1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 60 61 #define MIN_PERNET_OPS_ID \ 62 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 63 64 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 65 66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 67 68 DEFINE_COOKIE(net_cookie); 69 70 static struct net_generic *net_alloc_generic(void) 71 { 72 struct net_generic *ng; 73 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 74 75 ng = kzalloc(generic_size, GFP_KERNEL); 76 if (ng) 77 ng->s.len = max_gen_ptrs; 78 79 return ng; 80 } 81 82 static int net_assign_generic(struct net *net, unsigned int id, void *data) 83 { 84 struct net_generic *ng, *old_ng; 85 86 BUG_ON(id < MIN_PERNET_OPS_ID); 87 88 old_ng = rcu_dereference_protected(net->gen, 89 lockdep_is_held(&pernet_ops_rwsem)); 90 if (old_ng->s.len > id) { 91 old_ng->ptr[id] = data; 92 return 0; 93 } 94 95 ng = net_alloc_generic(); 96 if (!ng) 97 return -ENOMEM; 98 99 /* 100 * Some synchronisation notes: 101 * 102 * The net_generic explores the net->gen array inside rcu 103 * read section. Besides once set the net->gen->ptr[x] 104 * pointer never changes (see rules in netns/generic.h). 105 * 106 * That said, we simply duplicate this array and schedule 107 * the old copy for kfree after a grace period. 108 */ 109 110 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 111 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 112 ng->ptr[id] = data; 113 114 rcu_assign_pointer(net->gen, ng); 115 kfree_rcu(old_ng, s.rcu); 116 return 0; 117 } 118 119 static int ops_init(const struct pernet_operations *ops, struct net *net) 120 { 121 struct net_generic *ng; 122 int err = -ENOMEM; 123 void *data = NULL; 124 125 if (ops->id && ops->size) { 126 data = kzalloc(ops->size, GFP_KERNEL); 127 if (!data) 128 goto out; 129 130 err = net_assign_generic(net, *ops->id, data); 131 if (err) 132 goto cleanup; 133 } 134 err = 0; 135 if (ops->init) 136 err = ops->init(net); 137 if (!err) 138 return 0; 139 140 if (ops->id && ops->size) { 141 ng = rcu_dereference_protected(net->gen, 142 lockdep_is_held(&pernet_ops_rwsem)); 143 ng->ptr[*ops->id] = NULL; 144 } 145 146 cleanup: 147 kfree(data); 148 149 out: 150 return err; 151 } 152 153 static void ops_pre_exit_list(const struct pernet_operations *ops, 154 struct list_head *net_exit_list) 155 { 156 struct net *net; 157 158 if (ops->pre_exit) { 159 list_for_each_entry(net, net_exit_list, exit_list) 160 ops->pre_exit(net); 161 } 162 } 163 164 static void ops_exit_list(const struct pernet_operations *ops, 165 struct list_head *net_exit_list) 166 { 167 struct net *net; 168 if (ops->exit) { 169 list_for_each_entry(net, net_exit_list, exit_list) { 170 ops->exit(net); 171 cond_resched(); 172 } 173 } 174 if (ops->exit_batch) 175 ops->exit_batch(net_exit_list); 176 } 177 178 static void ops_free_list(const struct pernet_operations *ops, 179 struct list_head *net_exit_list) 180 { 181 struct net *net; 182 if (ops->size && ops->id) { 183 list_for_each_entry(net, net_exit_list, exit_list) 184 kfree(net_generic(net, *ops->id)); 185 } 186 } 187 188 /* should be called with nsid_lock held */ 189 static int alloc_netid(struct net *net, struct net *peer, int reqid) 190 { 191 int min = 0, max = 0; 192 193 if (reqid >= 0) { 194 min = reqid; 195 max = reqid + 1; 196 } 197 198 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 199 } 200 201 /* This function is used by idr_for_each(). If net is equal to peer, the 202 * function returns the id so that idr_for_each() stops. Because we cannot 203 * returns the id 0 (idr_for_each() will not stop), we return the magic value 204 * NET_ID_ZERO (-1) for it. 205 */ 206 #define NET_ID_ZERO -1 207 static int net_eq_idr(int id, void *net, void *peer) 208 { 209 if (net_eq(net, peer)) 210 return id ? : NET_ID_ZERO; 211 return 0; 212 } 213 214 /* Must be called from RCU-critical section or with nsid_lock held */ 215 static int __peernet2id(const struct net *net, struct net *peer) 216 { 217 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 218 219 /* Magic value for id 0. */ 220 if (id == NET_ID_ZERO) 221 return 0; 222 if (id > 0) 223 return id; 224 225 return NETNSA_NSID_NOT_ASSIGNED; 226 } 227 228 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 229 struct nlmsghdr *nlh, gfp_t gfp); 230 /* This function returns the id of a peer netns. If no id is assigned, one will 231 * be allocated and returned. 232 */ 233 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 234 { 235 int id; 236 237 if (refcount_read(&net->ns.count) == 0) 238 return NETNSA_NSID_NOT_ASSIGNED; 239 240 spin_lock_bh(&net->nsid_lock); 241 id = __peernet2id(net, peer); 242 if (id >= 0) { 243 spin_unlock_bh(&net->nsid_lock); 244 return id; 245 } 246 247 /* When peer is obtained from RCU lists, we may race with 248 * its cleanup. Check whether it's alive, and this guarantees 249 * we never hash a peer back to net->netns_ids, after it has 250 * just been idr_remove()'d from there in cleanup_net(). 251 */ 252 if (!maybe_get_net(peer)) { 253 spin_unlock_bh(&net->nsid_lock); 254 return NETNSA_NSID_NOT_ASSIGNED; 255 } 256 257 id = alloc_netid(net, peer, -1); 258 spin_unlock_bh(&net->nsid_lock); 259 260 put_net(peer); 261 if (id < 0) 262 return NETNSA_NSID_NOT_ASSIGNED; 263 264 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 265 266 return id; 267 } 268 EXPORT_SYMBOL_GPL(peernet2id_alloc); 269 270 /* This function returns, if assigned, the id of a peer netns. */ 271 int peernet2id(const struct net *net, struct net *peer) 272 { 273 int id; 274 275 rcu_read_lock(); 276 id = __peernet2id(net, peer); 277 rcu_read_unlock(); 278 279 return id; 280 } 281 EXPORT_SYMBOL(peernet2id); 282 283 /* This function returns true is the peer netns has an id assigned into the 284 * current netns. 285 */ 286 bool peernet_has_id(const struct net *net, struct net *peer) 287 { 288 return peernet2id(net, peer) >= 0; 289 } 290 291 struct net *get_net_ns_by_id(const struct net *net, int id) 292 { 293 struct net *peer; 294 295 if (id < 0) 296 return NULL; 297 298 rcu_read_lock(); 299 peer = idr_find(&net->netns_ids, id); 300 if (peer) 301 peer = maybe_get_net(peer); 302 rcu_read_unlock(); 303 304 return peer; 305 } 306 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 307 308 /* init code that must occur even if setup_net() is not called. */ 309 static __net_init void preinit_net(struct net *net) 310 { 311 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 312 } 313 314 /* 315 * setup_net runs the initializers for the network namespace object. 316 */ 317 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 318 { 319 /* Must be called with pernet_ops_rwsem held */ 320 const struct pernet_operations *ops, *saved_ops; 321 int error = 0; 322 LIST_HEAD(net_exit_list); 323 324 refcount_set(&net->ns.count, 1); 325 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 326 327 refcount_set(&net->passive, 1); 328 get_random_bytes(&net->hash_mix, sizeof(u32)); 329 preempt_disable(); 330 net->net_cookie = gen_cookie_next(&net_cookie); 331 preempt_enable(); 332 net->dev_base_seq = 1; 333 net->user_ns = user_ns; 334 idr_init(&net->netns_ids); 335 spin_lock_init(&net->nsid_lock); 336 mutex_init(&net->ipv4.ra_mutex); 337 338 list_for_each_entry(ops, &pernet_list, list) { 339 error = ops_init(ops, net); 340 if (error < 0) 341 goto out_undo; 342 } 343 down_write(&net_rwsem); 344 list_add_tail_rcu(&net->list, &net_namespace_list); 345 up_write(&net_rwsem); 346 out: 347 return error; 348 349 out_undo: 350 /* Walk through the list backwards calling the exit functions 351 * for the pernet modules whose init functions did not fail. 352 */ 353 list_add(&net->exit_list, &net_exit_list); 354 saved_ops = ops; 355 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 356 ops_pre_exit_list(ops, &net_exit_list); 357 358 synchronize_rcu(); 359 360 ops = saved_ops; 361 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 362 ops_exit_list(ops, &net_exit_list); 363 364 ops = saved_ops; 365 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 366 ops_free_list(ops, &net_exit_list); 367 368 rcu_barrier(); 369 goto out; 370 } 371 372 static int __net_init net_defaults_init_net(struct net *net) 373 { 374 net->core.sysctl_somaxconn = SOMAXCONN; 375 /* Limits per socket sk_omem_alloc usage. 376 * TCP zerocopy regular usage needs 128 KB. 377 */ 378 net->core.sysctl_optmem_max = 128 * 1024; 379 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 380 381 return 0; 382 } 383 384 static struct pernet_operations net_defaults_ops = { 385 .init = net_defaults_init_net, 386 }; 387 388 static __init int net_defaults_init(void) 389 { 390 if (register_pernet_subsys(&net_defaults_ops)) 391 panic("Cannot initialize net default settings"); 392 393 return 0; 394 } 395 396 core_initcall(net_defaults_init); 397 398 #ifdef CONFIG_NET_NS 399 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 400 { 401 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 402 } 403 404 static void dec_net_namespaces(struct ucounts *ucounts) 405 { 406 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 407 } 408 409 static struct kmem_cache *net_cachep __ro_after_init; 410 static struct workqueue_struct *netns_wq; 411 412 static struct net *net_alloc(void) 413 { 414 struct net *net = NULL; 415 struct net_generic *ng; 416 417 ng = net_alloc_generic(); 418 if (!ng) 419 goto out; 420 421 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 422 if (!net) 423 goto out_free; 424 425 #ifdef CONFIG_KEYS 426 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 427 if (!net->key_domain) 428 goto out_free_2; 429 refcount_set(&net->key_domain->usage, 1); 430 #endif 431 432 rcu_assign_pointer(net->gen, ng); 433 out: 434 return net; 435 436 #ifdef CONFIG_KEYS 437 out_free_2: 438 kmem_cache_free(net_cachep, net); 439 net = NULL; 440 #endif 441 out_free: 442 kfree(ng); 443 goto out; 444 } 445 446 static void net_free(struct net *net) 447 { 448 if (refcount_dec_and_test(&net->passive)) { 449 kfree(rcu_access_pointer(net->gen)); 450 451 /* There should not be any trackers left there. */ 452 ref_tracker_dir_exit(&net->notrefcnt_tracker); 453 454 kmem_cache_free(net_cachep, net); 455 } 456 } 457 458 void net_drop_ns(void *p) 459 { 460 struct net *net = (struct net *)p; 461 462 if (net) 463 net_free(net); 464 } 465 466 struct net *copy_net_ns(unsigned long flags, 467 struct user_namespace *user_ns, struct net *old_net) 468 { 469 struct ucounts *ucounts; 470 struct net *net; 471 int rv; 472 473 if (!(flags & CLONE_NEWNET)) 474 return get_net(old_net); 475 476 ucounts = inc_net_namespaces(user_ns); 477 if (!ucounts) 478 return ERR_PTR(-ENOSPC); 479 480 net = net_alloc(); 481 if (!net) { 482 rv = -ENOMEM; 483 goto dec_ucounts; 484 } 485 486 preinit_net(net); 487 refcount_set(&net->passive, 1); 488 net->ucounts = ucounts; 489 get_user_ns(user_ns); 490 491 rv = down_read_killable(&pernet_ops_rwsem); 492 if (rv < 0) 493 goto put_userns; 494 495 rv = setup_net(net, user_ns); 496 497 up_read(&pernet_ops_rwsem); 498 499 if (rv < 0) { 500 put_userns: 501 #ifdef CONFIG_KEYS 502 key_remove_domain(net->key_domain); 503 #endif 504 put_user_ns(user_ns); 505 net_free(net); 506 dec_ucounts: 507 dec_net_namespaces(ucounts); 508 return ERR_PTR(rv); 509 } 510 return net; 511 } 512 513 /** 514 * net_ns_get_ownership - get sysfs ownership data for @net 515 * @net: network namespace in question (can be NULL) 516 * @uid: kernel user ID for sysfs objects 517 * @gid: kernel group ID for sysfs objects 518 * 519 * Returns the uid/gid pair of root in the user namespace associated with the 520 * given network namespace. 521 */ 522 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 523 { 524 if (net) { 525 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 526 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 527 528 if (uid_valid(ns_root_uid)) 529 *uid = ns_root_uid; 530 531 if (gid_valid(ns_root_gid)) 532 *gid = ns_root_gid; 533 } else { 534 *uid = GLOBAL_ROOT_UID; 535 *gid = GLOBAL_ROOT_GID; 536 } 537 } 538 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 539 540 static void unhash_nsid(struct net *net, struct net *last) 541 { 542 struct net *tmp; 543 /* This function is only called from cleanup_net() work, 544 * and this work is the only process, that may delete 545 * a net from net_namespace_list. So, when the below 546 * is executing, the list may only grow. Thus, we do not 547 * use for_each_net_rcu() or net_rwsem. 548 */ 549 for_each_net(tmp) { 550 int id; 551 552 spin_lock_bh(&tmp->nsid_lock); 553 id = __peernet2id(tmp, net); 554 if (id >= 0) 555 idr_remove(&tmp->netns_ids, id); 556 spin_unlock_bh(&tmp->nsid_lock); 557 if (id >= 0) 558 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 559 GFP_KERNEL); 560 if (tmp == last) 561 break; 562 } 563 spin_lock_bh(&net->nsid_lock); 564 idr_destroy(&net->netns_ids); 565 spin_unlock_bh(&net->nsid_lock); 566 } 567 568 static LLIST_HEAD(cleanup_list); 569 570 static void cleanup_net(struct work_struct *work) 571 { 572 const struct pernet_operations *ops; 573 struct net *net, *tmp, *last; 574 struct llist_node *net_kill_list; 575 LIST_HEAD(net_exit_list); 576 577 /* Atomically snapshot the list of namespaces to cleanup */ 578 net_kill_list = llist_del_all(&cleanup_list); 579 580 down_read(&pernet_ops_rwsem); 581 582 /* Don't let anyone else find us. */ 583 down_write(&net_rwsem); 584 llist_for_each_entry(net, net_kill_list, cleanup_list) 585 list_del_rcu(&net->list); 586 /* Cache last net. After we unlock rtnl, no one new net 587 * added to net_namespace_list can assign nsid pointer 588 * to a net from net_kill_list (see peernet2id_alloc()). 589 * So, we skip them in unhash_nsid(). 590 * 591 * Note, that unhash_nsid() does not delete nsid links 592 * between net_kill_list's nets, as they've already 593 * deleted from net_namespace_list. But, this would be 594 * useless anyway, as netns_ids are destroyed there. 595 */ 596 last = list_last_entry(&net_namespace_list, struct net, list); 597 up_write(&net_rwsem); 598 599 llist_for_each_entry(net, net_kill_list, cleanup_list) { 600 unhash_nsid(net, last); 601 list_add_tail(&net->exit_list, &net_exit_list); 602 } 603 604 /* Run all of the network namespace pre_exit methods */ 605 list_for_each_entry_reverse(ops, &pernet_list, list) 606 ops_pre_exit_list(ops, &net_exit_list); 607 608 /* 609 * Another CPU might be rcu-iterating the list, wait for it. 610 * This needs to be before calling the exit() notifiers, so 611 * the rcu_barrier() below isn't sufficient alone. 612 * Also the pre_exit() and exit() methods need this barrier. 613 */ 614 synchronize_rcu(); 615 616 /* Run all of the network namespace exit methods */ 617 list_for_each_entry_reverse(ops, &pernet_list, list) 618 ops_exit_list(ops, &net_exit_list); 619 620 /* Free the net generic variables */ 621 list_for_each_entry_reverse(ops, &pernet_list, list) 622 ops_free_list(ops, &net_exit_list); 623 624 up_read(&pernet_ops_rwsem); 625 626 /* Ensure there are no outstanding rcu callbacks using this 627 * network namespace. 628 */ 629 rcu_barrier(); 630 631 /* Finally it is safe to free my network namespace structure */ 632 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 633 list_del_init(&net->exit_list); 634 dec_net_namespaces(net->ucounts); 635 #ifdef CONFIG_KEYS 636 key_remove_domain(net->key_domain); 637 #endif 638 put_user_ns(net->user_ns); 639 net_free(net); 640 } 641 } 642 643 /** 644 * net_ns_barrier - wait until concurrent net_cleanup_work is done 645 * 646 * cleanup_net runs from work queue and will first remove namespaces 647 * from the global list, then run net exit functions. 648 * 649 * Call this in module exit path to make sure that all netns 650 * ->exit ops have been invoked before the function is removed. 651 */ 652 void net_ns_barrier(void) 653 { 654 down_write(&pernet_ops_rwsem); 655 up_write(&pernet_ops_rwsem); 656 } 657 EXPORT_SYMBOL(net_ns_barrier); 658 659 static DECLARE_WORK(net_cleanup_work, cleanup_net); 660 661 void __put_net(struct net *net) 662 { 663 ref_tracker_dir_exit(&net->refcnt_tracker); 664 /* Cleanup the network namespace in process context */ 665 if (llist_add(&net->cleanup_list, &cleanup_list)) 666 queue_work(netns_wq, &net_cleanup_work); 667 } 668 EXPORT_SYMBOL_GPL(__put_net); 669 670 /** 671 * get_net_ns - increment the refcount of the network namespace 672 * @ns: common namespace (net) 673 * 674 * Returns the net's common namespace. 675 */ 676 struct ns_common *get_net_ns(struct ns_common *ns) 677 { 678 return &get_net(container_of(ns, struct net, ns))->ns; 679 } 680 EXPORT_SYMBOL_GPL(get_net_ns); 681 682 struct net *get_net_ns_by_fd(int fd) 683 { 684 struct fd f = fdget(fd); 685 struct net *net = ERR_PTR(-EINVAL); 686 687 if (!f.file) 688 return ERR_PTR(-EBADF); 689 690 if (proc_ns_file(f.file)) { 691 struct ns_common *ns = get_proc_ns(file_inode(f.file)); 692 if (ns->ops == &netns_operations) 693 net = get_net(container_of(ns, struct net, ns)); 694 } 695 fdput(f); 696 697 return net; 698 } 699 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 700 #endif 701 702 struct net *get_net_ns_by_pid(pid_t pid) 703 { 704 struct task_struct *tsk; 705 struct net *net; 706 707 /* Lookup the network namespace */ 708 net = ERR_PTR(-ESRCH); 709 rcu_read_lock(); 710 tsk = find_task_by_vpid(pid); 711 if (tsk) { 712 struct nsproxy *nsproxy; 713 task_lock(tsk); 714 nsproxy = tsk->nsproxy; 715 if (nsproxy) 716 net = get_net(nsproxy->net_ns); 717 task_unlock(tsk); 718 } 719 rcu_read_unlock(); 720 return net; 721 } 722 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 723 724 static __net_init int net_ns_net_init(struct net *net) 725 { 726 #ifdef CONFIG_NET_NS 727 net->ns.ops = &netns_operations; 728 #endif 729 return ns_alloc_inum(&net->ns); 730 } 731 732 static __net_exit void net_ns_net_exit(struct net *net) 733 { 734 ns_free_inum(&net->ns); 735 } 736 737 static struct pernet_operations __net_initdata net_ns_ops = { 738 .init = net_ns_net_init, 739 .exit = net_ns_net_exit, 740 }; 741 742 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 743 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 744 [NETNSA_NSID] = { .type = NLA_S32 }, 745 [NETNSA_PID] = { .type = NLA_U32 }, 746 [NETNSA_FD] = { .type = NLA_U32 }, 747 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 748 }; 749 750 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 751 struct netlink_ext_ack *extack) 752 { 753 struct net *net = sock_net(skb->sk); 754 struct nlattr *tb[NETNSA_MAX + 1]; 755 struct nlattr *nla; 756 struct net *peer; 757 int nsid, err; 758 759 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 760 NETNSA_MAX, rtnl_net_policy, extack); 761 if (err < 0) 762 return err; 763 if (!tb[NETNSA_NSID]) { 764 NL_SET_ERR_MSG(extack, "nsid is missing"); 765 return -EINVAL; 766 } 767 nsid = nla_get_s32(tb[NETNSA_NSID]); 768 769 if (tb[NETNSA_PID]) { 770 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 771 nla = tb[NETNSA_PID]; 772 } else if (tb[NETNSA_FD]) { 773 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 774 nla = tb[NETNSA_FD]; 775 } else { 776 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 777 return -EINVAL; 778 } 779 if (IS_ERR(peer)) { 780 NL_SET_BAD_ATTR(extack, nla); 781 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 782 return PTR_ERR(peer); 783 } 784 785 spin_lock_bh(&net->nsid_lock); 786 if (__peernet2id(net, peer) >= 0) { 787 spin_unlock_bh(&net->nsid_lock); 788 err = -EEXIST; 789 NL_SET_BAD_ATTR(extack, nla); 790 NL_SET_ERR_MSG(extack, 791 "Peer netns already has a nsid assigned"); 792 goto out; 793 } 794 795 err = alloc_netid(net, peer, nsid); 796 spin_unlock_bh(&net->nsid_lock); 797 if (err >= 0) { 798 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 799 nlh, GFP_KERNEL); 800 err = 0; 801 } else if (err == -ENOSPC && nsid >= 0) { 802 err = -EEXIST; 803 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 804 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 805 } 806 out: 807 put_net(peer); 808 return err; 809 } 810 811 static int rtnl_net_get_size(void) 812 { 813 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 814 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 815 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 816 ; 817 } 818 819 struct net_fill_args { 820 u32 portid; 821 u32 seq; 822 int flags; 823 int cmd; 824 int nsid; 825 bool add_ref; 826 int ref_nsid; 827 }; 828 829 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 830 { 831 struct nlmsghdr *nlh; 832 struct rtgenmsg *rth; 833 834 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 835 args->flags); 836 if (!nlh) 837 return -EMSGSIZE; 838 839 rth = nlmsg_data(nlh); 840 rth->rtgen_family = AF_UNSPEC; 841 842 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 843 goto nla_put_failure; 844 845 if (args->add_ref && 846 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 847 goto nla_put_failure; 848 849 nlmsg_end(skb, nlh); 850 return 0; 851 852 nla_put_failure: 853 nlmsg_cancel(skb, nlh); 854 return -EMSGSIZE; 855 } 856 857 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 858 const struct nlmsghdr *nlh, 859 struct nlattr **tb, 860 struct netlink_ext_ack *extack) 861 { 862 int i, err; 863 864 if (!netlink_strict_get_check(skb)) 865 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 866 tb, NETNSA_MAX, rtnl_net_policy, 867 extack); 868 869 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 870 NETNSA_MAX, rtnl_net_policy, 871 extack); 872 if (err) 873 return err; 874 875 for (i = 0; i <= NETNSA_MAX; i++) { 876 if (!tb[i]) 877 continue; 878 879 switch (i) { 880 case NETNSA_PID: 881 case NETNSA_FD: 882 case NETNSA_NSID: 883 case NETNSA_TARGET_NSID: 884 break; 885 default: 886 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 887 return -EINVAL; 888 } 889 } 890 891 return 0; 892 } 893 894 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 895 struct netlink_ext_ack *extack) 896 { 897 struct net *net = sock_net(skb->sk); 898 struct nlattr *tb[NETNSA_MAX + 1]; 899 struct net_fill_args fillargs = { 900 .portid = NETLINK_CB(skb).portid, 901 .seq = nlh->nlmsg_seq, 902 .cmd = RTM_NEWNSID, 903 }; 904 struct net *peer, *target = net; 905 struct nlattr *nla; 906 struct sk_buff *msg; 907 int err; 908 909 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 910 if (err < 0) 911 return err; 912 if (tb[NETNSA_PID]) { 913 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 914 nla = tb[NETNSA_PID]; 915 } else if (tb[NETNSA_FD]) { 916 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 917 nla = tb[NETNSA_FD]; 918 } else if (tb[NETNSA_NSID]) { 919 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 920 if (!peer) 921 peer = ERR_PTR(-ENOENT); 922 nla = tb[NETNSA_NSID]; 923 } else { 924 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 925 return -EINVAL; 926 } 927 928 if (IS_ERR(peer)) { 929 NL_SET_BAD_ATTR(extack, nla); 930 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 931 return PTR_ERR(peer); 932 } 933 934 if (tb[NETNSA_TARGET_NSID]) { 935 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 936 937 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 938 if (IS_ERR(target)) { 939 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 940 NL_SET_ERR_MSG(extack, 941 "Target netns reference is invalid"); 942 err = PTR_ERR(target); 943 goto out; 944 } 945 fillargs.add_ref = true; 946 fillargs.ref_nsid = peernet2id(net, peer); 947 } 948 949 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 950 if (!msg) { 951 err = -ENOMEM; 952 goto out; 953 } 954 955 fillargs.nsid = peernet2id(target, peer); 956 err = rtnl_net_fill(msg, &fillargs); 957 if (err < 0) 958 goto err_out; 959 960 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 961 goto out; 962 963 err_out: 964 nlmsg_free(msg); 965 out: 966 if (fillargs.add_ref) 967 put_net(target); 968 put_net(peer); 969 return err; 970 } 971 972 struct rtnl_net_dump_cb { 973 struct net *tgt_net; 974 struct net *ref_net; 975 struct sk_buff *skb; 976 struct net_fill_args fillargs; 977 int idx; 978 int s_idx; 979 }; 980 981 /* Runs in RCU-critical section. */ 982 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 983 { 984 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 985 int ret; 986 987 if (net_cb->idx < net_cb->s_idx) 988 goto cont; 989 990 net_cb->fillargs.nsid = id; 991 if (net_cb->fillargs.add_ref) 992 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 993 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 994 if (ret < 0) 995 return ret; 996 997 cont: 998 net_cb->idx++; 999 return 0; 1000 } 1001 1002 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1003 struct rtnl_net_dump_cb *net_cb, 1004 struct netlink_callback *cb) 1005 { 1006 struct netlink_ext_ack *extack = cb->extack; 1007 struct nlattr *tb[NETNSA_MAX + 1]; 1008 int err, i; 1009 1010 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1011 NETNSA_MAX, rtnl_net_policy, 1012 extack); 1013 if (err < 0) 1014 return err; 1015 1016 for (i = 0; i <= NETNSA_MAX; i++) { 1017 if (!tb[i]) 1018 continue; 1019 1020 if (i == NETNSA_TARGET_NSID) { 1021 struct net *net; 1022 1023 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1024 if (IS_ERR(net)) { 1025 NL_SET_BAD_ATTR(extack, tb[i]); 1026 NL_SET_ERR_MSG(extack, 1027 "Invalid target network namespace id"); 1028 return PTR_ERR(net); 1029 } 1030 net_cb->fillargs.add_ref = true; 1031 net_cb->ref_net = net_cb->tgt_net; 1032 net_cb->tgt_net = net; 1033 } else { 1034 NL_SET_BAD_ATTR(extack, tb[i]); 1035 NL_SET_ERR_MSG(extack, 1036 "Unsupported attribute in dump request"); 1037 return -EINVAL; 1038 } 1039 } 1040 1041 return 0; 1042 } 1043 1044 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1045 { 1046 struct rtnl_net_dump_cb net_cb = { 1047 .tgt_net = sock_net(skb->sk), 1048 .skb = skb, 1049 .fillargs = { 1050 .portid = NETLINK_CB(cb->skb).portid, 1051 .seq = cb->nlh->nlmsg_seq, 1052 .flags = NLM_F_MULTI, 1053 .cmd = RTM_NEWNSID, 1054 }, 1055 .idx = 0, 1056 .s_idx = cb->args[0], 1057 }; 1058 int err = 0; 1059 1060 if (cb->strict_check) { 1061 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1062 if (err < 0) 1063 goto end; 1064 } 1065 1066 rcu_read_lock(); 1067 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1068 rcu_read_unlock(); 1069 1070 cb->args[0] = net_cb.idx; 1071 end: 1072 if (net_cb.fillargs.add_ref) 1073 put_net(net_cb.tgt_net); 1074 return err < 0 ? err : skb->len; 1075 } 1076 1077 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1078 struct nlmsghdr *nlh, gfp_t gfp) 1079 { 1080 struct net_fill_args fillargs = { 1081 .portid = portid, 1082 .seq = nlh ? nlh->nlmsg_seq : 0, 1083 .cmd = cmd, 1084 .nsid = id, 1085 }; 1086 struct sk_buff *msg; 1087 int err = -ENOMEM; 1088 1089 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1090 if (!msg) 1091 goto out; 1092 1093 err = rtnl_net_fill(msg, &fillargs); 1094 if (err < 0) 1095 goto err_out; 1096 1097 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1098 return; 1099 1100 err_out: 1101 nlmsg_free(msg); 1102 out: 1103 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1104 } 1105 1106 #ifdef CONFIG_NET_NS 1107 static void __init netns_ipv4_struct_check(void) 1108 { 1109 /* TX readonly hotpath cache lines */ 1110 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1111 sysctl_tcp_early_retrans); 1112 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1113 sysctl_tcp_tso_win_divisor); 1114 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1115 sysctl_tcp_tso_rtt_log); 1116 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1117 sysctl_tcp_autocorking); 1118 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1119 sysctl_tcp_min_snd_mss); 1120 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1121 sysctl_tcp_notsent_lowat); 1122 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1123 sysctl_tcp_limit_output_bytes); 1124 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1125 sysctl_tcp_min_rtt_wlen); 1126 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1127 sysctl_tcp_wmem); 1128 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1129 sysctl_ip_fwd_use_pmtu); 1130 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1131 1132 /* TXRX readonly hotpath cache lines */ 1133 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1134 sysctl_tcp_moderate_rcvbuf); 1135 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1136 1137 /* RX readonly hotpath cache line */ 1138 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1139 sysctl_ip_early_demux); 1140 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1141 sysctl_tcp_early_demux); 1142 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1143 sysctl_tcp_reordering); 1144 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1145 sysctl_tcp_rmem); 1146 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 18); 1147 } 1148 #endif 1149 1150 void __init net_ns_init(void) 1151 { 1152 struct net_generic *ng; 1153 1154 #ifdef CONFIG_NET_NS 1155 netns_ipv4_struct_check(); 1156 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1157 SMP_CACHE_BYTES, 1158 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1159 1160 /* Create workqueue for cleanup */ 1161 netns_wq = create_singlethread_workqueue("netns"); 1162 if (!netns_wq) 1163 panic("Could not create netns workq"); 1164 #endif 1165 1166 ng = net_alloc_generic(); 1167 if (!ng) 1168 panic("Could not allocate generic netns"); 1169 1170 rcu_assign_pointer(init_net.gen, ng); 1171 1172 #ifdef CONFIG_KEYS 1173 init_net.key_domain = &init_net_key_domain; 1174 #endif 1175 down_write(&pernet_ops_rwsem); 1176 preinit_net(&init_net); 1177 if (setup_net(&init_net, &init_user_ns)) 1178 panic("Could not setup the initial network namespace"); 1179 1180 init_net_initialized = true; 1181 up_write(&pernet_ops_rwsem); 1182 1183 if (register_pernet_subsys(&net_ns_ops)) 1184 panic("Could not register network namespace subsystems"); 1185 1186 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1187 RTNL_FLAG_DOIT_UNLOCKED); 1188 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1189 RTNL_FLAG_DOIT_UNLOCKED); 1190 } 1191 1192 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1193 { 1194 ops_pre_exit_list(ops, net_exit_list); 1195 synchronize_rcu(); 1196 ops_exit_list(ops, net_exit_list); 1197 ops_free_list(ops, net_exit_list); 1198 } 1199 1200 #ifdef CONFIG_NET_NS 1201 static int __register_pernet_operations(struct list_head *list, 1202 struct pernet_operations *ops) 1203 { 1204 struct net *net; 1205 int error; 1206 LIST_HEAD(net_exit_list); 1207 1208 list_add_tail(&ops->list, list); 1209 if (ops->init || (ops->id && ops->size)) { 1210 /* We held write locked pernet_ops_rwsem, and parallel 1211 * setup_net() and cleanup_net() are not possible. 1212 */ 1213 for_each_net(net) { 1214 error = ops_init(ops, net); 1215 if (error) 1216 goto out_undo; 1217 list_add_tail(&net->exit_list, &net_exit_list); 1218 } 1219 } 1220 return 0; 1221 1222 out_undo: 1223 /* If I have an error cleanup all namespaces I initialized */ 1224 list_del(&ops->list); 1225 free_exit_list(ops, &net_exit_list); 1226 return error; 1227 } 1228 1229 static void __unregister_pernet_operations(struct pernet_operations *ops) 1230 { 1231 struct net *net; 1232 LIST_HEAD(net_exit_list); 1233 1234 list_del(&ops->list); 1235 /* See comment in __register_pernet_operations() */ 1236 for_each_net(net) 1237 list_add_tail(&net->exit_list, &net_exit_list); 1238 1239 free_exit_list(ops, &net_exit_list); 1240 } 1241 1242 #else 1243 1244 static int __register_pernet_operations(struct list_head *list, 1245 struct pernet_operations *ops) 1246 { 1247 if (!init_net_initialized) { 1248 list_add_tail(&ops->list, list); 1249 return 0; 1250 } 1251 1252 return ops_init(ops, &init_net); 1253 } 1254 1255 static void __unregister_pernet_operations(struct pernet_operations *ops) 1256 { 1257 if (!init_net_initialized) { 1258 list_del(&ops->list); 1259 } else { 1260 LIST_HEAD(net_exit_list); 1261 list_add(&init_net.exit_list, &net_exit_list); 1262 free_exit_list(ops, &net_exit_list); 1263 } 1264 } 1265 1266 #endif /* CONFIG_NET_NS */ 1267 1268 static DEFINE_IDA(net_generic_ids); 1269 1270 static int register_pernet_operations(struct list_head *list, 1271 struct pernet_operations *ops) 1272 { 1273 int error; 1274 1275 if (ops->id) { 1276 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1277 GFP_KERNEL); 1278 if (error < 0) 1279 return error; 1280 *ops->id = error; 1281 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1282 } 1283 error = __register_pernet_operations(list, ops); 1284 if (error) { 1285 rcu_barrier(); 1286 if (ops->id) 1287 ida_free(&net_generic_ids, *ops->id); 1288 } 1289 1290 return error; 1291 } 1292 1293 static void unregister_pernet_operations(struct pernet_operations *ops) 1294 { 1295 __unregister_pernet_operations(ops); 1296 rcu_barrier(); 1297 if (ops->id) 1298 ida_free(&net_generic_ids, *ops->id); 1299 } 1300 1301 /** 1302 * register_pernet_subsys - register a network namespace subsystem 1303 * @ops: pernet operations structure for the subsystem 1304 * 1305 * Register a subsystem which has init and exit functions 1306 * that are called when network namespaces are created and 1307 * destroyed respectively. 1308 * 1309 * When registered all network namespace init functions are 1310 * called for every existing network namespace. Allowing kernel 1311 * modules to have a race free view of the set of network namespaces. 1312 * 1313 * When a new network namespace is created all of the init 1314 * methods are called in the order in which they were registered. 1315 * 1316 * When a network namespace is destroyed all of the exit methods 1317 * are called in the reverse of the order with which they were 1318 * registered. 1319 */ 1320 int register_pernet_subsys(struct pernet_operations *ops) 1321 { 1322 int error; 1323 down_write(&pernet_ops_rwsem); 1324 error = register_pernet_operations(first_device, ops); 1325 up_write(&pernet_ops_rwsem); 1326 return error; 1327 } 1328 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1329 1330 /** 1331 * unregister_pernet_subsys - unregister a network namespace subsystem 1332 * @ops: pernet operations structure to manipulate 1333 * 1334 * Remove the pernet operations structure from the list to be 1335 * used when network namespaces are created or destroyed. In 1336 * addition run the exit method for all existing network 1337 * namespaces. 1338 */ 1339 void unregister_pernet_subsys(struct pernet_operations *ops) 1340 { 1341 down_write(&pernet_ops_rwsem); 1342 unregister_pernet_operations(ops); 1343 up_write(&pernet_ops_rwsem); 1344 } 1345 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1346 1347 /** 1348 * register_pernet_device - register a network namespace device 1349 * @ops: pernet operations structure for the subsystem 1350 * 1351 * Register a device which has init and exit functions 1352 * that are called when network namespaces are created and 1353 * destroyed respectively. 1354 * 1355 * When registered all network namespace init functions are 1356 * called for every existing network namespace. Allowing kernel 1357 * modules to have a race free view of the set of network namespaces. 1358 * 1359 * When a new network namespace is created all of the init 1360 * methods are called in the order in which they were registered. 1361 * 1362 * When a network namespace is destroyed all of the exit methods 1363 * are called in the reverse of the order with which they were 1364 * registered. 1365 */ 1366 int register_pernet_device(struct pernet_operations *ops) 1367 { 1368 int error; 1369 down_write(&pernet_ops_rwsem); 1370 error = register_pernet_operations(&pernet_list, ops); 1371 if (!error && (first_device == &pernet_list)) 1372 first_device = &ops->list; 1373 up_write(&pernet_ops_rwsem); 1374 return error; 1375 } 1376 EXPORT_SYMBOL_GPL(register_pernet_device); 1377 1378 /** 1379 * unregister_pernet_device - unregister a network namespace netdevice 1380 * @ops: pernet operations structure to manipulate 1381 * 1382 * Remove the pernet operations structure from the list to be 1383 * used when network namespaces are created or destroyed. In 1384 * addition run the exit method for all existing network 1385 * namespaces. 1386 */ 1387 void unregister_pernet_device(struct pernet_operations *ops) 1388 { 1389 down_write(&pernet_ops_rwsem); 1390 if (&ops->list == first_device) 1391 first_device = first_device->next; 1392 unregister_pernet_operations(ops); 1393 up_write(&pernet_ops_rwsem); 1394 } 1395 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1396 1397 #ifdef CONFIG_NET_NS 1398 static struct ns_common *netns_get(struct task_struct *task) 1399 { 1400 struct net *net = NULL; 1401 struct nsproxy *nsproxy; 1402 1403 task_lock(task); 1404 nsproxy = task->nsproxy; 1405 if (nsproxy) 1406 net = get_net(nsproxy->net_ns); 1407 task_unlock(task); 1408 1409 return net ? &net->ns : NULL; 1410 } 1411 1412 static inline struct net *to_net_ns(struct ns_common *ns) 1413 { 1414 return container_of(ns, struct net, ns); 1415 } 1416 1417 static void netns_put(struct ns_common *ns) 1418 { 1419 put_net(to_net_ns(ns)); 1420 } 1421 1422 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1423 { 1424 struct nsproxy *nsproxy = nsset->nsproxy; 1425 struct net *net = to_net_ns(ns); 1426 1427 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1428 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1429 return -EPERM; 1430 1431 put_net(nsproxy->net_ns); 1432 nsproxy->net_ns = get_net(net); 1433 return 0; 1434 } 1435 1436 static struct user_namespace *netns_owner(struct ns_common *ns) 1437 { 1438 return to_net_ns(ns)->user_ns; 1439 } 1440 1441 const struct proc_ns_operations netns_operations = { 1442 .name = "net", 1443 .type = CLONE_NEWNET, 1444 .get = netns_get, 1445 .put = netns_put, 1446 .install = netns_install, 1447 .owner = netns_owner, 1448 }; 1449 #endif 1450