xref: /linux/net/core/net_namespace.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 #include <linux/proc_fs.h>
24 
25 #include <net/sock.h>
26 #include <net/netlink.h>
27 #include <net/net_namespace.h>
28 #include <net/netns/generic.h>
29 
30 /*
31  *	Our network namespace constructor/destructor lists
32  */
33 
34 static LIST_HEAD(pernet_list);
35 static struct list_head *first_device = &pernet_list;
36 
37 LIST_HEAD(net_namespace_list);
38 EXPORT_SYMBOL_GPL(net_namespace_list);
39 
40 /* Protects net_namespace_list. Nests iside rtnl_lock() */
41 DECLARE_RWSEM(net_rwsem);
42 EXPORT_SYMBOL_GPL(net_rwsem);
43 
44 #ifdef CONFIG_KEYS
45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46 #endif
47 
48 struct net init_net;
49 EXPORT_SYMBOL(init_net);
50 
51 static bool init_net_initialized;
52 /*
53  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54  * init_net_initialized and first_device pointer.
55  * This is internal net namespace object. Please, don't use it
56  * outside.
57  */
58 DECLARE_RWSEM(pernet_ops_rwsem);
59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
60 
61 #define MIN_PERNET_OPS_ID	\
62 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
63 
64 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
65 
66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
67 
68 DEFINE_COOKIE(net_cookie);
69 
70 static struct net_generic *net_alloc_generic(void)
71 {
72 	struct net_generic *ng;
73 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
74 
75 	ng = kzalloc(generic_size, GFP_KERNEL);
76 	if (ng)
77 		ng->s.len = max_gen_ptrs;
78 
79 	return ng;
80 }
81 
82 static int net_assign_generic(struct net *net, unsigned int id, void *data)
83 {
84 	struct net_generic *ng, *old_ng;
85 
86 	BUG_ON(id < MIN_PERNET_OPS_ID);
87 
88 	old_ng = rcu_dereference_protected(net->gen,
89 					   lockdep_is_held(&pernet_ops_rwsem));
90 	if (old_ng->s.len > id) {
91 		old_ng->ptr[id] = data;
92 		return 0;
93 	}
94 
95 	ng = net_alloc_generic();
96 	if (!ng)
97 		return -ENOMEM;
98 
99 	/*
100 	 * Some synchronisation notes:
101 	 *
102 	 * The net_generic explores the net->gen array inside rcu
103 	 * read section. Besides once set the net->gen->ptr[x]
104 	 * pointer never changes (see rules in netns/generic.h).
105 	 *
106 	 * That said, we simply duplicate this array and schedule
107 	 * the old copy for kfree after a grace period.
108 	 */
109 
110 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
111 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
112 	ng->ptr[id] = data;
113 
114 	rcu_assign_pointer(net->gen, ng);
115 	kfree_rcu(old_ng, s.rcu);
116 	return 0;
117 }
118 
119 static int ops_init(const struct pernet_operations *ops, struct net *net)
120 {
121 	struct net_generic *ng;
122 	int err = -ENOMEM;
123 	void *data = NULL;
124 
125 	if (ops->id && ops->size) {
126 		data = kzalloc(ops->size, GFP_KERNEL);
127 		if (!data)
128 			goto out;
129 
130 		err = net_assign_generic(net, *ops->id, data);
131 		if (err)
132 			goto cleanup;
133 	}
134 	err = 0;
135 	if (ops->init)
136 		err = ops->init(net);
137 	if (!err)
138 		return 0;
139 
140 	if (ops->id && ops->size) {
141 		ng = rcu_dereference_protected(net->gen,
142 					       lockdep_is_held(&pernet_ops_rwsem));
143 		ng->ptr[*ops->id] = NULL;
144 	}
145 
146 cleanup:
147 	kfree(data);
148 
149 out:
150 	return err;
151 }
152 
153 static void ops_pre_exit_list(const struct pernet_operations *ops,
154 			      struct list_head *net_exit_list)
155 {
156 	struct net *net;
157 
158 	if (ops->pre_exit) {
159 		list_for_each_entry(net, net_exit_list, exit_list)
160 			ops->pre_exit(net);
161 	}
162 }
163 
164 static void ops_exit_list(const struct pernet_operations *ops,
165 			  struct list_head *net_exit_list)
166 {
167 	struct net *net;
168 	if (ops->exit) {
169 		list_for_each_entry(net, net_exit_list, exit_list) {
170 			ops->exit(net);
171 			cond_resched();
172 		}
173 	}
174 	if (ops->exit_batch)
175 		ops->exit_batch(net_exit_list);
176 }
177 
178 static void ops_free_list(const struct pernet_operations *ops,
179 			  struct list_head *net_exit_list)
180 {
181 	struct net *net;
182 	if (ops->size && ops->id) {
183 		list_for_each_entry(net, net_exit_list, exit_list)
184 			kfree(net_generic(net, *ops->id));
185 	}
186 }
187 
188 /* should be called with nsid_lock held */
189 static int alloc_netid(struct net *net, struct net *peer, int reqid)
190 {
191 	int min = 0, max = 0;
192 
193 	if (reqid >= 0) {
194 		min = reqid;
195 		max = reqid + 1;
196 	}
197 
198 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
199 }
200 
201 /* This function is used by idr_for_each(). If net is equal to peer, the
202  * function returns the id so that idr_for_each() stops. Because we cannot
203  * returns the id 0 (idr_for_each() will not stop), we return the magic value
204  * NET_ID_ZERO (-1) for it.
205  */
206 #define NET_ID_ZERO -1
207 static int net_eq_idr(int id, void *net, void *peer)
208 {
209 	if (net_eq(net, peer))
210 		return id ? : NET_ID_ZERO;
211 	return 0;
212 }
213 
214 /* Must be called from RCU-critical section or with nsid_lock held */
215 static int __peernet2id(const struct net *net, struct net *peer)
216 {
217 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
218 
219 	/* Magic value for id 0. */
220 	if (id == NET_ID_ZERO)
221 		return 0;
222 	if (id > 0)
223 		return id;
224 
225 	return NETNSA_NSID_NOT_ASSIGNED;
226 }
227 
228 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
229 			      struct nlmsghdr *nlh, gfp_t gfp);
230 /* This function returns the id of a peer netns. If no id is assigned, one will
231  * be allocated and returned.
232  */
233 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
234 {
235 	int id;
236 
237 	if (refcount_read(&net->ns.count) == 0)
238 		return NETNSA_NSID_NOT_ASSIGNED;
239 
240 	spin_lock_bh(&net->nsid_lock);
241 	id = __peernet2id(net, peer);
242 	if (id >= 0) {
243 		spin_unlock_bh(&net->nsid_lock);
244 		return id;
245 	}
246 
247 	/* When peer is obtained from RCU lists, we may race with
248 	 * its cleanup. Check whether it's alive, and this guarantees
249 	 * we never hash a peer back to net->netns_ids, after it has
250 	 * just been idr_remove()'d from there in cleanup_net().
251 	 */
252 	if (!maybe_get_net(peer)) {
253 		spin_unlock_bh(&net->nsid_lock);
254 		return NETNSA_NSID_NOT_ASSIGNED;
255 	}
256 
257 	id = alloc_netid(net, peer, -1);
258 	spin_unlock_bh(&net->nsid_lock);
259 
260 	put_net(peer);
261 	if (id < 0)
262 		return NETNSA_NSID_NOT_ASSIGNED;
263 
264 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
265 
266 	return id;
267 }
268 EXPORT_SYMBOL_GPL(peernet2id_alloc);
269 
270 /* This function returns, if assigned, the id of a peer netns. */
271 int peernet2id(const struct net *net, struct net *peer)
272 {
273 	int id;
274 
275 	rcu_read_lock();
276 	id = __peernet2id(net, peer);
277 	rcu_read_unlock();
278 
279 	return id;
280 }
281 EXPORT_SYMBOL(peernet2id);
282 
283 /* This function returns true is the peer netns has an id assigned into the
284  * current netns.
285  */
286 bool peernet_has_id(const struct net *net, struct net *peer)
287 {
288 	return peernet2id(net, peer) >= 0;
289 }
290 
291 struct net *get_net_ns_by_id(const struct net *net, int id)
292 {
293 	struct net *peer;
294 
295 	if (id < 0)
296 		return NULL;
297 
298 	rcu_read_lock();
299 	peer = idr_find(&net->netns_ids, id);
300 	if (peer)
301 		peer = maybe_get_net(peer);
302 	rcu_read_unlock();
303 
304 	return peer;
305 }
306 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
307 
308 /* init code that must occur even if setup_net() is not called. */
309 static __net_init void preinit_net(struct net *net)
310 {
311 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt");
312 }
313 
314 /*
315  * setup_net runs the initializers for the network namespace object.
316  */
317 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
318 {
319 	/* Must be called with pernet_ops_rwsem held */
320 	const struct pernet_operations *ops, *saved_ops;
321 	LIST_HEAD(net_exit_list);
322 	LIST_HEAD(dev_kill_list);
323 	int error = 0;
324 
325 	refcount_set(&net->ns.count, 1);
326 	ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt");
327 
328 	refcount_set(&net->passive, 1);
329 	get_random_bytes(&net->hash_mix, sizeof(u32));
330 	preempt_disable();
331 	net->net_cookie = gen_cookie_next(&net_cookie);
332 	preempt_enable();
333 	net->dev_base_seq = 1;
334 	net->user_ns = user_ns;
335 	idr_init(&net->netns_ids);
336 	spin_lock_init(&net->nsid_lock);
337 	mutex_init(&net->ipv4.ra_mutex);
338 
339 	list_for_each_entry(ops, &pernet_list, list) {
340 		error = ops_init(ops, net);
341 		if (error < 0)
342 			goto out_undo;
343 	}
344 	down_write(&net_rwsem);
345 	list_add_tail_rcu(&net->list, &net_namespace_list);
346 	up_write(&net_rwsem);
347 out:
348 	return error;
349 
350 out_undo:
351 	/* Walk through the list backwards calling the exit functions
352 	 * for the pernet modules whose init functions did not fail.
353 	 */
354 	list_add(&net->exit_list, &net_exit_list);
355 	saved_ops = ops;
356 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
357 		ops_pre_exit_list(ops, &net_exit_list);
358 
359 	synchronize_rcu();
360 
361 	ops = saved_ops;
362 	rtnl_lock();
363 	list_for_each_entry_continue_reverse(ops, &pernet_list, list) {
364 		if (ops->exit_batch_rtnl)
365 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
366 	}
367 	unregister_netdevice_many(&dev_kill_list);
368 	rtnl_unlock();
369 
370 	ops = saved_ops;
371 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
372 		ops_exit_list(ops, &net_exit_list);
373 
374 	ops = saved_ops;
375 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
376 		ops_free_list(ops, &net_exit_list);
377 
378 	rcu_barrier();
379 	goto out;
380 }
381 
382 static int __net_init net_defaults_init_net(struct net *net)
383 {
384 	net->core.sysctl_somaxconn = SOMAXCONN;
385 	/* Limits per socket sk_omem_alloc usage.
386 	 * TCP zerocopy regular usage needs 128 KB.
387 	 */
388 	net->core.sysctl_optmem_max = 128 * 1024;
389 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
390 
391 	return 0;
392 }
393 
394 static struct pernet_operations net_defaults_ops = {
395 	.init = net_defaults_init_net,
396 };
397 
398 static __init int net_defaults_init(void)
399 {
400 	if (register_pernet_subsys(&net_defaults_ops))
401 		panic("Cannot initialize net default settings");
402 
403 	return 0;
404 }
405 
406 core_initcall(net_defaults_init);
407 
408 #ifdef CONFIG_NET_NS
409 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
410 {
411 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
412 }
413 
414 static void dec_net_namespaces(struct ucounts *ucounts)
415 {
416 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
417 }
418 
419 static struct kmem_cache *net_cachep __ro_after_init;
420 static struct workqueue_struct *netns_wq;
421 
422 static struct net *net_alloc(void)
423 {
424 	struct net *net = NULL;
425 	struct net_generic *ng;
426 
427 	ng = net_alloc_generic();
428 	if (!ng)
429 		goto out;
430 
431 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
432 	if (!net)
433 		goto out_free;
434 
435 #ifdef CONFIG_KEYS
436 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
437 	if (!net->key_domain)
438 		goto out_free_2;
439 	refcount_set(&net->key_domain->usage, 1);
440 #endif
441 
442 	rcu_assign_pointer(net->gen, ng);
443 out:
444 	return net;
445 
446 #ifdef CONFIG_KEYS
447 out_free_2:
448 	kmem_cache_free(net_cachep, net);
449 	net = NULL;
450 #endif
451 out_free:
452 	kfree(ng);
453 	goto out;
454 }
455 
456 static void net_free(struct net *net)
457 {
458 	if (refcount_dec_and_test(&net->passive)) {
459 		kfree(rcu_access_pointer(net->gen));
460 
461 		/* There should not be any trackers left there. */
462 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
463 
464 		kmem_cache_free(net_cachep, net);
465 	}
466 }
467 
468 void net_drop_ns(void *p)
469 {
470 	struct net *net = (struct net *)p;
471 
472 	if (net)
473 		net_free(net);
474 }
475 
476 struct net *copy_net_ns(unsigned long flags,
477 			struct user_namespace *user_ns, struct net *old_net)
478 {
479 	struct ucounts *ucounts;
480 	struct net *net;
481 	int rv;
482 
483 	if (!(flags & CLONE_NEWNET))
484 		return get_net(old_net);
485 
486 	ucounts = inc_net_namespaces(user_ns);
487 	if (!ucounts)
488 		return ERR_PTR(-ENOSPC);
489 
490 	net = net_alloc();
491 	if (!net) {
492 		rv = -ENOMEM;
493 		goto dec_ucounts;
494 	}
495 
496 	preinit_net(net);
497 	refcount_set(&net->passive, 1);
498 	net->ucounts = ucounts;
499 	get_user_ns(user_ns);
500 
501 	rv = down_read_killable(&pernet_ops_rwsem);
502 	if (rv < 0)
503 		goto put_userns;
504 
505 	rv = setup_net(net, user_ns);
506 
507 	up_read(&pernet_ops_rwsem);
508 
509 	if (rv < 0) {
510 put_userns:
511 #ifdef CONFIG_KEYS
512 		key_remove_domain(net->key_domain);
513 #endif
514 		put_user_ns(user_ns);
515 		net_free(net);
516 dec_ucounts:
517 		dec_net_namespaces(ucounts);
518 		return ERR_PTR(rv);
519 	}
520 	return net;
521 }
522 
523 /**
524  * net_ns_get_ownership - get sysfs ownership data for @net
525  * @net: network namespace in question (can be NULL)
526  * @uid: kernel user ID for sysfs objects
527  * @gid: kernel group ID for sysfs objects
528  *
529  * Returns the uid/gid pair of root in the user namespace associated with the
530  * given network namespace.
531  */
532 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
533 {
534 	if (net) {
535 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
536 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
537 
538 		if (uid_valid(ns_root_uid))
539 			*uid = ns_root_uid;
540 
541 		if (gid_valid(ns_root_gid))
542 			*gid = ns_root_gid;
543 	} else {
544 		*uid = GLOBAL_ROOT_UID;
545 		*gid = GLOBAL_ROOT_GID;
546 	}
547 }
548 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
549 
550 static void unhash_nsid(struct net *net, struct net *last)
551 {
552 	struct net *tmp;
553 	/* This function is only called from cleanup_net() work,
554 	 * and this work is the only process, that may delete
555 	 * a net from net_namespace_list. So, when the below
556 	 * is executing, the list may only grow. Thus, we do not
557 	 * use for_each_net_rcu() or net_rwsem.
558 	 */
559 	for_each_net(tmp) {
560 		int id;
561 
562 		spin_lock_bh(&tmp->nsid_lock);
563 		id = __peernet2id(tmp, net);
564 		if (id >= 0)
565 			idr_remove(&tmp->netns_ids, id);
566 		spin_unlock_bh(&tmp->nsid_lock);
567 		if (id >= 0)
568 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
569 					  GFP_KERNEL);
570 		if (tmp == last)
571 			break;
572 	}
573 	spin_lock_bh(&net->nsid_lock);
574 	idr_destroy(&net->netns_ids);
575 	spin_unlock_bh(&net->nsid_lock);
576 }
577 
578 static LLIST_HEAD(cleanup_list);
579 
580 static void cleanup_net(struct work_struct *work)
581 {
582 	const struct pernet_operations *ops;
583 	struct net *net, *tmp, *last;
584 	struct llist_node *net_kill_list;
585 	LIST_HEAD(net_exit_list);
586 	LIST_HEAD(dev_kill_list);
587 
588 	/* Atomically snapshot the list of namespaces to cleanup */
589 	net_kill_list = llist_del_all(&cleanup_list);
590 
591 	down_read(&pernet_ops_rwsem);
592 
593 	/* Don't let anyone else find us. */
594 	down_write(&net_rwsem);
595 	llist_for_each_entry(net, net_kill_list, cleanup_list)
596 		list_del_rcu(&net->list);
597 	/* Cache last net. After we unlock rtnl, no one new net
598 	 * added to net_namespace_list can assign nsid pointer
599 	 * to a net from net_kill_list (see peernet2id_alloc()).
600 	 * So, we skip them in unhash_nsid().
601 	 *
602 	 * Note, that unhash_nsid() does not delete nsid links
603 	 * between net_kill_list's nets, as they've already
604 	 * deleted from net_namespace_list. But, this would be
605 	 * useless anyway, as netns_ids are destroyed there.
606 	 */
607 	last = list_last_entry(&net_namespace_list, struct net, list);
608 	up_write(&net_rwsem);
609 
610 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
611 		unhash_nsid(net, last);
612 		list_add_tail(&net->exit_list, &net_exit_list);
613 	}
614 
615 	/* Run all of the network namespace pre_exit methods */
616 	list_for_each_entry_reverse(ops, &pernet_list, list)
617 		ops_pre_exit_list(ops, &net_exit_list);
618 
619 	/*
620 	 * Another CPU might be rcu-iterating the list, wait for it.
621 	 * This needs to be before calling the exit() notifiers, so
622 	 * the rcu_barrier() below isn't sufficient alone.
623 	 * Also the pre_exit() and exit() methods need this barrier.
624 	 */
625 	synchronize_rcu_expedited();
626 
627 	rtnl_lock();
628 	list_for_each_entry_reverse(ops, &pernet_list, list) {
629 		if (ops->exit_batch_rtnl)
630 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
631 	}
632 	unregister_netdevice_many(&dev_kill_list);
633 	rtnl_unlock();
634 
635 	/* Run all of the network namespace exit methods */
636 	list_for_each_entry_reverse(ops, &pernet_list, list)
637 		ops_exit_list(ops, &net_exit_list);
638 
639 	/* Free the net generic variables */
640 	list_for_each_entry_reverse(ops, &pernet_list, list)
641 		ops_free_list(ops, &net_exit_list);
642 
643 	up_read(&pernet_ops_rwsem);
644 
645 	/* Ensure there are no outstanding rcu callbacks using this
646 	 * network namespace.
647 	 */
648 	rcu_barrier();
649 
650 	/* Finally it is safe to free my network namespace structure */
651 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
652 		list_del_init(&net->exit_list);
653 		dec_net_namespaces(net->ucounts);
654 #ifdef CONFIG_KEYS
655 		key_remove_domain(net->key_domain);
656 #endif
657 		put_user_ns(net->user_ns);
658 		net_free(net);
659 	}
660 }
661 
662 /**
663  * net_ns_barrier - wait until concurrent net_cleanup_work is done
664  *
665  * cleanup_net runs from work queue and will first remove namespaces
666  * from the global list, then run net exit functions.
667  *
668  * Call this in module exit path to make sure that all netns
669  * ->exit ops have been invoked before the function is removed.
670  */
671 void net_ns_barrier(void)
672 {
673 	down_write(&pernet_ops_rwsem);
674 	up_write(&pernet_ops_rwsem);
675 }
676 EXPORT_SYMBOL(net_ns_barrier);
677 
678 static DECLARE_WORK(net_cleanup_work, cleanup_net);
679 
680 void __put_net(struct net *net)
681 {
682 	ref_tracker_dir_exit(&net->refcnt_tracker);
683 	/* Cleanup the network namespace in process context */
684 	if (llist_add(&net->cleanup_list, &cleanup_list))
685 		queue_work(netns_wq, &net_cleanup_work);
686 }
687 EXPORT_SYMBOL_GPL(__put_net);
688 
689 /**
690  * get_net_ns - increment the refcount of the network namespace
691  * @ns: common namespace (net)
692  *
693  * Returns the net's common namespace.
694  */
695 struct ns_common *get_net_ns(struct ns_common *ns)
696 {
697 	return &get_net(container_of(ns, struct net, ns))->ns;
698 }
699 EXPORT_SYMBOL_GPL(get_net_ns);
700 
701 struct net *get_net_ns_by_fd(int fd)
702 {
703 	struct fd f = fdget(fd);
704 	struct net *net = ERR_PTR(-EINVAL);
705 
706 	if (!f.file)
707 		return ERR_PTR(-EBADF);
708 
709 	if (proc_ns_file(f.file)) {
710 		struct ns_common *ns = get_proc_ns(file_inode(f.file));
711 		if (ns->ops == &netns_operations)
712 			net = get_net(container_of(ns, struct net, ns));
713 	}
714 	fdput(f);
715 
716 	return net;
717 }
718 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
719 #endif
720 
721 struct net *get_net_ns_by_pid(pid_t pid)
722 {
723 	struct task_struct *tsk;
724 	struct net *net;
725 
726 	/* Lookup the network namespace */
727 	net = ERR_PTR(-ESRCH);
728 	rcu_read_lock();
729 	tsk = find_task_by_vpid(pid);
730 	if (tsk) {
731 		struct nsproxy *nsproxy;
732 		task_lock(tsk);
733 		nsproxy = tsk->nsproxy;
734 		if (nsproxy)
735 			net = get_net(nsproxy->net_ns);
736 		task_unlock(tsk);
737 	}
738 	rcu_read_unlock();
739 	return net;
740 }
741 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
742 
743 static __net_init int net_ns_net_init(struct net *net)
744 {
745 #ifdef CONFIG_NET_NS
746 	net->ns.ops = &netns_operations;
747 #endif
748 	return ns_alloc_inum(&net->ns);
749 }
750 
751 static __net_exit void net_ns_net_exit(struct net *net)
752 {
753 	ns_free_inum(&net->ns);
754 }
755 
756 static struct pernet_operations __net_initdata net_ns_ops = {
757 	.init = net_ns_net_init,
758 	.exit = net_ns_net_exit,
759 };
760 
761 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
762 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
763 	[NETNSA_NSID]		= { .type = NLA_S32 },
764 	[NETNSA_PID]		= { .type = NLA_U32 },
765 	[NETNSA_FD]		= { .type = NLA_U32 },
766 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
767 };
768 
769 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
770 			  struct netlink_ext_ack *extack)
771 {
772 	struct net *net = sock_net(skb->sk);
773 	struct nlattr *tb[NETNSA_MAX + 1];
774 	struct nlattr *nla;
775 	struct net *peer;
776 	int nsid, err;
777 
778 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
779 				     NETNSA_MAX, rtnl_net_policy, extack);
780 	if (err < 0)
781 		return err;
782 	if (!tb[NETNSA_NSID]) {
783 		NL_SET_ERR_MSG(extack, "nsid is missing");
784 		return -EINVAL;
785 	}
786 	nsid = nla_get_s32(tb[NETNSA_NSID]);
787 
788 	if (tb[NETNSA_PID]) {
789 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
790 		nla = tb[NETNSA_PID];
791 	} else if (tb[NETNSA_FD]) {
792 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
793 		nla = tb[NETNSA_FD];
794 	} else {
795 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
796 		return -EINVAL;
797 	}
798 	if (IS_ERR(peer)) {
799 		NL_SET_BAD_ATTR(extack, nla);
800 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
801 		return PTR_ERR(peer);
802 	}
803 
804 	spin_lock_bh(&net->nsid_lock);
805 	if (__peernet2id(net, peer) >= 0) {
806 		spin_unlock_bh(&net->nsid_lock);
807 		err = -EEXIST;
808 		NL_SET_BAD_ATTR(extack, nla);
809 		NL_SET_ERR_MSG(extack,
810 			       "Peer netns already has a nsid assigned");
811 		goto out;
812 	}
813 
814 	err = alloc_netid(net, peer, nsid);
815 	spin_unlock_bh(&net->nsid_lock);
816 	if (err >= 0) {
817 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
818 				  nlh, GFP_KERNEL);
819 		err = 0;
820 	} else if (err == -ENOSPC && nsid >= 0) {
821 		err = -EEXIST;
822 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
823 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
824 	}
825 out:
826 	put_net(peer);
827 	return err;
828 }
829 
830 static int rtnl_net_get_size(void)
831 {
832 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
833 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
834 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
835 	       ;
836 }
837 
838 struct net_fill_args {
839 	u32 portid;
840 	u32 seq;
841 	int flags;
842 	int cmd;
843 	int nsid;
844 	bool add_ref;
845 	int ref_nsid;
846 };
847 
848 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
849 {
850 	struct nlmsghdr *nlh;
851 	struct rtgenmsg *rth;
852 
853 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
854 			args->flags);
855 	if (!nlh)
856 		return -EMSGSIZE;
857 
858 	rth = nlmsg_data(nlh);
859 	rth->rtgen_family = AF_UNSPEC;
860 
861 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
862 		goto nla_put_failure;
863 
864 	if (args->add_ref &&
865 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
866 		goto nla_put_failure;
867 
868 	nlmsg_end(skb, nlh);
869 	return 0;
870 
871 nla_put_failure:
872 	nlmsg_cancel(skb, nlh);
873 	return -EMSGSIZE;
874 }
875 
876 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
877 				    const struct nlmsghdr *nlh,
878 				    struct nlattr **tb,
879 				    struct netlink_ext_ack *extack)
880 {
881 	int i, err;
882 
883 	if (!netlink_strict_get_check(skb))
884 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
885 					      tb, NETNSA_MAX, rtnl_net_policy,
886 					      extack);
887 
888 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
889 					    NETNSA_MAX, rtnl_net_policy,
890 					    extack);
891 	if (err)
892 		return err;
893 
894 	for (i = 0; i <= NETNSA_MAX; i++) {
895 		if (!tb[i])
896 			continue;
897 
898 		switch (i) {
899 		case NETNSA_PID:
900 		case NETNSA_FD:
901 		case NETNSA_NSID:
902 		case NETNSA_TARGET_NSID:
903 			break;
904 		default:
905 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
906 			return -EINVAL;
907 		}
908 	}
909 
910 	return 0;
911 }
912 
913 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
914 			  struct netlink_ext_ack *extack)
915 {
916 	struct net *net = sock_net(skb->sk);
917 	struct nlattr *tb[NETNSA_MAX + 1];
918 	struct net_fill_args fillargs = {
919 		.portid = NETLINK_CB(skb).portid,
920 		.seq = nlh->nlmsg_seq,
921 		.cmd = RTM_NEWNSID,
922 	};
923 	struct net *peer, *target = net;
924 	struct nlattr *nla;
925 	struct sk_buff *msg;
926 	int err;
927 
928 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
929 	if (err < 0)
930 		return err;
931 	if (tb[NETNSA_PID]) {
932 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
933 		nla = tb[NETNSA_PID];
934 	} else if (tb[NETNSA_FD]) {
935 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
936 		nla = tb[NETNSA_FD];
937 	} else if (tb[NETNSA_NSID]) {
938 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
939 		if (!peer)
940 			peer = ERR_PTR(-ENOENT);
941 		nla = tb[NETNSA_NSID];
942 	} else {
943 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
944 		return -EINVAL;
945 	}
946 
947 	if (IS_ERR(peer)) {
948 		NL_SET_BAD_ATTR(extack, nla);
949 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
950 		return PTR_ERR(peer);
951 	}
952 
953 	if (tb[NETNSA_TARGET_NSID]) {
954 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
955 
956 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
957 		if (IS_ERR(target)) {
958 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
959 			NL_SET_ERR_MSG(extack,
960 				       "Target netns reference is invalid");
961 			err = PTR_ERR(target);
962 			goto out;
963 		}
964 		fillargs.add_ref = true;
965 		fillargs.ref_nsid = peernet2id(net, peer);
966 	}
967 
968 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
969 	if (!msg) {
970 		err = -ENOMEM;
971 		goto out;
972 	}
973 
974 	fillargs.nsid = peernet2id(target, peer);
975 	err = rtnl_net_fill(msg, &fillargs);
976 	if (err < 0)
977 		goto err_out;
978 
979 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
980 	goto out;
981 
982 err_out:
983 	nlmsg_free(msg);
984 out:
985 	if (fillargs.add_ref)
986 		put_net(target);
987 	put_net(peer);
988 	return err;
989 }
990 
991 struct rtnl_net_dump_cb {
992 	struct net *tgt_net;
993 	struct net *ref_net;
994 	struct sk_buff *skb;
995 	struct net_fill_args fillargs;
996 	int idx;
997 	int s_idx;
998 };
999 
1000 /* Runs in RCU-critical section. */
1001 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1002 {
1003 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1004 	int ret;
1005 
1006 	if (net_cb->idx < net_cb->s_idx)
1007 		goto cont;
1008 
1009 	net_cb->fillargs.nsid = id;
1010 	if (net_cb->fillargs.add_ref)
1011 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1012 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1013 	if (ret < 0)
1014 		return ret;
1015 
1016 cont:
1017 	net_cb->idx++;
1018 	return 0;
1019 }
1020 
1021 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1022 				   struct rtnl_net_dump_cb *net_cb,
1023 				   struct netlink_callback *cb)
1024 {
1025 	struct netlink_ext_ack *extack = cb->extack;
1026 	struct nlattr *tb[NETNSA_MAX + 1];
1027 	int err, i;
1028 
1029 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1030 					    NETNSA_MAX, rtnl_net_policy,
1031 					    extack);
1032 	if (err < 0)
1033 		return err;
1034 
1035 	for (i = 0; i <= NETNSA_MAX; i++) {
1036 		if (!tb[i])
1037 			continue;
1038 
1039 		if (i == NETNSA_TARGET_NSID) {
1040 			struct net *net;
1041 
1042 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1043 			if (IS_ERR(net)) {
1044 				NL_SET_BAD_ATTR(extack, tb[i]);
1045 				NL_SET_ERR_MSG(extack,
1046 					       "Invalid target network namespace id");
1047 				return PTR_ERR(net);
1048 			}
1049 			net_cb->fillargs.add_ref = true;
1050 			net_cb->ref_net = net_cb->tgt_net;
1051 			net_cb->tgt_net = net;
1052 		} else {
1053 			NL_SET_BAD_ATTR(extack, tb[i]);
1054 			NL_SET_ERR_MSG(extack,
1055 				       "Unsupported attribute in dump request");
1056 			return -EINVAL;
1057 		}
1058 	}
1059 
1060 	return 0;
1061 }
1062 
1063 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1064 {
1065 	struct rtnl_net_dump_cb net_cb = {
1066 		.tgt_net = sock_net(skb->sk),
1067 		.skb = skb,
1068 		.fillargs = {
1069 			.portid = NETLINK_CB(cb->skb).portid,
1070 			.seq = cb->nlh->nlmsg_seq,
1071 			.flags = NLM_F_MULTI,
1072 			.cmd = RTM_NEWNSID,
1073 		},
1074 		.idx = 0,
1075 		.s_idx = cb->args[0],
1076 	};
1077 	int err = 0;
1078 
1079 	if (cb->strict_check) {
1080 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1081 		if (err < 0)
1082 			goto end;
1083 	}
1084 
1085 	rcu_read_lock();
1086 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1087 	rcu_read_unlock();
1088 
1089 	cb->args[0] = net_cb.idx;
1090 end:
1091 	if (net_cb.fillargs.add_ref)
1092 		put_net(net_cb.tgt_net);
1093 	return err < 0 ? err : skb->len;
1094 }
1095 
1096 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1097 			      struct nlmsghdr *nlh, gfp_t gfp)
1098 {
1099 	struct net_fill_args fillargs = {
1100 		.portid = portid,
1101 		.seq = nlh ? nlh->nlmsg_seq : 0,
1102 		.cmd = cmd,
1103 		.nsid = id,
1104 	};
1105 	struct sk_buff *msg;
1106 	int err = -ENOMEM;
1107 
1108 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1109 	if (!msg)
1110 		goto out;
1111 
1112 	err = rtnl_net_fill(msg, &fillargs);
1113 	if (err < 0)
1114 		goto err_out;
1115 
1116 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1117 	return;
1118 
1119 err_out:
1120 	nlmsg_free(msg);
1121 out:
1122 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1123 }
1124 
1125 #ifdef CONFIG_NET_NS
1126 static void __init netns_ipv4_struct_check(void)
1127 {
1128 	/* TX readonly hotpath cache lines */
1129 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1130 				      sysctl_tcp_early_retrans);
1131 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1132 				      sysctl_tcp_tso_win_divisor);
1133 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1134 				      sysctl_tcp_tso_rtt_log);
1135 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1136 				      sysctl_tcp_autocorking);
1137 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1138 				      sysctl_tcp_min_snd_mss);
1139 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1140 				      sysctl_tcp_notsent_lowat);
1141 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1142 				      sysctl_tcp_limit_output_bytes);
1143 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1144 				      sysctl_tcp_min_rtt_wlen);
1145 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1146 				      sysctl_tcp_wmem);
1147 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1148 				      sysctl_ip_fwd_use_pmtu);
1149 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1150 
1151 	/* TXRX readonly hotpath cache lines */
1152 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1153 				      sysctl_tcp_moderate_rcvbuf);
1154 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1155 
1156 	/* RX readonly hotpath cache line */
1157 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1158 				      sysctl_ip_early_demux);
1159 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1160 				      sysctl_tcp_early_demux);
1161 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1162 				      sysctl_tcp_reordering);
1163 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1164 				      sysctl_tcp_rmem);
1165 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 18);
1166 }
1167 #endif
1168 
1169 void __init net_ns_init(void)
1170 {
1171 	struct net_generic *ng;
1172 
1173 #ifdef CONFIG_NET_NS
1174 	netns_ipv4_struct_check();
1175 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1176 					SMP_CACHE_BYTES,
1177 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1178 
1179 	/* Create workqueue for cleanup */
1180 	netns_wq = create_singlethread_workqueue("netns");
1181 	if (!netns_wq)
1182 		panic("Could not create netns workq");
1183 #endif
1184 
1185 	ng = net_alloc_generic();
1186 	if (!ng)
1187 		panic("Could not allocate generic netns");
1188 
1189 	rcu_assign_pointer(init_net.gen, ng);
1190 
1191 #ifdef CONFIG_KEYS
1192 	init_net.key_domain = &init_net_key_domain;
1193 #endif
1194 	down_write(&pernet_ops_rwsem);
1195 	preinit_net(&init_net);
1196 	if (setup_net(&init_net, &init_user_ns))
1197 		panic("Could not setup the initial network namespace");
1198 
1199 	init_net_initialized = true;
1200 	up_write(&pernet_ops_rwsem);
1201 
1202 	if (register_pernet_subsys(&net_ns_ops))
1203 		panic("Could not register network namespace subsystems");
1204 
1205 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1206 		      RTNL_FLAG_DOIT_UNLOCKED);
1207 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1208 		      RTNL_FLAG_DOIT_UNLOCKED);
1209 }
1210 
1211 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1212 {
1213 	ops_pre_exit_list(ops, net_exit_list);
1214 	synchronize_rcu();
1215 
1216 	if (ops->exit_batch_rtnl) {
1217 		LIST_HEAD(dev_kill_list);
1218 
1219 		rtnl_lock();
1220 		ops->exit_batch_rtnl(net_exit_list, &dev_kill_list);
1221 		unregister_netdevice_many(&dev_kill_list);
1222 		rtnl_unlock();
1223 	}
1224 	ops_exit_list(ops, net_exit_list);
1225 
1226 	ops_free_list(ops, net_exit_list);
1227 }
1228 
1229 #ifdef CONFIG_NET_NS
1230 static int __register_pernet_operations(struct list_head *list,
1231 					struct pernet_operations *ops)
1232 {
1233 	struct net *net;
1234 	int error;
1235 	LIST_HEAD(net_exit_list);
1236 
1237 	list_add_tail(&ops->list, list);
1238 	if (ops->init || (ops->id && ops->size)) {
1239 		/* We held write locked pernet_ops_rwsem, and parallel
1240 		 * setup_net() and cleanup_net() are not possible.
1241 		 */
1242 		for_each_net(net) {
1243 			error = ops_init(ops, net);
1244 			if (error)
1245 				goto out_undo;
1246 			list_add_tail(&net->exit_list, &net_exit_list);
1247 		}
1248 	}
1249 	return 0;
1250 
1251 out_undo:
1252 	/* If I have an error cleanup all namespaces I initialized */
1253 	list_del(&ops->list);
1254 	free_exit_list(ops, &net_exit_list);
1255 	return error;
1256 }
1257 
1258 static void __unregister_pernet_operations(struct pernet_operations *ops)
1259 {
1260 	struct net *net;
1261 	LIST_HEAD(net_exit_list);
1262 
1263 	list_del(&ops->list);
1264 	/* See comment in __register_pernet_operations() */
1265 	for_each_net(net)
1266 		list_add_tail(&net->exit_list, &net_exit_list);
1267 
1268 	free_exit_list(ops, &net_exit_list);
1269 }
1270 
1271 #else
1272 
1273 static int __register_pernet_operations(struct list_head *list,
1274 					struct pernet_operations *ops)
1275 {
1276 	if (!init_net_initialized) {
1277 		list_add_tail(&ops->list, list);
1278 		return 0;
1279 	}
1280 
1281 	return ops_init(ops, &init_net);
1282 }
1283 
1284 static void __unregister_pernet_operations(struct pernet_operations *ops)
1285 {
1286 	if (!init_net_initialized) {
1287 		list_del(&ops->list);
1288 	} else {
1289 		LIST_HEAD(net_exit_list);
1290 		list_add(&init_net.exit_list, &net_exit_list);
1291 		free_exit_list(ops, &net_exit_list);
1292 	}
1293 }
1294 
1295 #endif /* CONFIG_NET_NS */
1296 
1297 static DEFINE_IDA(net_generic_ids);
1298 
1299 static int register_pernet_operations(struct list_head *list,
1300 				      struct pernet_operations *ops)
1301 {
1302 	int error;
1303 
1304 	if (ops->id) {
1305 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1306 				GFP_KERNEL);
1307 		if (error < 0)
1308 			return error;
1309 		*ops->id = error;
1310 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1311 	}
1312 	error = __register_pernet_operations(list, ops);
1313 	if (error) {
1314 		rcu_barrier();
1315 		if (ops->id)
1316 			ida_free(&net_generic_ids, *ops->id);
1317 	}
1318 
1319 	return error;
1320 }
1321 
1322 static void unregister_pernet_operations(struct pernet_operations *ops)
1323 {
1324 	__unregister_pernet_operations(ops);
1325 	rcu_barrier();
1326 	if (ops->id)
1327 		ida_free(&net_generic_ids, *ops->id);
1328 }
1329 
1330 /**
1331  *      register_pernet_subsys - register a network namespace subsystem
1332  *	@ops:  pernet operations structure for the subsystem
1333  *
1334  *	Register a subsystem which has init and exit functions
1335  *	that are called when network namespaces are created and
1336  *	destroyed respectively.
1337  *
1338  *	When registered all network namespace init functions are
1339  *	called for every existing network namespace.  Allowing kernel
1340  *	modules to have a race free view of the set of network namespaces.
1341  *
1342  *	When a new network namespace is created all of the init
1343  *	methods are called in the order in which they were registered.
1344  *
1345  *	When a network namespace is destroyed all of the exit methods
1346  *	are called in the reverse of the order with which they were
1347  *	registered.
1348  */
1349 int register_pernet_subsys(struct pernet_operations *ops)
1350 {
1351 	int error;
1352 	down_write(&pernet_ops_rwsem);
1353 	error =  register_pernet_operations(first_device, ops);
1354 	up_write(&pernet_ops_rwsem);
1355 	return error;
1356 }
1357 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1358 
1359 /**
1360  *      unregister_pernet_subsys - unregister a network namespace subsystem
1361  *	@ops: pernet operations structure to manipulate
1362  *
1363  *	Remove the pernet operations structure from the list to be
1364  *	used when network namespaces are created or destroyed.  In
1365  *	addition run the exit method for all existing network
1366  *	namespaces.
1367  */
1368 void unregister_pernet_subsys(struct pernet_operations *ops)
1369 {
1370 	down_write(&pernet_ops_rwsem);
1371 	unregister_pernet_operations(ops);
1372 	up_write(&pernet_ops_rwsem);
1373 }
1374 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1375 
1376 /**
1377  *      register_pernet_device - register a network namespace device
1378  *	@ops:  pernet operations structure for the subsystem
1379  *
1380  *	Register a device which has init and exit functions
1381  *	that are called when network namespaces are created and
1382  *	destroyed respectively.
1383  *
1384  *	When registered all network namespace init functions are
1385  *	called for every existing network namespace.  Allowing kernel
1386  *	modules to have a race free view of the set of network namespaces.
1387  *
1388  *	When a new network namespace is created all of the init
1389  *	methods are called in the order in which they were registered.
1390  *
1391  *	When a network namespace is destroyed all of the exit methods
1392  *	are called in the reverse of the order with which they were
1393  *	registered.
1394  */
1395 int register_pernet_device(struct pernet_operations *ops)
1396 {
1397 	int error;
1398 	down_write(&pernet_ops_rwsem);
1399 	error = register_pernet_operations(&pernet_list, ops);
1400 	if (!error && (first_device == &pernet_list))
1401 		first_device = &ops->list;
1402 	up_write(&pernet_ops_rwsem);
1403 	return error;
1404 }
1405 EXPORT_SYMBOL_GPL(register_pernet_device);
1406 
1407 /**
1408  *      unregister_pernet_device - unregister a network namespace netdevice
1409  *	@ops: pernet operations structure to manipulate
1410  *
1411  *	Remove the pernet operations structure from the list to be
1412  *	used when network namespaces are created or destroyed.  In
1413  *	addition run the exit method for all existing network
1414  *	namespaces.
1415  */
1416 void unregister_pernet_device(struct pernet_operations *ops)
1417 {
1418 	down_write(&pernet_ops_rwsem);
1419 	if (&ops->list == first_device)
1420 		first_device = first_device->next;
1421 	unregister_pernet_operations(ops);
1422 	up_write(&pernet_ops_rwsem);
1423 }
1424 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1425 
1426 #ifdef CONFIG_NET_NS
1427 static struct ns_common *netns_get(struct task_struct *task)
1428 {
1429 	struct net *net = NULL;
1430 	struct nsproxy *nsproxy;
1431 
1432 	task_lock(task);
1433 	nsproxy = task->nsproxy;
1434 	if (nsproxy)
1435 		net = get_net(nsproxy->net_ns);
1436 	task_unlock(task);
1437 
1438 	return net ? &net->ns : NULL;
1439 }
1440 
1441 static inline struct net *to_net_ns(struct ns_common *ns)
1442 {
1443 	return container_of(ns, struct net, ns);
1444 }
1445 
1446 static void netns_put(struct ns_common *ns)
1447 {
1448 	put_net(to_net_ns(ns));
1449 }
1450 
1451 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1452 {
1453 	struct nsproxy *nsproxy = nsset->nsproxy;
1454 	struct net *net = to_net_ns(ns);
1455 
1456 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1457 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1458 		return -EPERM;
1459 
1460 	put_net(nsproxy->net_ns);
1461 	nsproxy->net_ns = get_net(net);
1462 	return 0;
1463 }
1464 
1465 static struct user_namespace *netns_owner(struct ns_common *ns)
1466 {
1467 	return to_net_ns(ns)->user_ns;
1468 }
1469 
1470 const struct proc_ns_operations netns_operations = {
1471 	.name		= "net",
1472 	.type		= CLONE_NEWNET,
1473 	.get		= netns_get,
1474 	.put		= netns_put,
1475 	.install	= netns_install,
1476 	.owner		= netns_owner,
1477 };
1478 #endif
1479