1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 DEFINE_COOKIE(net_cookie); 68 69 static struct net_generic *net_alloc_generic(void) 70 { 71 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 72 unsigned int generic_size; 73 struct net_generic *ng; 74 75 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (!ng) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 struct net_generic *ng; 124 int err = -ENOMEM; 125 void *data = NULL; 126 127 if (ops->id) { 128 data = kzalloc(ops->size, GFP_KERNEL); 129 if (!data) 130 goto out; 131 132 err = net_assign_generic(net, *ops->id, data); 133 if (err) 134 goto cleanup; 135 } 136 err = 0; 137 if (ops->init) 138 err = ops->init(net); 139 if (!err) 140 return 0; 141 142 if (ops->id) { 143 ng = rcu_dereference_protected(net->gen, 144 lockdep_is_held(&pernet_ops_rwsem)); 145 ng->ptr[*ops->id] = NULL; 146 } 147 148 cleanup: 149 kfree(data); 150 151 out: 152 return err; 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_rtnl_list(const struct list_head *ops_list, 167 const struct pernet_operations *ops, 168 struct list_head *net_exit_list) 169 { 170 const struct pernet_operations *saved_ops = ops; 171 LIST_HEAD(dev_kill_list); 172 struct net *net; 173 174 rtnl_lock(); 175 176 list_for_each_entry(net, net_exit_list, exit_list) { 177 __rtnl_net_lock(net); 178 179 ops = saved_ops; 180 list_for_each_entry_continue_reverse(ops, ops_list, list) { 181 if (ops->exit_rtnl) 182 ops->exit_rtnl(net, &dev_kill_list); 183 } 184 185 __rtnl_net_unlock(net); 186 } 187 188 unregister_netdevice_many(&dev_kill_list); 189 190 rtnl_unlock(); 191 } 192 193 static void ops_exit_list(const struct pernet_operations *ops, 194 struct list_head *net_exit_list) 195 { 196 if (ops->exit) { 197 struct net *net; 198 199 list_for_each_entry(net, net_exit_list, exit_list) { 200 ops->exit(net); 201 cond_resched(); 202 } 203 } 204 205 if (ops->exit_batch) 206 ops->exit_batch(net_exit_list); 207 } 208 209 static void ops_free_list(const struct pernet_operations *ops, 210 struct list_head *net_exit_list) 211 { 212 struct net *net; 213 214 if (ops->id) { 215 list_for_each_entry(net, net_exit_list, exit_list) 216 kfree(net_generic(net, *ops->id)); 217 } 218 } 219 220 static void ops_undo_list(const struct list_head *ops_list, 221 const struct pernet_operations *ops, 222 struct list_head *net_exit_list, 223 bool expedite_rcu, bool hold_rtnl) 224 { 225 const struct pernet_operations *saved_ops; 226 227 if (!ops) 228 ops = list_entry(ops_list, typeof(*ops), list); 229 230 saved_ops = ops; 231 232 list_for_each_entry_continue_reverse(ops, ops_list, list) 233 ops_pre_exit_list(ops, net_exit_list); 234 235 /* Another CPU might be rcu-iterating the list, wait for it. 236 * This needs to be before calling the exit() notifiers, so the 237 * rcu_barrier() after ops_undo_list() isn't sufficient alone. 238 * Also the pre_exit() and exit() methods need this barrier. 239 */ 240 if (expedite_rcu) 241 synchronize_rcu_expedited(); 242 else 243 synchronize_rcu(); 244 245 if (hold_rtnl) 246 ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list); 247 248 ops = saved_ops; 249 list_for_each_entry_continue_reverse(ops, ops_list, list) 250 ops_exit_list(ops, net_exit_list); 251 252 ops = saved_ops; 253 list_for_each_entry_continue_reverse(ops, ops_list, list) 254 ops_free_list(ops, net_exit_list); 255 } 256 257 static void ops_undo_single(struct pernet_operations *ops, 258 struct list_head *net_exit_list) 259 { 260 bool hold_rtnl = !!ops->exit_rtnl; 261 LIST_HEAD(ops_list); 262 263 list_add(&ops->list, &ops_list); 264 ops_undo_list(&ops_list, NULL, net_exit_list, false, hold_rtnl); 265 list_del(&ops->list); 266 } 267 268 /* should be called with nsid_lock held */ 269 static int alloc_netid(struct net *net, struct net *peer, int reqid) 270 { 271 int min = 0, max = 0; 272 273 if (reqid >= 0) { 274 min = reqid; 275 max = reqid + 1; 276 } 277 278 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 279 } 280 281 /* This function is used by idr_for_each(). If net is equal to peer, the 282 * function returns the id so that idr_for_each() stops. Because we cannot 283 * returns the id 0 (idr_for_each() will not stop), we return the magic value 284 * NET_ID_ZERO (-1) for it. 285 */ 286 #define NET_ID_ZERO -1 287 static int net_eq_idr(int id, void *net, void *peer) 288 { 289 if (net_eq(net, peer)) 290 return id ? : NET_ID_ZERO; 291 return 0; 292 } 293 294 /* Must be called from RCU-critical section or with nsid_lock held */ 295 static int __peernet2id(const struct net *net, struct net *peer) 296 { 297 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 298 299 /* Magic value for id 0. */ 300 if (id == NET_ID_ZERO) 301 return 0; 302 if (id > 0) 303 return id; 304 305 return NETNSA_NSID_NOT_ASSIGNED; 306 } 307 308 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 309 struct nlmsghdr *nlh, gfp_t gfp); 310 /* This function returns the id of a peer netns. If no id is assigned, one will 311 * be allocated and returned. 312 */ 313 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 314 { 315 int id; 316 317 if (refcount_read(&net->ns.count) == 0) 318 return NETNSA_NSID_NOT_ASSIGNED; 319 320 spin_lock_bh(&net->nsid_lock); 321 id = __peernet2id(net, peer); 322 if (id >= 0) { 323 spin_unlock_bh(&net->nsid_lock); 324 return id; 325 } 326 327 /* When peer is obtained from RCU lists, we may race with 328 * its cleanup. Check whether it's alive, and this guarantees 329 * we never hash a peer back to net->netns_ids, after it has 330 * just been idr_remove()'d from there in cleanup_net(). 331 */ 332 if (!maybe_get_net(peer)) { 333 spin_unlock_bh(&net->nsid_lock); 334 return NETNSA_NSID_NOT_ASSIGNED; 335 } 336 337 id = alloc_netid(net, peer, -1); 338 spin_unlock_bh(&net->nsid_lock); 339 340 put_net(peer); 341 if (id < 0) 342 return NETNSA_NSID_NOT_ASSIGNED; 343 344 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 345 346 return id; 347 } 348 EXPORT_SYMBOL_GPL(peernet2id_alloc); 349 350 /* This function returns, if assigned, the id of a peer netns. */ 351 int peernet2id(const struct net *net, struct net *peer) 352 { 353 int id; 354 355 rcu_read_lock(); 356 id = __peernet2id(net, peer); 357 rcu_read_unlock(); 358 359 return id; 360 } 361 EXPORT_SYMBOL(peernet2id); 362 363 /* This function returns true is the peer netns has an id assigned into the 364 * current netns. 365 */ 366 bool peernet_has_id(const struct net *net, struct net *peer) 367 { 368 return peernet2id(net, peer) >= 0; 369 } 370 371 struct net *get_net_ns_by_id(const struct net *net, int id) 372 { 373 struct net *peer; 374 375 if (id < 0) 376 return NULL; 377 378 rcu_read_lock(); 379 peer = idr_find(&net->netns_ids, id); 380 if (peer) 381 peer = maybe_get_net(peer); 382 rcu_read_unlock(); 383 384 return peer; 385 } 386 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 387 388 static __net_init void preinit_net_sysctl(struct net *net) 389 { 390 net->core.sysctl_somaxconn = SOMAXCONN; 391 /* Limits per socket sk_omem_alloc usage. 392 * TCP zerocopy regular usage needs 128 KB. 393 */ 394 net->core.sysctl_optmem_max = 128 * 1024; 395 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 396 net->core.sysctl_tstamp_allow_data = 1; 397 } 398 399 /* init code that must occur even if setup_net() is not called. */ 400 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 401 { 402 refcount_set(&net->passive, 1); 403 refcount_set(&net->ns.count, 1); 404 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 405 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 406 407 get_random_bytes(&net->hash_mix, sizeof(u32)); 408 net->dev_base_seq = 1; 409 net->user_ns = user_ns; 410 411 idr_init(&net->netns_ids); 412 spin_lock_init(&net->nsid_lock); 413 mutex_init(&net->ipv4.ra_mutex); 414 415 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 416 mutex_init(&net->rtnl_mutex); 417 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 418 #endif 419 420 INIT_LIST_HEAD(&net->ptype_all); 421 INIT_LIST_HEAD(&net->ptype_specific); 422 preinit_net_sysctl(net); 423 } 424 425 /* 426 * setup_net runs the initializers for the network namespace object. 427 */ 428 static __net_init int setup_net(struct net *net) 429 { 430 /* Must be called with pernet_ops_rwsem held */ 431 const struct pernet_operations *ops; 432 LIST_HEAD(net_exit_list); 433 int error = 0; 434 435 preempt_disable(); 436 net->net_cookie = gen_cookie_next(&net_cookie); 437 preempt_enable(); 438 439 list_for_each_entry(ops, &pernet_list, list) { 440 error = ops_init(ops, net); 441 if (error < 0) 442 goto out_undo; 443 } 444 down_write(&net_rwsem); 445 list_add_tail_rcu(&net->list, &net_namespace_list); 446 up_write(&net_rwsem); 447 out: 448 return error; 449 450 out_undo: 451 /* Walk through the list backwards calling the exit functions 452 * for the pernet modules whose init functions did not fail. 453 */ 454 list_add(&net->exit_list, &net_exit_list); 455 ops_undo_list(&pernet_list, ops, &net_exit_list, false, true); 456 rcu_barrier(); 457 goto out; 458 } 459 460 #ifdef CONFIG_NET_NS 461 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 462 { 463 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 464 } 465 466 static void dec_net_namespaces(struct ucounts *ucounts) 467 { 468 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 469 } 470 471 static struct kmem_cache *net_cachep __ro_after_init; 472 static struct workqueue_struct *netns_wq; 473 474 static struct net *net_alloc(void) 475 { 476 struct net *net = NULL; 477 struct net_generic *ng; 478 479 ng = net_alloc_generic(); 480 if (!ng) 481 goto out; 482 483 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 484 if (!net) 485 goto out_free; 486 487 #ifdef CONFIG_KEYS 488 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 489 if (!net->key_domain) 490 goto out_free_2; 491 refcount_set(&net->key_domain->usage, 1); 492 #endif 493 494 rcu_assign_pointer(net->gen, ng); 495 out: 496 return net; 497 498 #ifdef CONFIG_KEYS 499 out_free_2: 500 kmem_cache_free(net_cachep, net); 501 net = NULL; 502 #endif 503 out_free: 504 kfree(ng); 505 goto out; 506 } 507 508 static LLIST_HEAD(defer_free_list); 509 510 static void net_complete_free(void) 511 { 512 struct llist_node *kill_list; 513 struct net *net, *next; 514 515 /* Get the list of namespaces to free from last round. */ 516 kill_list = llist_del_all(&defer_free_list); 517 518 llist_for_each_entry_safe(net, next, kill_list, defer_free_list) 519 kmem_cache_free(net_cachep, net); 520 521 } 522 523 void net_passive_dec(struct net *net) 524 { 525 if (refcount_dec_and_test(&net->passive)) { 526 kfree(rcu_access_pointer(net->gen)); 527 528 /* There should not be any trackers left there. */ 529 ref_tracker_dir_exit(&net->notrefcnt_tracker); 530 531 /* Wait for an extra rcu_barrier() before final free. */ 532 llist_add(&net->defer_free_list, &defer_free_list); 533 } 534 } 535 536 void net_drop_ns(void *p) 537 { 538 struct net *net = (struct net *)p; 539 540 if (net) 541 net_passive_dec(net); 542 } 543 544 struct net *copy_net_ns(unsigned long flags, 545 struct user_namespace *user_ns, struct net *old_net) 546 { 547 struct ucounts *ucounts; 548 struct net *net; 549 int rv; 550 551 if (!(flags & CLONE_NEWNET)) 552 return get_net(old_net); 553 554 ucounts = inc_net_namespaces(user_ns); 555 if (!ucounts) 556 return ERR_PTR(-ENOSPC); 557 558 net = net_alloc(); 559 if (!net) { 560 rv = -ENOMEM; 561 goto dec_ucounts; 562 } 563 564 preinit_net(net, user_ns); 565 net->ucounts = ucounts; 566 get_user_ns(user_ns); 567 568 rv = down_read_killable(&pernet_ops_rwsem); 569 if (rv < 0) 570 goto put_userns; 571 572 rv = setup_net(net); 573 574 up_read(&pernet_ops_rwsem); 575 576 if (rv < 0) { 577 put_userns: 578 #ifdef CONFIG_KEYS 579 key_remove_domain(net->key_domain); 580 #endif 581 put_user_ns(user_ns); 582 net_passive_dec(net); 583 dec_ucounts: 584 dec_net_namespaces(ucounts); 585 return ERR_PTR(rv); 586 } 587 return net; 588 } 589 590 /** 591 * net_ns_get_ownership - get sysfs ownership data for @net 592 * @net: network namespace in question (can be NULL) 593 * @uid: kernel user ID for sysfs objects 594 * @gid: kernel group ID for sysfs objects 595 * 596 * Returns the uid/gid pair of root in the user namespace associated with the 597 * given network namespace. 598 */ 599 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 600 { 601 if (net) { 602 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 603 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 604 605 if (uid_valid(ns_root_uid)) 606 *uid = ns_root_uid; 607 608 if (gid_valid(ns_root_gid)) 609 *gid = ns_root_gid; 610 } else { 611 *uid = GLOBAL_ROOT_UID; 612 *gid = GLOBAL_ROOT_GID; 613 } 614 } 615 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 616 617 static void unhash_nsid(struct net *net, struct net *last) 618 { 619 struct net *tmp; 620 /* This function is only called from cleanup_net() work, 621 * and this work is the only process, that may delete 622 * a net from net_namespace_list. So, when the below 623 * is executing, the list may only grow. Thus, we do not 624 * use for_each_net_rcu() or net_rwsem. 625 */ 626 for_each_net(tmp) { 627 int id; 628 629 spin_lock_bh(&tmp->nsid_lock); 630 id = __peernet2id(tmp, net); 631 if (id >= 0) 632 idr_remove(&tmp->netns_ids, id); 633 spin_unlock_bh(&tmp->nsid_lock); 634 if (id >= 0) 635 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 636 GFP_KERNEL); 637 if (tmp == last) 638 break; 639 } 640 spin_lock_bh(&net->nsid_lock); 641 idr_destroy(&net->netns_ids); 642 spin_unlock_bh(&net->nsid_lock); 643 } 644 645 static LLIST_HEAD(cleanup_list); 646 647 struct task_struct *cleanup_net_task; 648 649 static void cleanup_net(struct work_struct *work) 650 { 651 struct llist_node *net_kill_list; 652 struct net *net, *tmp, *last; 653 LIST_HEAD(net_exit_list); 654 655 cleanup_net_task = current; 656 657 /* Atomically snapshot the list of namespaces to cleanup */ 658 net_kill_list = llist_del_all(&cleanup_list); 659 660 down_read(&pernet_ops_rwsem); 661 662 /* Don't let anyone else find us. */ 663 down_write(&net_rwsem); 664 llist_for_each_entry(net, net_kill_list, cleanup_list) 665 list_del_rcu(&net->list); 666 /* Cache last net. After we unlock rtnl, no one new net 667 * added to net_namespace_list can assign nsid pointer 668 * to a net from net_kill_list (see peernet2id_alloc()). 669 * So, we skip them in unhash_nsid(). 670 * 671 * Note, that unhash_nsid() does not delete nsid links 672 * between net_kill_list's nets, as they've already 673 * deleted from net_namespace_list. But, this would be 674 * useless anyway, as netns_ids are destroyed there. 675 */ 676 last = list_last_entry(&net_namespace_list, struct net, list); 677 up_write(&net_rwsem); 678 679 llist_for_each_entry(net, net_kill_list, cleanup_list) { 680 unhash_nsid(net, last); 681 list_add_tail(&net->exit_list, &net_exit_list); 682 } 683 684 ops_undo_list(&pernet_list, NULL, &net_exit_list, true, true); 685 686 up_read(&pernet_ops_rwsem); 687 688 /* Ensure there are no outstanding rcu callbacks using this 689 * network namespace. 690 */ 691 rcu_barrier(); 692 693 net_complete_free(); 694 695 /* Finally it is safe to free my network namespace structure */ 696 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 697 list_del_init(&net->exit_list); 698 dec_net_namespaces(net->ucounts); 699 #ifdef CONFIG_KEYS 700 key_remove_domain(net->key_domain); 701 #endif 702 put_user_ns(net->user_ns); 703 net_passive_dec(net); 704 } 705 cleanup_net_task = NULL; 706 } 707 708 /** 709 * net_ns_barrier - wait until concurrent net_cleanup_work is done 710 * 711 * cleanup_net runs from work queue and will first remove namespaces 712 * from the global list, then run net exit functions. 713 * 714 * Call this in module exit path to make sure that all netns 715 * ->exit ops have been invoked before the function is removed. 716 */ 717 void net_ns_barrier(void) 718 { 719 down_write(&pernet_ops_rwsem); 720 up_write(&pernet_ops_rwsem); 721 } 722 EXPORT_SYMBOL(net_ns_barrier); 723 724 static DECLARE_WORK(net_cleanup_work, cleanup_net); 725 726 void __put_net(struct net *net) 727 { 728 ref_tracker_dir_exit(&net->refcnt_tracker); 729 /* Cleanup the network namespace in process context */ 730 if (llist_add(&net->cleanup_list, &cleanup_list)) 731 queue_work(netns_wq, &net_cleanup_work); 732 } 733 EXPORT_SYMBOL_GPL(__put_net); 734 735 /** 736 * get_net_ns - increment the refcount of the network namespace 737 * @ns: common namespace (net) 738 * 739 * Returns the net's common namespace or ERR_PTR() if ref is zero. 740 */ 741 struct ns_common *get_net_ns(struct ns_common *ns) 742 { 743 struct net *net; 744 745 net = maybe_get_net(container_of(ns, struct net, ns)); 746 if (net) 747 return &net->ns; 748 return ERR_PTR(-EINVAL); 749 } 750 EXPORT_SYMBOL_GPL(get_net_ns); 751 752 struct net *get_net_ns_by_fd(int fd) 753 { 754 CLASS(fd, f)(fd); 755 756 if (fd_empty(f)) 757 return ERR_PTR(-EBADF); 758 759 if (proc_ns_file(fd_file(f))) { 760 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 761 if (ns->ops == &netns_operations) 762 return get_net(container_of(ns, struct net, ns)); 763 } 764 765 return ERR_PTR(-EINVAL); 766 } 767 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 768 #endif 769 770 struct net *get_net_ns_by_pid(pid_t pid) 771 { 772 struct task_struct *tsk; 773 struct net *net; 774 775 /* Lookup the network namespace */ 776 net = ERR_PTR(-ESRCH); 777 rcu_read_lock(); 778 tsk = find_task_by_vpid(pid); 779 if (tsk) { 780 struct nsproxy *nsproxy; 781 task_lock(tsk); 782 nsproxy = tsk->nsproxy; 783 if (nsproxy) 784 net = get_net(nsproxy->net_ns); 785 task_unlock(tsk); 786 } 787 rcu_read_unlock(); 788 return net; 789 } 790 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 791 792 static __net_init int net_ns_net_init(struct net *net) 793 { 794 #ifdef CONFIG_NET_NS 795 net->ns.ops = &netns_operations; 796 #endif 797 return ns_alloc_inum(&net->ns); 798 } 799 800 static __net_exit void net_ns_net_exit(struct net *net) 801 { 802 ns_free_inum(&net->ns); 803 } 804 805 static struct pernet_operations __net_initdata net_ns_ops = { 806 .init = net_ns_net_init, 807 .exit = net_ns_net_exit, 808 }; 809 810 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 811 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 812 [NETNSA_NSID] = { .type = NLA_S32 }, 813 [NETNSA_PID] = { .type = NLA_U32 }, 814 [NETNSA_FD] = { .type = NLA_U32 }, 815 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 816 }; 817 818 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 819 struct netlink_ext_ack *extack) 820 { 821 struct net *net = sock_net(skb->sk); 822 struct nlattr *tb[NETNSA_MAX + 1]; 823 struct nlattr *nla; 824 struct net *peer; 825 int nsid, err; 826 827 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 828 NETNSA_MAX, rtnl_net_policy, extack); 829 if (err < 0) 830 return err; 831 if (!tb[NETNSA_NSID]) { 832 NL_SET_ERR_MSG(extack, "nsid is missing"); 833 return -EINVAL; 834 } 835 nsid = nla_get_s32(tb[NETNSA_NSID]); 836 837 if (tb[NETNSA_PID]) { 838 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 839 nla = tb[NETNSA_PID]; 840 } else if (tb[NETNSA_FD]) { 841 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 842 nla = tb[NETNSA_FD]; 843 } else { 844 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 845 return -EINVAL; 846 } 847 if (IS_ERR(peer)) { 848 NL_SET_BAD_ATTR(extack, nla); 849 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 850 return PTR_ERR(peer); 851 } 852 853 spin_lock_bh(&net->nsid_lock); 854 if (__peernet2id(net, peer) >= 0) { 855 spin_unlock_bh(&net->nsid_lock); 856 err = -EEXIST; 857 NL_SET_BAD_ATTR(extack, nla); 858 NL_SET_ERR_MSG(extack, 859 "Peer netns already has a nsid assigned"); 860 goto out; 861 } 862 863 err = alloc_netid(net, peer, nsid); 864 spin_unlock_bh(&net->nsid_lock); 865 if (err >= 0) { 866 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 867 nlh, GFP_KERNEL); 868 err = 0; 869 } else if (err == -ENOSPC && nsid >= 0) { 870 err = -EEXIST; 871 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 872 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 873 } 874 out: 875 put_net(peer); 876 return err; 877 } 878 879 static int rtnl_net_get_size(void) 880 { 881 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 882 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 883 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 884 ; 885 } 886 887 struct net_fill_args { 888 u32 portid; 889 u32 seq; 890 int flags; 891 int cmd; 892 int nsid; 893 bool add_ref; 894 int ref_nsid; 895 }; 896 897 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 898 { 899 struct nlmsghdr *nlh; 900 struct rtgenmsg *rth; 901 902 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 903 args->flags); 904 if (!nlh) 905 return -EMSGSIZE; 906 907 rth = nlmsg_data(nlh); 908 rth->rtgen_family = AF_UNSPEC; 909 910 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 911 goto nla_put_failure; 912 913 if (args->add_ref && 914 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 915 goto nla_put_failure; 916 917 nlmsg_end(skb, nlh); 918 return 0; 919 920 nla_put_failure: 921 nlmsg_cancel(skb, nlh); 922 return -EMSGSIZE; 923 } 924 925 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 926 const struct nlmsghdr *nlh, 927 struct nlattr **tb, 928 struct netlink_ext_ack *extack) 929 { 930 int i, err; 931 932 if (!netlink_strict_get_check(skb)) 933 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 934 tb, NETNSA_MAX, rtnl_net_policy, 935 extack); 936 937 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 938 NETNSA_MAX, rtnl_net_policy, 939 extack); 940 if (err) 941 return err; 942 943 for (i = 0; i <= NETNSA_MAX; i++) { 944 if (!tb[i]) 945 continue; 946 947 switch (i) { 948 case NETNSA_PID: 949 case NETNSA_FD: 950 case NETNSA_NSID: 951 case NETNSA_TARGET_NSID: 952 break; 953 default: 954 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 955 return -EINVAL; 956 } 957 } 958 959 return 0; 960 } 961 962 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 963 struct netlink_ext_ack *extack) 964 { 965 struct net *net = sock_net(skb->sk); 966 struct nlattr *tb[NETNSA_MAX + 1]; 967 struct net_fill_args fillargs = { 968 .portid = NETLINK_CB(skb).portid, 969 .seq = nlh->nlmsg_seq, 970 .cmd = RTM_NEWNSID, 971 }; 972 struct net *peer, *target = net; 973 struct nlattr *nla; 974 struct sk_buff *msg; 975 int err; 976 977 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 978 if (err < 0) 979 return err; 980 if (tb[NETNSA_PID]) { 981 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 982 nla = tb[NETNSA_PID]; 983 } else if (tb[NETNSA_FD]) { 984 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 985 nla = tb[NETNSA_FD]; 986 } else if (tb[NETNSA_NSID]) { 987 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 988 if (!peer) 989 peer = ERR_PTR(-ENOENT); 990 nla = tb[NETNSA_NSID]; 991 } else { 992 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 993 return -EINVAL; 994 } 995 996 if (IS_ERR(peer)) { 997 NL_SET_BAD_ATTR(extack, nla); 998 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 999 return PTR_ERR(peer); 1000 } 1001 1002 if (tb[NETNSA_TARGET_NSID]) { 1003 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 1004 1005 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 1006 if (IS_ERR(target)) { 1007 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 1008 NL_SET_ERR_MSG(extack, 1009 "Target netns reference is invalid"); 1010 err = PTR_ERR(target); 1011 goto out; 1012 } 1013 fillargs.add_ref = true; 1014 fillargs.ref_nsid = peernet2id(net, peer); 1015 } 1016 1017 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1018 if (!msg) { 1019 err = -ENOMEM; 1020 goto out; 1021 } 1022 1023 fillargs.nsid = peernet2id(target, peer); 1024 err = rtnl_net_fill(msg, &fillargs); 1025 if (err < 0) 1026 goto err_out; 1027 1028 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 1029 goto out; 1030 1031 err_out: 1032 nlmsg_free(msg); 1033 out: 1034 if (fillargs.add_ref) 1035 put_net(target); 1036 put_net(peer); 1037 return err; 1038 } 1039 1040 struct rtnl_net_dump_cb { 1041 struct net *tgt_net; 1042 struct net *ref_net; 1043 struct sk_buff *skb; 1044 struct net_fill_args fillargs; 1045 int idx; 1046 int s_idx; 1047 }; 1048 1049 /* Runs in RCU-critical section. */ 1050 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1051 { 1052 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1053 int ret; 1054 1055 if (net_cb->idx < net_cb->s_idx) 1056 goto cont; 1057 1058 net_cb->fillargs.nsid = id; 1059 if (net_cb->fillargs.add_ref) 1060 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1061 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1062 if (ret < 0) 1063 return ret; 1064 1065 cont: 1066 net_cb->idx++; 1067 return 0; 1068 } 1069 1070 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1071 struct rtnl_net_dump_cb *net_cb, 1072 struct netlink_callback *cb) 1073 { 1074 struct netlink_ext_ack *extack = cb->extack; 1075 struct nlattr *tb[NETNSA_MAX + 1]; 1076 int err, i; 1077 1078 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1079 NETNSA_MAX, rtnl_net_policy, 1080 extack); 1081 if (err < 0) 1082 return err; 1083 1084 for (i = 0; i <= NETNSA_MAX; i++) { 1085 if (!tb[i]) 1086 continue; 1087 1088 if (i == NETNSA_TARGET_NSID) { 1089 struct net *net; 1090 1091 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1092 if (IS_ERR(net)) { 1093 NL_SET_BAD_ATTR(extack, tb[i]); 1094 NL_SET_ERR_MSG(extack, 1095 "Invalid target network namespace id"); 1096 return PTR_ERR(net); 1097 } 1098 net_cb->fillargs.add_ref = true; 1099 net_cb->ref_net = net_cb->tgt_net; 1100 net_cb->tgt_net = net; 1101 } else { 1102 NL_SET_BAD_ATTR(extack, tb[i]); 1103 NL_SET_ERR_MSG(extack, 1104 "Unsupported attribute in dump request"); 1105 return -EINVAL; 1106 } 1107 } 1108 1109 return 0; 1110 } 1111 1112 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1113 { 1114 struct rtnl_net_dump_cb net_cb = { 1115 .tgt_net = sock_net(skb->sk), 1116 .skb = skb, 1117 .fillargs = { 1118 .portid = NETLINK_CB(cb->skb).portid, 1119 .seq = cb->nlh->nlmsg_seq, 1120 .flags = NLM_F_MULTI, 1121 .cmd = RTM_NEWNSID, 1122 }, 1123 .idx = 0, 1124 .s_idx = cb->args[0], 1125 }; 1126 int err = 0; 1127 1128 if (cb->strict_check) { 1129 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1130 if (err < 0) 1131 goto end; 1132 } 1133 1134 rcu_read_lock(); 1135 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1136 rcu_read_unlock(); 1137 1138 cb->args[0] = net_cb.idx; 1139 end: 1140 if (net_cb.fillargs.add_ref) 1141 put_net(net_cb.tgt_net); 1142 return err; 1143 } 1144 1145 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1146 struct nlmsghdr *nlh, gfp_t gfp) 1147 { 1148 struct net_fill_args fillargs = { 1149 .portid = portid, 1150 .seq = nlh ? nlh->nlmsg_seq : 0, 1151 .cmd = cmd, 1152 .nsid = id, 1153 }; 1154 struct sk_buff *msg; 1155 int err = -ENOMEM; 1156 1157 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1158 if (!msg) 1159 goto out; 1160 1161 err = rtnl_net_fill(msg, &fillargs); 1162 if (err < 0) 1163 goto err_out; 1164 1165 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1166 return; 1167 1168 err_out: 1169 nlmsg_free(msg); 1170 out: 1171 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1172 } 1173 1174 #ifdef CONFIG_NET_NS 1175 static void __init netns_ipv4_struct_check(void) 1176 { 1177 /* TX readonly hotpath cache lines */ 1178 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1179 sysctl_tcp_early_retrans); 1180 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1181 sysctl_tcp_tso_win_divisor); 1182 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1183 sysctl_tcp_tso_rtt_log); 1184 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1185 sysctl_tcp_autocorking); 1186 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1187 sysctl_tcp_min_snd_mss); 1188 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1189 sysctl_tcp_notsent_lowat); 1190 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1191 sysctl_tcp_limit_output_bytes); 1192 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1193 sysctl_tcp_min_rtt_wlen); 1194 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1195 sysctl_tcp_wmem); 1196 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1197 sysctl_ip_fwd_use_pmtu); 1198 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1199 1200 /* TXRX readonly hotpath cache lines */ 1201 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1202 sysctl_tcp_moderate_rcvbuf); 1203 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1204 1205 /* RX readonly hotpath cache line */ 1206 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1207 sysctl_ip_early_demux); 1208 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1209 sysctl_tcp_early_demux); 1210 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1211 sysctl_tcp_l3mdev_accept); 1212 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1213 sysctl_tcp_reordering); 1214 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1215 sysctl_tcp_rmem); 1216 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1217 } 1218 #endif 1219 1220 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1221 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1222 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1223 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1224 .dumpit = rtnl_net_dumpid, 1225 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1226 }; 1227 1228 void __init net_ns_init(void) 1229 { 1230 struct net_generic *ng; 1231 1232 #ifdef CONFIG_NET_NS 1233 netns_ipv4_struct_check(); 1234 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1235 SMP_CACHE_BYTES, 1236 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1237 1238 /* Create workqueue for cleanup */ 1239 netns_wq = create_singlethread_workqueue("netns"); 1240 if (!netns_wq) 1241 panic("Could not create netns workq"); 1242 #endif 1243 1244 ng = net_alloc_generic(); 1245 if (!ng) 1246 panic("Could not allocate generic netns"); 1247 1248 rcu_assign_pointer(init_net.gen, ng); 1249 1250 #ifdef CONFIG_KEYS 1251 init_net.key_domain = &init_net_key_domain; 1252 #endif 1253 preinit_net(&init_net, &init_user_ns); 1254 1255 down_write(&pernet_ops_rwsem); 1256 if (setup_net(&init_net)) 1257 panic("Could not setup the initial network namespace"); 1258 1259 init_net_initialized = true; 1260 up_write(&pernet_ops_rwsem); 1261 1262 if (register_pernet_subsys(&net_ns_ops)) 1263 panic("Could not register network namespace subsystems"); 1264 1265 rtnl_register_many(net_ns_rtnl_msg_handlers); 1266 } 1267 1268 #ifdef CONFIG_NET_NS 1269 static int __register_pernet_operations(struct list_head *list, 1270 struct pernet_operations *ops) 1271 { 1272 LIST_HEAD(net_exit_list); 1273 struct net *net; 1274 int error; 1275 1276 list_add_tail(&ops->list, list); 1277 if (ops->init || ops->id) { 1278 /* We held write locked pernet_ops_rwsem, and parallel 1279 * setup_net() and cleanup_net() are not possible. 1280 */ 1281 for_each_net(net) { 1282 error = ops_init(ops, net); 1283 if (error) 1284 goto out_undo; 1285 list_add_tail(&net->exit_list, &net_exit_list); 1286 } 1287 } 1288 return 0; 1289 1290 out_undo: 1291 /* If I have an error cleanup all namespaces I initialized */ 1292 list_del(&ops->list); 1293 ops_undo_single(ops, &net_exit_list); 1294 return error; 1295 } 1296 1297 static void __unregister_pernet_operations(struct pernet_operations *ops) 1298 { 1299 LIST_HEAD(net_exit_list); 1300 struct net *net; 1301 1302 /* See comment in __register_pernet_operations() */ 1303 for_each_net(net) 1304 list_add_tail(&net->exit_list, &net_exit_list); 1305 1306 list_del(&ops->list); 1307 ops_undo_single(ops, &net_exit_list); 1308 } 1309 1310 #else 1311 1312 static int __register_pernet_operations(struct list_head *list, 1313 struct pernet_operations *ops) 1314 { 1315 list_add_tail(&ops->list, list); 1316 1317 if (!init_net_initialized) 1318 return 0; 1319 1320 return ops_init(ops, &init_net); 1321 } 1322 1323 static void __unregister_pernet_operations(struct pernet_operations *ops) 1324 { 1325 list_del(&ops->list); 1326 1327 if (init_net_initialized) { 1328 LIST_HEAD(net_exit_list); 1329 1330 list_add(&init_net.exit_list, &net_exit_list); 1331 ops_undo_single(ops, &net_exit_list); 1332 } 1333 } 1334 1335 #endif /* CONFIG_NET_NS */ 1336 1337 static DEFINE_IDA(net_generic_ids); 1338 1339 static int register_pernet_operations(struct list_head *list, 1340 struct pernet_operations *ops) 1341 { 1342 int error; 1343 1344 if (WARN_ON(!!ops->id ^ !!ops->size)) 1345 return -EINVAL; 1346 1347 if (ops->id) { 1348 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1349 GFP_KERNEL); 1350 if (error < 0) 1351 return error; 1352 *ops->id = error; 1353 /* This does not require READ_ONCE as writers already hold 1354 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1355 * net_alloc_generic. 1356 */ 1357 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1358 } 1359 error = __register_pernet_operations(list, ops); 1360 if (error) { 1361 rcu_barrier(); 1362 if (ops->id) 1363 ida_free(&net_generic_ids, *ops->id); 1364 } 1365 1366 return error; 1367 } 1368 1369 static void unregister_pernet_operations(struct pernet_operations *ops) 1370 { 1371 __unregister_pernet_operations(ops); 1372 rcu_barrier(); 1373 if (ops->id) 1374 ida_free(&net_generic_ids, *ops->id); 1375 } 1376 1377 /** 1378 * register_pernet_subsys - register a network namespace subsystem 1379 * @ops: pernet operations structure for the subsystem 1380 * 1381 * Register a subsystem which has init and exit functions 1382 * that are called when network namespaces are created and 1383 * destroyed respectively. 1384 * 1385 * When registered all network namespace init functions are 1386 * called for every existing network namespace. Allowing kernel 1387 * modules to have a race free view of the set of network namespaces. 1388 * 1389 * When a new network namespace is created all of the init 1390 * methods are called in the order in which they were registered. 1391 * 1392 * When a network namespace is destroyed all of the exit methods 1393 * are called in the reverse of the order with which they were 1394 * registered. 1395 */ 1396 int register_pernet_subsys(struct pernet_operations *ops) 1397 { 1398 int error; 1399 down_write(&pernet_ops_rwsem); 1400 error = register_pernet_operations(first_device, ops); 1401 up_write(&pernet_ops_rwsem); 1402 return error; 1403 } 1404 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1405 1406 /** 1407 * unregister_pernet_subsys - unregister a network namespace subsystem 1408 * @ops: pernet operations structure to manipulate 1409 * 1410 * Remove the pernet operations structure from the list to be 1411 * used when network namespaces are created or destroyed. In 1412 * addition run the exit method for all existing network 1413 * namespaces. 1414 */ 1415 void unregister_pernet_subsys(struct pernet_operations *ops) 1416 { 1417 down_write(&pernet_ops_rwsem); 1418 unregister_pernet_operations(ops); 1419 up_write(&pernet_ops_rwsem); 1420 } 1421 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1422 1423 /** 1424 * register_pernet_device - register a network namespace device 1425 * @ops: pernet operations structure for the subsystem 1426 * 1427 * Register a device which has init and exit functions 1428 * that are called when network namespaces are created and 1429 * destroyed respectively. 1430 * 1431 * When registered all network namespace init functions are 1432 * called for every existing network namespace. Allowing kernel 1433 * modules to have a race free view of the set of network namespaces. 1434 * 1435 * When a new network namespace is created all of the init 1436 * methods are called in the order in which they were registered. 1437 * 1438 * When a network namespace is destroyed all of the exit methods 1439 * are called in the reverse of the order with which they were 1440 * registered. 1441 */ 1442 int register_pernet_device(struct pernet_operations *ops) 1443 { 1444 int error; 1445 down_write(&pernet_ops_rwsem); 1446 error = register_pernet_operations(&pernet_list, ops); 1447 if (!error && (first_device == &pernet_list)) 1448 first_device = &ops->list; 1449 up_write(&pernet_ops_rwsem); 1450 return error; 1451 } 1452 EXPORT_SYMBOL_GPL(register_pernet_device); 1453 1454 /** 1455 * unregister_pernet_device - unregister a network namespace netdevice 1456 * @ops: pernet operations structure to manipulate 1457 * 1458 * Remove the pernet operations structure from the list to be 1459 * used when network namespaces are created or destroyed. In 1460 * addition run the exit method for all existing network 1461 * namespaces. 1462 */ 1463 void unregister_pernet_device(struct pernet_operations *ops) 1464 { 1465 down_write(&pernet_ops_rwsem); 1466 if (&ops->list == first_device) 1467 first_device = first_device->next; 1468 unregister_pernet_operations(ops); 1469 up_write(&pernet_ops_rwsem); 1470 } 1471 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1472 1473 #ifdef CONFIG_NET_NS 1474 static struct ns_common *netns_get(struct task_struct *task) 1475 { 1476 struct net *net = NULL; 1477 struct nsproxy *nsproxy; 1478 1479 task_lock(task); 1480 nsproxy = task->nsproxy; 1481 if (nsproxy) 1482 net = get_net(nsproxy->net_ns); 1483 task_unlock(task); 1484 1485 return net ? &net->ns : NULL; 1486 } 1487 1488 static inline struct net *to_net_ns(struct ns_common *ns) 1489 { 1490 return container_of(ns, struct net, ns); 1491 } 1492 1493 static void netns_put(struct ns_common *ns) 1494 { 1495 put_net(to_net_ns(ns)); 1496 } 1497 1498 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1499 { 1500 struct nsproxy *nsproxy = nsset->nsproxy; 1501 struct net *net = to_net_ns(ns); 1502 1503 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1504 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1505 return -EPERM; 1506 1507 put_net(nsproxy->net_ns); 1508 nsproxy->net_ns = get_net(net); 1509 return 0; 1510 } 1511 1512 static struct user_namespace *netns_owner(struct ns_common *ns) 1513 { 1514 return to_net_ns(ns)->user_ns; 1515 } 1516 1517 const struct proc_ns_operations netns_operations = { 1518 .name = "net", 1519 .type = CLONE_NEWNET, 1520 .get = netns_get, 1521 .put = netns_put, 1522 .install = netns_install, 1523 .owner = netns_owner, 1524 }; 1525 #endif 1526