xref: /linux/net/core/net_namespace.c (revision c5fbdf0ba7c1a6ed52dc3650bee73ce00c86cf7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 #include <linux/proc_fs.h>
24 
25 #include <net/sock.h>
26 #include <net/netlink.h>
27 #include <net/net_namespace.h>
28 #include <net/netns/generic.h>
29 
30 /*
31  *	Our network namespace constructor/destructor lists
32  */
33 
34 static LIST_HEAD(pernet_list);
35 static struct list_head *first_device = &pernet_list;
36 
37 LIST_HEAD(net_namespace_list);
38 EXPORT_SYMBOL_GPL(net_namespace_list);
39 
40 /* Protects net_namespace_list. Nests iside rtnl_lock() */
41 DECLARE_RWSEM(net_rwsem);
42 EXPORT_SYMBOL_GPL(net_rwsem);
43 
44 #ifdef CONFIG_KEYS
45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46 #endif
47 
48 struct net init_net;
49 EXPORT_SYMBOL(init_net);
50 
51 static bool init_net_initialized;
52 /*
53  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54  * init_net_initialized and first_device pointer.
55  * This is internal net namespace object. Please, don't use it
56  * outside.
57  */
58 DECLARE_RWSEM(pernet_ops_rwsem);
59 
60 #define MIN_PERNET_OPS_ID	\
61 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
62 
63 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
64 
65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
66 
67 DEFINE_COOKIE(net_cookie);
68 
69 static struct net_generic *net_alloc_generic(void)
70 {
71 	unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
72 	unsigned int generic_size;
73 	struct net_generic *ng;
74 
75 	generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
76 
77 	ng = kzalloc(generic_size, GFP_KERNEL);
78 	if (ng)
79 		ng->s.len = gen_ptrs;
80 
81 	return ng;
82 }
83 
84 static int net_assign_generic(struct net *net, unsigned int id, void *data)
85 {
86 	struct net_generic *ng, *old_ng;
87 
88 	BUG_ON(id < MIN_PERNET_OPS_ID);
89 
90 	old_ng = rcu_dereference_protected(net->gen,
91 					   lockdep_is_held(&pernet_ops_rwsem));
92 	if (old_ng->s.len > id) {
93 		old_ng->ptr[id] = data;
94 		return 0;
95 	}
96 
97 	ng = net_alloc_generic();
98 	if (!ng)
99 		return -ENOMEM;
100 
101 	/*
102 	 * Some synchronisation notes:
103 	 *
104 	 * The net_generic explores the net->gen array inside rcu
105 	 * read section. Besides once set the net->gen->ptr[x]
106 	 * pointer never changes (see rules in netns/generic.h).
107 	 *
108 	 * That said, we simply duplicate this array and schedule
109 	 * the old copy for kfree after a grace period.
110 	 */
111 
112 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
113 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
114 	ng->ptr[id] = data;
115 
116 	rcu_assign_pointer(net->gen, ng);
117 	kfree_rcu(old_ng, s.rcu);
118 	return 0;
119 }
120 
121 static int ops_init(const struct pernet_operations *ops, struct net *net)
122 {
123 	struct net_generic *ng;
124 	int err = -ENOMEM;
125 	void *data = NULL;
126 
127 	if (ops->id) {
128 		data = kzalloc(ops->size, GFP_KERNEL);
129 		if (!data)
130 			goto out;
131 
132 		err = net_assign_generic(net, *ops->id, data);
133 		if (err)
134 			goto cleanup;
135 	}
136 	err = 0;
137 	if (ops->init)
138 		err = ops->init(net);
139 	if (!err)
140 		return 0;
141 
142 	if (ops->id) {
143 		ng = rcu_dereference_protected(net->gen,
144 					       lockdep_is_held(&pernet_ops_rwsem));
145 		ng->ptr[*ops->id] = NULL;
146 	}
147 
148 cleanup:
149 	kfree(data);
150 
151 out:
152 	return err;
153 }
154 
155 static void ops_pre_exit_list(const struct pernet_operations *ops,
156 			      struct list_head *net_exit_list)
157 {
158 	struct net *net;
159 
160 	if (ops->pre_exit) {
161 		list_for_each_entry(net, net_exit_list, exit_list)
162 			ops->pre_exit(net);
163 	}
164 }
165 
166 static void ops_exit_rtnl_list(const struct list_head *ops_list,
167 			       const struct pernet_operations *ops,
168 			       struct list_head *net_exit_list)
169 {
170 	const struct pernet_operations *saved_ops = ops;
171 	LIST_HEAD(dev_kill_list);
172 	struct net *net;
173 
174 	rtnl_lock();
175 
176 	list_for_each_entry(net, net_exit_list, exit_list) {
177 		__rtnl_net_lock(net);
178 
179 		ops = saved_ops;
180 		list_for_each_entry_continue_reverse(ops, ops_list, list) {
181 			if (ops->exit_rtnl)
182 				ops->exit_rtnl(net, &dev_kill_list);
183 		}
184 
185 		__rtnl_net_unlock(net);
186 	}
187 
188 	unregister_netdevice_many(&dev_kill_list);
189 
190 	rtnl_unlock();
191 }
192 
193 static void ops_exit_list(const struct pernet_operations *ops,
194 			  struct list_head *net_exit_list)
195 {
196 	if (ops->exit) {
197 		struct net *net;
198 
199 		list_for_each_entry(net, net_exit_list, exit_list) {
200 			ops->exit(net);
201 			cond_resched();
202 		}
203 	}
204 
205 	if (ops->exit_batch)
206 		ops->exit_batch(net_exit_list);
207 }
208 
209 static void ops_free_list(const struct pernet_operations *ops,
210 			  struct list_head *net_exit_list)
211 {
212 	struct net *net;
213 
214 	if (ops->id) {
215 		list_for_each_entry(net, net_exit_list, exit_list)
216 			kfree(net_generic(net, *ops->id));
217 	}
218 }
219 
220 static void ops_undo_list(const struct list_head *ops_list,
221 			  const struct pernet_operations *ops,
222 			  struct list_head *net_exit_list,
223 			  bool expedite_rcu)
224 {
225 	const struct pernet_operations *saved_ops;
226 	bool hold_rtnl = false;
227 
228 	if (!ops)
229 		ops = list_entry(ops_list, typeof(*ops), list);
230 
231 	saved_ops = ops;
232 
233 	list_for_each_entry_continue_reverse(ops, ops_list, list) {
234 		hold_rtnl |= !!ops->exit_rtnl;
235 		ops_pre_exit_list(ops, net_exit_list);
236 	}
237 
238 	/* Another CPU might be rcu-iterating the list, wait for it.
239 	 * This needs to be before calling the exit() notifiers, so the
240 	 * rcu_barrier() after ops_undo_list() isn't sufficient alone.
241 	 * Also the pre_exit() and exit() methods need this barrier.
242 	 */
243 	if (expedite_rcu)
244 		synchronize_rcu_expedited();
245 	else
246 		synchronize_rcu();
247 
248 	if (hold_rtnl)
249 		ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list);
250 
251 	ops = saved_ops;
252 	list_for_each_entry_continue_reverse(ops, ops_list, list)
253 		ops_exit_list(ops, net_exit_list);
254 
255 	ops = saved_ops;
256 	list_for_each_entry_continue_reverse(ops, ops_list, list)
257 		ops_free_list(ops, net_exit_list);
258 }
259 
260 static void ops_undo_single(struct pernet_operations *ops,
261 			    struct list_head *net_exit_list)
262 {
263 	LIST_HEAD(ops_list);
264 
265 	list_add(&ops->list, &ops_list);
266 	ops_undo_list(&ops_list, NULL, net_exit_list, false);
267 	list_del(&ops->list);
268 }
269 
270 /* should be called with nsid_lock held */
271 static int alloc_netid(struct net *net, struct net *peer, int reqid)
272 {
273 	int min = 0, max = 0;
274 
275 	if (reqid >= 0) {
276 		min = reqid;
277 		max = reqid + 1;
278 	}
279 
280 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
281 }
282 
283 /* This function is used by idr_for_each(). If net is equal to peer, the
284  * function returns the id so that idr_for_each() stops. Because we cannot
285  * returns the id 0 (idr_for_each() will not stop), we return the magic value
286  * NET_ID_ZERO (-1) for it.
287  */
288 #define NET_ID_ZERO -1
289 static int net_eq_idr(int id, void *net, void *peer)
290 {
291 	if (net_eq(net, peer))
292 		return id ? : NET_ID_ZERO;
293 	return 0;
294 }
295 
296 /* Must be called from RCU-critical section or with nsid_lock held */
297 static int __peernet2id(const struct net *net, struct net *peer)
298 {
299 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
300 
301 	/* Magic value for id 0. */
302 	if (id == NET_ID_ZERO)
303 		return 0;
304 	if (id > 0)
305 		return id;
306 
307 	return NETNSA_NSID_NOT_ASSIGNED;
308 }
309 
310 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
311 			      struct nlmsghdr *nlh, gfp_t gfp);
312 /* This function returns the id of a peer netns. If no id is assigned, one will
313  * be allocated and returned.
314  */
315 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
316 {
317 	int id;
318 
319 	if (refcount_read(&net->ns.count) == 0)
320 		return NETNSA_NSID_NOT_ASSIGNED;
321 
322 	spin_lock_bh(&net->nsid_lock);
323 	id = __peernet2id(net, peer);
324 	if (id >= 0) {
325 		spin_unlock_bh(&net->nsid_lock);
326 		return id;
327 	}
328 
329 	/* When peer is obtained from RCU lists, we may race with
330 	 * its cleanup. Check whether it's alive, and this guarantees
331 	 * we never hash a peer back to net->netns_ids, after it has
332 	 * just been idr_remove()'d from there in cleanup_net().
333 	 */
334 	if (!maybe_get_net(peer)) {
335 		spin_unlock_bh(&net->nsid_lock);
336 		return NETNSA_NSID_NOT_ASSIGNED;
337 	}
338 
339 	id = alloc_netid(net, peer, -1);
340 	spin_unlock_bh(&net->nsid_lock);
341 
342 	put_net(peer);
343 	if (id < 0)
344 		return NETNSA_NSID_NOT_ASSIGNED;
345 
346 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
347 
348 	return id;
349 }
350 EXPORT_SYMBOL_GPL(peernet2id_alloc);
351 
352 /* This function returns, if assigned, the id of a peer netns. */
353 int peernet2id(const struct net *net, struct net *peer)
354 {
355 	int id;
356 
357 	rcu_read_lock();
358 	id = __peernet2id(net, peer);
359 	rcu_read_unlock();
360 
361 	return id;
362 }
363 EXPORT_SYMBOL(peernet2id);
364 
365 /* This function returns true is the peer netns has an id assigned into the
366  * current netns.
367  */
368 bool peernet_has_id(const struct net *net, struct net *peer)
369 {
370 	return peernet2id(net, peer) >= 0;
371 }
372 
373 struct net *get_net_ns_by_id(const struct net *net, int id)
374 {
375 	struct net *peer;
376 
377 	if (id < 0)
378 		return NULL;
379 
380 	rcu_read_lock();
381 	peer = idr_find(&net->netns_ids, id);
382 	if (peer)
383 		peer = maybe_get_net(peer);
384 	rcu_read_unlock();
385 
386 	return peer;
387 }
388 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
389 
390 static __net_init void preinit_net_sysctl(struct net *net)
391 {
392 	net->core.sysctl_somaxconn = SOMAXCONN;
393 	/* Limits per socket sk_omem_alloc usage.
394 	 * TCP zerocopy regular usage needs 128 KB.
395 	 */
396 	net->core.sysctl_optmem_max = 128 * 1024;
397 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
398 	net->core.sysctl_tstamp_allow_data = 1;
399 }
400 
401 /* init code that must occur even if setup_net() is not called. */
402 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns)
403 {
404 	refcount_set(&net->passive, 1);
405 	refcount_set(&net->ns.count, 1);
406 	ref_tracker_dir_init(&net->refcnt_tracker, 128, "net_refcnt");
407 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net_notrefcnt");
408 
409 	get_random_bytes(&net->hash_mix, sizeof(u32));
410 	net->dev_base_seq = 1;
411 	net->user_ns = user_ns;
412 
413 	idr_init(&net->netns_ids);
414 	spin_lock_init(&net->nsid_lock);
415 	mutex_init(&net->ipv4.ra_mutex);
416 
417 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL
418 	mutex_init(&net->rtnl_mutex);
419 	lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL);
420 #endif
421 
422 	INIT_LIST_HEAD(&net->ptype_all);
423 	INIT_LIST_HEAD(&net->ptype_specific);
424 	preinit_net_sysctl(net);
425 }
426 
427 /*
428  * setup_net runs the initializers for the network namespace object.
429  */
430 static __net_init int setup_net(struct net *net)
431 {
432 	/* Must be called with pernet_ops_rwsem held */
433 	const struct pernet_operations *ops;
434 	LIST_HEAD(net_exit_list);
435 	int error = 0;
436 
437 	preempt_disable();
438 	net->net_cookie = gen_cookie_next(&net_cookie);
439 	preempt_enable();
440 
441 	list_for_each_entry(ops, &pernet_list, list) {
442 		error = ops_init(ops, net);
443 		if (error < 0)
444 			goto out_undo;
445 	}
446 	down_write(&net_rwsem);
447 	list_add_tail_rcu(&net->list, &net_namespace_list);
448 	up_write(&net_rwsem);
449 out:
450 	return error;
451 
452 out_undo:
453 	/* Walk through the list backwards calling the exit functions
454 	 * for the pernet modules whose init functions did not fail.
455 	 */
456 	list_add(&net->exit_list, &net_exit_list);
457 	ops_undo_list(&pernet_list, ops, &net_exit_list, false);
458 	rcu_barrier();
459 	goto out;
460 }
461 
462 #ifdef CONFIG_NET_NS
463 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
464 {
465 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
466 }
467 
468 static void dec_net_namespaces(struct ucounts *ucounts)
469 {
470 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
471 }
472 
473 static struct kmem_cache *net_cachep __ro_after_init;
474 static struct workqueue_struct *netns_wq;
475 
476 static struct net *net_alloc(void)
477 {
478 	struct net *net = NULL;
479 	struct net_generic *ng;
480 
481 	ng = net_alloc_generic();
482 	if (!ng)
483 		goto out;
484 
485 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
486 	if (!net)
487 		goto out_free;
488 
489 #ifdef CONFIG_KEYS
490 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
491 	if (!net->key_domain)
492 		goto out_free_2;
493 	refcount_set(&net->key_domain->usage, 1);
494 #endif
495 
496 	rcu_assign_pointer(net->gen, ng);
497 out:
498 	return net;
499 
500 #ifdef CONFIG_KEYS
501 out_free_2:
502 	kmem_cache_free(net_cachep, net);
503 	net = NULL;
504 #endif
505 out_free:
506 	kfree(ng);
507 	goto out;
508 }
509 
510 static LLIST_HEAD(defer_free_list);
511 
512 static void net_complete_free(void)
513 {
514 	struct llist_node *kill_list;
515 	struct net *net, *next;
516 
517 	/* Get the list of namespaces to free from last round. */
518 	kill_list = llist_del_all(&defer_free_list);
519 
520 	llist_for_each_entry_safe(net, next, kill_list, defer_free_list)
521 		kmem_cache_free(net_cachep, net);
522 
523 }
524 
525 void net_passive_dec(struct net *net)
526 {
527 	if (refcount_dec_and_test(&net->passive)) {
528 		kfree(rcu_access_pointer(net->gen));
529 
530 		/* There should not be any trackers left there. */
531 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
532 
533 		/* Wait for an extra rcu_barrier() before final free. */
534 		llist_add(&net->defer_free_list, &defer_free_list);
535 	}
536 }
537 
538 void net_drop_ns(void *p)
539 {
540 	struct net *net = (struct net *)p;
541 
542 	if (net)
543 		net_passive_dec(net);
544 }
545 
546 struct net *copy_net_ns(unsigned long flags,
547 			struct user_namespace *user_ns, struct net *old_net)
548 {
549 	struct ucounts *ucounts;
550 	struct net *net;
551 	int rv;
552 
553 	if (!(flags & CLONE_NEWNET))
554 		return get_net(old_net);
555 
556 	ucounts = inc_net_namespaces(user_ns);
557 	if (!ucounts)
558 		return ERR_PTR(-ENOSPC);
559 
560 	net = net_alloc();
561 	if (!net) {
562 		rv = -ENOMEM;
563 		goto dec_ucounts;
564 	}
565 
566 	preinit_net(net, user_ns);
567 	net->ucounts = ucounts;
568 	get_user_ns(user_ns);
569 
570 	rv = down_read_killable(&pernet_ops_rwsem);
571 	if (rv < 0)
572 		goto put_userns;
573 
574 	rv = setup_net(net);
575 
576 	up_read(&pernet_ops_rwsem);
577 
578 	if (rv < 0) {
579 put_userns:
580 #ifdef CONFIG_KEYS
581 		key_remove_domain(net->key_domain);
582 #endif
583 		put_user_ns(user_ns);
584 		net_passive_dec(net);
585 dec_ucounts:
586 		dec_net_namespaces(ucounts);
587 		return ERR_PTR(rv);
588 	}
589 	return net;
590 }
591 
592 /**
593  * net_ns_get_ownership - get sysfs ownership data for @net
594  * @net: network namespace in question (can be NULL)
595  * @uid: kernel user ID for sysfs objects
596  * @gid: kernel group ID for sysfs objects
597  *
598  * Returns the uid/gid pair of root in the user namespace associated with the
599  * given network namespace.
600  */
601 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
602 {
603 	if (net) {
604 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
605 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
606 
607 		if (uid_valid(ns_root_uid))
608 			*uid = ns_root_uid;
609 
610 		if (gid_valid(ns_root_gid))
611 			*gid = ns_root_gid;
612 	} else {
613 		*uid = GLOBAL_ROOT_UID;
614 		*gid = GLOBAL_ROOT_GID;
615 	}
616 }
617 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
618 
619 static void unhash_nsid(struct net *net, struct net *last)
620 {
621 	struct net *tmp;
622 	/* This function is only called from cleanup_net() work,
623 	 * and this work is the only process, that may delete
624 	 * a net from net_namespace_list. So, when the below
625 	 * is executing, the list may only grow. Thus, we do not
626 	 * use for_each_net_rcu() or net_rwsem.
627 	 */
628 	for_each_net(tmp) {
629 		int id;
630 
631 		spin_lock_bh(&tmp->nsid_lock);
632 		id = __peernet2id(tmp, net);
633 		if (id >= 0)
634 			idr_remove(&tmp->netns_ids, id);
635 		spin_unlock_bh(&tmp->nsid_lock);
636 		if (id >= 0)
637 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
638 					  GFP_KERNEL);
639 		if (tmp == last)
640 			break;
641 	}
642 	spin_lock_bh(&net->nsid_lock);
643 	idr_destroy(&net->netns_ids);
644 	spin_unlock_bh(&net->nsid_lock);
645 }
646 
647 static LLIST_HEAD(cleanup_list);
648 
649 struct task_struct *cleanup_net_task;
650 
651 static void cleanup_net(struct work_struct *work)
652 {
653 	struct llist_node *net_kill_list;
654 	struct net *net, *tmp, *last;
655 	LIST_HEAD(net_exit_list);
656 
657 	WRITE_ONCE(cleanup_net_task, current);
658 
659 	/* Atomically snapshot the list of namespaces to cleanup */
660 	net_kill_list = llist_del_all(&cleanup_list);
661 
662 	down_read(&pernet_ops_rwsem);
663 
664 	/* Don't let anyone else find us. */
665 	down_write(&net_rwsem);
666 	llist_for_each_entry(net, net_kill_list, cleanup_list)
667 		list_del_rcu(&net->list);
668 	/* Cache last net. After we unlock rtnl, no one new net
669 	 * added to net_namespace_list can assign nsid pointer
670 	 * to a net from net_kill_list (see peernet2id_alloc()).
671 	 * So, we skip them in unhash_nsid().
672 	 *
673 	 * Note, that unhash_nsid() does not delete nsid links
674 	 * between net_kill_list's nets, as they've already
675 	 * deleted from net_namespace_list. But, this would be
676 	 * useless anyway, as netns_ids are destroyed there.
677 	 */
678 	last = list_last_entry(&net_namespace_list, struct net, list);
679 	up_write(&net_rwsem);
680 
681 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
682 		unhash_nsid(net, last);
683 		list_add_tail(&net->exit_list, &net_exit_list);
684 	}
685 
686 	ops_undo_list(&pernet_list, NULL, &net_exit_list, true);
687 
688 	up_read(&pernet_ops_rwsem);
689 
690 	/* Ensure there are no outstanding rcu callbacks using this
691 	 * network namespace.
692 	 */
693 	rcu_barrier();
694 
695 	net_complete_free();
696 
697 	/* Finally it is safe to free my network namespace structure */
698 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
699 		list_del_init(&net->exit_list);
700 		dec_net_namespaces(net->ucounts);
701 #ifdef CONFIG_KEYS
702 		key_remove_domain(net->key_domain);
703 #endif
704 		put_user_ns(net->user_ns);
705 		net_passive_dec(net);
706 	}
707 	WRITE_ONCE(cleanup_net_task, NULL);
708 }
709 
710 /**
711  * net_ns_barrier - wait until concurrent net_cleanup_work is done
712  *
713  * cleanup_net runs from work queue and will first remove namespaces
714  * from the global list, then run net exit functions.
715  *
716  * Call this in module exit path to make sure that all netns
717  * ->exit ops have been invoked before the function is removed.
718  */
719 void net_ns_barrier(void)
720 {
721 	down_write(&pernet_ops_rwsem);
722 	up_write(&pernet_ops_rwsem);
723 }
724 EXPORT_SYMBOL(net_ns_barrier);
725 
726 static DECLARE_WORK(net_cleanup_work, cleanup_net);
727 
728 void __put_net(struct net *net)
729 {
730 	ref_tracker_dir_exit(&net->refcnt_tracker);
731 	/* Cleanup the network namespace in process context */
732 	if (llist_add(&net->cleanup_list, &cleanup_list))
733 		queue_work(netns_wq, &net_cleanup_work);
734 }
735 EXPORT_SYMBOL_GPL(__put_net);
736 
737 /**
738  * get_net_ns - increment the refcount of the network namespace
739  * @ns: common namespace (net)
740  *
741  * Returns the net's common namespace or ERR_PTR() if ref is zero.
742  */
743 struct ns_common *get_net_ns(struct ns_common *ns)
744 {
745 	struct net *net;
746 
747 	net = maybe_get_net(container_of(ns, struct net, ns));
748 	if (net)
749 		return &net->ns;
750 	return ERR_PTR(-EINVAL);
751 }
752 EXPORT_SYMBOL_GPL(get_net_ns);
753 
754 struct net *get_net_ns_by_fd(int fd)
755 {
756 	CLASS(fd, f)(fd);
757 
758 	if (fd_empty(f))
759 		return ERR_PTR(-EBADF);
760 
761 	if (proc_ns_file(fd_file(f))) {
762 		struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
763 		if (ns->ops == &netns_operations)
764 			return get_net(container_of(ns, struct net, ns));
765 	}
766 
767 	return ERR_PTR(-EINVAL);
768 }
769 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
770 #endif
771 
772 struct net *get_net_ns_by_pid(pid_t pid)
773 {
774 	struct task_struct *tsk;
775 	struct net *net;
776 
777 	/* Lookup the network namespace */
778 	net = ERR_PTR(-ESRCH);
779 	rcu_read_lock();
780 	tsk = find_task_by_vpid(pid);
781 	if (tsk) {
782 		struct nsproxy *nsproxy;
783 		task_lock(tsk);
784 		nsproxy = tsk->nsproxy;
785 		if (nsproxy)
786 			net = get_net(nsproxy->net_ns);
787 		task_unlock(tsk);
788 	}
789 	rcu_read_unlock();
790 	return net;
791 }
792 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
793 
794 #ifdef CONFIG_NET_NS_REFCNT_TRACKER
795 static void net_ns_net_debugfs(struct net *net)
796 {
797 	ref_tracker_dir_symlink(&net->refcnt_tracker, "netns-%llx-%u-refcnt",
798 				net->net_cookie, net->ns.inum);
799 	ref_tracker_dir_symlink(&net->notrefcnt_tracker, "netns-%llx-%u-notrefcnt",
800 				net->net_cookie, net->ns.inum);
801 }
802 
803 static int __init init_net_debugfs(void)
804 {
805 	ref_tracker_dir_debugfs(&init_net.refcnt_tracker);
806 	ref_tracker_dir_debugfs(&init_net.notrefcnt_tracker);
807 	net_ns_net_debugfs(&init_net);
808 	return 0;
809 }
810 late_initcall(init_net_debugfs);
811 #else
812 static void net_ns_net_debugfs(struct net *net)
813 {
814 }
815 #endif
816 
817 static __net_init int net_ns_net_init(struct net *net)
818 {
819 	int ret;
820 
821 #ifdef CONFIG_NET_NS
822 	net->ns.ops = &netns_operations;
823 #endif
824 	ret = ns_alloc_inum(&net->ns);
825 	if (!ret)
826 		net_ns_net_debugfs(net);
827 	return ret;
828 }
829 
830 static __net_exit void net_ns_net_exit(struct net *net)
831 {
832 	ns_free_inum(&net->ns);
833 }
834 
835 static struct pernet_operations __net_initdata net_ns_ops = {
836 	.init = net_ns_net_init,
837 	.exit = net_ns_net_exit,
838 };
839 
840 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
841 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
842 	[NETNSA_NSID]		= { .type = NLA_S32 },
843 	[NETNSA_PID]		= { .type = NLA_U32 },
844 	[NETNSA_FD]		= { .type = NLA_U32 },
845 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
846 };
847 
848 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
849 			  struct netlink_ext_ack *extack)
850 {
851 	struct net *net = sock_net(skb->sk);
852 	struct nlattr *tb[NETNSA_MAX + 1];
853 	struct nlattr *nla;
854 	struct net *peer;
855 	int nsid, err;
856 
857 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
858 				     NETNSA_MAX, rtnl_net_policy, extack);
859 	if (err < 0)
860 		return err;
861 	if (!tb[NETNSA_NSID]) {
862 		NL_SET_ERR_MSG(extack, "nsid is missing");
863 		return -EINVAL;
864 	}
865 	nsid = nla_get_s32(tb[NETNSA_NSID]);
866 
867 	if (tb[NETNSA_PID]) {
868 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
869 		nla = tb[NETNSA_PID];
870 	} else if (tb[NETNSA_FD]) {
871 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
872 		nla = tb[NETNSA_FD];
873 	} else {
874 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
875 		return -EINVAL;
876 	}
877 	if (IS_ERR(peer)) {
878 		NL_SET_BAD_ATTR(extack, nla);
879 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
880 		return PTR_ERR(peer);
881 	}
882 
883 	spin_lock_bh(&net->nsid_lock);
884 	if (__peernet2id(net, peer) >= 0) {
885 		spin_unlock_bh(&net->nsid_lock);
886 		err = -EEXIST;
887 		NL_SET_BAD_ATTR(extack, nla);
888 		NL_SET_ERR_MSG(extack,
889 			       "Peer netns already has a nsid assigned");
890 		goto out;
891 	}
892 
893 	err = alloc_netid(net, peer, nsid);
894 	spin_unlock_bh(&net->nsid_lock);
895 	if (err >= 0) {
896 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
897 				  nlh, GFP_KERNEL);
898 		err = 0;
899 	} else if (err == -ENOSPC && nsid >= 0) {
900 		err = -EEXIST;
901 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
902 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
903 	}
904 out:
905 	put_net(peer);
906 	return err;
907 }
908 
909 static int rtnl_net_get_size(void)
910 {
911 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
912 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
913 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
914 	       ;
915 }
916 
917 struct net_fill_args {
918 	u32 portid;
919 	u32 seq;
920 	int flags;
921 	int cmd;
922 	int nsid;
923 	bool add_ref;
924 	int ref_nsid;
925 };
926 
927 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
928 {
929 	struct nlmsghdr *nlh;
930 	struct rtgenmsg *rth;
931 
932 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
933 			args->flags);
934 	if (!nlh)
935 		return -EMSGSIZE;
936 
937 	rth = nlmsg_data(nlh);
938 	rth->rtgen_family = AF_UNSPEC;
939 
940 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
941 		goto nla_put_failure;
942 
943 	if (args->add_ref &&
944 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
945 		goto nla_put_failure;
946 
947 	nlmsg_end(skb, nlh);
948 	return 0;
949 
950 nla_put_failure:
951 	nlmsg_cancel(skb, nlh);
952 	return -EMSGSIZE;
953 }
954 
955 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
956 				    const struct nlmsghdr *nlh,
957 				    struct nlattr **tb,
958 				    struct netlink_ext_ack *extack)
959 {
960 	int i, err;
961 
962 	if (!netlink_strict_get_check(skb))
963 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
964 					      tb, NETNSA_MAX, rtnl_net_policy,
965 					      extack);
966 
967 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
968 					    NETNSA_MAX, rtnl_net_policy,
969 					    extack);
970 	if (err)
971 		return err;
972 
973 	for (i = 0; i <= NETNSA_MAX; i++) {
974 		if (!tb[i])
975 			continue;
976 
977 		switch (i) {
978 		case NETNSA_PID:
979 		case NETNSA_FD:
980 		case NETNSA_NSID:
981 		case NETNSA_TARGET_NSID:
982 			break;
983 		default:
984 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
985 			return -EINVAL;
986 		}
987 	}
988 
989 	return 0;
990 }
991 
992 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
993 			  struct netlink_ext_ack *extack)
994 {
995 	struct net *net = sock_net(skb->sk);
996 	struct nlattr *tb[NETNSA_MAX + 1];
997 	struct net_fill_args fillargs = {
998 		.portid = NETLINK_CB(skb).portid,
999 		.seq = nlh->nlmsg_seq,
1000 		.cmd = RTM_NEWNSID,
1001 	};
1002 	struct net *peer, *target = net;
1003 	struct nlattr *nla;
1004 	struct sk_buff *msg;
1005 	int err;
1006 
1007 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
1008 	if (err < 0)
1009 		return err;
1010 	if (tb[NETNSA_PID]) {
1011 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
1012 		nla = tb[NETNSA_PID];
1013 	} else if (tb[NETNSA_FD]) {
1014 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
1015 		nla = tb[NETNSA_FD];
1016 	} else if (tb[NETNSA_NSID]) {
1017 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
1018 		if (!peer)
1019 			peer = ERR_PTR(-ENOENT);
1020 		nla = tb[NETNSA_NSID];
1021 	} else {
1022 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
1023 		return -EINVAL;
1024 	}
1025 
1026 	if (IS_ERR(peer)) {
1027 		NL_SET_BAD_ATTR(extack, nla);
1028 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
1029 		return PTR_ERR(peer);
1030 	}
1031 
1032 	if (tb[NETNSA_TARGET_NSID]) {
1033 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
1034 
1035 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
1036 		if (IS_ERR(target)) {
1037 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
1038 			NL_SET_ERR_MSG(extack,
1039 				       "Target netns reference is invalid");
1040 			err = PTR_ERR(target);
1041 			goto out;
1042 		}
1043 		fillargs.add_ref = true;
1044 		fillargs.ref_nsid = peernet2id(net, peer);
1045 	}
1046 
1047 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
1048 	if (!msg) {
1049 		err = -ENOMEM;
1050 		goto out;
1051 	}
1052 
1053 	fillargs.nsid = peernet2id(target, peer);
1054 	err = rtnl_net_fill(msg, &fillargs);
1055 	if (err < 0)
1056 		goto err_out;
1057 
1058 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
1059 	goto out;
1060 
1061 err_out:
1062 	nlmsg_free(msg);
1063 out:
1064 	if (fillargs.add_ref)
1065 		put_net(target);
1066 	put_net(peer);
1067 	return err;
1068 }
1069 
1070 struct rtnl_net_dump_cb {
1071 	struct net *tgt_net;
1072 	struct net *ref_net;
1073 	struct sk_buff *skb;
1074 	struct net_fill_args fillargs;
1075 	int idx;
1076 	int s_idx;
1077 };
1078 
1079 /* Runs in RCU-critical section. */
1080 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1081 {
1082 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1083 	int ret;
1084 
1085 	if (net_cb->idx < net_cb->s_idx)
1086 		goto cont;
1087 
1088 	net_cb->fillargs.nsid = id;
1089 	if (net_cb->fillargs.add_ref)
1090 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1091 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1092 	if (ret < 0)
1093 		return ret;
1094 
1095 cont:
1096 	net_cb->idx++;
1097 	return 0;
1098 }
1099 
1100 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1101 				   struct rtnl_net_dump_cb *net_cb,
1102 				   struct netlink_callback *cb)
1103 {
1104 	struct netlink_ext_ack *extack = cb->extack;
1105 	struct nlattr *tb[NETNSA_MAX + 1];
1106 	int err, i;
1107 
1108 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1109 					    NETNSA_MAX, rtnl_net_policy,
1110 					    extack);
1111 	if (err < 0)
1112 		return err;
1113 
1114 	for (i = 0; i <= NETNSA_MAX; i++) {
1115 		if (!tb[i])
1116 			continue;
1117 
1118 		if (i == NETNSA_TARGET_NSID) {
1119 			struct net *net;
1120 
1121 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1122 			if (IS_ERR(net)) {
1123 				NL_SET_BAD_ATTR(extack, tb[i]);
1124 				NL_SET_ERR_MSG(extack,
1125 					       "Invalid target network namespace id");
1126 				return PTR_ERR(net);
1127 			}
1128 			net_cb->fillargs.add_ref = true;
1129 			net_cb->ref_net = net_cb->tgt_net;
1130 			net_cb->tgt_net = net;
1131 		} else {
1132 			NL_SET_BAD_ATTR(extack, tb[i]);
1133 			NL_SET_ERR_MSG(extack,
1134 				       "Unsupported attribute in dump request");
1135 			return -EINVAL;
1136 		}
1137 	}
1138 
1139 	return 0;
1140 }
1141 
1142 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1143 {
1144 	struct rtnl_net_dump_cb net_cb = {
1145 		.tgt_net = sock_net(skb->sk),
1146 		.skb = skb,
1147 		.fillargs = {
1148 			.portid = NETLINK_CB(cb->skb).portid,
1149 			.seq = cb->nlh->nlmsg_seq,
1150 			.flags = NLM_F_MULTI,
1151 			.cmd = RTM_NEWNSID,
1152 		},
1153 		.idx = 0,
1154 		.s_idx = cb->args[0],
1155 	};
1156 	int err = 0;
1157 
1158 	if (cb->strict_check) {
1159 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1160 		if (err < 0)
1161 			goto end;
1162 	}
1163 
1164 	rcu_read_lock();
1165 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1166 	rcu_read_unlock();
1167 
1168 	cb->args[0] = net_cb.idx;
1169 end:
1170 	if (net_cb.fillargs.add_ref)
1171 		put_net(net_cb.tgt_net);
1172 	return err;
1173 }
1174 
1175 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1176 			      struct nlmsghdr *nlh, gfp_t gfp)
1177 {
1178 	struct net_fill_args fillargs = {
1179 		.portid = portid,
1180 		.seq = nlh ? nlh->nlmsg_seq : 0,
1181 		.cmd = cmd,
1182 		.nsid = id,
1183 	};
1184 	struct sk_buff *msg;
1185 	int err = -ENOMEM;
1186 
1187 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1188 	if (!msg)
1189 		goto out;
1190 
1191 	err = rtnl_net_fill(msg, &fillargs);
1192 	if (err < 0)
1193 		goto err_out;
1194 
1195 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1196 	return;
1197 
1198 err_out:
1199 	nlmsg_free(msg);
1200 out:
1201 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1202 }
1203 
1204 #ifdef CONFIG_NET_NS
1205 static void __init netns_ipv4_struct_check(void)
1206 {
1207 	/* TX readonly hotpath cache lines */
1208 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1209 				      sysctl_tcp_early_retrans);
1210 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1211 				      sysctl_tcp_tso_win_divisor);
1212 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1213 				      sysctl_tcp_tso_rtt_log);
1214 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1215 				      sysctl_tcp_autocorking);
1216 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1217 				      sysctl_tcp_min_snd_mss);
1218 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1219 				      sysctl_tcp_notsent_lowat);
1220 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1221 				      sysctl_tcp_limit_output_bytes);
1222 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1223 				      sysctl_tcp_min_rtt_wlen);
1224 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1225 				      sysctl_tcp_wmem);
1226 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1227 				      sysctl_ip_fwd_use_pmtu);
1228 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1229 
1230 	/* TXRX readonly hotpath cache lines */
1231 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1232 				      sysctl_tcp_moderate_rcvbuf);
1233 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1234 
1235 	/* RX readonly hotpath cache line */
1236 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1237 				      sysctl_ip_early_demux);
1238 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1239 				      sysctl_tcp_early_demux);
1240 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1241 				      sysctl_tcp_l3mdev_accept);
1242 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1243 				      sysctl_tcp_reordering);
1244 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1245 				      sysctl_tcp_rmem);
1246 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22);
1247 }
1248 #endif
1249 
1250 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = {
1251 	{.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid,
1252 	 .flags = RTNL_FLAG_DOIT_UNLOCKED},
1253 	{.msgtype = RTM_GETNSID, .doit = rtnl_net_getid,
1254 	 .dumpit = rtnl_net_dumpid,
1255 	 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED},
1256 };
1257 
1258 void __init net_ns_init(void)
1259 {
1260 	struct net_generic *ng;
1261 
1262 #ifdef CONFIG_NET_NS
1263 	netns_ipv4_struct_check();
1264 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1265 					SMP_CACHE_BYTES,
1266 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1267 
1268 	/* Create workqueue for cleanup */
1269 	netns_wq = create_singlethread_workqueue("netns");
1270 	if (!netns_wq)
1271 		panic("Could not create netns workq");
1272 #endif
1273 
1274 	ng = net_alloc_generic();
1275 	if (!ng)
1276 		panic("Could not allocate generic netns");
1277 
1278 	rcu_assign_pointer(init_net.gen, ng);
1279 
1280 #ifdef CONFIG_KEYS
1281 	init_net.key_domain = &init_net_key_domain;
1282 #endif
1283 	preinit_net(&init_net, &init_user_ns);
1284 
1285 	down_write(&pernet_ops_rwsem);
1286 	if (setup_net(&init_net))
1287 		panic("Could not setup the initial network namespace");
1288 
1289 	init_net_initialized = true;
1290 	up_write(&pernet_ops_rwsem);
1291 
1292 	if (register_pernet_subsys(&net_ns_ops))
1293 		panic("Could not register network namespace subsystems");
1294 
1295 	rtnl_register_many(net_ns_rtnl_msg_handlers);
1296 }
1297 
1298 #ifdef CONFIG_NET_NS
1299 static int __register_pernet_operations(struct list_head *list,
1300 					struct pernet_operations *ops)
1301 {
1302 	LIST_HEAD(net_exit_list);
1303 	struct net *net;
1304 	int error;
1305 
1306 	list_add_tail(&ops->list, list);
1307 	if (ops->init || ops->id) {
1308 		/* We held write locked pernet_ops_rwsem, and parallel
1309 		 * setup_net() and cleanup_net() are not possible.
1310 		 */
1311 		for_each_net(net) {
1312 			error = ops_init(ops, net);
1313 			if (error)
1314 				goto out_undo;
1315 			list_add_tail(&net->exit_list, &net_exit_list);
1316 		}
1317 	}
1318 	return 0;
1319 
1320 out_undo:
1321 	/* If I have an error cleanup all namespaces I initialized */
1322 	list_del(&ops->list);
1323 	ops_undo_single(ops, &net_exit_list);
1324 	return error;
1325 }
1326 
1327 static void __unregister_pernet_operations(struct pernet_operations *ops)
1328 {
1329 	LIST_HEAD(net_exit_list);
1330 	struct net *net;
1331 
1332 	/* See comment in __register_pernet_operations() */
1333 	for_each_net(net)
1334 		list_add_tail(&net->exit_list, &net_exit_list);
1335 
1336 	list_del(&ops->list);
1337 	ops_undo_single(ops, &net_exit_list);
1338 }
1339 
1340 #else
1341 
1342 static int __register_pernet_operations(struct list_head *list,
1343 					struct pernet_operations *ops)
1344 {
1345 	if (!init_net_initialized) {
1346 		list_add_tail(&ops->list, list);
1347 		return 0;
1348 	}
1349 
1350 	return ops_init(ops, &init_net);
1351 }
1352 
1353 static void __unregister_pernet_operations(struct pernet_operations *ops)
1354 {
1355 	if (!init_net_initialized) {
1356 		list_del(&ops->list);
1357 	} else {
1358 		LIST_HEAD(net_exit_list);
1359 
1360 		list_add(&init_net.exit_list, &net_exit_list);
1361 		ops_undo_single(ops, &net_exit_list);
1362 	}
1363 }
1364 
1365 #endif /* CONFIG_NET_NS */
1366 
1367 static DEFINE_IDA(net_generic_ids);
1368 
1369 static int register_pernet_operations(struct list_head *list,
1370 				      struct pernet_operations *ops)
1371 {
1372 	int error;
1373 
1374 	if (WARN_ON(!!ops->id ^ !!ops->size))
1375 		return -EINVAL;
1376 
1377 	if (ops->id) {
1378 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1379 				GFP_KERNEL);
1380 		if (error < 0)
1381 			return error;
1382 		*ops->id = error;
1383 		/* This does not require READ_ONCE as writers already hold
1384 		 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1385 		 * net_alloc_generic.
1386 		 */
1387 		WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1388 	}
1389 	error = __register_pernet_operations(list, ops);
1390 	if (error) {
1391 		rcu_barrier();
1392 		if (ops->id)
1393 			ida_free(&net_generic_ids, *ops->id);
1394 	}
1395 
1396 	return error;
1397 }
1398 
1399 static void unregister_pernet_operations(struct pernet_operations *ops)
1400 {
1401 	__unregister_pernet_operations(ops);
1402 	rcu_barrier();
1403 	if (ops->id)
1404 		ida_free(&net_generic_ids, *ops->id);
1405 }
1406 
1407 /**
1408  *      register_pernet_subsys - register a network namespace subsystem
1409  *	@ops:  pernet operations structure for the subsystem
1410  *
1411  *	Register a subsystem which has init and exit functions
1412  *	that are called when network namespaces are created and
1413  *	destroyed respectively.
1414  *
1415  *	When registered all network namespace init functions are
1416  *	called for every existing network namespace.  Allowing kernel
1417  *	modules to have a race free view of the set of network namespaces.
1418  *
1419  *	When a new network namespace is created all of the init
1420  *	methods are called in the order in which they were registered.
1421  *
1422  *	When a network namespace is destroyed all of the exit methods
1423  *	are called in the reverse of the order with which they were
1424  *	registered.
1425  */
1426 int register_pernet_subsys(struct pernet_operations *ops)
1427 {
1428 	int error;
1429 	down_write(&pernet_ops_rwsem);
1430 	error =  register_pernet_operations(first_device, ops);
1431 	up_write(&pernet_ops_rwsem);
1432 	return error;
1433 }
1434 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1435 
1436 /**
1437  *      unregister_pernet_subsys - unregister a network namespace subsystem
1438  *	@ops: pernet operations structure to manipulate
1439  *
1440  *	Remove the pernet operations structure from the list to be
1441  *	used when network namespaces are created or destroyed.  In
1442  *	addition run the exit method for all existing network
1443  *	namespaces.
1444  */
1445 void unregister_pernet_subsys(struct pernet_operations *ops)
1446 {
1447 	down_write(&pernet_ops_rwsem);
1448 	unregister_pernet_operations(ops);
1449 	up_write(&pernet_ops_rwsem);
1450 }
1451 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1452 
1453 /**
1454  *      register_pernet_device - register a network namespace device
1455  *	@ops:  pernet operations structure for the subsystem
1456  *
1457  *	Register a device which has init and exit functions
1458  *	that are called when network namespaces are created and
1459  *	destroyed respectively.
1460  *
1461  *	When registered all network namespace init functions are
1462  *	called for every existing network namespace.  Allowing kernel
1463  *	modules to have a race free view of the set of network namespaces.
1464  *
1465  *	When a new network namespace is created all of the init
1466  *	methods are called in the order in which they were registered.
1467  *
1468  *	When a network namespace is destroyed all of the exit methods
1469  *	are called in the reverse of the order with which they were
1470  *	registered.
1471  */
1472 int register_pernet_device(struct pernet_operations *ops)
1473 {
1474 	int error;
1475 	down_write(&pernet_ops_rwsem);
1476 	error = register_pernet_operations(&pernet_list, ops);
1477 	if (!error && (first_device == &pernet_list))
1478 		first_device = &ops->list;
1479 	up_write(&pernet_ops_rwsem);
1480 	return error;
1481 }
1482 EXPORT_SYMBOL_GPL(register_pernet_device);
1483 
1484 /**
1485  *      unregister_pernet_device - unregister a network namespace netdevice
1486  *	@ops: pernet operations structure to manipulate
1487  *
1488  *	Remove the pernet operations structure from the list to be
1489  *	used when network namespaces are created or destroyed.  In
1490  *	addition run the exit method for all existing network
1491  *	namespaces.
1492  */
1493 void unregister_pernet_device(struct pernet_operations *ops)
1494 {
1495 	down_write(&pernet_ops_rwsem);
1496 	if (&ops->list == first_device)
1497 		first_device = first_device->next;
1498 	unregister_pernet_operations(ops);
1499 	up_write(&pernet_ops_rwsem);
1500 }
1501 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1502 
1503 #ifdef CONFIG_NET_NS
1504 static struct ns_common *netns_get(struct task_struct *task)
1505 {
1506 	struct net *net = NULL;
1507 	struct nsproxy *nsproxy;
1508 
1509 	task_lock(task);
1510 	nsproxy = task->nsproxy;
1511 	if (nsproxy)
1512 		net = get_net(nsproxy->net_ns);
1513 	task_unlock(task);
1514 
1515 	return net ? &net->ns : NULL;
1516 }
1517 
1518 static inline struct net *to_net_ns(struct ns_common *ns)
1519 {
1520 	return container_of(ns, struct net, ns);
1521 }
1522 
1523 static void netns_put(struct ns_common *ns)
1524 {
1525 	put_net(to_net_ns(ns));
1526 }
1527 
1528 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1529 {
1530 	struct nsproxy *nsproxy = nsset->nsproxy;
1531 	struct net *net = to_net_ns(ns);
1532 
1533 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1534 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1535 		return -EPERM;
1536 
1537 	put_net(nsproxy->net_ns);
1538 	nsproxy->net_ns = get_net(net);
1539 	return 0;
1540 }
1541 
1542 static struct user_namespace *netns_owner(struct ns_common *ns)
1543 {
1544 	return to_net_ns(ns)->user_ns;
1545 }
1546 
1547 const struct proc_ns_operations netns_operations = {
1548 	.name		= "net",
1549 	.type		= CLONE_NEWNET,
1550 	.get		= netns_get,
1551 	.put		= netns_put,
1552 	.install	= netns_install,
1553 	.owner		= netns_owner,
1554 };
1555 #endif
1556