1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 DEFINE_COOKIE(net_cookie); 68 69 static struct net_generic *net_alloc_generic(void) 70 { 71 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 72 unsigned int generic_size; 73 struct net_generic *ng; 74 75 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (!ng) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 struct net_generic *ng; 124 int err = -ENOMEM; 125 void *data = NULL; 126 127 if (ops->id) { 128 data = kzalloc(ops->size, GFP_KERNEL); 129 if (!data) 130 goto out; 131 132 err = net_assign_generic(net, *ops->id, data); 133 if (err) 134 goto cleanup; 135 } 136 err = 0; 137 if (ops->init) 138 err = ops->init(net); 139 if (!err) 140 return 0; 141 142 if (ops->id) { 143 ng = rcu_dereference_protected(net->gen, 144 lockdep_is_held(&pernet_ops_rwsem)); 145 ng->ptr[*ops->id] = NULL; 146 } 147 148 cleanup: 149 kfree(data); 150 151 out: 152 return err; 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_list(const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 struct net *net; 170 if (ops->exit) { 171 list_for_each_entry(net, net_exit_list, exit_list) { 172 ops->exit(net); 173 cond_resched(); 174 } 175 } 176 if (ops->exit_batch) 177 ops->exit_batch(net_exit_list); 178 } 179 180 static void ops_free_list(const struct pernet_operations *ops, 181 struct list_head *net_exit_list) 182 { 183 struct net *net; 184 185 if (ops->id) { 186 list_for_each_entry(net, net_exit_list, exit_list) 187 kfree(net_generic(net, *ops->id)); 188 } 189 } 190 191 /* should be called with nsid_lock held */ 192 static int alloc_netid(struct net *net, struct net *peer, int reqid) 193 { 194 int min = 0, max = 0; 195 196 if (reqid >= 0) { 197 min = reqid; 198 max = reqid + 1; 199 } 200 201 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 202 } 203 204 /* This function is used by idr_for_each(). If net is equal to peer, the 205 * function returns the id so that idr_for_each() stops. Because we cannot 206 * returns the id 0 (idr_for_each() will not stop), we return the magic value 207 * NET_ID_ZERO (-1) for it. 208 */ 209 #define NET_ID_ZERO -1 210 static int net_eq_idr(int id, void *net, void *peer) 211 { 212 if (net_eq(net, peer)) 213 return id ? : NET_ID_ZERO; 214 return 0; 215 } 216 217 /* Must be called from RCU-critical section or with nsid_lock held */ 218 static int __peernet2id(const struct net *net, struct net *peer) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 222 /* Magic value for id 0. */ 223 if (id == NET_ID_ZERO) 224 return 0; 225 if (id > 0) 226 return id; 227 228 return NETNSA_NSID_NOT_ASSIGNED; 229 } 230 231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 232 struct nlmsghdr *nlh, gfp_t gfp); 233 /* This function returns the id of a peer netns. If no id is assigned, one will 234 * be allocated and returned. 235 */ 236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 237 { 238 int id; 239 240 if (refcount_read(&net->ns.count) == 0) 241 return NETNSA_NSID_NOT_ASSIGNED; 242 243 spin_lock_bh(&net->nsid_lock); 244 id = __peernet2id(net, peer); 245 if (id >= 0) { 246 spin_unlock_bh(&net->nsid_lock); 247 return id; 248 } 249 250 /* When peer is obtained from RCU lists, we may race with 251 * its cleanup. Check whether it's alive, and this guarantees 252 * we never hash a peer back to net->netns_ids, after it has 253 * just been idr_remove()'d from there in cleanup_net(). 254 */ 255 if (!maybe_get_net(peer)) { 256 spin_unlock_bh(&net->nsid_lock); 257 return NETNSA_NSID_NOT_ASSIGNED; 258 } 259 260 id = alloc_netid(net, peer, -1); 261 spin_unlock_bh(&net->nsid_lock); 262 263 put_net(peer); 264 if (id < 0) 265 return NETNSA_NSID_NOT_ASSIGNED; 266 267 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 268 269 return id; 270 } 271 EXPORT_SYMBOL_GPL(peernet2id_alloc); 272 273 /* This function returns, if assigned, the id of a peer netns. */ 274 int peernet2id(const struct net *net, struct net *peer) 275 { 276 int id; 277 278 rcu_read_lock(); 279 id = __peernet2id(net, peer); 280 rcu_read_unlock(); 281 282 return id; 283 } 284 EXPORT_SYMBOL(peernet2id); 285 286 /* This function returns true is the peer netns has an id assigned into the 287 * current netns. 288 */ 289 bool peernet_has_id(const struct net *net, struct net *peer) 290 { 291 return peernet2id(net, peer) >= 0; 292 } 293 294 struct net *get_net_ns_by_id(const struct net *net, int id) 295 { 296 struct net *peer; 297 298 if (id < 0) 299 return NULL; 300 301 rcu_read_lock(); 302 peer = idr_find(&net->netns_ids, id); 303 if (peer) 304 peer = maybe_get_net(peer); 305 rcu_read_unlock(); 306 307 return peer; 308 } 309 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 310 311 static __net_init void preinit_net_sysctl(struct net *net) 312 { 313 net->core.sysctl_somaxconn = SOMAXCONN; 314 /* Limits per socket sk_omem_alloc usage. 315 * TCP zerocopy regular usage needs 128 KB. 316 */ 317 net->core.sysctl_optmem_max = 128 * 1024; 318 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 319 net->core.sysctl_tstamp_allow_data = 1; 320 } 321 322 /* init code that must occur even if setup_net() is not called. */ 323 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 324 { 325 refcount_set(&net->passive, 1); 326 refcount_set(&net->ns.count, 1); 327 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 328 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 329 330 get_random_bytes(&net->hash_mix, sizeof(u32)); 331 net->dev_base_seq = 1; 332 net->user_ns = user_ns; 333 334 idr_init(&net->netns_ids); 335 spin_lock_init(&net->nsid_lock); 336 mutex_init(&net->ipv4.ra_mutex); 337 338 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 339 mutex_init(&net->rtnl_mutex); 340 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 341 #endif 342 343 preinit_net_sysctl(net); 344 } 345 346 /* 347 * setup_net runs the initializers for the network namespace object. 348 */ 349 static __net_init int setup_net(struct net *net) 350 { 351 /* Must be called with pernet_ops_rwsem held */ 352 const struct pernet_operations *ops, *saved_ops; 353 LIST_HEAD(net_exit_list); 354 LIST_HEAD(dev_kill_list); 355 int error = 0; 356 357 preempt_disable(); 358 net->net_cookie = gen_cookie_next(&net_cookie); 359 preempt_enable(); 360 361 list_for_each_entry(ops, &pernet_list, list) { 362 error = ops_init(ops, net); 363 if (error < 0) 364 goto out_undo; 365 } 366 down_write(&net_rwsem); 367 list_add_tail_rcu(&net->list, &net_namespace_list); 368 up_write(&net_rwsem); 369 out: 370 return error; 371 372 out_undo: 373 /* Walk through the list backwards calling the exit functions 374 * for the pernet modules whose init functions did not fail. 375 */ 376 list_add(&net->exit_list, &net_exit_list); 377 saved_ops = ops; 378 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 379 ops_pre_exit_list(ops, &net_exit_list); 380 381 synchronize_rcu(); 382 383 ops = saved_ops; 384 rtnl_lock(); 385 list_for_each_entry_continue_reverse(ops, &pernet_list, list) { 386 if (ops->exit_batch_rtnl) 387 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 388 } 389 unregister_netdevice_many(&dev_kill_list); 390 rtnl_unlock(); 391 392 ops = saved_ops; 393 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 394 ops_exit_list(ops, &net_exit_list); 395 396 ops = saved_ops; 397 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 398 ops_free_list(ops, &net_exit_list); 399 400 rcu_barrier(); 401 goto out; 402 } 403 404 #ifdef CONFIG_NET_NS 405 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 406 { 407 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 408 } 409 410 static void dec_net_namespaces(struct ucounts *ucounts) 411 { 412 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 413 } 414 415 static struct kmem_cache *net_cachep __ro_after_init; 416 static struct workqueue_struct *netns_wq; 417 418 static struct net *net_alloc(void) 419 { 420 struct net *net = NULL; 421 struct net_generic *ng; 422 423 ng = net_alloc_generic(); 424 if (!ng) 425 goto out; 426 427 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 428 if (!net) 429 goto out_free; 430 431 #ifdef CONFIG_KEYS 432 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 433 if (!net->key_domain) 434 goto out_free_2; 435 refcount_set(&net->key_domain->usage, 1); 436 #endif 437 438 rcu_assign_pointer(net->gen, ng); 439 out: 440 return net; 441 442 #ifdef CONFIG_KEYS 443 out_free_2: 444 kmem_cache_free(net_cachep, net); 445 net = NULL; 446 #endif 447 out_free: 448 kfree(ng); 449 goto out; 450 } 451 452 static LLIST_HEAD(defer_free_list); 453 454 static void net_complete_free(void) 455 { 456 struct llist_node *kill_list; 457 struct net *net, *next; 458 459 /* Get the list of namespaces to free from last round. */ 460 kill_list = llist_del_all(&defer_free_list); 461 462 llist_for_each_entry_safe(net, next, kill_list, defer_free_list) 463 kmem_cache_free(net_cachep, net); 464 465 } 466 467 static void net_free(struct net *net) 468 { 469 if (refcount_dec_and_test(&net->passive)) { 470 kfree(rcu_access_pointer(net->gen)); 471 472 /* There should not be any trackers left there. */ 473 ref_tracker_dir_exit(&net->notrefcnt_tracker); 474 475 /* Wait for an extra rcu_barrier() before final free. */ 476 llist_add(&net->defer_free_list, &defer_free_list); 477 } 478 } 479 480 void net_drop_ns(void *p) 481 { 482 struct net *net = (struct net *)p; 483 484 if (net) 485 net_free(net); 486 } 487 488 struct net *copy_net_ns(unsigned long flags, 489 struct user_namespace *user_ns, struct net *old_net) 490 { 491 struct ucounts *ucounts; 492 struct net *net; 493 int rv; 494 495 if (!(flags & CLONE_NEWNET)) 496 return get_net(old_net); 497 498 ucounts = inc_net_namespaces(user_ns); 499 if (!ucounts) 500 return ERR_PTR(-ENOSPC); 501 502 net = net_alloc(); 503 if (!net) { 504 rv = -ENOMEM; 505 goto dec_ucounts; 506 } 507 508 preinit_net(net, user_ns); 509 net->ucounts = ucounts; 510 get_user_ns(user_ns); 511 512 rv = down_read_killable(&pernet_ops_rwsem); 513 if (rv < 0) 514 goto put_userns; 515 516 rv = setup_net(net); 517 518 up_read(&pernet_ops_rwsem); 519 520 if (rv < 0) { 521 put_userns: 522 #ifdef CONFIG_KEYS 523 key_remove_domain(net->key_domain); 524 #endif 525 put_user_ns(user_ns); 526 net_free(net); 527 dec_ucounts: 528 dec_net_namespaces(ucounts); 529 return ERR_PTR(rv); 530 } 531 return net; 532 } 533 534 /** 535 * net_ns_get_ownership - get sysfs ownership data for @net 536 * @net: network namespace in question (can be NULL) 537 * @uid: kernel user ID for sysfs objects 538 * @gid: kernel group ID for sysfs objects 539 * 540 * Returns the uid/gid pair of root in the user namespace associated with the 541 * given network namespace. 542 */ 543 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 544 { 545 if (net) { 546 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 547 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 548 549 if (uid_valid(ns_root_uid)) 550 *uid = ns_root_uid; 551 552 if (gid_valid(ns_root_gid)) 553 *gid = ns_root_gid; 554 } else { 555 *uid = GLOBAL_ROOT_UID; 556 *gid = GLOBAL_ROOT_GID; 557 } 558 } 559 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 560 561 static void unhash_nsid(struct net *net, struct net *last) 562 { 563 struct net *tmp; 564 /* This function is only called from cleanup_net() work, 565 * and this work is the only process, that may delete 566 * a net from net_namespace_list. So, when the below 567 * is executing, the list may only grow. Thus, we do not 568 * use for_each_net_rcu() or net_rwsem. 569 */ 570 for_each_net(tmp) { 571 int id; 572 573 spin_lock_bh(&tmp->nsid_lock); 574 id = __peernet2id(tmp, net); 575 if (id >= 0) 576 idr_remove(&tmp->netns_ids, id); 577 spin_unlock_bh(&tmp->nsid_lock); 578 if (id >= 0) 579 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 580 GFP_KERNEL); 581 if (tmp == last) 582 break; 583 } 584 spin_lock_bh(&net->nsid_lock); 585 idr_destroy(&net->netns_ids); 586 spin_unlock_bh(&net->nsid_lock); 587 } 588 589 static LLIST_HEAD(cleanup_list); 590 591 static void cleanup_net(struct work_struct *work) 592 { 593 const struct pernet_operations *ops; 594 struct net *net, *tmp, *last; 595 struct llist_node *net_kill_list; 596 LIST_HEAD(net_exit_list); 597 LIST_HEAD(dev_kill_list); 598 599 /* Atomically snapshot the list of namespaces to cleanup */ 600 net_kill_list = llist_del_all(&cleanup_list); 601 602 down_read(&pernet_ops_rwsem); 603 604 /* Don't let anyone else find us. */ 605 down_write(&net_rwsem); 606 llist_for_each_entry(net, net_kill_list, cleanup_list) 607 list_del_rcu(&net->list); 608 /* Cache last net. After we unlock rtnl, no one new net 609 * added to net_namespace_list can assign nsid pointer 610 * to a net from net_kill_list (see peernet2id_alloc()). 611 * So, we skip them in unhash_nsid(). 612 * 613 * Note, that unhash_nsid() does not delete nsid links 614 * between net_kill_list's nets, as they've already 615 * deleted from net_namespace_list. But, this would be 616 * useless anyway, as netns_ids are destroyed there. 617 */ 618 last = list_last_entry(&net_namespace_list, struct net, list); 619 up_write(&net_rwsem); 620 621 llist_for_each_entry(net, net_kill_list, cleanup_list) { 622 unhash_nsid(net, last); 623 list_add_tail(&net->exit_list, &net_exit_list); 624 } 625 626 /* Run all of the network namespace pre_exit methods */ 627 list_for_each_entry_reverse(ops, &pernet_list, list) 628 ops_pre_exit_list(ops, &net_exit_list); 629 630 /* 631 * Another CPU might be rcu-iterating the list, wait for it. 632 * This needs to be before calling the exit() notifiers, so 633 * the rcu_barrier() below isn't sufficient alone. 634 * Also the pre_exit() and exit() methods need this barrier. 635 */ 636 synchronize_rcu_expedited(); 637 638 rtnl_lock(); 639 list_for_each_entry_reverse(ops, &pernet_list, list) { 640 if (ops->exit_batch_rtnl) 641 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 642 } 643 unregister_netdevice_many(&dev_kill_list); 644 rtnl_unlock(); 645 646 /* Run all of the network namespace exit methods */ 647 list_for_each_entry_reverse(ops, &pernet_list, list) 648 ops_exit_list(ops, &net_exit_list); 649 650 /* Free the net generic variables */ 651 list_for_each_entry_reverse(ops, &pernet_list, list) 652 ops_free_list(ops, &net_exit_list); 653 654 up_read(&pernet_ops_rwsem); 655 656 /* Ensure there are no outstanding rcu callbacks using this 657 * network namespace. 658 */ 659 rcu_barrier(); 660 661 net_complete_free(); 662 663 /* Finally it is safe to free my network namespace structure */ 664 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 665 list_del_init(&net->exit_list); 666 dec_net_namespaces(net->ucounts); 667 #ifdef CONFIG_KEYS 668 key_remove_domain(net->key_domain); 669 #endif 670 put_user_ns(net->user_ns); 671 net_free(net); 672 } 673 } 674 675 /** 676 * net_ns_barrier - wait until concurrent net_cleanup_work is done 677 * 678 * cleanup_net runs from work queue and will first remove namespaces 679 * from the global list, then run net exit functions. 680 * 681 * Call this in module exit path to make sure that all netns 682 * ->exit ops have been invoked before the function is removed. 683 */ 684 void net_ns_barrier(void) 685 { 686 down_write(&pernet_ops_rwsem); 687 up_write(&pernet_ops_rwsem); 688 } 689 EXPORT_SYMBOL(net_ns_barrier); 690 691 static DECLARE_WORK(net_cleanup_work, cleanup_net); 692 693 void __put_net(struct net *net) 694 { 695 ref_tracker_dir_exit(&net->refcnt_tracker); 696 /* Cleanup the network namespace in process context */ 697 if (llist_add(&net->cleanup_list, &cleanup_list)) 698 queue_work(netns_wq, &net_cleanup_work); 699 } 700 EXPORT_SYMBOL_GPL(__put_net); 701 702 /** 703 * get_net_ns - increment the refcount of the network namespace 704 * @ns: common namespace (net) 705 * 706 * Returns the net's common namespace or ERR_PTR() if ref is zero. 707 */ 708 struct ns_common *get_net_ns(struct ns_common *ns) 709 { 710 struct net *net; 711 712 net = maybe_get_net(container_of(ns, struct net, ns)); 713 if (net) 714 return &net->ns; 715 return ERR_PTR(-EINVAL); 716 } 717 EXPORT_SYMBOL_GPL(get_net_ns); 718 719 struct net *get_net_ns_by_fd(int fd) 720 { 721 CLASS(fd, f)(fd); 722 723 if (fd_empty(f)) 724 return ERR_PTR(-EBADF); 725 726 if (proc_ns_file(fd_file(f))) { 727 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 728 if (ns->ops == &netns_operations) 729 return get_net(container_of(ns, struct net, ns)); 730 } 731 732 return ERR_PTR(-EINVAL); 733 } 734 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 735 #endif 736 737 struct net *get_net_ns_by_pid(pid_t pid) 738 { 739 struct task_struct *tsk; 740 struct net *net; 741 742 /* Lookup the network namespace */ 743 net = ERR_PTR(-ESRCH); 744 rcu_read_lock(); 745 tsk = find_task_by_vpid(pid); 746 if (tsk) { 747 struct nsproxy *nsproxy; 748 task_lock(tsk); 749 nsproxy = tsk->nsproxy; 750 if (nsproxy) 751 net = get_net(nsproxy->net_ns); 752 task_unlock(tsk); 753 } 754 rcu_read_unlock(); 755 return net; 756 } 757 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 758 759 static __net_init int net_ns_net_init(struct net *net) 760 { 761 #ifdef CONFIG_NET_NS 762 net->ns.ops = &netns_operations; 763 #endif 764 return ns_alloc_inum(&net->ns); 765 } 766 767 static __net_exit void net_ns_net_exit(struct net *net) 768 { 769 ns_free_inum(&net->ns); 770 } 771 772 static struct pernet_operations __net_initdata net_ns_ops = { 773 .init = net_ns_net_init, 774 .exit = net_ns_net_exit, 775 }; 776 777 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 778 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 779 [NETNSA_NSID] = { .type = NLA_S32 }, 780 [NETNSA_PID] = { .type = NLA_U32 }, 781 [NETNSA_FD] = { .type = NLA_U32 }, 782 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 783 }; 784 785 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 786 struct netlink_ext_ack *extack) 787 { 788 struct net *net = sock_net(skb->sk); 789 struct nlattr *tb[NETNSA_MAX + 1]; 790 struct nlattr *nla; 791 struct net *peer; 792 int nsid, err; 793 794 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 795 NETNSA_MAX, rtnl_net_policy, extack); 796 if (err < 0) 797 return err; 798 if (!tb[NETNSA_NSID]) { 799 NL_SET_ERR_MSG(extack, "nsid is missing"); 800 return -EINVAL; 801 } 802 nsid = nla_get_s32(tb[NETNSA_NSID]); 803 804 if (tb[NETNSA_PID]) { 805 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 806 nla = tb[NETNSA_PID]; 807 } else if (tb[NETNSA_FD]) { 808 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 809 nla = tb[NETNSA_FD]; 810 } else { 811 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 812 return -EINVAL; 813 } 814 if (IS_ERR(peer)) { 815 NL_SET_BAD_ATTR(extack, nla); 816 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 817 return PTR_ERR(peer); 818 } 819 820 spin_lock_bh(&net->nsid_lock); 821 if (__peernet2id(net, peer) >= 0) { 822 spin_unlock_bh(&net->nsid_lock); 823 err = -EEXIST; 824 NL_SET_BAD_ATTR(extack, nla); 825 NL_SET_ERR_MSG(extack, 826 "Peer netns already has a nsid assigned"); 827 goto out; 828 } 829 830 err = alloc_netid(net, peer, nsid); 831 spin_unlock_bh(&net->nsid_lock); 832 if (err >= 0) { 833 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 834 nlh, GFP_KERNEL); 835 err = 0; 836 } else if (err == -ENOSPC && nsid >= 0) { 837 err = -EEXIST; 838 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 839 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 840 } 841 out: 842 put_net(peer); 843 return err; 844 } 845 846 static int rtnl_net_get_size(void) 847 { 848 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 849 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 850 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 851 ; 852 } 853 854 struct net_fill_args { 855 u32 portid; 856 u32 seq; 857 int flags; 858 int cmd; 859 int nsid; 860 bool add_ref; 861 int ref_nsid; 862 }; 863 864 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 865 { 866 struct nlmsghdr *nlh; 867 struct rtgenmsg *rth; 868 869 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 870 args->flags); 871 if (!nlh) 872 return -EMSGSIZE; 873 874 rth = nlmsg_data(nlh); 875 rth->rtgen_family = AF_UNSPEC; 876 877 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 878 goto nla_put_failure; 879 880 if (args->add_ref && 881 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 882 goto nla_put_failure; 883 884 nlmsg_end(skb, nlh); 885 return 0; 886 887 nla_put_failure: 888 nlmsg_cancel(skb, nlh); 889 return -EMSGSIZE; 890 } 891 892 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 893 const struct nlmsghdr *nlh, 894 struct nlattr **tb, 895 struct netlink_ext_ack *extack) 896 { 897 int i, err; 898 899 if (!netlink_strict_get_check(skb)) 900 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 901 tb, NETNSA_MAX, rtnl_net_policy, 902 extack); 903 904 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 905 NETNSA_MAX, rtnl_net_policy, 906 extack); 907 if (err) 908 return err; 909 910 for (i = 0; i <= NETNSA_MAX; i++) { 911 if (!tb[i]) 912 continue; 913 914 switch (i) { 915 case NETNSA_PID: 916 case NETNSA_FD: 917 case NETNSA_NSID: 918 case NETNSA_TARGET_NSID: 919 break; 920 default: 921 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 922 return -EINVAL; 923 } 924 } 925 926 return 0; 927 } 928 929 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 930 struct netlink_ext_ack *extack) 931 { 932 struct net *net = sock_net(skb->sk); 933 struct nlattr *tb[NETNSA_MAX + 1]; 934 struct net_fill_args fillargs = { 935 .portid = NETLINK_CB(skb).portid, 936 .seq = nlh->nlmsg_seq, 937 .cmd = RTM_NEWNSID, 938 }; 939 struct net *peer, *target = net; 940 struct nlattr *nla; 941 struct sk_buff *msg; 942 int err; 943 944 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 945 if (err < 0) 946 return err; 947 if (tb[NETNSA_PID]) { 948 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 949 nla = tb[NETNSA_PID]; 950 } else if (tb[NETNSA_FD]) { 951 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 952 nla = tb[NETNSA_FD]; 953 } else if (tb[NETNSA_NSID]) { 954 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 955 if (!peer) 956 peer = ERR_PTR(-ENOENT); 957 nla = tb[NETNSA_NSID]; 958 } else { 959 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 960 return -EINVAL; 961 } 962 963 if (IS_ERR(peer)) { 964 NL_SET_BAD_ATTR(extack, nla); 965 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 966 return PTR_ERR(peer); 967 } 968 969 if (tb[NETNSA_TARGET_NSID]) { 970 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 971 972 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 973 if (IS_ERR(target)) { 974 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 975 NL_SET_ERR_MSG(extack, 976 "Target netns reference is invalid"); 977 err = PTR_ERR(target); 978 goto out; 979 } 980 fillargs.add_ref = true; 981 fillargs.ref_nsid = peernet2id(net, peer); 982 } 983 984 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 985 if (!msg) { 986 err = -ENOMEM; 987 goto out; 988 } 989 990 fillargs.nsid = peernet2id(target, peer); 991 err = rtnl_net_fill(msg, &fillargs); 992 if (err < 0) 993 goto err_out; 994 995 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 996 goto out; 997 998 err_out: 999 nlmsg_free(msg); 1000 out: 1001 if (fillargs.add_ref) 1002 put_net(target); 1003 put_net(peer); 1004 return err; 1005 } 1006 1007 struct rtnl_net_dump_cb { 1008 struct net *tgt_net; 1009 struct net *ref_net; 1010 struct sk_buff *skb; 1011 struct net_fill_args fillargs; 1012 int idx; 1013 int s_idx; 1014 }; 1015 1016 /* Runs in RCU-critical section. */ 1017 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1018 { 1019 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1020 int ret; 1021 1022 if (net_cb->idx < net_cb->s_idx) 1023 goto cont; 1024 1025 net_cb->fillargs.nsid = id; 1026 if (net_cb->fillargs.add_ref) 1027 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1028 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1029 if (ret < 0) 1030 return ret; 1031 1032 cont: 1033 net_cb->idx++; 1034 return 0; 1035 } 1036 1037 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1038 struct rtnl_net_dump_cb *net_cb, 1039 struct netlink_callback *cb) 1040 { 1041 struct netlink_ext_ack *extack = cb->extack; 1042 struct nlattr *tb[NETNSA_MAX + 1]; 1043 int err, i; 1044 1045 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1046 NETNSA_MAX, rtnl_net_policy, 1047 extack); 1048 if (err < 0) 1049 return err; 1050 1051 for (i = 0; i <= NETNSA_MAX; i++) { 1052 if (!tb[i]) 1053 continue; 1054 1055 if (i == NETNSA_TARGET_NSID) { 1056 struct net *net; 1057 1058 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1059 if (IS_ERR(net)) { 1060 NL_SET_BAD_ATTR(extack, tb[i]); 1061 NL_SET_ERR_MSG(extack, 1062 "Invalid target network namespace id"); 1063 return PTR_ERR(net); 1064 } 1065 net_cb->fillargs.add_ref = true; 1066 net_cb->ref_net = net_cb->tgt_net; 1067 net_cb->tgt_net = net; 1068 } else { 1069 NL_SET_BAD_ATTR(extack, tb[i]); 1070 NL_SET_ERR_MSG(extack, 1071 "Unsupported attribute in dump request"); 1072 return -EINVAL; 1073 } 1074 } 1075 1076 return 0; 1077 } 1078 1079 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1080 { 1081 struct rtnl_net_dump_cb net_cb = { 1082 .tgt_net = sock_net(skb->sk), 1083 .skb = skb, 1084 .fillargs = { 1085 .portid = NETLINK_CB(cb->skb).portid, 1086 .seq = cb->nlh->nlmsg_seq, 1087 .flags = NLM_F_MULTI, 1088 .cmd = RTM_NEWNSID, 1089 }, 1090 .idx = 0, 1091 .s_idx = cb->args[0], 1092 }; 1093 int err = 0; 1094 1095 if (cb->strict_check) { 1096 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1097 if (err < 0) 1098 goto end; 1099 } 1100 1101 rcu_read_lock(); 1102 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1103 rcu_read_unlock(); 1104 1105 cb->args[0] = net_cb.idx; 1106 end: 1107 if (net_cb.fillargs.add_ref) 1108 put_net(net_cb.tgt_net); 1109 return err; 1110 } 1111 1112 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1113 struct nlmsghdr *nlh, gfp_t gfp) 1114 { 1115 struct net_fill_args fillargs = { 1116 .portid = portid, 1117 .seq = nlh ? nlh->nlmsg_seq : 0, 1118 .cmd = cmd, 1119 .nsid = id, 1120 }; 1121 struct sk_buff *msg; 1122 int err = -ENOMEM; 1123 1124 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1125 if (!msg) 1126 goto out; 1127 1128 err = rtnl_net_fill(msg, &fillargs); 1129 if (err < 0) 1130 goto err_out; 1131 1132 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1133 return; 1134 1135 err_out: 1136 nlmsg_free(msg); 1137 out: 1138 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1139 } 1140 1141 #ifdef CONFIG_NET_NS 1142 static void __init netns_ipv4_struct_check(void) 1143 { 1144 /* TX readonly hotpath cache lines */ 1145 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1146 sysctl_tcp_early_retrans); 1147 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1148 sysctl_tcp_tso_win_divisor); 1149 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1150 sysctl_tcp_tso_rtt_log); 1151 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1152 sysctl_tcp_autocorking); 1153 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1154 sysctl_tcp_min_snd_mss); 1155 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1156 sysctl_tcp_notsent_lowat); 1157 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1158 sysctl_tcp_limit_output_bytes); 1159 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1160 sysctl_tcp_min_rtt_wlen); 1161 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1162 sysctl_tcp_wmem); 1163 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1164 sysctl_ip_fwd_use_pmtu); 1165 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1166 1167 /* TXRX readonly hotpath cache lines */ 1168 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1169 sysctl_tcp_moderate_rcvbuf); 1170 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1171 1172 /* RX readonly hotpath cache line */ 1173 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1174 sysctl_ip_early_demux); 1175 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1176 sysctl_tcp_early_demux); 1177 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1178 sysctl_tcp_l3mdev_accept); 1179 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1180 sysctl_tcp_reordering); 1181 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1182 sysctl_tcp_rmem); 1183 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1184 } 1185 #endif 1186 1187 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1188 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1189 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1190 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1191 .dumpit = rtnl_net_dumpid, 1192 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1193 }; 1194 1195 void __init net_ns_init(void) 1196 { 1197 struct net_generic *ng; 1198 1199 #ifdef CONFIG_NET_NS 1200 netns_ipv4_struct_check(); 1201 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1202 SMP_CACHE_BYTES, 1203 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1204 1205 /* Create workqueue for cleanup */ 1206 netns_wq = create_singlethread_workqueue("netns"); 1207 if (!netns_wq) 1208 panic("Could not create netns workq"); 1209 #endif 1210 1211 ng = net_alloc_generic(); 1212 if (!ng) 1213 panic("Could not allocate generic netns"); 1214 1215 rcu_assign_pointer(init_net.gen, ng); 1216 1217 #ifdef CONFIG_KEYS 1218 init_net.key_domain = &init_net_key_domain; 1219 #endif 1220 preinit_net(&init_net, &init_user_ns); 1221 1222 down_write(&pernet_ops_rwsem); 1223 if (setup_net(&init_net)) 1224 panic("Could not setup the initial network namespace"); 1225 1226 init_net_initialized = true; 1227 up_write(&pernet_ops_rwsem); 1228 1229 if (register_pernet_subsys(&net_ns_ops)) 1230 panic("Could not register network namespace subsystems"); 1231 1232 rtnl_register_many(net_ns_rtnl_msg_handlers); 1233 } 1234 1235 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1236 { 1237 ops_pre_exit_list(ops, net_exit_list); 1238 synchronize_rcu(); 1239 1240 if (ops->exit_batch_rtnl) { 1241 LIST_HEAD(dev_kill_list); 1242 1243 rtnl_lock(); 1244 ops->exit_batch_rtnl(net_exit_list, &dev_kill_list); 1245 unregister_netdevice_many(&dev_kill_list); 1246 rtnl_unlock(); 1247 } 1248 ops_exit_list(ops, net_exit_list); 1249 1250 ops_free_list(ops, net_exit_list); 1251 } 1252 1253 #ifdef CONFIG_NET_NS 1254 static int __register_pernet_operations(struct list_head *list, 1255 struct pernet_operations *ops) 1256 { 1257 struct net *net; 1258 int error; 1259 LIST_HEAD(net_exit_list); 1260 1261 list_add_tail(&ops->list, list); 1262 if (ops->init || ops->id) { 1263 /* We held write locked pernet_ops_rwsem, and parallel 1264 * setup_net() and cleanup_net() are not possible. 1265 */ 1266 for_each_net(net) { 1267 error = ops_init(ops, net); 1268 if (error) 1269 goto out_undo; 1270 list_add_tail(&net->exit_list, &net_exit_list); 1271 } 1272 } 1273 return 0; 1274 1275 out_undo: 1276 /* If I have an error cleanup all namespaces I initialized */ 1277 list_del(&ops->list); 1278 free_exit_list(ops, &net_exit_list); 1279 return error; 1280 } 1281 1282 static void __unregister_pernet_operations(struct pernet_operations *ops) 1283 { 1284 struct net *net; 1285 LIST_HEAD(net_exit_list); 1286 1287 list_del(&ops->list); 1288 /* See comment in __register_pernet_operations() */ 1289 for_each_net(net) 1290 list_add_tail(&net->exit_list, &net_exit_list); 1291 1292 free_exit_list(ops, &net_exit_list); 1293 } 1294 1295 #else 1296 1297 static int __register_pernet_operations(struct list_head *list, 1298 struct pernet_operations *ops) 1299 { 1300 if (!init_net_initialized) { 1301 list_add_tail(&ops->list, list); 1302 return 0; 1303 } 1304 1305 return ops_init(ops, &init_net); 1306 } 1307 1308 static void __unregister_pernet_operations(struct pernet_operations *ops) 1309 { 1310 if (!init_net_initialized) { 1311 list_del(&ops->list); 1312 } else { 1313 LIST_HEAD(net_exit_list); 1314 list_add(&init_net.exit_list, &net_exit_list); 1315 free_exit_list(ops, &net_exit_list); 1316 } 1317 } 1318 1319 #endif /* CONFIG_NET_NS */ 1320 1321 static DEFINE_IDA(net_generic_ids); 1322 1323 static int register_pernet_operations(struct list_head *list, 1324 struct pernet_operations *ops) 1325 { 1326 int error; 1327 1328 if (WARN_ON(!!ops->id ^ !!ops->size)) 1329 return -EINVAL; 1330 1331 if (ops->id) { 1332 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1333 GFP_KERNEL); 1334 if (error < 0) 1335 return error; 1336 *ops->id = error; 1337 /* This does not require READ_ONCE as writers already hold 1338 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1339 * net_alloc_generic. 1340 */ 1341 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1342 } 1343 error = __register_pernet_operations(list, ops); 1344 if (error) { 1345 rcu_barrier(); 1346 if (ops->id) 1347 ida_free(&net_generic_ids, *ops->id); 1348 } 1349 1350 return error; 1351 } 1352 1353 static void unregister_pernet_operations(struct pernet_operations *ops) 1354 { 1355 __unregister_pernet_operations(ops); 1356 rcu_barrier(); 1357 if (ops->id) 1358 ida_free(&net_generic_ids, *ops->id); 1359 } 1360 1361 /** 1362 * register_pernet_subsys - register a network namespace subsystem 1363 * @ops: pernet operations structure for the subsystem 1364 * 1365 * Register a subsystem which has init and exit functions 1366 * that are called when network namespaces are created and 1367 * destroyed respectively. 1368 * 1369 * When registered all network namespace init functions are 1370 * called for every existing network namespace. Allowing kernel 1371 * modules to have a race free view of the set of network namespaces. 1372 * 1373 * When a new network namespace is created all of the init 1374 * methods are called in the order in which they were registered. 1375 * 1376 * When a network namespace is destroyed all of the exit methods 1377 * are called in the reverse of the order with which they were 1378 * registered. 1379 */ 1380 int register_pernet_subsys(struct pernet_operations *ops) 1381 { 1382 int error; 1383 down_write(&pernet_ops_rwsem); 1384 error = register_pernet_operations(first_device, ops); 1385 up_write(&pernet_ops_rwsem); 1386 return error; 1387 } 1388 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1389 1390 /** 1391 * unregister_pernet_subsys - unregister a network namespace subsystem 1392 * @ops: pernet operations structure to manipulate 1393 * 1394 * Remove the pernet operations structure from the list to be 1395 * used when network namespaces are created or destroyed. In 1396 * addition run the exit method for all existing network 1397 * namespaces. 1398 */ 1399 void unregister_pernet_subsys(struct pernet_operations *ops) 1400 { 1401 down_write(&pernet_ops_rwsem); 1402 unregister_pernet_operations(ops); 1403 up_write(&pernet_ops_rwsem); 1404 } 1405 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1406 1407 /** 1408 * register_pernet_device - register a network namespace device 1409 * @ops: pernet operations structure for the subsystem 1410 * 1411 * Register a device which has init and exit functions 1412 * that are called when network namespaces are created and 1413 * destroyed respectively. 1414 * 1415 * When registered all network namespace init functions are 1416 * called for every existing network namespace. Allowing kernel 1417 * modules to have a race free view of the set of network namespaces. 1418 * 1419 * When a new network namespace is created all of the init 1420 * methods are called in the order in which they were registered. 1421 * 1422 * When a network namespace is destroyed all of the exit methods 1423 * are called in the reverse of the order with which they were 1424 * registered. 1425 */ 1426 int register_pernet_device(struct pernet_operations *ops) 1427 { 1428 int error; 1429 down_write(&pernet_ops_rwsem); 1430 error = register_pernet_operations(&pernet_list, ops); 1431 if (!error && (first_device == &pernet_list)) 1432 first_device = &ops->list; 1433 up_write(&pernet_ops_rwsem); 1434 return error; 1435 } 1436 EXPORT_SYMBOL_GPL(register_pernet_device); 1437 1438 /** 1439 * unregister_pernet_device - unregister a network namespace netdevice 1440 * @ops: pernet operations structure to manipulate 1441 * 1442 * Remove the pernet operations structure from the list to be 1443 * used when network namespaces are created or destroyed. In 1444 * addition run the exit method for all existing network 1445 * namespaces. 1446 */ 1447 void unregister_pernet_device(struct pernet_operations *ops) 1448 { 1449 down_write(&pernet_ops_rwsem); 1450 if (&ops->list == first_device) 1451 first_device = first_device->next; 1452 unregister_pernet_operations(ops); 1453 up_write(&pernet_ops_rwsem); 1454 } 1455 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1456 1457 #ifdef CONFIG_NET_NS 1458 static struct ns_common *netns_get(struct task_struct *task) 1459 { 1460 struct net *net = NULL; 1461 struct nsproxy *nsproxy; 1462 1463 task_lock(task); 1464 nsproxy = task->nsproxy; 1465 if (nsproxy) 1466 net = get_net(nsproxy->net_ns); 1467 task_unlock(task); 1468 1469 return net ? &net->ns : NULL; 1470 } 1471 1472 static inline struct net *to_net_ns(struct ns_common *ns) 1473 { 1474 return container_of(ns, struct net, ns); 1475 } 1476 1477 static void netns_put(struct ns_common *ns) 1478 { 1479 put_net(to_net_ns(ns)); 1480 } 1481 1482 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1483 { 1484 struct nsproxy *nsproxy = nsset->nsproxy; 1485 struct net *net = to_net_ns(ns); 1486 1487 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1488 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1489 return -EPERM; 1490 1491 put_net(nsproxy->net_ns); 1492 nsproxy->net_ns = get_net(net); 1493 return 0; 1494 } 1495 1496 static struct user_namespace *netns_owner(struct ns_common *ns) 1497 { 1498 return to_net_ns(ns)->user_ns; 1499 } 1500 1501 const struct proc_ns_operations netns_operations = { 1502 .name = "net", 1503 .type = CLONE_NEWNET, 1504 .get = netns_get, 1505 .put = netns_put, 1506 .install = netns_install, 1507 .owner = netns_owner, 1508 }; 1509 #endif 1510