xref: /linux/net/core/net_namespace.c (revision c33a605dd6f36618f9f658e71c09fcdcb44fc500)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <net/sock.h>
20 #include <net/netlink.h>
21 #include <net/net_namespace.h>
22 #include <net/netns/generic.h>
23 
24 /*
25  *	Our network namespace constructor/destructor lists
26  */
27 
28 static LIST_HEAD(pernet_list);
29 static struct list_head *first_device = &pernet_list;
30 DEFINE_MUTEX(net_mutex);
31 
32 LIST_HEAD(net_namespace_list);
33 EXPORT_SYMBOL_GPL(net_namespace_list);
34 
35 struct net init_net = {
36 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
37 };
38 EXPORT_SYMBOL(init_net);
39 
40 static bool init_net_initialized;
41 
42 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
43 
44 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
45 
46 static struct net_generic *net_alloc_generic(void)
47 {
48 	struct net_generic *ng;
49 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
50 
51 	ng = kzalloc(generic_size, GFP_KERNEL);
52 	if (ng)
53 		ng->len = max_gen_ptrs;
54 
55 	return ng;
56 }
57 
58 static int net_assign_generic(struct net *net, int id, void *data)
59 {
60 	struct net_generic *ng, *old_ng;
61 
62 	BUG_ON(!mutex_is_locked(&net_mutex));
63 	BUG_ON(id == 0);
64 
65 	old_ng = rcu_dereference_protected(net->gen,
66 					   lockdep_is_held(&net_mutex));
67 	ng = old_ng;
68 	if (old_ng->len >= id)
69 		goto assign;
70 
71 	ng = net_alloc_generic();
72 	if (ng == NULL)
73 		return -ENOMEM;
74 
75 	/*
76 	 * Some synchronisation notes:
77 	 *
78 	 * The net_generic explores the net->gen array inside rcu
79 	 * read section. Besides once set the net->gen->ptr[x]
80 	 * pointer never changes (see rules in netns/generic.h).
81 	 *
82 	 * That said, we simply duplicate this array and schedule
83 	 * the old copy for kfree after a grace period.
84 	 */
85 
86 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
87 
88 	rcu_assign_pointer(net->gen, ng);
89 	kfree_rcu(old_ng, rcu);
90 assign:
91 	ng->ptr[id - 1] = data;
92 	return 0;
93 }
94 
95 static int ops_init(const struct pernet_operations *ops, struct net *net)
96 {
97 	int err = -ENOMEM;
98 	void *data = NULL;
99 
100 	if (ops->id && ops->size) {
101 		data = kzalloc(ops->size, GFP_KERNEL);
102 		if (!data)
103 			goto out;
104 
105 		err = net_assign_generic(net, *ops->id, data);
106 		if (err)
107 			goto cleanup;
108 	}
109 	err = 0;
110 	if (ops->init)
111 		err = ops->init(net);
112 	if (!err)
113 		return 0;
114 
115 cleanup:
116 	kfree(data);
117 
118 out:
119 	return err;
120 }
121 
122 static void ops_free(const struct pernet_operations *ops, struct net *net)
123 {
124 	if (ops->id && ops->size) {
125 		int id = *ops->id;
126 		kfree(net_generic(net, id));
127 	}
128 }
129 
130 static void ops_exit_list(const struct pernet_operations *ops,
131 			  struct list_head *net_exit_list)
132 {
133 	struct net *net;
134 	if (ops->exit) {
135 		list_for_each_entry(net, net_exit_list, exit_list)
136 			ops->exit(net);
137 	}
138 	if (ops->exit_batch)
139 		ops->exit_batch(net_exit_list);
140 }
141 
142 static void ops_free_list(const struct pernet_operations *ops,
143 			  struct list_head *net_exit_list)
144 {
145 	struct net *net;
146 	if (ops->size && ops->id) {
147 		list_for_each_entry(net, net_exit_list, exit_list)
148 			ops_free(ops, net);
149 	}
150 }
151 
152 /* should be called with nsid_lock held */
153 static int alloc_netid(struct net *net, struct net *peer, int reqid)
154 {
155 	int min = 0, max = 0;
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
163 }
164 
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166  * function returns the id so that idr_for_each() stops. Because we cannot
167  * returns the id 0 (idr_for_each() will not stop), we return the magic value
168  * NET_ID_ZERO (-1) for it.
169  */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 	if (net_eq(net, peer))
174 		return id ? : NET_ID_ZERO;
175 	return 0;
176 }
177 
178 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
179  * is set to true, thus the caller knows that the new id must be notified via
180  * rtnl.
181  */
182 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
183 {
184 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
185 	bool alloc_it = *alloc;
186 
187 	*alloc = false;
188 
189 	/* Magic value for id 0. */
190 	if (id == NET_ID_ZERO)
191 		return 0;
192 	if (id > 0)
193 		return id;
194 
195 	if (alloc_it) {
196 		id = alloc_netid(net, peer, -1);
197 		*alloc = true;
198 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
199 	}
200 
201 	return NETNSA_NSID_NOT_ASSIGNED;
202 }
203 
204 /* should be called with nsid_lock held */
205 static int __peernet2id(struct net *net, struct net *peer)
206 {
207 	bool no = false;
208 
209 	return __peernet2id_alloc(net, peer, &no);
210 }
211 
212 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
213 /* This function returns the id of a peer netns. If no id is assigned, one will
214  * be allocated and returned.
215  */
216 int peernet2id_alloc(struct net *net, struct net *peer)
217 {
218 	unsigned long flags;
219 	bool alloc;
220 	int id;
221 
222 	if (atomic_read(&net->count) == 0)
223 		return NETNSA_NSID_NOT_ASSIGNED;
224 	spin_lock_irqsave(&net->nsid_lock, flags);
225 	alloc = atomic_read(&peer->count) == 0 ? false : true;
226 	id = __peernet2id_alloc(net, peer, &alloc);
227 	spin_unlock_irqrestore(&net->nsid_lock, flags);
228 	if (alloc && id >= 0)
229 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
230 	return id;
231 }
232 
233 /* This function returns, if assigned, the id of a peer netns. */
234 int peernet2id(struct net *net, struct net *peer)
235 {
236 	unsigned long flags;
237 	int id;
238 
239 	spin_lock_irqsave(&net->nsid_lock, flags);
240 	id = __peernet2id(net, peer);
241 	spin_unlock_irqrestore(&net->nsid_lock, flags);
242 	return id;
243 }
244 EXPORT_SYMBOL(peernet2id);
245 
246 /* This function returns true is the peer netns has an id assigned into the
247  * current netns.
248  */
249 bool peernet_has_id(struct net *net, struct net *peer)
250 {
251 	return peernet2id(net, peer) >= 0;
252 }
253 
254 struct net *get_net_ns_by_id(struct net *net, int id)
255 {
256 	unsigned long flags;
257 	struct net *peer;
258 
259 	if (id < 0)
260 		return NULL;
261 
262 	rcu_read_lock();
263 	spin_lock_irqsave(&net->nsid_lock, flags);
264 	peer = idr_find(&net->netns_ids, id);
265 	if (peer)
266 		get_net(peer);
267 	spin_unlock_irqrestore(&net->nsid_lock, flags);
268 	rcu_read_unlock();
269 
270 	return peer;
271 }
272 
273 /*
274  * setup_net runs the initializers for the network namespace object.
275  */
276 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
277 {
278 	/* Must be called with net_mutex held */
279 	const struct pernet_operations *ops, *saved_ops;
280 	int error = 0;
281 	LIST_HEAD(net_exit_list);
282 
283 	atomic_set(&net->count, 1);
284 	atomic_set(&net->passive, 1);
285 	net->dev_base_seq = 1;
286 	net->user_ns = user_ns;
287 	idr_init(&net->netns_ids);
288 	spin_lock_init(&net->nsid_lock);
289 
290 	list_for_each_entry(ops, &pernet_list, list) {
291 		error = ops_init(ops, net);
292 		if (error < 0)
293 			goto out_undo;
294 	}
295 out:
296 	return error;
297 
298 out_undo:
299 	/* Walk through the list backwards calling the exit functions
300 	 * for the pernet modules whose init functions did not fail.
301 	 */
302 	list_add(&net->exit_list, &net_exit_list);
303 	saved_ops = ops;
304 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
305 		ops_exit_list(ops, &net_exit_list);
306 
307 	ops = saved_ops;
308 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
309 		ops_free_list(ops, &net_exit_list);
310 
311 	rcu_barrier();
312 	goto out;
313 }
314 
315 
316 #ifdef CONFIG_NET_NS
317 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
318 {
319 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
320 }
321 
322 static void dec_net_namespaces(struct ucounts *ucounts)
323 {
324 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
325 }
326 
327 static struct kmem_cache *net_cachep;
328 static struct workqueue_struct *netns_wq;
329 
330 static struct net *net_alloc(void)
331 {
332 	struct net *net = NULL;
333 	struct net_generic *ng;
334 
335 	ng = net_alloc_generic();
336 	if (!ng)
337 		goto out;
338 
339 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
340 	if (!net)
341 		goto out_free;
342 
343 	rcu_assign_pointer(net->gen, ng);
344 out:
345 	return net;
346 
347 out_free:
348 	kfree(ng);
349 	goto out;
350 }
351 
352 static void net_free(struct net *net)
353 {
354 	kfree(rcu_access_pointer(net->gen));
355 	kmem_cache_free(net_cachep, net);
356 }
357 
358 void net_drop_ns(void *p)
359 {
360 	struct net *ns = p;
361 	if (ns && atomic_dec_and_test(&ns->passive))
362 		net_free(ns);
363 }
364 
365 struct net *copy_net_ns(unsigned long flags,
366 			struct user_namespace *user_ns, struct net *old_net)
367 {
368 	struct ucounts *ucounts;
369 	struct net *net;
370 	int rv;
371 
372 	if (!(flags & CLONE_NEWNET))
373 		return get_net(old_net);
374 
375 	ucounts = inc_net_namespaces(user_ns);
376 	if (!ucounts)
377 		return ERR_PTR(-ENOSPC);
378 
379 	net = net_alloc();
380 	if (!net) {
381 		dec_net_namespaces(ucounts);
382 		return ERR_PTR(-ENOMEM);
383 	}
384 
385 	get_user_ns(user_ns);
386 
387 	mutex_lock(&net_mutex);
388 	net->ucounts = ucounts;
389 	rv = setup_net(net, user_ns);
390 	if (rv == 0) {
391 		rtnl_lock();
392 		list_add_tail_rcu(&net->list, &net_namespace_list);
393 		rtnl_unlock();
394 	}
395 	mutex_unlock(&net_mutex);
396 	if (rv < 0) {
397 		dec_net_namespaces(ucounts);
398 		put_user_ns(user_ns);
399 		net_drop_ns(net);
400 		return ERR_PTR(rv);
401 	}
402 	return net;
403 }
404 
405 static DEFINE_SPINLOCK(cleanup_list_lock);
406 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
407 
408 static void cleanup_net(struct work_struct *work)
409 {
410 	const struct pernet_operations *ops;
411 	struct net *net, *tmp;
412 	struct list_head net_kill_list;
413 	LIST_HEAD(net_exit_list);
414 
415 	/* Atomically snapshot the list of namespaces to cleanup */
416 	spin_lock_irq(&cleanup_list_lock);
417 	list_replace_init(&cleanup_list, &net_kill_list);
418 	spin_unlock_irq(&cleanup_list_lock);
419 
420 	mutex_lock(&net_mutex);
421 
422 	/* Don't let anyone else find us. */
423 	rtnl_lock();
424 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
425 		list_del_rcu(&net->list);
426 		list_add_tail(&net->exit_list, &net_exit_list);
427 		for_each_net(tmp) {
428 			int id;
429 
430 			spin_lock_irq(&tmp->nsid_lock);
431 			id = __peernet2id(tmp, net);
432 			if (id >= 0)
433 				idr_remove(&tmp->netns_ids, id);
434 			spin_unlock_irq(&tmp->nsid_lock);
435 			if (id >= 0)
436 				rtnl_net_notifyid(tmp, RTM_DELNSID, id);
437 		}
438 		spin_lock_irq(&net->nsid_lock);
439 		idr_destroy(&net->netns_ids);
440 		spin_unlock_irq(&net->nsid_lock);
441 
442 	}
443 	rtnl_unlock();
444 
445 	/*
446 	 * Another CPU might be rcu-iterating the list, wait for it.
447 	 * This needs to be before calling the exit() notifiers, so
448 	 * the rcu_barrier() below isn't sufficient alone.
449 	 */
450 	synchronize_rcu();
451 
452 	/* Run all of the network namespace exit methods */
453 	list_for_each_entry_reverse(ops, &pernet_list, list)
454 		ops_exit_list(ops, &net_exit_list);
455 
456 	/* Free the net generic variables */
457 	list_for_each_entry_reverse(ops, &pernet_list, list)
458 		ops_free_list(ops, &net_exit_list);
459 
460 	mutex_unlock(&net_mutex);
461 
462 	/* Ensure there are no outstanding rcu callbacks using this
463 	 * network namespace.
464 	 */
465 	rcu_barrier();
466 
467 	/* Finally it is safe to free my network namespace structure */
468 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
469 		list_del_init(&net->exit_list);
470 		dec_net_namespaces(net->ucounts);
471 		put_user_ns(net->user_ns);
472 		net_drop_ns(net);
473 	}
474 }
475 static DECLARE_WORK(net_cleanup_work, cleanup_net);
476 
477 void __put_net(struct net *net)
478 {
479 	/* Cleanup the network namespace in process context */
480 	unsigned long flags;
481 
482 	spin_lock_irqsave(&cleanup_list_lock, flags);
483 	list_add(&net->cleanup_list, &cleanup_list);
484 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
485 
486 	queue_work(netns_wq, &net_cleanup_work);
487 }
488 EXPORT_SYMBOL_GPL(__put_net);
489 
490 struct net *get_net_ns_by_fd(int fd)
491 {
492 	struct file *file;
493 	struct ns_common *ns;
494 	struct net *net;
495 
496 	file = proc_ns_fget(fd);
497 	if (IS_ERR(file))
498 		return ERR_CAST(file);
499 
500 	ns = get_proc_ns(file_inode(file));
501 	if (ns->ops == &netns_operations)
502 		net = get_net(container_of(ns, struct net, ns));
503 	else
504 		net = ERR_PTR(-EINVAL);
505 
506 	fput(file);
507 	return net;
508 }
509 
510 #else
511 struct net *get_net_ns_by_fd(int fd)
512 {
513 	return ERR_PTR(-EINVAL);
514 }
515 #endif
516 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
517 
518 struct net *get_net_ns_by_pid(pid_t pid)
519 {
520 	struct task_struct *tsk;
521 	struct net *net;
522 
523 	/* Lookup the network namespace */
524 	net = ERR_PTR(-ESRCH);
525 	rcu_read_lock();
526 	tsk = find_task_by_vpid(pid);
527 	if (tsk) {
528 		struct nsproxy *nsproxy;
529 		task_lock(tsk);
530 		nsproxy = tsk->nsproxy;
531 		if (nsproxy)
532 			net = get_net(nsproxy->net_ns);
533 		task_unlock(tsk);
534 	}
535 	rcu_read_unlock();
536 	return net;
537 }
538 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
539 
540 static __net_init int net_ns_net_init(struct net *net)
541 {
542 #ifdef CONFIG_NET_NS
543 	net->ns.ops = &netns_operations;
544 #endif
545 	return ns_alloc_inum(&net->ns);
546 }
547 
548 static __net_exit void net_ns_net_exit(struct net *net)
549 {
550 	ns_free_inum(&net->ns);
551 }
552 
553 static struct pernet_operations __net_initdata net_ns_ops = {
554 	.init = net_ns_net_init,
555 	.exit = net_ns_net_exit,
556 };
557 
558 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
559 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
560 	[NETNSA_NSID]		= { .type = NLA_S32 },
561 	[NETNSA_PID]		= { .type = NLA_U32 },
562 	[NETNSA_FD]		= { .type = NLA_U32 },
563 };
564 
565 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
566 {
567 	struct net *net = sock_net(skb->sk);
568 	struct nlattr *tb[NETNSA_MAX + 1];
569 	unsigned long flags;
570 	struct net *peer;
571 	int nsid, err;
572 
573 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
574 			  rtnl_net_policy);
575 	if (err < 0)
576 		return err;
577 	if (!tb[NETNSA_NSID])
578 		return -EINVAL;
579 	nsid = nla_get_s32(tb[NETNSA_NSID]);
580 
581 	if (tb[NETNSA_PID])
582 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
583 	else if (tb[NETNSA_FD])
584 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
585 	else
586 		return -EINVAL;
587 	if (IS_ERR(peer))
588 		return PTR_ERR(peer);
589 
590 	spin_lock_irqsave(&net->nsid_lock, flags);
591 	if (__peernet2id(net, peer) >= 0) {
592 		spin_unlock_irqrestore(&net->nsid_lock, flags);
593 		err = -EEXIST;
594 		goto out;
595 	}
596 
597 	err = alloc_netid(net, peer, nsid);
598 	spin_unlock_irqrestore(&net->nsid_lock, flags);
599 	if (err >= 0) {
600 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
601 		err = 0;
602 	}
603 out:
604 	put_net(peer);
605 	return err;
606 }
607 
608 static int rtnl_net_get_size(void)
609 {
610 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
611 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
612 	       ;
613 }
614 
615 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
616 			 int cmd, struct net *net, int nsid)
617 {
618 	struct nlmsghdr *nlh;
619 	struct rtgenmsg *rth;
620 
621 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
622 	if (!nlh)
623 		return -EMSGSIZE;
624 
625 	rth = nlmsg_data(nlh);
626 	rth->rtgen_family = AF_UNSPEC;
627 
628 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
629 		goto nla_put_failure;
630 
631 	nlmsg_end(skb, nlh);
632 	return 0;
633 
634 nla_put_failure:
635 	nlmsg_cancel(skb, nlh);
636 	return -EMSGSIZE;
637 }
638 
639 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
640 {
641 	struct net *net = sock_net(skb->sk);
642 	struct nlattr *tb[NETNSA_MAX + 1];
643 	struct sk_buff *msg;
644 	struct net *peer;
645 	int err, id;
646 
647 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
648 			  rtnl_net_policy);
649 	if (err < 0)
650 		return err;
651 	if (tb[NETNSA_PID])
652 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
653 	else if (tb[NETNSA_FD])
654 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
655 	else
656 		return -EINVAL;
657 
658 	if (IS_ERR(peer))
659 		return PTR_ERR(peer);
660 
661 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
662 	if (!msg) {
663 		err = -ENOMEM;
664 		goto out;
665 	}
666 
667 	id = peernet2id(net, peer);
668 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
669 			    RTM_NEWNSID, net, id);
670 	if (err < 0)
671 		goto err_out;
672 
673 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
674 	goto out;
675 
676 err_out:
677 	nlmsg_free(msg);
678 out:
679 	put_net(peer);
680 	return err;
681 }
682 
683 struct rtnl_net_dump_cb {
684 	struct net *net;
685 	struct sk_buff *skb;
686 	struct netlink_callback *cb;
687 	int idx;
688 	int s_idx;
689 };
690 
691 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
692 {
693 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
694 	int ret;
695 
696 	if (net_cb->idx < net_cb->s_idx)
697 		goto cont;
698 
699 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
700 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
701 			    RTM_NEWNSID, net_cb->net, id);
702 	if (ret < 0)
703 		return ret;
704 
705 cont:
706 	net_cb->idx++;
707 	return 0;
708 }
709 
710 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
711 {
712 	struct net *net = sock_net(skb->sk);
713 	struct rtnl_net_dump_cb net_cb = {
714 		.net = net,
715 		.skb = skb,
716 		.cb = cb,
717 		.idx = 0,
718 		.s_idx = cb->args[0],
719 	};
720 	unsigned long flags;
721 
722 	spin_lock_irqsave(&net->nsid_lock, flags);
723 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
724 	spin_unlock_irqrestore(&net->nsid_lock, flags);
725 
726 	cb->args[0] = net_cb.idx;
727 	return skb->len;
728 }
729 
730 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
731 {
732 	struct sk_buff *msg;
733 	int err = -ENOMEM;
734 
735 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
736 	if (!msg)
737 		goto out;
738 
739 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
740 	if (err < 0)
741 		goto err_out;
742 
743 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
744 	return;
745 
746 err_out:
747 	nlmsg_free(msg);
748 out:
749 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
750 }
751 
752 static int __init net_ns_init(void)
753 {
754 	struct net_generic *ng;
755 
756 #ifdef CONFIG_NET_NS
757 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
758 					SMP_CACHE_BYTES,
759 					SLAB_PANIC, NULL);
760 
761 	/* Create workqueue for cleanup */
762 	netns_wq = create_singlethread_workqueue("netns");
763 	if (!netns_wq)
764 		panic("Could not create netns workq");
765 #endif
766 
767 	ng = net_alloc_generic();
768 	if (!ng)
769 		panic("Could not allocate generic netns");
770 
771 	rcu_assign_pointer(init_net.gen, ng);
772 
773 	mutex_lock(&net_mutex);
774 	if (setup_net(&init_net, &init_user_ns))
775 		panic("Could not setup the initial network namespace");
776 
777 	init_net_initialized = true;
778 
779 	rtnl_lock();
780 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
781 	rtnl_unlock();
782 
783 	mutex_unlock(&net_mutex);
784 
785 	register_pernet_subsys(&net_ns_ops);
786 
787 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
788 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
789 		      NULL);
790 
791 	return 0;
792 }
793 
794 pure_initcall(net_ns_init);
795 
796 #ifdef CONFIG_NET_NS
797 static int __register_pernet_operations(struct list_head *list,
798 					struct pernet_operations *ops)
799 {
800 	struct net *net;
801 	int error;
802 	LIST_HEAD(net_exit_list);
803 
804 	list_add_tail(&ops->list, list);
805 	if (ops->init || (ops->id && ops->size)) {
806 		for_each_net(net) {
807 			error = ops_init(ops, net);
808 			if (error)
809 				goto out_undo;
810 			list_add_tail(&net->exit_list, &net_exit_list);
811 		}
812 	}
813 	return 0;
814 
815 out_undo:
816 	/* If I have an error cleanup all namespaces I initialized */
817 	list_del(&ops->list);
818 	ops_exit_list(ops, &net_exit_list);
819 	ops_free_list(ops, &net_exit_list);
820 	return error;
821 }
822 
823 static void __unregister_pernet_operations(struct pernet_operations *ops)
824 {
825 	struct net *net;
826 	LIST_HEAD(net_exit_list);
827 
828 	list_del(&ops->list);
829 	for_each_net(net)
830 		list_add_tail(&net->exit_list, &net_exit_list);
831 	ops_exit_list(ops, &net_exit_list);
832 	ops_free_list(ops, &net_exit_list);
833 }
834 
835 #else
836 
837 static int __register_pernet_operations(struct list_head *list,
838 					struct pernet_operations *ops)
839 {
840 	if (!init_net_initialized) {
841 		list_add_tail(&ops->list, list);
842 		return 0;
843 	}
844 
845 	return ops_init(ops, &init_net);
846 }
847 
848 static void __unregister_pernet_operations(struct pernet_operations *ops)
849 {
850 	if (!init_net_initialized) {
851 		list_del(&ops->list);
852 	} else {
853 		LIST_HEAD(net_exit_list);
854 		list_add(&init_net.exit_list, &net_exit_list);
855 		ops_exit_list(ops, &net_exit_list);
856 		ops_free_list(ops, &net_exit_list);
857 	}
858 }
859 
860 #endif /* CONFIG_NET_NS */
861 
862 static DEFINE_IDA(net_generic_ids);
863 
864 static int register_pernet_operations(struct list_head *list,
865 				      struct pernet_operations *ops)
866 {
867 	int error;
868 
869 	if (ops->id) {
870 again:
871 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
872 		if (error < 0) {
873 			if (error == -EAGAIN) {
874 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
875 				goto again;
876 			}
877 			return error;
878 		}
879 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
880 	}
881 	error = __register_pernet_operations(list, ops);
882 	if (error) {
883 		rcu_barrier();
884 		if (ops->id)
885 			ida_remove(&net_generic_ids, *ops->id);
886 	}
887 
888 	return error;
889 }
890 
891 static void unregister_pernet_operations(struct pernet_operations *ops)
892 {
893 
894 	__unregister_pernet_operations(ops);
895 	rcu_barrier();
896 	if (ops->id)
897 		ida_remove(&net_generic_ids, *ops->id);
898 }
899 
900 /**
901  *      register_pernet_subsys - register a network namespace subsystem
902  *	@ops:  pernet operations structure for the subsystem
903  *
904  *	Register a subsystem which has init and exit functions
905  *	that are called when network namespaces are created and
906  *	destroyed respectively.
907  *
908  *	When registered all network namespace init functions are
909  *	called for every existing network namespace.  Allowing kernel
910  *	modules to have a race free view of the set of network namespaces.
911  *
912  *	When a new network namespace is created all of the init
913  *	methods are called in the order in which they were registered.
914  *
915  *	When a network namespace is destroyed all of the exit methods
916  *	are called in the reverse of the order with which they were
917  *	registered.
918  */
919 int register_pernet_subsys(struct pernet_operations *ops)
920 {
921 	int error;
922 	mutex_lock(&net_mutex);
923 	error =  register_pernet_operations(first_device, ops);
924 	mutex_unlock(&net_mutex);
925 	return error;
926 }
927 EXPORT_SYMBOL_GPL(register_pernet_subsys);
928 
929 /**
930  *      unregister_pernet_subsys - unregister a network namespace subsystem
931  *	@ops: pernet operations structure to manipulate
932  *
933  *	Remove the pernet operations structure from the list to be
934  *	used when network namespaces are created or destroyed.  In
935  *	addition run the exit method for all existing network
936  *	namespaces.
937  */
938 void unregister_pernet_subsys(struct pernet_operations *ops)
939 {
940 	mutex_lock(&net_mutex);
941 	unregister_pernet_operations(ops);
942 	mutex_unlock(&net_mutex);
943 }
944 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
945 
946 /**
947  *      register_pernet_device - register a network namespace device
948  *	@ops:  pernet operations structure for the subsystem
949  *
950  *	Register a device which has init and exit functions
951  *	that are called when network namespaces are created and
952  *	destroyed respectively.
953  *
954  *	When registered all network namespace init functions are
955  *	called for every existing network namespace.  Allowing kernel
956  *	modules to have a race free view of the set of network namespaces.
957  *
958  *	When a new network namespace is created all of the init
959  *	methods are called in the order in which they were registered.
960  *
961  *	When a network namespace is destroyed all of the exit methods
962  *	are called in the reverse of the order with which they were
963  *	registered.
964  */
965 int register_pernet_device(struct pernet_operations *ops)
966 {
967 	int error;
968 	mutex_lock(&net_mutex);
969 	error = register_pernet_operations(&pernet_list, ops);
970 	if (!error && (first_device == &pernet_list))
971 		first_device = &ops->list;
972 	mutex_unlock(&net_mutex);
973 	return error;
974 }
975 EXPORT_SYMBOL_GPL(register_pernet_device);
976 
977 /**
978  *      unregister_pernet_device - unregister a network namespace netdevice
979  *	@ops: pernet operations structure to manipulate
980  *
981  *	Remove the pernet operations structure from the list to be
982  *	used when network namespaces are created or destroyed.  In
983  *	addition run the exit method for all existing network
984  *	namespaces.
985  */
986 void unregister_pernet_device(struct pernet_operations *ops)
987 {
988 	mutex_lock(&net_mutex);
989 	if (&ops->list == first_device)
990 		first_device = first_device->next;
991 	unregister_pernet_operations(ops);
992 	mutex_unlock(&net_mutex);
993 }
994 EXPORT_SYMBOL_GPL(unregister_pernet_device);
995 
996 #ifdef CONFIG_NET_NS
997 static struct ns_common *netns_get(struct task_struct *task)
998 {
999 	struct net *net = NULL;
1000 	struct nsproxy *nsproxy;
1001 
1002 	task_lock(task);
1003 	nsproxy = task->nsproxy;
1004 	if (nsproxy)
1005 		net = get_net(nsproxy->net_ns);
1006 	task_unlock(task);
1007 
1008 	return net ? &net->ns : NULL;
1009 }
1010 
1011 static inline struct net *to_net_ns(struct ns_common *ns)
1012 {
1013 	return container_of(ns, struct net, ns);
1014 }
1015 
1016 static void netns_put(struct ns_common *ns)
1017 {
1018 	put_net(to_net_ns(ns));
1019 }
1020 
1021 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1022 {
1023 	struct net *net = to_net_ns(ns);
1024 
1025 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1026 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1027 		return -EPERM;
1028 
1029 	put_net(nsproxy->net_ns);
1030 	nsproxy->net_ns = get_net(net);
1031 	return 0;
1032 }
1033 
1034 static struct user_namespace *netns_owner(struct ns_common *ns)
1035 {
1036 	return to_net_ns(ns)->user_ns;
1037 }
1038 
1039 const struct proc_ns_operations netns_operations = {
1040 	.name		= "net",
1041 	.type		= CLONE_NEWNET,
1042 	.get		= netns_get,
1043 	.put		= netns_put,
1044 	.install	= netns_install,
1045 	.owner		= netns_owner,
1046 };
1047 #endif
1048