 251 /* When peer is obtained from RCU lists, we may race with 252 * its cleanup. Check whether it's alive, and this guarantees 253 * we never hash a peer back to net->netns_ids, after it has 254 * just been idr_remove()'d from there in cleanup_net(). 255 */ 256 if (!maybe_get_net(peer)) { 257 spin_unlock_bh(&net->nsid_lock); 258 return NETNSA_NSID_NOT_ASSIGNED; 259 } 260 261 id = alloc_netid(net, peer, -1); 262 spin_unlock_bh(&net->nsid_lock); 263 264 put_net(peer); 265 if (id < 0) 266 return NETNSA_NSID_NOT_ASSIGNED; 267 268 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 269 270 return id; 271 } 272 EXPORT_SYMBOL_GPL(peernet2id_alloc); 273 274 /* This function returns, if assigned, the id of a peer netns. */ 275 int peernet2id(const struct net *net, struct net *peer) 276 { 277 int id; 278 279 rcu_read_lock(); 280 id = __peernet2id(net, peer); 281 rcu_read_unlock(); 282 283 return id; 284 } 285 EXPORT_SYMBOL(peernet2id); 286 287 /* This function returns true is the peer netns has an id assigned into the 288 * current netns. 289 */ 290 bool peernet_has_id(const struct net *net, struct net *peer) 291 { 292 return peernet2id(net, peer) >= 0; 293 } 294 295 struct net *get_net_ns_by_id(const struct net *net, int id) 296 { 297 struct net *peer; 298 299 if (id < 0) 300 return NULL; 301 302 rcu_read_lock(); 303 peer = idr_find(&net->netns_ids, id); 304 if (peer) 305 peer = maybe_get_net(peer); 306 rcu_read_unlock(); 307 308 return peer; 309 } 310 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 311 312 static __net_init void preinit_net_sysctl(struct net *net) 313 { 314 net->core.sysctl_somaxconn = SOMAXCONN; 315 /* Limits per socket sk_omem_alloc usage. 316 * TCP zerocopy regular usage needs 128 KB. 317 */ 318 net->core.sysctl_optmem_max = 128 * 1024; 319 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 320 net->core.sysctl_tstamp_allow_data = 1; 321 } 322 323 /* init code that must occur even if setup_net() is not called. */ 324 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 325 { 326 refcount_set(&net->passive, 1); 327 refcount_set(&net->ns.count, 1); 328 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 329 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 330 331 get_random_bytes(&net->hash_mix, sizeof(u32)); 332 net->dev_base_seq = 1; 333 net->user_ns = user_ns; 334 335 idr_init(&net->netns_ids); 336 spin_lock_init(&net->nsid_lock); 337 mutex_init(&net->ipv4.ra_mutex); 338 339 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 340 mutex_init(&net->rtnl_mutex); 341 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 342 #endif 343 344 preinit_net_sysctl(net); 345 } 346 347 /* 348 * setup_net runs the initializers for the network namespace object. 349 */ 350 static __net_init int setup_net(struct net *net) 351 { 352 /* Must be called with pernet_ops_rwsem held */ 353 const struct pernet_operations *ops, *saved_ops; 354 LIST_HEAD(net_exit_list); 355 LIST_HEAD(dev_kill_list); 356 int error = 0; 357 358 preempt_disable(); 359 net->net_cookie = gen_cookie_next(&net_cookie); 360 preempt_enable(); 361 362 list_for_each_entry(ops, &pernet_list, list) { 363 error = ops_init(ops, net); 364 if (error < 0) 365 goto out_undo; 366 } 367 down_write(&net_rwsem); 368 list_add_tail_rcu(&net->list, &net_namespace_list); 369 up_write(&net_rwsem); 370 out: 371 return error; 372 373 out_undo: 374 /* Walk through the list backwards calling the exit functions 375 * for the pernet modules whose init functions did not fail. 376 */ 377 list_add(&net->exit_list, &net_exit_list); 378 saved_ops = ops; 379 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 380 ops_pre_exit_list(ops, &net_exit_list); 381 382 synchronize_rcu(); 383 384 ops = saved_ops; 385 rtnl_lock(); 386 list_for_each_entry_continue_reverse(ops, &pernet_list, list) { 387 if (ops->exit_batch_rtnl) 388 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 389 } 390 unregister_netdevice_many(&dev_kill_list); 391 rtnl_unlock(); 392 393 ops = saved_ops; 394 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 395 ops_exit_list(ops, &net_exit_list); 396 397 ops = saved_ops; 398 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 399 ops_free_list(ops, &net_exit_list); 400 401 rcu_barrier(); 402 goto out; 403 } 404 405 #ifdef CONFIG_NET_NS 406 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 407 { 408 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 409 } 410 411 static void dec_net_namespaces(struct ucounts *ucounts) 412 { 413 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 414 } 415 416 static struct kmem_cache *net_cachep __ro_after_init; 417 static struct workqueue_struct *netns_wq; 418 419 static struct net *net_alloc(void) 420 { 421 struct net *net = NULL; 422 struct net_generic *ng; 423 424 ng = net_alloc_generic(); 425 if (!ng) 426 goto out; 427 428 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 429 if (!net) 430 goto out_free; 431 432 #ifdef CONFIG_KEYS 433 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 434 if (!net->key_domain) 435 goto out_free_2; 436 refcount_set(&net->key_domain->usage, 1); 437 #endif 438 439 rcu_assign_pointer(net->gen, ng); 440 out: 441 return net; 442 443 #ifdef CONFIG_KEYS 444 out_free_2: 445 kmem_cache_free(net_cachep, net); 446 net = NULL; 447 #endif 448 out_free: 449 kfree(ng); 450 goto out; 451 } 452 453 static void net_free(struct net *net) 454 { 455 if (refcount_dec_and_test(&net->passive)) { 456 kfree(rcu_access_pointer(net->gen)); 457 458 /* There should not be any trackers left there. */ 459 ref_tracker_dir_exit(&net->notrefcnt_tracker); 460 461 kmem_cache_free(net_cachep, net); 462 } 463 } 464 465 void net_drop_ns(void *p) 466 { 467 struct net *net = (struct net *)p; 468 469 if (net) 470 net_free(net); 471 } 472 473 struct net *copy_net_ns(unsigned long flags, 474 struct user_namespace *user_ns, struct net *old_net) 475 { 476 struct ucounts *ucounts; 477 struct net *net; 478 int rv; 479 480 if (!(flags & CLONE_NEWNET)) 481 return get_net(old_net); 482 483 ucounts = inc_net_namespaces(user_ns); 484 if (!ucounts) 485 return ERR_PTR(-ENOSPC); 486 487 net = net_alloc(); 488 if (!net) { 489 rv = -ENOMEM; 490 goto dec_ucounts; 491 } 492 493 preinit_net(net, user_ns); 494 net->ucounts = ucounts; 495 get_user_ns(user_ns); 496 497 rv = down_read_killable(&pernet_ops_rwsem); 498 if (rv < 0) 499 goto put_userns; 500 501 rv = setup_net(net); 502 503 up_read(&pernet_ops_rwsem); 504 505 if (rv < 0) { 506 put_userns: 507 #ifdef CONFIG_KEYS 508 key_remove_domain(net->key_domain); 509 #endif 510 put_user_ns(user_ns); 511 net_free(net); 512 dec_ucounts: 513 dec_net_namespaces(ucounts); 514 return ERR_PTR(rv); 515 } 516 return net; 517 } 518 519 /** 520 * net_ns_get_ownership - get sysfs ownership data for @net 521 * @net: network namespace in question (can be NULL) 522 * @uid: kernel user ID for sysfs objects 523 * @gid: kernel group ID for sysfs objects 524 * 525 * Returns the uid/gid pair of root in the user namespace associated with the 526 * given network namespace. 527 */ 528 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 529 { 530 if (net) { 531 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 532 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 533 534 if (uid_valid(ns_root_uid)) 535 *uid = ns_root_uid; 536 537 if (gid_valid(ns_root_gid)) 538 *gid = ns_root_gid; 539 } else { 540 *uid = GLOBAL_ROOT_UID; 541 *gid = GLOBAL_ROOT_GID; 542 } 543 } 544 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 545 546 static void unhash_nsid(struct net *net, struct net *last) 547 { 548 struct net *tmp; 549 /* This function is only called from cleanup_net() work, 550 * and this work is the only process, that may delete 551 * a net from net_namespace_list. So, when the below 552 * is executing, the list may only grow. Thus, we do not 553 * use for_each_net_rcu() or net_rwsem. 554 */ 555 for_each_net(tmp) { 556 int id; 557 558 spin_lock_bh(&tmp->nsid_lock); 559 id = __peernet2id(tmp, net); 560 if (id >= 0) 561 idr_remove(&tmp->netns_ids, id); 562 spin_unlock_bh(&tmp->nsid_lock); 563 if (id >= 0) 564 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 565 GFP_KERNEL); 566 if (tmp == last) 567 break; 568 } 569 spin_lock_bh(&net->nsid_lock); 570 idr_destroy(&net->netns_ids); 571 spin_unlock_bh(&net->nsid_lock); 572 } 573 574 static LLIST_HEAD(cleanup_list); 575 576 static void cleanup_net(struct work_struct *work) 577 { 578 const struct pernet_operations *ops; 579 struct net *net, *tmp, *last; 580 struct llist_node *net_kill_list; 581 LIST_HEAD(net_exit_list); 582 LIST_HEAD(dev_kill_list); 583 584 /* Atomically snapshot the list of namespaces to cleanup */ 585 net_kill_list = llist_del_all(&cleanup_list); 586 587 down_read(&pernet_ops_rwsem); 588 589 /* Don't let anyone else find us. */ 590 down_write(&net_rwsem); 591 llist_for_each_entry(net, net_kill_list, cleanup_list) 592 list_del_rcu(&net->list); 593 /* Cache last net. After we unlock rtnl, no one new net 594 * added to net_namespace_list can assign nsid pointer 595 * to a net from net_kill_list (see peernet2id_alloc()). 596 * So, we skip them in unhash_nsid(). 597 * 598 * Note, that unhash_nsid() does not delete nsid links 599 * between net_kill_list's nets, as they've already 600 * deleted from net_namespace_list. But, this would be 601 * useless anyway, as netns_ids are destroyed there. 602 */ 603 last = list_last_entry(&net_namespace_list, struct net, list); 604 up_write(&net_rwsem); 605 606 llist_for_each_entry(net, net_kill_list, cleanup_list) { 607 unhash_nsid(net, last); 608 list_add_tail(&net->exit_list, &net_exit_list); 609 } 610 611 /* Run all of the network namespace pre_exit methods */ 612 list_for_each_entry_reverse(ops, &pernet_list, list) 613 ops_pre_exit_list(ops, &net_exit_list); 614 615 /* 616 * Another CPU might be rcu-iterating the list, wait for it. 617 * This needs to be before calling the exit() notifiers, so 618 * the rcu_barrier() below isn't sufficient alone. 619 * Also the pre_exit() and exit() methods need this barrier. 620 */ 621 synchronize_rcu_expedited(); 622 623 rtnl_lock(); 624 list_for_each_entry_reverse(ops, &pernet_list, list) { 625 if (ops->exit_batch_rtnl) 626 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 627 } 628 unregister_netdevice_many(&dev_kill_list); 629 rtnl_unlock(); 630 631 /* Run all of the network namespace exit methods */ 632 list_for_each_entry_reverse(ops, &pernet_list, list) 633 ops_exit_list(ops, &net_exit_list); 634 635 /* Free the net generic variables */ 636 list_for_each_entry_reverse(ops, &pernet_list, list) 637 ops_free_list(ops, &net_exit_list); 638 639 up_read(&pernet_ops_rwsem); 640 641 /* Ensure there are no outstanding rcu callbacks using this 642 * network namespace. 643 */ 644 rcu_barrier(); 645 646 /* Finally it is safe to free my network namespace structure */ 647 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 648 list_del_init(&net->exit_list); 649 dec_net_namespaces(net->ucounts); 650 #ifdef CONFIG_KEYS 651 key_remove_domain(net->key_domain); 652 #endif 653 put_user_ns(net->user_ns); 654 net_free(net); 655 } 656 } 657 658 /** 659 * net_ns_barrier - wait until concurrent net_cleanup_work is done 660 * 661 * cleanup_net runs from work queue and will first remove namespaces 662 * from the global list, then run net exit functions. 663 * 664 * Call this in module exit path to make sure that all netns 665 * ->exit ops have been invoked before the function is removed. 666 */ 667 void net_ns_barrier(void) 668 { 669 down_write(&pernet_ops_rwsem); 670 up_write(&pernet_ops_rwsem); 671 } 672 EXPORT_SYMBOL(net_ns_barrier); 673 674 static DECLARE_WORK(net_cleanup_work, cleanup_net); 675 676 void __put_net(struct net *net) 677 { 678 ref_tracker_dir_exit(&net->refcnt_tracker); 679 /* Cleanup the network namespace in process context */ 680 if (llist_add(&net->cleanup_list, &cleanup_list)) 681 queue_work(netns_wq, &net_cleanup_work); 682 } 683 EXPORT_SYMBOL_GPL(__put_net); 684 685 /** 686 * get_net_ns - increment the refcount of the network namespace 687 * @ns: common namespace (net) 688 * 689 * Returns the net's common namespace or ERR_PTR() if ref is zero. 690 */ 691 struct ns_common *get_net_ns(struct ns_common *ns) 692 { 693 struct net *net; 694 695 net = maybe_get_net(container_of(ns, struct net, ns)); 696 if (net) 697 return &net->ns; 698 return ERR_PTR(-EINVAL); 699 } 700 EXPORT_SYMBOL_GPL(get_net_ns); 701 702 struct net *get_net_ns_by_fd(int fd) 703 { 704 struct fd f = fdget(fd); 705 struct net *net = ERR_PTR(-EINVAL); 706 707 if (!fd_file(f)) 708 return ERR_PTR(-EBADF); 709 710 if (proc_ns_file(fd_file(f))) { 711 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 712 if (ns->ops == &netns_operations) 713 net = get_net(container_of(ns, struct net, ns)); 714 } 715 fdput(f); 716 717 return net; 718 } 719 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 720 #endif 721 722 struct net *get_net_ns_by_pid(pid_t pid) 723 { 724 struct task_struct *tsk; 725 struct net *net; 726 727 /* Lookup the network namespace */ 728 net = ERR_PTR(-ESRCH); 729 rcu_read_lock(); 730 tsk = find_task_by_vpid(pid); 731 if (tsk) { 732 struct nsproxy *nsproxy; 733 task_lock(tsk); 734 nsproxy = tsk->nsproxy; 735 if (nsproxy) 736 net = get_net(nsproxy->net_ns); 737 task_unlock(tsk); 738 } 739 rcu_read_unlock(); 740 return net; 741 } 742 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 743 744 static __net_init int net_ns_net_init(struct net *net) 745 { 746 #ifdef CONFIG_NET_NS 747 net->ns.ops = &netns_operations; 748 #endif 749 return ns_alloc_inum(&net->ns); 750 } 751 752 static __net_exit void net_ns_net_exit(struct net *net) 753 { 754 ns_free_inum(&net->ns); 755 } 756 757 static struct pernet_operations __net_initdata net_ns_ops = { 758 .init = net_ns_net_init, 759 .exit = net_ns_net_exit, 760 }; 761 762 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 763 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 764 [NETNSA_NSID] = { .type = NLA_S32 }, 765 [NETNSA_PID] = { .type = NLA_U32 }, 766 [NETNSA_FD] = { .type = NLA_U32 }, 767 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 768 }; 769 770 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 771 struct netlink_ext_ack *extack) 772 { 773 struct net *net = sock_net(skb->sk); 774 struct nlattr *tb[NETNSA_MAX + 1]; 775 struct nlattr *nla; 776 struct net *peer; 777 int nsid, err; 778 779 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 780 NETNSA_MAX, rtnl_net_policy, extack); 781 if (err < 0) 782 return err; 783 if (!tb[NETNSA_NSID]) { 784 NL_SET_ERR_MSG(extack, "nsid is missing"); 785 return -EINVAL; 786 } 787 nsid = nla_get_s32(tb[NETNSA_NSID]); 788 789 if (tb[NETNSA_PID]) { 790 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 791 nla = tb[NETNSA_PID]; 792 } else if (tb[NETNSA_FD]) { 793 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 794 nla = tb[NETNSA_FD]; 795 } else { 796 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 797 return -EINVAL; 798 } 799 if (IS_ERR(peer)) { 800 NL_SET_BAD_ATTR(extack, nla); 801 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 802 return PTR_ERR(peer); 803 } 804 805 spin_lock_bh(&net->nsid_lock); 806 if (__peernet2id(net, peer) >= 0) { 807 spin_unlock_bh(&net->nsid_lock); 808 err = -EEXIST; 809 NL_SET_BAD_ATTR(extack, nla); 810 NL_SET_ERR_MSG(extack, 811 "Peer netns already has a nsid assigned"); 812 goto out; 813 } 814 815 err = alloc_netid(net, peer, nsid); 816 spin_unlock_bh(&net->nsid_lock); 817 if (err >= 0) { 818 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 819 nlh, GFP_KERNEL); 820 err = 0; 821 } else if (err == -ENOSPC && nsid >= 0) { 822 err = -EEXIST; 823 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 824 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 825 } 826 out: 827 put_net(peer); 828 return err; 829 } 830 831 static int rtnl_net_get_size(void) 832 { 833 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 834 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 835 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 836 ; 837 } 838 839 struct net_fill_args { 840 u32 portid; 841 u32 seq; 842 int flags; 843 int cmd; 844 int nsid; 845 bool add_ref; 846 int ref_nsid; 847 }; 848 849 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 850 { 851 struct nlmsghdr *nlh; 852 struct rtgenmsg *rth; 853 854 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 855 args->flags); 856 if (!nlh) 857 return -EMSGSIZE; 858 859 rth = nlmsg_data(nlh); 860 rth->rtgen_family = AF_UNSPEC; 861 862 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 863 goto nla_put_failure; 864 865 if (args->add_ref && 866 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 867 goto nla_put_failure; 868 869 nlmsg_end(skb, nlh); 870 return 0; 871 872 nla_put_failure: 873 nlmsg_cancel(skb, nlh); 874 return -EMSGSIZE; 875 } 876 877 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 878 const struct nlmsghdr *nlh, 879 struct nlattr **tb, 880 struct netlink_ext_ack *extack) 881 { 882 int i, err; 883 884 if (!netlink_strict_get_check(skb)) 885 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 886 tb, NETNSA_MAX, rtnl_net_policy, 887 extack); 888 889 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 890 NETNSA_MAX, rtnl_net_policy, 891 extack); 892 if (err) 893 return err; 894 895 for (i = 0; i <= NETNSA_MAX; i++) { 896 if (!tb[i]) 897 continue; 898 899 switch (i) { 900 case NETNSA_PID: 901 case NETNSA_FD: 902 case NETNSA_NSID: 903 case NETNSA_TARGET_NSID: 904 break; 905 default: 906 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 907 return -EINVAL; 908 } 909 } 910 911 return 0; 912 } 913 914 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 915 struct netlink_ext_ack *extack) 916 { 917 struct net *net = sock_net(skb->sk); 918 struct nlattr *tb[NETNSA_MAX + 1]; 919 struct net_fill_args fillargs = { 920 .portid = NETLINK_CB(skb).portid, 921 .seq = nlh->nlmsg_seq, 922 .cmd = RTM_NEWNSID, 923 }; 924 struct net *peer, *target = net; 925 struct nlattr *nla; 926 struct sk_buff *msg; 927 int err; 928 929 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 930 if (err < 0) 931 return err; 932 if (tb[NETNSA_PID]) { 933 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 934 nla = tb[NETNSA_PID]; 935 } else if (tb[NETNSA_FD]) { 936 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 937 nla = tb[NETNSA_FD]; 938 } else if (tb[NETNSA_NSID]) { 939 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 940 if (!peer) 941 peer = ERR_PTR(-ENOENT); 942 nla = tb[NETNSA_NSID]; 943 } else { 944 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 945 return -EINVAL; 946 } 947 948 if (IS_ERR(peer)) { 949 NL_SET_BAD_ATTR(extack, nla); 950 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 951 return PTR_ERR(peer); 952 } 953 954 if (tb[NETNSA_TARGET_NSID]) { 955 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 956 957 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 958 if (IS_ERR(target)) { 959 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 960 NL_SET_ERR_MSG(extack, 961 "Target netns reference is invalid"); 962 err = PTR_ERR(target); 963 goto out; 964 } 965 fillargs.add_ref = true; 966 fillargs.ref_nsid = peernet2id(net, peer); 967 } 968 969 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 970 if (!msg) { 971 err = -ENOMEM; 972 goto out; 973 } 974 975 fillargs.nsid = peernet2id(target, peer); 976 err = rtnl_net_fill(msg, &fillargs); 977 if (err < 0) 978 goto err_out; 979 980 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 981 goto out; 982 983 err_out: 984 nlmsg_free(msg); 985 out: 986 if (fillargs.add_ref) 987 put_net(target); 988 put_net(peer); 989 return err; 990 } 991 992 struct rtnl_net_dump_cb { 993 struct net *tgt_net; 994 struct net *ref_net; 995 struct sk_buff *skb; 996 struct net_fill_args fillargs; 997 int idx; 998 int s_idx; 999 }; 1000 1001 /* Runs in RCU-critical section. */ 1002 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1003 { 1004 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1005 int ret; 1006 1007 if (net_cb->idx < net_cb->s_idx) 1008 goto cont; 1009 1010 net_cb->fillargs.nsid = id; 1011 if (net_cb->fillargs.add_ref) 1012 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1013 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1014 if (ret < 0) 1015 return ret; 1016 1017 cont: 1018 net_cb->idx++; 1019 return 0; 1020 } 1021 1022 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1023 struct rtnl_net_dump_cb *net_cb, 1024 struct netlink_callback *cb) 1025 { 1026 struct netlink_ext_ack *extack = cb->extack; 1027 struct nlattr *tb[NETNSA_MAX + 1]; 1028 int err, i; 1029 1030 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1031 NETNSA_MAX, rtnl_net_policy, 1032 extack); 1033 if (err < 0) 1034 return err; 1035 1036 for (i = 0; i <= NETNSA_MAX; i++) { 1037 if (!tb[i]) 1038 continue; 1039 1040 if (i == NETNSA_TARGET_NSID) { 1041 struct net *net; 1042 1043 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1044 if (IS_ERR(net)) { 1045 NL_SET_BAD_ATTR(extack, tb[i]); 1046 NL_SET_ERR_MSG(extack, 1047 "Invalid target network namespace id"); 1048 return PTR_ERR(net); 1049 } 1050 net_cb->fillargs.add_ref = true; 1051 net_cb->ref_net = net_cb->tgt_net; 1052 net_cb->tgt_net = net; 1053 } else { 1054 NL_SET_BAD_ATTR(extack, tb[i]); 1055 NL_SET_ERR_MSG(extack, 1056 "Unsupported attribute in dump request"); 1057 return -EINVAL; 1058 } 1059 } 1060 1061 return 0; 1062 } 1063 1064 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1065 { 1066 struct rtnl_net_dump_cb net_cb = { 1067 .tgt_net = sock_net(skb->sk), 1068 .skb = skb, 1069 .fillargs = { 1070 .portid = NETLINK_CB(cb->skb).portid, 1071 .seq = cb->nlh->nlmsg_seq, 1072 .flags = NLM_F_MULTI, 1073 .cmd = RTM_NEWNSID, 1074 }, 1075 .idx = 0, 1076 .s_idx = cb->args[0], 1077 }; 1078 int err = 0; 1079 1080 if (cb->strict_check) { 1081 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1082 if (err < 0) 1083 goto end; 1084 } 1085 1086 rcu_read_lock(); 1087 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1088 rcu_read_unlock(); 1089 1090 cb->args[0] = net_cb.idx; 1091 end: 1092 if (net_cb.fillargs.add_ref) 1093 put_net(net_cb.tgt_net); 1094 return err; 1095 } 1096 1097 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1098 struct nlmsghdr *nlh, gfp_t gfp) 1099 { 1100 struct net_fill_args fillargs = { 1101 .portid = portid, 1102 .seq = nlh ? nlh->nlmsg_seq : 0, 1103 .cmd = cmd, 1104 .nsid = id, 1105 }; 1106 struct sk_buff *msg; 1107 int err = -ENOMEM; 1108 1109 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1110 if (!msg) 1111 goto out; 1112 1113 err = rtnl_net_fill(msg, &fillargs); 1114 if (err < 0) 1115 goto err_out; 1116 1117 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1118 return; 1119 1120 err_out: 1121 nlmsg_free(msg); 1122 out: 1123 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1124 } 1125 1126 #ifdef CONFIG_NET_NS 1127 static void __init netns_ipv4_struct_check(void) 1128 { 1129 /* TX readonly hotpath cache lines */ 1130 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1131 sysctl_tcp_early_retrans); 1132 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1133 sysctl_tcp_tso_win_divisor); 1134 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1135 sysctl_tcp_tso_rtt_log); 1136 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1137 sysctl_tcp_autocorking); 1138 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1139 sysctl_tcp_min_snd_mss); 1140 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1141 sysctl_tcp_notsent_lowat); 1142 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1143 sysctl_tcp_limit_output_bytes); 1144 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1145 sysctl_tcp_min_rtt_wlen); 1146 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1147 sysctl_tcp_wmem); 1148 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1149 sysctl_ip_fwd_use_pmtu); 1150 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1151 1152 /* TXRX readonly hotpath cache lines */ 1153 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1154 sysctl_tcp_moderate_rcvbuf); 1155 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1156 1157 /* RX readonly hotpath cache line */ 1158 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1159 sysctl_ip_early_demux); 1160 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1161 sysctl_tcp_early_demux); 1162 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1163 sysctl_tcp_l3mdev_accept); 1164 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1165 sysctl_tcp_reordering); 1166 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1167 sysctl_tcp_rmem); 1168 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1169 } 1170 #endif 1171 1172 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1173 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1174 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1175 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1176 .dumpit = rtnl_net_dumpid, 1177 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1178 }; 1179 1180 void __init net_ns_init(void) 1181 { 1182 struct net_generic *ng; 1183 1184 #ifdef CONFIG_NET_NS 1185 netns_ipv4_struct_check(); 1186 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1187 SMP_CACHE_BYTES, 1188 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1189 1190 /* Create workqueue for cleanup */ 1191 netns_wq = create_singlethread_workqueue("netns"); 1192 if (!netns_wq) 1193 panic("Could not create netns workq"); 1194 #endif 1195 1196 ng = net_alloc_generic(); 1197 if (!ng) 1198 panic("Could not allocate generic netns"); 1199 1200 rcu_assign_pointer(init_net.gen, ng); 1201 1202 #ifdef CONFIG_KEYS 1203 init_net.key_domain = &init_net_key_domain; 1204 #endif 1205 preinit_net(&init_net, &init_user_ns); 1206 1207 down_write(&pernet_ops_rwsem); 1208 if (setup_net(&init_net)) 1209 panic("Could not setup the initial network namespace"); 1210 1211 init_net_initialized = true; 1212 up_write(&pernet_ops_rwsem); 1213 1214 if (register_pernet_subsys(&net_ns_ops)) 1215 panic("Could not register network namespace subsystems"); 1216 1217 rtnl_register_many(net_ns_rtnl_msg_handlers); 1218 } 1219 1220 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1221 { 1222 ops_pre_exit_list(ops, net_exit_list); 1223 synchronize_rcu(); 1224 1225 if (ops->exit_batch_rtnl) { 1226 LIST_HEAD(dev_kill_list); 1227 1228 rtnl_lock(); 1229 ops->exit_batch_rtnl(net_exit_list, &dev_kill_list); 1230 unregister_netdevice_many(&dev_kill_list); 1231 rtnl_unlock(); 1232 } 1233 ops_exit_list(ops, net_exit_list); 1234 1235 ops_free_list(ops, net_exit_list); 1236 } 1237 1238 #ifdef CONFIG_NET_NS 1239 static int __register_pernet_operations(struct list_head *list, 1240 struct pernet_operations *ops) 1241 { 1242 struct net *net; 1243 int error; 1244 LIST_HEAD(net_exit_list); 1245 1246 list_add_tail(&ops->list, list); 1247 if (ops->init || ops->id) { 1248 /* We held write locked pernet_ops_rwsem, and parallel 1249 * setup_net() and cleanup_net() are not possible. 1250 */ 1251 for_each_net(net) { 1252 error = ops_init(ops, net); 1253 if (error) 1254 goto out_undo; 1255 list_add_tail(&net->exit_list, &net_exit_list); 1256 } 1257 } 1258 return 0; 1259 1260 out_undo: 1261 /* If I have an error cleanup all namespaces I initialized */ 1262 list_del(&ops->list); 1263 free_exit_list(ops, &net_exit_list); 1264 return error; 1265 } 1266 1267 static void __unregister_pernet_operations(struct pernet_operations *ops) 1268 { 1269 struct net *net; 1270 LIST_HEAD(net_exit_list); 1271 1272 list_del(&ops->list); 1273 /* See comment in __register_pernet_operations() */ 1274 for_each_net(net) 1275 list_add_tail(&net->exit_list, &net_exit_list); 1276 1277 free_exit_list(ops, &net_exit_list); 1278 } 1279 1280 #else 1281 1282 static int __register_pernet_operations(struct list_head *list, 1283 struct pernet_operations *ops) 1284 { 1285 if (!init_net_initialized) { 1286 list_add_tail(&ops->list, list); 1287 return 0; 1288 } 1289 1290 return ops_init(ops, &init_net); 1291 } 1292 1293 static void __unregister_pernet_operations(struct pernet_operations *ops) 1294 { 1295 if (!init_net_initialized) { 1296 list_del(&ops->list); 1297 } else { 1298 LIST_HEAD(net_exit_list); 1299 list_add(&init_net.exit_list, &net_exit_list); 1300 free_exit_list(ops, &net_exit_list); 1301 } 1302 } 1303 1304 #endif /* CONFIG_NET_NS */ 1305 1306 static DEFINE_IDA(net_generic_ids); 1307 1308 static int register_pernet_operations(struct list_head *list, 1309 struct pernet_operations *ops) 1310 { 1311 int error; 1312 1313 if (WARN_ON(!!ops->id ^ !!ops->size)) 1314 return -EINVAL; 1315 1316 if (ops->id) { 1317 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1318 GFP_KERNEL); 1319 if (error < 0) 1320 return error; 1321 *ops->id = error; 1322 /* This does not require READ_ONCE as writers already hold 1323 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1324 * net_alloc_generic. 1325 */ 1326 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1327 } 1328 error = __register_pernet_operations(list, ops); 1329 if (error) { 1330 rcu_barrier(); 1331 if (ops->id) 1332 ida_free(&net_generic_ids, *ops->id); 1333 } 1334 1335 return error; 1336 } 1337 1338 static void unregister_pernet_operations(struct pernet_operations *ops) 1339 { 1340 __unregister_pernet_operations(ops); 1341 rcu_barrier(); 1342 if (ops->id) 1343 ida_free(&net_generic_ids, *ops->id); 1344 } 1345 1346 /** 1347 * register_pernet_subsys - register a network namespace subsystem 1348 * @ops: pernet operations structure for the subsystem 1349 * 1350 * Register a subsystem which has init and exit functions 1351 * that are called when network namespaces are created and 1352 * destroyed respectively. 1353 * 1354 * When registered all network namespace init functions are 1355 * called for every existing network namespace. Allowing kernel 1356 * modules to have a race free view of the set of network namespaces. 1357 * 1358 * When a new network namespace is created all of the init 1359 * methods are called in the order in which they were registered. 1360 * 1361 * When a network namespace is destroyed all of the exit methods 1362 * are called in the reverse of the order with which they were 1363 * registered. 1364 */ 1365 int register_pernet_subsys(struct pernet_operations *ops) 1366 { 1367 int error; 1368 down_write(&pernet_ops_rwsem); 1369 error = register_pernet_operations(first_device, ops); 1370 up_write(&pernet_ops_rwsem); 1371 return error; 1372 } 1373 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1374 1375 /** 1376 * unregister_pernet_subsys - unregister a network namespace subsystem 1377 * @ops: pernet operations structure to manipulate 1378 * 1379 * Remove the pernet operations structure from the list to be 1380 * used when network namespaces are created or destroyed. In 1381 * addition run the exit method for all existing network 1382 * namespaces. 1383 */ 1384 void unregister_pernet_subsys(struct pernet_operations *ops) 1385 { 1386 down_write(&pernet_ops_rwsem); 1387 unregister_pernet_operations(ops); 1388 up_write(&pernet_ops_rwsem); 1389 } 1390 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1391 1392 /** 1393 * register_pernet_device - register a network namespace device 1394 * @ops: pernet operations structure for the subsystem 1395 * 1396 * Register a device which has init and exit functions 1397 * that are called when network namespaces are created and 1398 * destroyed respectively. 1399 * 1400 * When registered all network namespace init functions are 1401 * called for every existing network namespace. Allowing kernel 1402 * modules to have a race free view of the set of network namespaces. 1403 * 1404 * When a new network namespace is created all of the init 1405 * methods are called in the order in which they were registered. 1406 * 1407 * When a network namespace is destroyed all of the exit methods 1408 * are called in the reverse of the order with which they were 1409 * registered. 1410 */ 1411 int register_pernet_device(struct pernet_operations *ops) 1412 { 1413 int error; 1414 down_write(&pernet_ops_rwsem); 1415 error = register_pernet_operations(&pernet_list, ops); 1416 if (!error && (first_device == &pernet_list)) 1417 first_device = &ops->list; 1418 up_write(&pernet_ops_rwsem); 1419 return error; 1420 } 1421 EXPORT_SYMBOL_GPL(register_pernet_device); 1422 1423 /** 1424 * unregister_pernet_device - unregister a network namespace netdevice 1425 * @ops: pernet operations structure to manipulate 1426 * 1427 * Remove the pernet operations structure from the list to be 1428 * used when network namespaces are created or destroyed. In 1429 * addition run the exit method for all existing network 1430 * namespaces. 1431 */ 1432 void unregister_pernet_device(struct pernet_operations *ops) 1433 { 1434 down_write(&pernet_ops_rwsem); 1435 if (&ops->list == first_device) 1436 first_device = first_device->next; 1437 unregister_pernet_operations(ops); 1438 up_write(&pernet_ops_rwsem); 1439 } 1440 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1441 1442 #ifdef CONFIG_NET_NS 1443 static struct ns_common *netns_get(struct task_struct *task) 1444 { 1445 struct net *net = NULL; 1446 struct nsproxy *nsproxy; 1447 1448 task_lock(task); 1449 nsproxy = task->nsproxy; 1450 if (nsproxy) 1451 net = get_net(nsproxy->net_ns); 1452 task_unlock(task); 1453 1454 return net ? &net->ns : NULL; 1455 } 1456 1457 static inline struct net *to_net_ns(struct ns_common *ns) 1458 { 1459 return container_of(ns, struct net, ns); 1460 } 1461 1462 static void netns_put(struct ns_common *ns) 1463 { 1464 put_net(to_net_ns(ns)); 1465 } 1466 1467 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1468 { 1469 struct nsproxy *nsproxy = nsset->nsproxy; 1470 struct net *net = to_net_ns(ns); 1471 1472 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1473 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1474 return -EPERM; 1475 1476 put_net(nsproxy->net_ns); 1477 nsproxy->net_ns = get_net(net); 1478 return 0; 1479 } 1480 1481 static struct user_namespace *netns_owner(struct ns_common *ns) 1482 { 1483 return to_net_ns(ns)->user_ns; 1484 } 1485 1486 const struct proc_ns_operations netns_operations = { 1487 .name = "net", 1488 .type = CLONE_NEWNET, 1489 .get = netns_get, 1490 .put = netns_put, 1491 .install = netns_install, 1492 .owner = netns_owner, 1493 }; 1494 #endif 1495