xref: /linux/net/core/net_namespace.c (revision 94901b7a74d82bfd30420f1d9d00898278fdc8bf)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 #include <linux/proc_fs.h>
24 
25 #include <net/sock.h>
26 #include <net/netlink.h>
27 #include <net/net_namespace.h>
28 #include <net/netns/generic.h>
29 
30 /*
31  *	Our network namespace constructor/destructor lists
32  */
33 
34 static LIST_HEAD(pernet_list);
35 static struct list_head *first_device = &pernet_list;
36 
37 LIST_HEAD(net_namespace_list);
38 EXPORT_SYMBOL_GPL(net_namespace_list);
39 
40 /* Protects net_namespace_list. Nests iside rtnl_lock() */
41 DECLARE_RWSEM(net_rwsem);
42 EXPORT_SYMBOL_GPL(net_rwsem);
43 
44 #ifdef CONFIG_KEYS
45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46 #endif
47 
48 struct net init_net;
49 EXPORT_SYMBOL(init_net);
50 
51 static bool init_net_initialized;
52 /*
53  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54  * init_net_initialized and first_device pointer.
55  * This is internal net namespace object. Please, don't use it
56  * outside.
57  */
58 DECLARE_RWSEM(pernet_ops_rwsem);
59 
60 #define MIN_PERNET_OPS_ID	\
61 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
62 
63 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
64 
65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
66 
67 DEFINE_COOKIE(net_cookie);
68 
69 static struct net_generic *net_alloc_generic(void)
70 {
71 	unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
72 	unsigned int generic_size;
73 	struct net_generic *ng;
74 
75 	generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
76 
77 	ng = kzalloc(generic_size, GFP_KERNEL);
78 	if (ng)
79 		ng->s.len = gen_ptrs;
80 
81 	return ng;
82 }
83 
84 static int net_assign_generic(struct net *net, unsigned int id, void *data)
85 {
86 	struct net_generic *ng, *old_ng;
87 
88 	BUG_ON(id < MIN_PERNET_OPS_ID);
89 
90 	old_ng = rcu_dereference_protected(net->gen,
91 					   lockdep_is_held(&pernet_ops_rwsem));
92 	if (old_ng->s.len > id) {
93 		old_ng->ptr[id] = data;
94 		return 0;
95 	}
96 
97 	ng = net_alloc_generic();
98 	if (!ng)
99 		return -ENOMEM;
100 
101 	/*
102 	 * Some synchronisation notes:
103 	 *
104 	 * The net_generic explores the net->gen array inside rcu
105 	 * read section. Besides once set the net->gen->ptr[x]
106 	 * pointer never changes (see rules in netns/generic.h).
107 	 *
108 	 * That said, we simply duplicate this array and schedule
109 	 * the old copy for kfree after a grace period.
110 	 */
111 
112 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
113 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
114 	ng->ptr[id] = data;
115 
116 	rcu_assign_pointer(net->gen, ng);
117 	kfree_rcu(old_ng, s.rcu);
118 	return 0;
119 }
120 
121 static int ops_init(const struct pernet_operations *ops, struct net *net)
122 {
123 	struct net_generic *ng;
124 	int err = -ENOMEM;
125 	void *data = NULL;
126 
127 	if (ops->id) {
128 		data = kzalloc(ops->size, GFP_KERNEL);
129 		if (!data)
130 			goto out;
131 
132 		err = net_assign_generic(net, *ops->id, data);
133 		if (err)
134 			goto cleanup;
135 	}
136 	err = 0;
137 	if (ops->init)
138 		err = ops->init(net);
139 	if (!err)
140 		return 0;
141 
142 	if (ops->id) {
143 		ng = rcu_dereference_protected(net->gen,
144 					       lockdep_is_held(&pernet_ops_rwsem));
145 		ng->ptr[*ops->id] = NULL;
146 	}
147 
148 cleanup:
149 	kfree(data);
150 
151 out:
152 	return err;
153 }
154 
155 static void ops_pre_exit_list(const struct pernet_operations *ops,
156 			      struct list_head *net_exit_list)
157 {
158 	struct net *net;
159 
160 	if (ops->pre_exit) {
161 		list_for_each_entry(net, net_exit_list, exit_list)
162 			ops->pre_exit(net);
163 	}
164 }
165 
166 static void ops_exit_list(const struct pernet_operations *ops,
167 			  struct list_head *net_exit_list)
168 {
169 	struct net *net;
170 	if (ops->exit) {
171 		list_for_each_entry(net, net_exit_list, exit_list) {
172 			ops->exit(net);
173 			cond_resched();
174 		}
175 	}
176 	if (ops->exit_batch)
177 		ops->exit_batch(net_exit_list);
178 }
179 
180 static void ops_free_list(const struct pernet_operations *ops,
181 			  struct list_head *net_exit_list)
182 {
183 	struct net *net;
184 
185 	if (ops->id) {
186 		list_for_each_entry(net, net_exit_list, exit_list)
187 			kfree(net_generic(net, *ops->id));
188 	}
189 }
190 
191 /* should be called with nsid_lock held */
192 static int alloc_netid(struct net *net, struct net *peer, int reqid)
193 {
194 	int min = 0, max = 0;
195 
196 	if (reqid >= 0) {
197 		min = reqid;
198 		max = reqid + 1;
199 	}
200 
201 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
202 }
203 
204 /* This function is used by idr_for_each(). If net is equal to peer, the
205  * function returns the id so that idr_for_each() stops. Because we cannot
206  * returns the id 0 (idr_for_each() will not stop), we return the magic value
207  * NET_ID_ZERO (-1) for it.
208  */
209 #define NET_ID_ZERO -1
210 static int net_eq_idr(int id, void *net, void *peer)
211 {
212 	if (net_eq(net, peer))
213 		return id ? : NET_ID_ZERO;
214 	return 0;
215 }
216 
217 /* Must be called from RCU-critical section or with nsid_lock held */
218 static int __peernet2id(const struct net *net, struct net *peer)
219 {
220 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
221 
222 	/* Magic value for id 0. */
223 	if (id == NET_ID_ZERO)
224 		return 0;
225 	if (id > 0)
226 		return id;
227 
228 	return NETNSA_NSID_NOT_ASSIGNED;
229 }
230 
231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
232 			      struct nlmsghdr *nlh, gfp_t gfp);
233 /* This function returns the id of a peer netns. If no id is assigned, one will
234  * be allocated and returned.
235  */
236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
237 {
238 	int id;
239 
240 	if (refcount_read(&net->ns.count) == 0)
241 		return NETNSA_NSID_NOT_ASSIGNED;
242 
243 	spin_lock_bh(&net->nsid_lock);
244 	id = __peernet2id(net, peer);
245 	if (id >= 0) {
246 		spin_unlock_bh(&net->nsid_lock);
247 		return id;
248 	}
249 
250 	/* When peer is obtained from RCU lists, we may race with
251 	 * its cleanup. Check whether it's alive, and this guarantees
252 	 * we never hash a peer back to net->netns_ids, after it has
253 	 * just been idr_remove()'d from there in cleanup_net().
254 	 */
255 	if (!maybe_get_net(peer)) {
256 		spin_unlock_bh(&net->nsid_lock);
257 		return NETNSA_NSID_NOT_ASSIGNED;
258 	}
259 
260 	id = alloc_netid(net, peer, -1);
261 	spin_unlock_bh(&net->nsid_lock);
262 
263 	put_net(peer);
264 	if (id < 0)
265 		return NETNSA_NSID_NOT_ASSIGNED;
266 
267 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
268 
269 	return id;
270 }
271 EXPORT_SYMBOL_GPL(peernet2id_alloc);
272 
273 /* This function returns, if assigned, the id of a peer netns. */
274 int peernet2id(const struct net *net, struct net *peer)
275 {
276 	int id;
277 
278 	rcu_read_lock();
279 	id = __peernet2id(net, peer);
280 	rcu_read_unlock();
281 
282 	return id;
283 }
284 EXPORT_SYMBOL(peernet2id);
285 
286 /* This function returns true is the peer netns has an id assigned into the
287  * current netns.
288  */
289 bool peernet_has_id(const struct net *net, struct net *peer)
290 {
291 	return peernet2id(net, peer) >= 0;
292 }
293 
294 struct net *get_net_ns_by_id(const struct net *net, int id)
295 {
296 	struct net *peer;
297 
298 	if (id < 0)
299 		return NULL;
300 
301 	rcu_read_lock();
302 	peer = idr_find(&net->netns_ids, id);
303 	if (peer)
304 		peer = maybe_get_net(peer);
305 	rcu_read_unlock();
306 
307 	return peer;
308 }
309 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
310 
311 static __net_init void preinit_net_sysctl(struct net *net)
312 {
313 	net->core.sysctl_somaxconn = SOMAXCONN;
314 	/* Limits per socket sk_omem_alloc usage.
315 	 * TCP zerocopy regular usage needs 128 KB.
316 	 */
317 	net->core.sysctl_optmem_max = 128 * 1024;
318 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
319 	net->core.sysctl_tstamp_allow_data = 1;
320 }
321 
322 /* init code that must occur even if setup_net() is not called. */
323 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns)
324 {
325 	refcount_set(&net->passive, 1);
326 	refcount_set(&net->ns.count, 1);
327 	ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt");
328 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt");
329 
330 	get_random_bytes(&net->hash_mix, sizeof(u32));
331 	net->dev_base_seq = 1;
332 	net->user_ns = user_ns;
333 
334 	idr_init(&net->netns_ids);
335 	spin_lock_init(&net->nsid_lock);
336 	mutex_init(&net->ipv4.ra_mutex);
337 
338 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL
339 	mutex_init(&net->rtnl_mutex);
340 	lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL);
341 #endif
342 
343 	preinit_net_sysctl(net);
344 }
345 
346 /*
347  * setup_net runs the initializers for the network namespace object.
348  */
349 static __net_init int setup_net(struct net *net)
350 {
351 	/* Must be called with pernet_ops_rwsem held */
352 	const struct pernet_operations *ops, *saved_ops;
353 	LIST_HEAD(net_exit_list);
354 	LIST_HEAD(dev_kill_list);
355 	int error = 0;
356 
357 	preempt_disable();
358 	net->net_cookie = gen_cookie_next(&net_cookie);
359 	preempt_enable();
360 
361 	list_for_each_entry(ops, &pernet_list, list) {
362 		error = ops_init(ops, net);
363 		if (error < 0)
364 			goto out_undo;
365 	}
366 	down_write(&net_rwsem);
367 	list_add_tail_rcu(&net->list, &net_namespace_list);
368 	up_write(&net_rwsem);
369 out:
370 	return error;
371 
372 out_undo:
373 	/* Walk through the list backwards calling the exit functions
374 	 * for the pernet modules whose init functions did not fail.
375 	 */
376 	list_add(&net->exit_list, &net_exit_list);
377 	saved_ops = ops;
378 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
379 		ops_pre_exit_list(ops, &net_exit_list);
380 
381 	synchronize_rcu();
382 
383 	ops = saved_ops;
384 	rtnl_lock();
385 	list_for_each_entry_continue_reverse(ops, &pernet_list, list) {
386 		if (ops->exit_batch_rtnl)
387 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
388 	}
389 	unregister_netdevice_many(&dev_kill_list);
390 	rtnl_unlock();
391 
392 	ops = saved_ops;
393 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
394 		ops_exit_list(ops, &net_exit_list);
395 
396 	ops = saved_ops;
397 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
398 		ops_free_list(ops, &net_exit_list);
399 
400 	rcu_barrier();
401 	goto out;
402 }
403 
404 #ifdef CONFIG_NET_NS
405 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
406 {
407 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
408 }
409 
410 static void dec_net_namespaces(struct ucounts *ucounts)
411 {
412 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
413 }
414 
415 static struct kmem_cache *net_cachep __ro_after_init;
416 static struct workqueue_struct *netns_wq;
417 
418 static struct net *net_alloc(void)
419 {
420 	struct net *net = NULL;
421 	struct net_generic *ng;
422 
423 	ng = net_alloc_generic();
424 	if (!ng)
425 		goto out;
426 
427 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
428 	if (!net)
429 		goto out_free;
430 
431 #ifdef CONFIG_KEYS
432 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
433 	if (!net->key_domain)
434 		goto out_free_2;
435 	refcount_set(&net->key_domain->usage, 1);
436 #endif
437 
438 	rcu_assign_pointer(net->gen, ng);
439 out:
440 	return net;
441 
442 #ifdef CONFIG_KEYS
443 out_free_2:
444 	kmem_cache_free(net_cachep, net);
445 	net = NULL;
446 #endif
447 out_free:
448 	kfree(ng);
449 	goto out;
450 }
451 
452 static LLIST_HEAD(defer_free_list);
453 
454 static void net_complete_free(void)
455 {
456 	struct llist_node *kill_list;
457 	struct net *net, *next;
458 
459 	/* Get the list of namespaces to free from last round. */
460 	kill_list = llist_del_all(&defer_free_list);
461 
462 	llist_for_each_entry_safe(net, next, kill_list, defer_free_list)
463 		kmem_cache_free(net_cachep, net);
464 
465 }
466 
467 static void net_free(struct net *net)
468 {
469 	if (refcount_dec_and_test(&net->passive)) {
470 		kfree(rcu_access_pointer(net->gen));
471 
472 		/* There should not be any trackers left there. */
473 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
474 
475 		/* Wait for an extra rcu_barrier() before final free. */
476 		llist_add(&net->defer_free_list, &defer_free_list);
477 	}
478 }
479 
480 void net_drop_ns(void *p)
481 {
482 	struct net *net = (struct net *)p;
483 
484 	if (net)
485 		net_free(net);
486 }
487 
488 struct net *copy_net_ns(unsigned long flags,
489 			struct user_namespace *user_ns, struct net *old_net)
490 {
491 	struct ucounts *ucounts;
492 	struct net *net;
493 	int rv;
494 
495 	if (!(flags & CLONE_NEWNET))
496 		return get_net(old_net);
497 
498 	ucounts = inc_net_namespaces(user_ns);
499 	if (!ucounts)
500 		return ERR_PTR(-ENOSPC);
501 
502 	net = net_alloc();
503 	if (!net) {
504 		rv = -ENOMEM;
505 		goto dec_ucounts;
506 	}
507 
508 	preinit_net(net, user_ns);
509 	net->ucounts = ucounts;
510 	get_user_ns(user_ns);
511 
512 	rv = down_read_killable(&pernet_ops_rwsem);
513 	if (rv < 0)
514 		goto put_userns;
515 
516 	rv = setup_net(net);
517 
518 	up_read(&pernet_ops_rwsem);
519 
520 	if (rv < 0) {
521 put_userns:
522 #ifdef CONFIG_KEYS
523 		key_remove_domain(net->key_domain);
524 #endif
525 		put_user_ns(user_ns);
526 		net_free(net);
527 dec_ucounts:
528 		dec_net_namespaces(ucounts);
529 		return ERR_PTR(rv);
530 	}
531 	return net;
532 }
533 
534 /**
535  * net_ns_get_ownership - get sysfs ownership data for @net
536  * @net: network namespace in question (can be NULL)
537  * @uid: kernel user ID for sysfs objects
538  * @gid: kernel group ID for sysfs objects
539  *
540  * Returns the uid/gid pair of root in the user namespace associated with the
541  * given network namespace.
542  */
543 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
544 {
545 	if (net) {
546 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
547 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
548 
549 		if (uid_valid(ns_root_uid))
550 			*uid = ns_root_uid;
551 
552 		if (gid_valid(ns_root_gid))
553 			*gid = ns_root_gid;
554 	} else {
555 		*uid = GLOBAL_ROOT_UID;
556 		*gid = GLOBAL_ROOT_GID;
557 	}
558 }
559 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
560 
561 static void unhash_nsid(struct net *net, struct net *last)
562 {
563 	struct net *tmp;
564 	/* This function is only called from cleanup_net() work,
565 	 * and this work is the only process, that may delete
566 	 * a net from net_namespace_list. So, when the below
567 	 * is executing, the list may only grow. Thus, we do not
568 	 * use for_each_net_rcu() or net_rwsem.
569 	 */
570 	for_each_net(tmp) {
571 		int id;
572 
573 		spin_lock_bh(&tmp->nsid_lock);
574 		id = __peernet2id(tmp, net);
575 		if (id >= 0)
576 			idr_remove(&tmp->netns_ids, id);
577 		spin_unlock_bh(&tmp->nsid_lock);
578 		if (id >= 0)
579 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
580 					  GFP_KERNEL);
581 		if (tmp == last)
582 			break;
583 	}
584 	spin_lock_bh(&net->nsid_lock);
585 	idr_destroy(&net->netns_ids);
586 	spin_unlock_bh(&net->nsid_lock);
587 }
588 
589 static LLIST_HEAD(cleanup_list);
590 
591 static void cleanup_net(struct work_struct *work)
592 {
593 	const struct pernet_operations *ops;
594 	struct net *net, *tmp, *last;
595 	struct llist_node *net_kill_list;
596 	LIST_HEAD(net_exit_list);
597 	LIST_HEAD(dev_kill_list);
598 
599 	/* Atomically snapshot the list of namespaces to cleanup */
600 	net_kill_list = llist_del_all(&cleanup_list);
601 
602 	down_read(&pernet_ops_rwsem);
603 
604 	/* Don't let anyone else find us. */
605 	down_write(&net_rwsem);
606 	llist_for_each_entry(net, net_kill_list, cleanup_list)
607 		list_del_rcu(&net->list);
608 	/* Cache last net. After we unlock rtnl, no one new net
609 	 * added to net_namespace_list can assign nsid pointer
610 	 * to a net from net_kill_list (see peernet2id_alloc()).
611 	 * So, we skip them in unhash_nsid().
612 	 *
613 	 * Note, that unhash_nsid() does not delete nsid links
614 	 * between net_kill_list's nets, as they've already
615 	 * deleted from net_namespace_list. But, this would be
616 	 * useless anyway, as netns_ids are destroyed there.
617 	 */
618 	last = list_last_entry(&net_namespace_list, struct net, list);
619 	up_write(&net_rwsem);
620 
621 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
622 		unhash_nsid(net, last);
623 		list_add_tail(&net->exit_list, &net_exit_list);
624 	}
625 
626 	/* Run all of the network namespace pre_exit methods */
627 	list_for_each_entry_reverse(ops, &pernet_list, list)
628 		ops_pre_exit_list(ops, &net_exit_list);
629 
630 	/*
631 	 * Another CPU might be rcu-iterating the list, wait for it.
632 	 * This needs to be before calling the exit() notifiers, so
633 	 * the rcu_barrier() below isn't sufficient alone.
634 	 * Also the pre_exit() and exit() methods need this barrier.
635 	 */
636 	synchronize_rcu_expedited();
637 
638 	rtnl_lock();
639 	list_for_each_entry_reverse(ops, &pernet_list, list) {
640 		if (ops->exit_batch_rtnl)
641 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
642 	}
643 	unregister_netdevice_many(&dev_kill_list);
644 	rtnl_unlock();
645 
646 	/* Run all of the network namespace exit methods */
647 	list_for_each_entry_reverse(ops, &pernet_list, list)
648 		ops_exit_list(ops, &net_exit_list);
649 
650 	/* Free the net generic variables */
651 	list_for_each_entry_reverse(ops, &pernet_list, list)
652 		ops_free_list(ops, &net_exit_list);
653 
654 	up_read(&pernet_ops_rwsem);
655 
656 	/* Ensure there are no outstanding rcu callbacks using this
657 	 * network namespace.
658 	 */
659 	rcu_barrier();
660 
661 	net_complete_free();
662 
663 	/* Finally it is safe to free my network namespace structure */
664 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
665 		list_del_init(&net->exit_list);
666 		dec_net_namespaces(net->ucounts);
667 #ifdef CONFIG_KEYS
668 		key_remove_domain(net->key_domain);
669 #endif
670 		put_user_ns(net->user_ns);
671 		net_free(net);
672 	}
673 }
674 
675 /**
676  * net_ns_barrier - wait until concurrent net_cleanup_work is done
677  *
678  * cleanup_net runs from work queue and will first remove namespaces
679  * from the global list, then run net exit functions.
680  *
681  * Call this in module exit path to make sure that all netns
682  * ->exit ops have been invoked before the function is removed.
683  */
684 void net_ns_barrier(void)
685 {
686 	down_write(&pernet_ops_rwsem);
687 	up_write(&pernet_ops_rwsem);
688 }
689 EXPORT_SYMBOL(net_ns_barrier);
690 
691 static DECLARE_WORK(net_cleanup_work, cleanup_net);
692 
693 void __put_net(struct net *net)
694 {
695 	ref_tracker_dir_exit(&net->refcnt_tracker);
696 	/* Cleanup the network namespace in process context */
697 	if (llist_add(&net->cleanup_list, &cleanup_list))
698 		queue_work(netns_wq, &net_cleanup_work);
699 }
700 EXPORT_SYMBOL_GPL(__put_net);
701 
702 /**
703  * get_net_ns - increment the refcount of the network namespace
704  * @ns: common namespace (net)
705  *
706  * Returns the net's common namespace or ERR_PTR() if ref is zero.
707  */
708 struct ns_common *get_net_ns(struct ns_common *ns)
709 {
710 	struct net *net;
711 
712 	net = maybe_get_net(container_of(ns, struct net, ns));
713 	if (net)
714 		return &net->ns;
715 	return ERR_PTR(-EINVAL);
716 }
717 EXPORT_SYMBOL_GPL(get_net_ns);
718 
719 struct net *get_net_ns_by_fd(int fd)
720 {
721 	CLASS(fd, f)(fd);
722 
723 	if (fd_empty(f))
724 		return ERR_PTR(-EBADF);
725 
726 	if (proc_ns_file(fd_file(f))) {
727 		struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
728 		if (ns->ops == &netns_operations)
729 			return get_net(container_of(ns, struct net, ns));
730 	}
731 
732 	return ERR_PTR(-EINVAL);
733 }
734 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
735 #endif
736 
737 struct net *get_net_ns_by_pid(pid_t pid)
738 {
739 	struct task_struct *tsk;
740 	struct net *net;
741 
742 	/* Lookup the network namespace */
743 	net = ERR_PTR(-ESRCH);
744 	rcu_read_lock();
745 	tsk = find_task_by_vpid(pid);
746 	if (tsk) {
747 		struct nsproxy *nsproxy;
748 		task_lock(tsk);
749 		nsproxy = tsk->nsproxy;
750 		if (nsproxy)
751 			net = get_net(nsproxy->net_ns);
752 		task_unlock(tsk);
753 	}
754 	rcu_read_unlock();
755 	return net;
756 }
757 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
758 
759 static __net_init int net_ns_net_init(struct net *net)
760 {
761 #ifdef CONFIG_NET_NS
762 	net->ns.ops = &netns_operations;
763 #endif
764 	return ns_alloc_inum(&net->ns);
765 }
766 
767 static __net_exit void net_ns_net_exit(struct net *net)
768 {
769 	ns_free_inum(&net->ns);
770 }
771 
772 static struct pernet_operations __net_initdata net_ns_ops = {
773 	.init = net_ns_net_init,
774 	.exit = net_ns_net_exit,
775 };
776 
777 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
778 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
779 	[NETNSA_NSID]		= { .type = NLA_S32 },
780 	[NETNSA_PID]		= { .type = NLA_U32 },
781 	[NETNSA_FD]		= { .type = NLA_U32 },
782 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
783 };
784 
785 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
786 			  struct netlink_ext_ack *extack)
787 {
788 	struct net *net = sock_net(skb->sk);
789 	struct nlattr *tb[NETNSA_MAX + 1];
790 	struct nlattr *nla;
791 	struct net *peer;
792 	int nsid, err;
793 
794 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
795 				     NETNSA_MAX, rtnl_net_policy, extack);
796 	if (err < 0)
797 		return err;
798 	if (!tb[NETNSA_NSID]) {
799 		NL_SET_ERR_MSG(extack, "nsid is missing");
800 		return -EINVAL;
801 	}
802 	nsid = nla_get_s32(tb[NETNSA_NSID]);
803 
804 	if (tb[NETNSA_PID]) {
805 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
806 		nla = tb[NETNSA_PID];
807 	} else if (tb[NETNSA_FD]) {
808 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
809 		nla = tb[NETNSA_FD];
810 	} else {
811 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
812 		return -EINVAL;
813 	}
814 	if (IS_ERR(peer)) {
815 		NL_SET_BAD_ATTR(extack, nla);
816 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
817 		return PTR_ERR(peer);
818 	}
819 
820 	spin_lock_bh(&net->nsid_lock);
821 	if (__peernet2id(net, peer) >= 0) {
822 		spin_unlock_bh(&net->nsid_lock);
823 		err = -EEXIST;
824 		NL_SET_BAD_ATTR(extack, nla);
825 		NL_SET_ERR_MSG(extack,
826 			       "Peer netns already has a nsid assigned");
827 		goto out;
828 	}
829 
830 	err = alloc_netid(net, peer, nsid);
831 	spin_unlock_bh(&net->nsid_lock);
832 	if (err >= 0) {
833 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
834 				  nlh, GFP_KERNEL);
835 		err = 0;
836 	} else if (err == -ENOSPC && nsid >= 0) {
837 		err = -EEXIST;
838 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
839 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
840 	}
841 out:
842 	put_net(peer);
843 	return err;
844 }
845 
846 static int rtnl_net_get_size(void)
847 {
848 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
849 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
850 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
851 	       ;
852 }
853 
854 struct net_fill_args {
855 	u32 portid;
856 	u32 seq;
857 	int flags;
858 	int cmd;
859 	int nsid;
860 	bool add_ref;
861 	int ref_nsid;
862 };
863 
864 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
865 {
866 	struct nlmsghdr *nlh;
867 	struct rtgenmsg *rth;
868 
869 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
870 			args->flags);
871 	if (!nlh)
872 		return -EMSGSIZE;
873 
874 	rth = nlmsg_data(nlh);
875 	rth->rtgen_family = AF_UNSPEC;
876 
877 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
878 		goto nla_put_failure;
879 
880 	if (args->add_ref &&
881 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
882 		goto nla_put_failure;
883 
884 	nlmsg_end(skb, nlh);
885 	return 0;
886 
887 nla_put_failure:
888 	nlmsg_cancel(skb, nlh);
889 	return -EMSGSIZE;
890 }
891 
892 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
893 				    const struct nlmsghdr *nlh,
894 				    struct nlattr **tb,
895 				    struct netlink_ext_ack *extack)
896 {
897 	int i, err;
898 
899 	if (!netlink_strict_get_check(skb))
900 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
901 					      tb, NETNSA_MAX, rtnl_net_policy,
902 					      extack);
903 
904 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
905 					    NETNSA_MAX, rtnl_net_policy,
906 					    extack);
907 	if (err)
908 		return err;
909 
910 	for (i = 0; i <= NETNSA_MAX; i++) {
911 		if (!tb[i])
912 			continue;
913 
914 		switch (i) {
915 		case NETNSA_PID:
916 		case NETNSA_FD:
917 		case NETNSA_NSID:
918 		case NETNSA_TARGET_NSID:
919 			break;
920 		default:
921 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
922 			return -EINVAL;
923 		}
924 	}
925 
926 	return 0;
927 }
928 
929 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
930 			  struct netlink_ext_ack *extack)
931 {
932 	struct net *net = sock_net(skb->sk);
933 	struct nlattr *tb[NETNSA_MAX + 1];
934 	struct net_fill_args fillargs = {
935 		.portid = NETLINK_CB(skb).portid,
936 		.seq = nlh->nlmsg_seq,
937 		.cmd = RTM_NEWNSID,
938 	};
939 	struct net *peer, *target = net;
940 	struct nlattr *nla;
941 	struct sk_buff *msg;
942 	int err;
943 
944 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
945 	if (err < 0)
946 		return err;
947 	if (tb[NETNSA_PID]) {
948 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
949 		nla = tb[NETNSA_PID];
950 	} else if (tb[NETNSA_FD]) {
951 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
952 		nla = tb[NETNSA_FD];
953 	} else if (tb[NETNSA_NSID]) {
954 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
955 		if (!peer)
956 			peer = ERR_PTR(-ENOENT);
957 		nla = tb[NETNSA_NSID];
958 	} else {
959 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
960 		return -EINVAL;
961 	}
962 
963 	if (IS_ERR(peer)) {
964 		NL_SET_BAD_ATTR(extack, nla);
965 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
966 		return PTR_ERR(peer);
967 	}
968 
969 	if (tb[NETNSA_TARGET_NSID]) {
970 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
971 
972 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
973 		if (IS_ERR(target)) {
974 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
975 			NL_SET_ERR_MSG(extack,
976 				       "Target netns reference is invalid");
977 			err = PTR_ERR(target);
978 			goto out;
979 		}
980 		fillargs.add_ref = true;
981 		fillargs.ref_nsid = peernet2id(net, peer);
982 	}
983 
984 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
985 	if (!msg) {
986 		err = -ENOMEM;
987 		goto out;
988 	}
989 
990 	fillargs.nsid = peernet2id(target, peer);
991 	err = rtnl_net_fill(msg, &fillargs);
992 	if (err < 0)
993 		goto err_out;
994 
995 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
996 	goto out;
997 
998 err_out:
999 	nlmsg_free(msg);
1000 out:
1001 	if (fillargs.add_ref)
1002 		put_net(target);
1003 	put_net(peer);
1004 	return err;
1005 }
1006 
1007 struct rtnl_net_dump_cb {
1008 	struct net *tgt_net;
1009 	struct net *ref_net;
1010 	struct sk_buff *skb;
1011 	struct net_fill_args fillargs;
1012 	int idx;
1013 	int s_idx;
1014 };
1015 
1016 /* Runs in RCU-critical section. */
1017 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1018 {
1019 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1020 	int ret;
1021 
1022 	if (net_cb->idx < net_cb->s_idx)
1023 		goto cont;
1024 
1025 	net_cb->fillargs.nsid = id;
1026 	if (net_cb->fillargs.add_ref)
1027 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1028 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1029 	if (ret < 0)
1030 		return ret;
1031 
1032 cont:
1033 	net_cb->idx++;
1034 	return 0;
1035 }
1036 
1037 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1038 				   struct rtnl_net_dump_cb *net_cb,
1039 				   struct netlink_callback *cb)
1040 {
1041 	struct netlink_ext_ack *extack = cb->extack;
1042 	struct nlattr *tb[NETNSA_MAX + 1];
1043 	int err, i;
1044 
1045 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1046 					    NETNSA_MAX, rtnl_net_policy,
1047 					    extack);
1048 	if (err < 0)
1049 		return err;
1050 
1051 	for (i = 0; i <= NETNSA_MAX; i++) {
1052 		if (!tb[i])
1053 			continue;
1054 
1055 		if (i == NETNSA_TARGET_NSID) {
1056 			struct net *net;
1057 
1058 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1059 			if (IS_ERR(net)) {
1060 				NL_SET_BAD_ATTR(extack, tb[i]);
1061 				NL_SET_ERR_MSG(extack,
1062 					       "Invalid target network namespace id");
1063 				return PTR_ERR(net);
1064 			}
1065 			net_cb->fillargs.add_ref = true;
1066 			net_cb->ref_net = net_cb->tgt_net;
1067 			net_cb->tgt_net = net;
1068 		} else {
1069 			NL_SET_BAD_ATTR(extack, tb[i]);
1070 			NL_SET_ERR_MSG(extack,
1071 				       "Unsupported attribute in dump request");
1072 			return -EINVAL;
1073 		}
1074 	}
1075 
1076 	return 0;
1077 }
1078 
1079 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1080 {
1081 	struct rtnl_net_dump_cb net_cb = {
1082 		.tgt_net = sock_net(skb->sk),
1083 		.skb = skb,
1084 		.fillargs = {
1085 			.portid = NETLINK_CB(cb->skb).portid,
1086 			.seq = cb->nlh->nlmsg_seq,
1087 			.flags = NLM_F_MULTI,
1088 			.cmd = RTM_NEWNSID,
1089 		},
1090 		.idx = 0,
1091 		.s_idx = cb->args[0],
1092 	};
1093 	int err = 0;
1094 
1095 	if (cb->strict_check) {
1096 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1097 		if (err < 0)
1098 			goto end;
1099 	}
1100 
1101 	rcu_read_lock();
1102 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1103 	rcu_read_unlock();
1104 
1105 	cb->args[0] = net_cb.idx;
1106 end:
1107 	if (net_cb.fillargs.add_ref)
1108 		put_net(net_cb.tgt_net);
1109 	return err;
1110 }
1111 
1112 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1113 			      struct nlmsghdr *nlh, gfp_t gfp)
1114 {
1115 	struct net_fill_args fillargs = {
1116 		.portid = portid,
1117 		.seq = nlh ? nlh->nlmsg_seq : 0,
1118 		.cmd = cmd,
1119 		.nsid = id,
1120 	};
1121 	struct sk_buff *msg;
1122 	int err = -ENOMEM;
1123 
1124 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1125 	if (!msg)
1126 		goto out;
1127 
1128 	err = rtnl_net_fill(msg, &fillargs);
1129 	if (err < 0)
1130 		goto err_out;
1131 
1132 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1133 	return;
1134 
1135 err_out:
1136 	nlmsg_free(msg);
1137 out:
1138 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1139 }
1140 
1141 #ifdef CONFIG_NET_NS
1142 static void __init netns_ipv4_struct_check(void)
1143 {
1144 	/* TX readonly hotpath cache lines */
1145 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1146 				      sysctl_tcp_early_retrans);
1147 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1148 				      sysctl_tcp_tso_win_divisor);
1149 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1150 				      sysctl_tcp_tso_rtt_log);
1151 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1152 				      sysctl_tcp_autocorking);
1153 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1154 				      sysctl_tcp_min_snd_mss);
1155 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1156 				      sysctl_tcp_notsent_lowat);
1157 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1158 				      sysctl_tcp_limit_output_bytes);
1159 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1160 				      sysctl_tcp_min_rtt_wlen);
1161 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1162 				      sysctl_tcp_wmem);
1163 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1164 				      sysctl_ip_fwd_use_pmtu);
1165 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1166 
1167 	/* TXRX readonly hotpath cache lines */
1168 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1169 				      sysctl_tcp_moderate_rcvbuf);
1170 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1171 
1172 	/* RX readonly hotpath cache line */
1173 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1174 				      sysctl_ip_early_demux);
1175 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1176 				      sysctl_tcp_early_demux);
1177 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1178 				      sysctl_tcp_l3mdev_accept);
1179 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1180 				      sysctl_tcp_reordering);
1181 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1182 				      sysctl_tcp_rmem);
1183 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22);
1184 }
1185 #endif
1186 
1187 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = {
1188 	{.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid,
1189 	 .flags = RTNL_FLAG_DOIT_UNLOCKED},
1190 	{.msgtype = RTM_GETNSID, .doit = rtnl_net_getid,
1191 	 .dumpit = rtnl_net_dumpid,
1192 	 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED},
1193 };
1194 
1195 void __init net_ns_init(void)
1196 {
1197 	struct net_generic *ng;
1198 
1199 #ifdef CONFIG_NET_NS
1200 	netns_ipv4_struct_check();
1201 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1202 					SMP_CACHE_BYTES,
1203 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1204 
1205 	/* Create workqueue for cleanup */
1206 	netns_wq = create_singlethread_workqueue("netns");
1207 	if (!netns_wq)
1208 		panic("Could not create netns workq");
1209 #endif
1210 
1211 	ng = net_alloc_generic();
1212 	if (!ng)
1213 		panic("Could not allocate generic netns");
1214 
1215 	rcu_assign_pointer(init_net.gen, ng);
1216 
1217 #ifdef CONFIG_KEYS
1218 	init_net.key_domain = &init_net_key_domain;
1219 #endif
1220 	preinit_net(&init_net, &init_user_ns);
1221 
1222 	down_write(&pernet_ops_rwsem);
1223 	if (setup_net(&init_net))
1224 		panic("Could not setup the initial network namespace");
1225 
1226 	init_net_initialized = true;
1227 	up_write(&pernet_ops_rwsem);
1228 
1229 	if (register_pernet_subsys(&net_ns_ops))
1230 		panic("Could not register network namespace subsystems");
1231 
1232 	rtnl_register_many(net_ns_rtnl_msg_handlers);
1233 }
1234 
1235 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1236 {
1237 	ops_pre_exit_list(ops, net_exit_list);
1238 	synchronize_rcu();
1239 
1240 	if (ops->exit_batch_rtnl) {
1241 		LIST_HEAD(dev_kill_list);
1242 
1243 		rtnl_lock();
1244 		ops->exit_batch_rtnl(net_exit_list, &dev_kill_list);
1245 		unregister_netdevice_many(&dev_kill_list);
1246 		rtnl_unlock();
1247 	}
1248 	ops_exit_list(ops, net_exit_list);
1249 
1250 	ops_free_list(ops, net_exit_list);
1251 }
1252 
1253 #ifdef CONFIG_NET_NS
1254 static int __register_pernet_operations(struct list_head *list,
1255 					struct pernet_operations *ops)
1256 {
1257 	struct net *net;
1258 	int error;
1259 	LIST_HEAD(net_exit_list);
1260 
1261 	list_add_tail(&ops->list, list);
1262 	if (ops->init || ops->id) {
1263 		/* We held write locked pernet_ops_rwsem, and parallel
1264 		 * setup_net() and cleanup_net() are not possible.
1265 		 */
1266 		for_each_net(net) {
1267 			error = ops_init(ops, net);
1268 			if (error)
1269 				goto out_undo;
1270 			list_add_tail(&net->exit_list, &net_exit_list);
1271 		}
1272 	}
1273 	return 0;
1274 
1275 out_undo:
1276 	/* If I have an error cleanup all namespaces I initialized */
1277 	list_del(&ops->list);
1278 	free_exit_list(ops, &net_exit_list);
1279 	return error;
1280 }
1281 
1282 static void __unregister_pernet_operations(struct pernet_operations *ops)
1283 {
1284 	struct net *net;
1285 	LIST_HEAD(net_exit_list);
1286 
1287 	list_del(&ops->list);
1288 	/* See comment in __register_pernet_operations() */
1289 	for_each_net(net)
1290 		list_add_tail(&net->exit_list, &net_exit_list);
1291 
1292 	free_exit_list(ops, &net_exit_list);
1293 }
1294 
1295 #else
1296 
1297 static int __register_pernet_operations(struct list_head *list,
1298 					struct pernet_operations *ops)
1299 {
1300 	if (!init_net_initialized) {
1301 		list_add_tail(&ops->list, list);
1302 		return 0;
1303 	}
1304 
1305 	return ops_init(ops, &init_net);
1306 }
1307 
1308 static void __unregister_pernet_operations(struct pernet_operations *ops)
1309 {
1310 	if (!init_net_initialized) {
1311 		list_del(&ops->list);
1312 	} else {
1313 		LIST_HEAD(net_exit_list);
1314 		list_add(&init_net.exit_list, &net_exit_list);
1315 		free_exit_list(ops, &net_exit_list);
1316 	}
1317 }
1318 
1319 #endif /* CONFIG_NET_NS */
1320 
1321 static DEFINE_IDA(net_generic_ids);
1322 
1323 static int register_pernet_operations(struct list_head *list,
1324 				      struct pernet_operations *ops)
1325 {
1326 	int error;
1327 
1328 	if (WARN_ON(!!ops->id ^ !!ops->size))
1329 		return -EINVAL;
1330 
1331 	if (ops->id) {
1332 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1333 				GFP_KERNEL);
1334 		if (error < 0)
1335 			return error;
1336 		*ops->id = error;
1337 		/* This does not require READ_ONCE as writers already hold
1338 		 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1339 		 * net_alloc_generic.
1340 		 */
1341 		WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1342 	}
1343 	error = __register_pernet_operations(list, ops);
1344 	if (error) {
1345 		rcu_barrier();
1346 		if (ops->id)
1347 			ida_free(&net_generic_ids, *ops->id);
1348 	}
1349 
1350 	return error;
1351 }
1352 
1353 static void unregister_pernet_operations(struct pernet_operations *ops)
1354 {
1355 	__unregister_pernet_operations(ops);
1356 	rcu_barrier();
1357 	if (ops->id)
1358 		ida_free(&net_generic_ids, *ops->id);
1359 }
1360 
1361 /**
1362  *      register_pernet_subsys - register a network namespace subsystem
1363  *	@ops:  pernet operations structure for the subsystem
1364  *
1365  *	Register a subsystem which has init and exit functions
1366  *	that are called when network namespaces are created and
1367  *	destroyed respectively.
1368  *
1369  *	When registered all network namespace init functions are
1370  *	called for every existing network namespace.  Allowing kernel
1371  *	modules to have a race free view of the set of network namespaces.
1372  *
1373  *	When a new network namespace is created all of the init
1374  *	methods are called in the order in which they were registered.
1375  *
1376  *	When a network namespace is destroyed all of the exit methods
1377  *	are called in the reverse of the order with which they were
1378  *	registered.
1379  */
1380 int register_pernet_subsys(struct pernet_operations *ops)
1381 {
1382 	int error;
1383 	down_write(&pernet_ops_rwsem);
1384 	error =  register_pernet_operations(first_device, ops);
1385 	up_write(&pernet_ops_rwsem);
1386 	return error;
1387 }
1388 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1389 
1390 /**
1391  *      unregister_pernet_subsys - unregister a network namespace subsystem
1392  *	@ops: pernet operations structure to manipulate
1393  *
1394  *	Remove the pernet operations structure from the list to be
1395  *	used when network namespaces are created or destroyed.  In
1396  *	addition run the exit method for all existing network
1397  *	namespaces.
1398  */
1399 void unregister_pernet_subsys(struct pernet_operations *ops)
1400 {
1401 	down_write(&pernet_ops_rwsem);
1402 	unregister_pernet_operations(ops);
1403 	up_write(&pernet_ops_rwsem);
1404 }
1405 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1406 
1407 /**
1408  *      register_pernet_device - register a network namespace device
1409  *	@ops:  pernet operations structure for the subsystem
1410  *
1411  *	Register a device which has init and exit functions
1412  *	that are called when network namespaces are created and
1413  *	destroyed respectively.
1414  *
1415  *	When registered all network namespace init functions are
1416  *	called for every existing network namespace.  Allowing kernel
1417  *	modules to have a race free view of the set of network namespaces.
1418  *
1419  *	When a new network namespace is created all of the init
1420  *	methods are called in the order in which they were registered.
1421  *
1422  *	When a network namespace is destroyed all of the exit methods
1423  *	are called in the reverse of the order with which they were
1424  *	registered.
1425  */
1426 int register_pernet_device(struct pernet_operations *ops)
1427 {
1428 	int error;
1429 	down_write(&pernet_ops_rwsem);
1430 	error = register_pernet_operations(&pernet_list, ops);
1431 	if (!error && (first_device == &pernet_list))
1432 		first_device = &ops->list;
1433 	up_write(&pernet_ops_rwsem);
1434 	return error;
1435 }
1436 EXPORT_SYMBOL_GPL(register_pernet_device);
1437 
1438 /**
1439  *      unregister_pernet_device - unregister a network namespace netdevice
1440  *	@ops: pernet operations structure to manipulate
1441  *
1442  *	Remove the pernet operations structure from the list to be
1443  *	used when network namespaces are created or destroyed.  In
1444  *	addition run the exit method for all existing network
1445  *	namespaces.
1446  */
1447 void unregister_pernet_device(struct pernet_operations *ops)
1448 {
1449 	down_write(&pernet_ops_rwsem);
1450 	if (&ops->list == first_device)
1451 		first_device = first_device->next;
1452 	unregister_pernet_operations(ops);
1453 	up_write(&pernet_ops_rwsem);
1454 }
1455 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1456 
1457 #ifdef CONFIG_NET_NS
1458 static struct ns_common *netns_get(struct task_struct *task)
1459 {
1460 	struct net *net = NULL;
1461 	struct nsproxy *nsproxy;
1462 
1463 	task_lock(task);
1464 	nsproxy = task->nsproxy;
1465 	if (nsproxy)
1466 		net = get_net(nsproxy->net_ns);
1467 	task_unlock(task);
1468 
1469 	return net ? &net->ns : NULL;
1470 }
1471 
1472 static inline struct net *to_net_ns(struct ns_common *ns)
1473 {
1474 	return container_of(ns, struct net, ns);
1475 }
1476 
1477 static void netns_put(struct ns_common *ns)
1478 {
1479 	put_net(to_net_ns(ns));
1480 }
1481 
1482 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1483 {
1484 	struct nsproxy *nsproxy = nsset->nsproxy;
1485 	struct net *net = to_net_ns(ns);
1486 
1487 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1488 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1489 		return -EPERM;
1490 
1491 	put_net(nsproxy->net_ns);
1492 	nsproxy->net_ns = get_net(net);
1493 	return 0;
1494 }
1495 
1496 static struct user_namespace *netns_owner(struct ns_common *ns)
1497 {
1498 	return to_net_ns(ns)->user_ns;
1499 }
1500 
1501 const struct proc_ns_operations netns_operations = {
1502 	.name		= "net",
1503 	.type		= CLONE_NEWNET,
1504 	.get		= netns_get,
1505 	.put		= netns_put,
1506 	.install	= netns_install,
1507 	.owner		= netns_owner,
1508 };
1509 #endif
1510