xref: /linux/net/core/net_namespace.c (revision a8b70ccf10e38775785d9cb12ead916474549f99)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/sched/task.h>
20 
21 #include <net/sock.h>
22 #include <net/netlink.h>
23 #include <net/net_namespace.h>
24 #include <net/netns/generic.h>
25 
26 /*
27  *	Our network namespace constructor/destructor lists
28  */
29 
30 static LIST_HEAD(pernet_list);
31 static struct list_head *first_device = &pernet_list;
32 
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35 
36 /* Protects net_namespace_list. Nests iside rtnl_lock() */
37 DECLARE_RWSEM(net_rwsem);
38 EXPORT_SYMBOL_GPL(net_rwsem);
39 
40 struct net init_net = {
41 	.count		= REFCOUNT_INIT(1),
42 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
43 };
44 EXPORT_SYMBOL(init_net);
45 
46 static bool init_net_initialized;
47 /*
48  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
49  * init_net_initialized and first_device pointer.
50  * This is internal net namespace object. Please, don't use it
51  * outside.
52  */
53 DECLARE_RWSEM(pernet_ops_rwsem);
54 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
55 
56 #define MIN_PERNET_OPS_ID	\
57 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
58 
59 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
60 
61 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
62 
63 static struct net_generic *net_alloc_generic(void)
64 {
65 	struct net_generic *ng;
66 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
67 
68 	ng = kzalloc(generic_size, GFP_KERNEL);
69 	if (ng)
70 		ng->s.len = max_gen_ptrs;
71 
72 	return ng;
73 }
74 
75 static int net_assign_generic(struct net *net, unsigned int id, void *data)
76 {
77 	struct net_generic *ng, *old_ng;
78 
79 	BUG_ON(id < MIN_PERNET_OPS_ID);
80 
81 	old_ng = rcu_dereference_protected(net->gen,
82 					   lockdep_is_held(&pernet_ops_rwsem));
83 	if (old_ng->s.len > id) {
84 		old_ng->ptr[id] = data;
85 		return 0;
86 	}
87 
88 	ng = net_alloc_generic();
89 	if (ng == NULL)
90 		return -ENOMEM;
91 
92 	/*
93 	 * Some synchronisation notes:
94 	 *
95 	 * The net_generic explores the net->gen array inside rcu
96 	 * read section. Besides once set the net->gen->ptr[x]
97 	 * pointer never changes (see rules in netns/generic.h).
98 	 *
99 	 * That said, we simply duplicate this array and schedule
100 	 * the old copy for kfree after a grace period.
101 	 */
102 
103 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
104 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
105 	ng->ptr[id] = data;
106 
107 	rcu_assign_pointer(net->gen, ng);
108 	kfree_rcu(old_ng, s.rcu);
109 	return 0;
110 }
111 
112 static int ops_init(const struct pernet_operations *ops, struct net *net)
113 {
114 	int err = -ENOMEM;
115 	void *data = NULL;
116 
117 	if (ops->id && ops->size) {
118 		data = kzalloc(ops->size, GFP_KERNEL);
119 		if (!data)
120 			goto out;
121 
122 		err = net_assign_generic(net, *ops->id, data);
123 		if (err)
124 			goto cleanup;
125 	}
126 	err = 0;
127 	if (ops->init)
128 		err = ops->init(net);
129 	if (!err)
130 		return 0;
131 
132 cleanup:
133 	kfree(data);
134 
135 out:
136 	return err;
137 }
138 
139 static void ops_free(const struct pernet_operations *ops, struct net *net)
140 {
141 	if (ops->id && ops->size) {
142 		kfree(net_generic(net, *ops->id));
143 	}
144 }
145 
146 static void ops_exit_list(const struct pernet_operations *ops,
147 			  struct list_head *net_exit_list)
148 {
149 	struct net *net;
150 	if (ops->exit) {
151 		list_for_each_entry(net, net_exit_list, exit_list)
152 			ops->exit(net);
153 	}
154 	if (ops->exit_batch)
155 		ops->exit_batch(net_exit_list);
156 }
157 
158 static void ops_free_list(const struct pernet_operations *ops,
159 			  struct list_head *net_exit_list)
160 {
161 	struct net *net;
162 	if (ops->size && ops->id) {
163 		list_for_each_entry(net, net_exit_list, exit_list)
164 			ops_free(ops, net);
165 	}
166 }
167 
168 /* should be called with nsid_lock held */
169 static int alloc_netid(struct net *net, struct net *peer, int reqid)
170 {
171 	int min = 0, max = 0;
172 
173 	if (reqid >= 0) {
174 		min = reqid;
175 		max = reqid + 1;
176 	}
177 
178 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
179 }
180 
181 /* This function is used by idr_for_each(). If net is equal to peer, the
182  * function returns the id so that idr_for_each() stops. Because we cannot
183  * returns the id 0 (idr_for_each() will not stop), we return the magic value
184  * NET_ID_ZERO (-1) for it.
185  */
186 #define NET_ID_ZERO -1
187 static int net_eq_idr(int id, void *net, void *peer)
188 {
189 	if (net_eq(net, peer))
190 		return id ? : NET_ID_ZERO;
191 	return 0;
192 }
193 
194 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc
195  * is set to true, thus the caller knows that the new id must be notified via
196  * rtnl.
197  */
198 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc)
199 {
200 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
201 	bool alloc_it = *alloc;
202 
203 	*alloc = false;
204 
205 	/* Magic value for id 0. */
206 	if (id == NET_ID_ZERO)
207 		return 0;
208 	if (id > 0)
209 		return id;
210 
211 	if (alloc_it) {
212 		id = alloc_netid(net, peer, -1);
213 		*alloc = true;
214 		return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
215 	}
216 
217 	return NETNSA_NSID_NOT_ASSIGNED;
218 }
219 
220 /* should be called with nsid_lock held */
221 static int __peernet2id(struct net *net, struct net *peer)
222 {
223 	bool no = false;
224 
225 	return __peernet2id_alloc(net, peer, &no);
226 }
227 
228 static void rtnl_net_notifyid(struct net *net, int cmd, int id);
229 /* This function returns the id of a peer netns. If no id is assigned, one will
230  * be allocated and returned.
231  */
232 int peernet2id_alloc(struct net *net, struct net *peer)
233 {
234 	bool alloc = false, alive = false;
235 	int id;
236 
237 	if (refcount_read(&net->count) == 0)
238 		return NETNSA_NSID_NOT_ASSIGNED;
239 	spin_lock_bh(&net->nsid_lock);
240 	/*
241 	 * When peer is obtained from RCU lists, we may race with
242 	 * its cleanup. Check whether it's alive, and this guarantees
243 	 * we never hash a peer back to net->netns_ids, after it has
244 	 * just been idr_remove()'d from there in cleanup_net().
245 	 */
246 	if (maybe_get_net(peer))
247 		alive = alloc = true;
248 	id = __peernet2id_alloc(net, peer, &alloc);
249 	spin_unlock_bh(&net->nsid_lock);
250 	if (alloc && id >= 0)
251 		rtnl_net_notifyid(net, RTM_NEWNSID, id);
252 	if (alive)
253 		put_net(peer);
254 	return id;
255 }
256 EXPORT_SYMBOL_GPL(peernet2id_alloc);
257 
258 /* This function returns, if assigned, the id of a peer netns. */
259 int peernet2id(struct net *net, struct net *peer)
260 {
261 	int id;
262 
263 	spin_lock_bh(&net->nsid_lock);
264 	id = __peernet2id(net, peer);
265 	spin_unlock_bh(&net->nsid_lock);
266 	return id;
267 }
268 EXPORT_SYMBOL(peernet2id);
269 
270 /* This function returns true is the peer netns has an id assigned into the
271  * current netns.
272  */
273 bool peernet_has_id(struct net *net, struct net *peer)
274 {
275 	return peernet2id(net, peer) >= 0;
276 }
277 
278 struct net *get_net_ns_by_id(struct net *net, int id)
279 {
280 	struct net *peer;
281 
282 	if (id < 0)
283 		return NULL;
284 
285 	rcu_read_lock();
286 	peer = idr_find(&net->netns_ids, id);
287 	if (peer)
288 		peer = maybe_get_net(peer);
289 	rcu_read_unlock();
290 
291 	return peer;
292 }
293 
294 /*
295  * setup_net runs the initializers for the network namespace object.
296  */
297 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
298 {
299 	/* Must be called with pernet_ops_rwsem held */
300 	const struct pernet_operations *ops, *saved_ops;
301 	int error = 0;
302 	LIST_HEAD(net_exit_list);
303 
304 	refcount_set(&net->count, 1);
305 	refcount_set(&net->passive, 1);
306 	net->dev_base_seq = 1;
307 	net->user_ns = user_ns;
308 	idr_init(&net->netns_ids);
309 	spin_lock_init(&net->nsid_lock);
310 	mutex_init(&net->ipv4.ra_mutex);
311 
312 	list_for_each_entry(ops, &pernet_list, list) {
313 		error = ops_init(ops, net);
314 		if (error < 0)
315 			goto out_undo;
316 	}
317 	down_write(&net_rwsem);
318 	list_add_tail_rcu(&net->list, &net_namespace_list);
319 	up_write(&net_rwsem);
320 out:
321 	return error;
322 
323 out_undo:
324 	/* Walk through the list backwards calling the exit functions
325 	 * for the pernet modules whose init functions did not fail.
326 	 */
327 	list_add(&net->exit_list, &net_exit_list);
328 	saved_ops = ops;
329 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
330 		ops_exit_list(ops, &net_exit_list);
331 
332 	ops = saved_ops;
333 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
334 		ops_free_list(ops, &net_exit_list);
335 
336 	rcu_barrier();
337 	goto out;
338 }
339 
340 static int __net_init net_defaults_init_net(struct net *net)
341 {
342 	net->core.sysctl_somaxconn = SOMAXCONN;
343 	return 0;
344 }
345 
346 static struct pernet_operations net_defaults_ops = {
347 	.init = net_defaults_init_net,
348 };
349 
350 static __init int net_defaults_init(void)
351 {
352 	if (register_pernet_subsys(&net_defaults_ops))
353 		panic("Cannot initialize net default settings");
354 
355 	return 0;
356 }
357 
358 core_initcall(net_defaults_init);
359 
360 #ifdef CONFIG_NET_NS
361 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
362 {
363 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
364 }
365 
366 static void dec_net_namespaces(struct ucounts *ucounts)
367 {
368 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
369 }
370 
371 static struct kmem_cache *net_cachep __ro_after_init;
372 static struct workqueue_struct *netns_wq;
373 
374 static struct net *net_alloc(void)
375 {
376 	struct net *net = NULL;
377 	struct net_generic *ng;
378 
379 	ng = net_alloc_generic();
380 	if (!ng)
381 		goto out;
382 
383 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
384 	if (!net)
385 		goto out_free;
386 
387 	rcu_assign_pointer(net->gen, ng);
388 out:
389 	return net;
390 
391 out_free:
392 	kfree(ng);
393 	goto out;
394 }
395 
396 static void net_free(struct net *net)
397 {
398 	kfree(rcu_access_pointer(net->gen));
399 	kmem_cache_free(net_cachep, net);
400 }
401 
402 void net_drop_ns(void *p)
403 {
404 	struct net *ns = p;
405 	if (ns && refcount_dec_and_test(&ns->passive))
406 		net_free(ns);
407 }
408 
409 struct net *copy_net_ns(unsigned long flags,
410 			struct user_namespace *user_ns, struct net *old_net)
411 {
412 	struct ucounts *ucounts;
413 	struct net *net;
414 	int rv;
415 
416 	if (!(flags & CLONE_NEWNET))
417 		return get_net(old_net);
418 
419 	ucounts = inc_net_namespaces(user_ns);
420 	if (!ucounts)
421 		return ERR_PTR(-ENOSPC);
422 
423 	net = net_alloc();
424 	if (!net) {
425 		rv = -ENOMEM;
426 		goto dec_ucounts;
427 	}
428 	refcount_set(&net->passive, 1);
429 	net->ucounts = ucounts;
430 	get_user_ns(user_ns);
431 
432 	rv = down_read_killable(&pernet_ops_rwsem);
433 	if (rv < 0)
434 		goto put_userns;
435 
436 	rv = setup_net(net, user_ns);
437 
438 	up_read(&pernet_ops_rwsem);
439 
440 	if (rv < 0) {
441 put_userns:
442 		put_user_ns(user_ns);
443 		net_drop_ns(net);
444 dec_ucounts:
445 		dec_net_namespaces(ucounts);
446 		return ERR_PTR(rv);
447 	}
448 	return net;
449 }
450 
451 static void unhash_nsid(struct net *net, struct net *last)
452 {
453 	struct net *tmp;
454 	/* This function is only called from cleanup_net() work,
455 	 * and this work is the only process, that may delete
456 	 * a net from net_namespace_list. So, when the below
457 	 * is executing, the list may only grow. Thus, we do not
458 	 * use for_each_net_rcu() or net_rwsem.
459 	 */
460 	for_each_net(tmp) {
461 		int id;
462 
463 		spin_lock_bh(&tmp->nsid_lock);
464 		id = __peernet2id(tmp, net);
465 		if (id >= 0)
466 			idr_remove(&tmp->netns_ids, id);
467 		spin_unlock_bh(&tmp->nsid_lock);
468 		if (id >= 0)
469 			rtnl_net_notifyid(tmp, RTM_DELNSID, id);
470 		if (tmp == last)
471 			break;
472 	}
473 	spin_lock_bh(&net->nsid_lock);
474 	idr_destroy(&net->netns_ids);
475 	spin_unlock_bh(&net->nsid_lock);
476 }
477 
478 static LLIST_HEAD(cleanup_list);
479 
480 static void cleanup_net(struct work_struct *work)
481 {
482 	const struct pernet_operations *ops;
483 	struct net *net, *tmp, *last;
484 	struct llist_node *net_kill_list;
485 	LIST_HEAD(net_exit_list);
486 
487 	/* Atomically snapshot the list of namespaces to cleanup */
488 	net_kill_list = llist_del_all(&cleanup_list);
489 
490 	down_read(&pernet_ops_rwsem);
491 
492 	/* Don't let anyone else find us. */
493 	down_write(&net_rwsem);
494 	llist_for_each_entry(net, net_kill_list, cleanup_list)
495 		list_del_rcu(&net->list);
496 	/* Cache last net. After we unlock rtnl, no one new net
497 	 * added to net_namespace_list can assign nsid pointer
498 	 * to a net from net_kill_list (see peernet2id_alloc()).
499 	 * So, we skip them in unhash_nsid().
500 	 *
501 	 * Note, that unhash_nsid() does not delete nsid links
502 	 * between net_kill_list's nets, as they've already
503 	 * deleted from net_namespace_list. But, this would be
504 	 * useless anyway, as netns_ids are destroyed there.
505 	 */
506 	last = list_last_entry(&net_namespace_list, struct net, list);
507 	up_write(&net_rwsem);
508 
509 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
510 		unhash_nsid(net, last);
511 		list_add_tail(&net->exit_list, &net_exit_list);
512 	}
513 
514 	/*
515 	 * Another CPU might be rcu-iterating the list, wait for it.
516 	 * This needs to be before calling the exit() notifiers, so
517 	 * the rcu_barrier() below isn't sufficient alone.
518 	 */
519 	synchronize_rcu();
520 
521 	/* Run all of the network namespace exit methods */
522 	list_for_each_entry_reverse(ops, &pernet_list, list)
523 		ops_exit_list(ops, &net_exit_list);
524 
525 	/* Free the net generic variables */
526 	list_for_each_entry_reverse(ops, &pernet_list, list)
527 		ops_free_list(ops, &net_exit_list);
528 
529 	up_read(&pernet_ops_rwsem);
530 
531 	/* Ensure there are no outstanding rcu callbacks using this
532 	 * network namespace.
533 	 */
534 	rcu_barrier();
535 
536 	/* Finally it is safe to free my network namespace structure */
537 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
538 		list_del_init(&net->exit_list);
539 		dec_net_namespaces(net->ucounts);
540 		put_user_ns(net->user_ns);
541 		net_drop_ns(net);
542 	}
543 }
544 
545 /**
546  * net_ns_barrier - wait until concurrent net_cleanup_work is done
547  *
548  * cleanup_net runs from work queue and will first remove namespaces
549  * from the global list, then run net exit functions.
550  *
551  * Call this in module exit path to make sure that all netns
552  * ->exit ops have been invoked before the function is removed.
553  */
554 void net_ns_barrier(void)
555 {
556 	down_write(&pernet_ops_rwsem);
557 	up_write(&pernet_ops_rwsem);
558 }
559 EXPORT_SYMBOL(net_ns_barrier);
560 
561 static DECLARE_WORK(net_cleanup_work, cleanup_net);
562 
563 void __put_net(struct net *net)
564 {
565 	/* Cleanup the network namespace in process context */
566 	if (llist_add(&net->cleanup_list, &cleanup_list))
567 		queue_work(netns_wq, &net_cleanup_work);
568 }
569 EXPORT_SYMBOL_GPL(__put_net);
570 
571 struct net *get_net_ns_by_fd(int fd)
572 {
573 	struct file *file;
574 	struct ns_common *ns;
575 	struct net *net;
576 
577 	file = proc_ns_fget(fd);
578 	if (IS_ERR(file))
579 		return ERR_CAST(file);
580 
581 	ns = get_proc_ns(file_inode(file));
582 	if (ns->ops == &netns_operations)
583 		net = get_net(container_of(ns, struct net, ns));
584 	else
585 		net = ERR_PTR(-EINVAL);
586 
587 	fput(file);
588 	return net;
589 }
590 
591 #else
592 struct net *get_net_ns_by_fd(int fd)
593 {
594 	return ERR_PTR(-EINVAL);
595 }
596 #endif
597 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
598 
599 struct net *get_net_ns_by_pid(pid_t pid)
600 {
601 	struct task_struct *tsk;
602 	struct net *net;
603 
604 	/* Lookup the network namespace */
605 	net = ERR_PTR(-ESRCH);
606 	rcu_read_lock();
607 	tsk = find_task_by_vpid(pid);
608 	if (tsk) {
609 		struct nsproxy *nsproxy;
610 		task_lock(tsk);
611 		nsproxy = tsk->nsproxy;
612 		if (nsproxy)
613 			net = get_net(nsproxy->net_ns);
614 		task_unlock(tsk);
615 	}
616 	rcu_read_unlock();
617 	return net;
618 }
619 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
620 
621 static __net_init int net_ns_net_init(struct net *net)
622 {
623 #ifdef CONFIG_NET_NS
624 	net->ns.ops = &netns_operations;
625 #endif
626 	return ns_alloc_inum(&net->ns);
627 }
628 
629 static __net_exit void net_ns_net_exit(struct net *net)
630 {
631 	ns_free_inum(&net->ns);
632 }
633 
634 static struct pernet_operations __net_initdata net_ns_ops = {
635 	.init = net_ns_net_init,
636 	.exit = net_ns_net_exit,
637 };
638 
639 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
640 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
641 	[NETNSA_NSID]		= { .type = NLA_S32 },
642 	[NETNSA_PID]		= { .type = NLA_U32 },
643 	[NETNSA_FD]		= { .type = NLA_U32 },
644 };
645 
646 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
647 			  struct netlink_ext_ack *extack)
648 {
649 	struct net *net = sock_net(skb->sk);
650 	struct nlattr *tb[NETNSA_MAX + 1];
651 	struct nlattr *nla;
652 	struct net *peer;
653 	int nsid, err;
654 
655 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
656 			  rtnl_net_policy, extack);
657 	if (err < 0)
658 		return err;
659 	if (!tb[NETNSA_NSID]) {
660 		NL_SET_ERR_MSG(extack, "nsid is missing");
661 		return -EINVAL;
662 	}
663 	nsid = nla_get_s32(tb[NETNSA_NSID]);
664 
665 	if (tb[NETNSA_PID]) {
666 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
667 		nla = tb[NETNSA_PID];
668 	} else if (tb[NETNSA_FD]) {
669 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
670 		nla = tb[NETNSA_FD];
671 	} else {
672 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
673 		return -EINVAL;
674 	}
675 	if (IS_ERR(peer)) {
676 		NL_SET_BAD_ATTR(extack, nla);
677 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
678 		return PTR_ERR(peer);
679 	}
680 
681 	spin_lock_bh(&net->nsid_lock);
682 	if (__peernet2id(net, peer) >= 0) {
683 		spin_unlock_bh(&net->nsid_lock);
684 		err = -EEXIST;
685 		NL_SET_BAD_ATTR(extack, nla);
686 		NL_SET_ERR_MSG(extack,
687 			       "Peer netns already has a nsid assigned");
688 		goto out;
689 	}
690 
691 	err = alloc_netid(net, peer, nsid);
692 	spin_unlock_bh(&net->nsid_lock);
693 	if (err >= 0) {
694 		rtnl_net_notifyid(net, RTM_NEWNSID, err);
695 		err = 0;
696 	} else if (err == -ENOSPC && nsid >= 0) {
697 		err = -EEXIST;
698 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
699 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
700 	}
701 out:
702 	put_net(peer);
703 	return err;
704 }
705 
706 static int rtnl_net_get_size(void)
707 {
708 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
709 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
710 	       ;
711 }
712 
713 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
714 			 int cmd, struct net *net, int nsid)
715 {
716 	struct nlmsghdr *nlh;
717 	struct rtgenmsg *rth;
718 
719 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
720 	if (!nlh)
721 		return -EMSGSIZE;
722 
723 	rth = nlmsg_data(nlh);
724 	rth->rtgen_family = AF_UNSPEC;
725 
726 	if (nla_put_s32(skb, NETNSA_NSID, nsid))
727 		goto nla_put_failure;
728 
729 	nlmsg_end(skb, nlh);
730 	return 0;
731 
732 nla_put_failure:
733 	nlmsg_cancel(skb, nlh);
734 	return -EMSGSIZE;
735 }
736 
737 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
738 			  struct netlink_ext_ack *extack)
739 {
740 	struct net *net = sock_net(skb->sk);
741 	struct nlattr *tb[NETNSA_MAX + 1];
742 	struct nlattr *nla;
743 	struct sk_buff *msg;
744 	struct net *peer;
745 	int err, id;
746 
747 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
748 			  rtnl_net_policy, extack);
749 	if (err < 0)
750 		return err;
751 	if (tb[NETNSA_PID]) {
752 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
753 		nla = tb[NETNSA_PID];
754 	} else if (tb[NETNSA_FD]) {
755 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
756 		nla = tb[NETNSA_FD];
757 	} else {
758 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
759 		return -EINVAL;
760 	}
761 
762 	if (IS_ERR(peer)) {
763 		NL_SET_BAD_ATTR(extack, nla);
764 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
765 		return PTR_ERR(peer);
766 	}
767 
768 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
769 	if (!msg) {
770 		err = -ENOMEM;
771 		goto out;
772 	}
773 
774 	id = peernet2id(net, peer);
775 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
776 			    RTM_NEWNSID, net, id);
777 	if (err < 0)
778 		goto err_out;
779 
780 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
781 	goto out;
782 
783 err_out:
784 	nlmsg_free(msg);
785 out:
786 	put_net(peer);
787 	return err;
788 }
789 
790 struct rtnl_net_dump_cb {
791 	struct net *net;
792 	struct sk_buff *skb;
793 	struct netlink_callback *cb;
794 	int idx;
795 	int s_idx;
796 };
797 
798 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
799 {
800 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
801 	int ret;
802 
803 	if (net_cb->idx < net_cb->s_idx)
804 		goto cont;
805 
806 	ret = rtnl_net_fill(net_cb->skb, NETLINK_CB(net_cb->cb->skb).portid,
807 			    net_cb->cb->nlh->nlmsg_seq, NLM_F_MULTI,
808 			    RTM_NEWNSID, net_cb->net, id);
809 	if (ret < 0)
810 		return ret;
811 
812 cont:
813 	net_cb->idx++;
814 	return 0;
815 }
816 
817 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
818 {
819 	struct net *net = sock_net(skb->sk);
820 	struct rtnl_net_dump_cb net_cb = {
821 		.net = net,
822 		.skb = skb,
823 		.cb = cb,
824 		.idx = 0,
825 		.s_idx = cb->args[0],
826 	};
827 
828 	spin_lock_bh(&net->nsid_lock);
829 	idr_for_each(&net->netns_ids, rtnl_net_dumpid_one, &net_cb);
830 	spin_unlock_bh(&net->nsid_lock);
831 
832 	cb->args[0] = net_cb.idx;
833 	return skb->len;
834 }
835 
836 static void rtnl_net_notifyid(struct net *net, int cmd, int id)
837 {
838 	struct sk_buff *msg;
839 	int err = -ENOMEM;
840 
841 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
842 	if (!msg)
843 		goto out;
844 
845 	err = rtnl_net_fill(msg, 0, 0, 0, cmd, net, id);
846 	if (err < 0)
847 		goto err_out;
848 
849 	rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0);
850 	return;
851 
852 err_out:
853 	nlmsg_free(msg);
854 out:
855 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
856 }
857 
858 static int __init net_ns_init(void)
859 {
860 	struct net_generic *ng;
861 
862 #ifdef CONFIG_NET_NS
863 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
864 					SMP_CACHE_BYTES,
865 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
866 
867 	/* Create workqueue for cleanup */
868 	netns_wq = create_singlethread_workqueue("netns");
869 	if (!netns_wq)
870 		panic("Could not create netns workq");
871 #endif
872 
873 	ng = net_alloc_generic();
874 	if (!ng)
875 		panic("Could not allocate generic netns");
876 
877 	rcu_assign_pointer(init_net.gen, ng);
878 
879 	down_write(&pernet_ops_rwsem);
880 	if (setup_net(&init_net, &init_user_ns))
881 		panic("Could not setup the initial network namespace");
882 
883 	init_net_initialized = true;
884 	up_write(&pernet_ops_rwsem);
885 
886 	register_pernet_subsys(&net_ns_ops);
887 
888 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
889 		      RTNL_FLAG_DOIT_UNLOCKED);
890 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
891 		      RTNL_FLAG_DOIT_UNLOCKED);
892 
893 	return 0;
894 }
895 
896 pure_initcall(net_ns_init);
897 
898 #ifdef CONFIG_NET_NS
899 static int __register_pernet_operations(struct list_head *list,
900 					struct pernet_operations *ops)
901 {
902 	struct net *net;
903 	int error;
904 	LIST_HEAD(net_exit_list);
905 
906 	list_add_tail(&ops->list, list);
907 	if (ops->init || (ops->id && ops->size)) {
908 		/* We held write locked pernet_ops_rwsem, and parallel
909 		 * setup_net() and cleanup_net() are not possible.
910 		 */
911 		for_each_net(net) {
912 			error = ops_init(ops, net);
913 			if (error)
914 				goto out_undo;
915 			list_add_tail(&net->exit_list, &net_exit_list);
916 		}
917 	}
918 	return 0;
919 
920 out_undo:
921 	/* If I have an error cleanup all namespaces I initialized */
922 	list_del(&ops->list);
923 	ops_exit_list(ops, &net_exit_list);
924 	ops_free_list(ops, &net_exit_list);
925 	return error;
926 }
927 
928 static void __unregister_pernet_operations(struct pernet_operations *ops)
929 {
930 	struct net *net;
931 	LIST_HEAD(net_exit_list);
932 
933 	list_del(&ops->list);
934 	/* See comment in __register_pernet_operations() */
935 	for_each_net(net)
936 		list_add_tail(&net->exit_list, &net_exit_list);
937 	ops_exit_list(ops, &net_exit_list);
938 	ops_free_list(ops, &net_exit_list);
939 }
940 
941 #else
942 
943 static int __register_pernet_operations(struct list_head *list,
944 					struct pernet_operations *ops)
945 {
946 	if (!init_net_initialized) {
947 		list_add_tail(&ops->list, list);
948 		return 0;
949 	}
950 
951 	return ops_init(ops, &init_net);
952 }
953 
954 static void __unregister_pernet_operations(struct pernet_operations *ops)
955 {
956 	if (!init_net_initialized) {
957 		list_del(&ops->list);
958 	} else {
959 		LIST_HEAD(net_exit_list);
960 		list_add(&init_net.exit_list, &net_exit_list);
961 		ops_exit_list(ops, &net_exit_list);
962 		ops_free_list(ops, &net_exit_list);
963 	}
964 }
965 
966 #endif /* CONFIG_NET_NS */
967 
968 static DEFINE_IDA(net_generic_ids);
969 
970 static int register_pernet_operations(struct list_head *list,
971 				      struct pernet_operations *ops)
972 {
973 	int error;
974 
975 	if (ops->id) {
976 again:
977 		error = ida_get_new_above(&net_generic_ids, MIN_PERNET_OPS_ID, ops->id);
978 		if (error < 0) {
979 			if (error == -EAGAIN) {
980 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
981 				goto again;
982 			}
983 			return error;
984 		}
985 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
986 	}
987 	error = __register_pernet_operations(list, ops);
988 	if (error) {
989 		rcu_barrier();
990 		if (ops->id)
991 			ida_remove(&net_generic_ids, *ops->id);
992 	}
993 
994 	return error;
995 }
996 
997 static void unregister_pernet_operations(struct pernet_operations *ops)
998 {
999 	__unregister_pernet_operations(ops);
1000 	rcu_barrier();
1001 	if (ops->id)
1002 		ida_remove(&net_generic_ids, *ops->id);
1003 }
1004 
1005 /**
1006  *      register_pernet_subsys - register a network namespace subsystem
1007  *	@ops:  pernet operations structure for the subsystem
1008  *
1009  *	Register a subsystem which has init and exit functions
1010  *	that are called when network namespaces are created and
1011  *	destroyed respectively.
1012  *
1013  *	When registered all network namespace init functions are
1014  *	called for every existing network namespace.  Allowing kernel
1015  *	modules to have a race free view of the set of network namespaces.
1016  *
1017  *	When a new network namespace is created all of the init
1018  *	methods are called in the order in which they were registered.
1019  *
1020  *	When a network namespace is destroyed all of the exit methods
1021  *	are called in the reverse of the order with which they were
1022  *	registered.
1023  */
1024 int register_pernet_subsys(struct pernet_operations *ops)
1025 {
1026 	int error;
1027 	down_write(&pernet_ops_rwsem);
1028 	error =  register_pernet_operations(first_device, ops);
1029 	up_write(&pernet_ops_rwsem);
1030 	return error;
1031 }
1032 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1033 
1034 /**
1035  *      unregister_pernet_subsys - unregister a network namespace subsystem
1036  *	@ops: pernet operations structure to manipulate
1037  *
1038  *	Remove the pernet operations structure from the list to be
1039  *	used when network namespaces are created or destroyed.  In
1040  *	addition run the exit method for all existing network
1041  *	namespaces.
1042  */
1043 void unregister_pernet_subsys(struct pernet_operations *ops)
1044 {
1045 	down_write(&pernet_ops_rwsem);
1046 	unregister_pernet_operations(ops);
1047 	up_write(&pernet_ops_rwsem);
1048 }
1049 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1050 
1051 /**
1052  *      register_pernet_device - register a network namespace device
1053  *	@ops:  pernet operations structure for the subsystem
1054  *
1055  *	Register a device which has init and exit functions
1056  *	that are called when network namespaces are created and
1057  *	destroyed respectively.
1058  *
1059  *	When registered all network namespace init functions are
1060  *	called for every existing network namespace.  Allowing kernel
1061  *	modules to have a race free view of the set of network namespaces.
1062  *
1063  *	When a new network namespace is created all of the init
1064  *	methods are called in the order in which they were registered.
1065  *
1066  *	When a network namespace is destroyed all of the exit methods
1067  *	are called in the reverse of the order with which they were
1068  *	registered.
1069  */
1070 int register_pernet_device(struct pernet_operations *ops)
1071 {
1072 	int error;
1073 	down_write(&pernet_ops_rwsem);
1074 	error = register_pernet_operations(&pernet_list, ops);
1075 	if (!error && (first_device == &pernet_list))
1076 		first_device = &ops->list;
1077 	up_write(&pernet_ops_rwsem);
1078 	return error;
1079 }
1080 EXPORT_SYMBOL_GPL(register_pernet_device);
1081 
1082 /**
1083  *      unregister_pernet_device - unregister a network namespace netdevice
1084  *	@ops: pernet operations structure to manipulate
1085  *
1086  *	Remove the pernet operations structure from the list to be
1087  *	used when network namespaces are created or destroyed.  In
1088  *	addition run the exit method for all existing network
1089  *	namespaces.
1090  */
1091 void unregister_pernet_device(struct pernet_operations *ops)
1092 {
1093 	down_write(&pernet_ops_rwsem);
1094 	if (&ops->list == first_device)
1095 		first_device = first_device->next;
1096 	unregister_pernet_operations(ops);
1097 	up_write(&pernet_ops_rwsem);
1098 }
1099 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1100 
1101 #ifdef CONFIG_NET_NS
1102 static struct ns_common *netns_get(struct task_struct *task)
1103 {
1104 	struct net *net = NULL;
1105 	struct nsproxy *nsproxy;
1106 
1107 	task_lock(task);
1108 	nsproxy = task->nsproxy;
1109 	if (nsproxy)
1110 		net = get_net(nsproxy->net_ns);
1111 	task_unlock(task);
1112 
1113 	return net ? &net->ns : NULL;
1114 }
1115 
1116 static inline struct net *to_net_ns(struct ns_common *ns)
1117 {
1118 	return container_of(ns, struct net, ns);
1119 }
1120 
1121 static void netns_put(struct ns_common *ns)
1122 {
1123 	put_net(to_net_ns(ns));
1124 }
1125 
1126 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1127 {
1128 	struct net *net = to_net_ns(ns);
1129 
1130 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1131 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1132 		return -EPERM;
1133 
1134 	put_net(nsproxy->net_ns);
1135 	nsproxy->net_ns = get_net(net);
1136 	return 0;
1137 }
1138 
1139 static struct user_namespace *netns_owner(struct ns_common *ns)
1140 {
1141 	return to_net_ns(ns)->user_ns;
1142 }
1143 
1144 const struct proc_ns_operations netns_operations = {
1145 	.name		= "net",
1146 	.type		= CLONE_NEWNET,
1147 	.get		= netns_get,
1148 	.put		= netns_put,
1149 	.install	= netns_install,
1150 	.owner		= netns_owner,
1151 };
1152 #endif
1153