xref: /linux/net/core/net_namespace.c (revision 8ce936c2f1a68c3a4f46578eed016ff92a67fbc6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 
24 #include <net/sock.h>
25 #include <net/netlink.h>
26 #include <net/net_namespace.h>
27 #include <net/netns/generic.h>
28 
29 /*
30  *	Our network namespace constructor/destructor lists
31  */
32 
33 static LIST_HEAD(pernet_list);
34 static struct list_head *first_device = &pernet_list;
35 
36 LIST_HEAD(net_namespace_list);
37 EXPORT_SYMBOL_GPL(net_namespace_list);
38 
39 /* Protects net_namespace_list. Nests iside rtnl_lock() */
40 DECLARE_RWSEM(net_rwsem);
41 EXPORT_SYMBOL_GPL(net_rwsem);
42 
43 #ifdef CONFIG_KEYS
44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
45 #endif
46 
47 struct net init_net = {
48 	.ns.count	= REFCOUNT_INIT(1),
49 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
50 #ifdef CONFIG_KEYS
51 	.key_domain	= &init_net_key_domain,
52 #endif
53 };
54 EXPORT_SYMBOL(init_net);
55 
56 static bool init_net_initialized;
57 /*
58  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
59  * init_net_initialized and first_device pointer.
60  * This is internal net namespace object. Please, don't use it
61  * outside.
62  */
63 DECLARE_RWSEM(pernet_ops_rwsem);
64 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
65 
66 #define MIN_PERNET_OPS_ID	\
67 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
68 
69 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
70 
71 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
72 
73 DEFINE_COOKIE(net_cookie);
74 
75 static struct net_generic *net_alloc_generic(void)
76 {
77 	struct net_generic *ng;
78 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
79 
80 	ng = kzalloc(generic_size, GFP_KERNEL);
81 	if (ng)
82 		ng->s.len = max_gen_ptrs;
83 
84 	return ng;
85 }
86 
87 static int net_assign_generic(struct net *net, unsigned int id, void *data)
88 {
89 	struct net_generic *ng, *old_ng;
90 
91 	BUG_ON(id < MIN_PERNET_OPS_ID);
92 
93 	old_ng = rcu_dereference_protected(net->gen,
94 					   lockdep_is_held(&pernet_ops_rwsem));
95 	if (old_ng->s.len > id) {
96 		old_ng->ptr[id] = data;
97 		return 0;
98 	}
99 
100 	ng = net_alloc_generic();
101 	if (!ng)
102 		return -ENOMEM;
103 
104 	/*
105 	 * Some synchronisation notes:
106 	 *
107 	 * The net_generic explores the net->gen array inside rcu
108 	 * read section. Besides once set the net->gen->ptr[x]
109 	 * pointer never changes (see rules in netns/generic.h).
110 	 *
111 	 * That said, we simply duplicate this array and schedule
112 	 * the old copy for kfree after a grace period.
113 	 */
114 
115 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
116 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
117 	ng->ptr[id] = data;
118 
119 	rcu_assign_pointer(net->gen, ng);
120 	kfree_rcu(old_ng, s.rcu);
121 	return 0;
122 }
123 
124 static int ops_init(const struct pernet_operations *ops, struct net *net)
125 {
126 	int err = -ENOMEM;
127 	void *data = NULL;
128 
129 	if (ops->id && ops->size) {
130 		data = kzalloc(ops->size, GFP_KERNEL);
131 		if (!data)
132 			goto out;
133 
134 		err = net_assign_generic(net, *ops->id, data);
135 		if (err)
136 			goto cleanup;
137 	}
138 	err = 0;
139 	if (ops->init)
140 		err = ops->init(net);
141 	if (!err)
142 		return 0;
143 
144 cleanup:
145 	kfree(data);
146 
147 out:
148 	return err;
149 }
150 
151 static void ops_pre_exit_list(const struct pernet_operations *ops,
152 			      struct list_head *net_exit_list)
153 {
154 	struct net *net;
155 
156 	if (ops->pre_exit) {
157 		list_for_each_entry(net, net_exit_list, exit_list)
158 			ops->pre_exit(net);
159 	}
160 }
161 
162 static void ops_exit_list(const struct pernet_operations *ops,
163 			  struct list_head *net_exit_list)
164 {
165 	struct net *net;
166 	if (ops->exit) {
167 		list_for_each_entry(net, net_exit_list, exit_list)
168 			ops->exit(net);
169 	}
170 	if (ops->exit_batch)
171 		ops->exit_batch(net_exit_list);
172 }
173 
174 static void ops_free_list(const struct pernet_operations *ops,
175 			  struct list_head *net_exit_list)
176 {
177 	struct net *net;
178 	if (ops->size && ops->id) {
179 		list_for_each_entry(net, net_exit_list, exit_list)
180 			kfree(net_generic(net, *ops->id));
181 	}
182 }
183 
184 /* should be called with nsid_lock held */
185 static int alloc_netid(struct net *net, struct net *peer, int reqid)
186 {
187 	int min = 0, max = 0;
188 
189 	if (reqid >= 0) {
190 		min = reqid;
191 		max = reqid + 1;
192 	}
193 
194 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
195 }
196 
197 /* This function is used by idr_for_each(). If net is equal to peer, the
198  * function returns the id so that idr_for_each() stops. Because we cannot
199  * returns the id 0 (idr_for_each() will not stop), we return the magic value
200  * NET_ID_ZERO (-1) for it.
201  */
202 #define NET_ID_ZERO -1
203 static int net_eq_idr(int id, void *net, void *peer)
204 {
205 	if (net_eq(net, peer))
206 		return id ? : NET_ID_ZERO;
207 	return 0;
208 }
209 
210 /* Must be called from RCU-critical section or with nsid_lock held */
211 static int __peernet2id(const struct net *net, struct net *peer)
212 {
213 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
214 
215 	/* Magic value for id 0. */
216 	if (id == NET_ID_ZERO)
217 		return 0;
218 	if (id > 0)
219 		return id;
220 
221 	return NETNSA_NSID_NOT_ASSIGNED;
222 }
223 
224 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
225 			      struct nlmsghdr *nlh, gfp_t gfp);
226 /* This function returns the id of a peer netns. If no id is assigned, one will
227  * be allocated and returned.
228  */
229 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
230 {
231 	int id;
232 
233 	if (refcount_read(&net->ns.count) == 0)
234 		return NETNSA_NSID_NOT_ASSIGNED;
235 
236 	spin_lock_bh(&net->nsid_lock);
237 	id = __peernet2id(net, peer);
238 	if (id >= 0) {
239 		spin_unlock_bh(&net->nsid_lock);
240 		return id;
241 	}
242 
243 	/* When peer is obtained from RCU lists, we may race with
244 	 * its cleanup. Check whether it's alive, and this guarantees
245 	 * we never hash a peer back to net->netns_ids, after it has
246 	 * just been idr_remove()'d from there in cleanup_net().
247 	 */
248 	if (!maybe_get_net(peer)) {
249 		spin_unlock_bh(&net->nsid_lock);
250 		return NETNSA_NSID_NOT_ASSIGNED;
251 	}
252 
253 	id = alloc_netid(net, peer, -1);
254 	spin_unlock_bh(&net->nsid_lock);
255 
256 	put_net(peer);
257 	if (id < 0)
258 		return NETNSA_NSID_NOT_ASSIGNED;
259 
260 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
261 
262 	return id;
263 }
264 EXPORT_SYMBOL_GPL(peernet2id_alloc);
265 
266 /* This function returns, if assigned, the id of a peer netns. */
267 int peernet2id(const struct net *net, struct net *peer)
268 {
269 	int id;
270 
271 	rcu_read_lock();
272 	id = __peernet2id(net, peer);
273 	rcu_read_unlock();
274 
275 	return id;
276 }
277 EXPORT_SYMBOL(peernet2id);
278 
279 /* This function returns true is the peer netns has an id assigned into the
280  * current netns.
281  */
282 bool peernet_has_id(const struct net *net, struct net *peer)
283 {
284 	return peernet2id(net, peer) >= 0;
285 }
286 
287 struct net *get_net_ns_by_id(const struct net *net, int id)
288 {
289 	struct net *peer;
290 
291 	if (id < 0)
292 		return NULL;
293 
294 	rcu_read_lock();
295 	peer = idr_find(&net->netns_ids, id);
296 	if (peer)
297 		peer = maybe_get_net(peer);
298 	rcu_read_unlock();
299 
300 	return peer;
301 }
302 
303 /*
304  * setup_net runs the initializers for the network namespace object.
305  */
306 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
307 {
308 	/* Must be called with pernet_ops_rwsem held */
309 	const struct pernet_operations *ops, *saved_ops;
310 	int error = 0;
311 	LIST_HEAD(net_exit_list);
312 
313 	refcount_set(&net->ns.count, 1);
314 	refcount_set(&net->passive, 1);
315 	get_random_bytes(&net->hash_mix, sizeof(u32));
316 	preempt_disable();
317 	net->net_cookie = gen_cookie_next(&net_cookie);
318 	preempt_enable();
319 	net->dev_base_seq = 1;
320 	net->user_ns = user_ns;
321 	idr_init(&net->netns_ids);
322 	spin_lock_init(&net->nsid_lock);
323 	mutex_init(&net->ipv4.ra_mutex);
324 
325 	list_for_each_entry(ops, &pernet_list, list) {
326 		error = ops_init(ops, net);
327 		if (error < 0)
328 			goto out_undo;
329 	}
330 	down_write(&net_rwsem);
331 	list_add_tail_rcu(&net->list, &net_namespace_list);
332 	up_write(&net_rwsem);
333 out:
334 	return error;
335 
336 out_undo:
337 	/* Walk through the list backwards calling the exit functions
338 	 * for the pernet modules whose init functions did not fail.
339 	 */
340 	list_add(&net->exit_list, &net_exit_list);
341 	saved_ops = ops;
342 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
343 		ops_pre_exit_list(ops, &net_exit_list);
344 
345 	synchronize_rcu();
346 
347 	ops = saved_ops;
348 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
349 		ops_exit_list(ops, &net_exit_list);
350 
351 	ops = saved_ops;
352 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
353 		ops_free_list(ops, &net_exit_list);
354 
355 	rcu_barrier();
356 	goto out;
357 }
358 
359 static int __net_init net_defaults_init_net(struct net *net)
360 {
361 	net->core.sysctl_somaxconn = SOMAXCONN;
362 	return 0;
363 }
364 
365 static struct pernet_operations net_defaults_ops = {
366 	.init = net_defaults_init_net,
367 };
368 
369 static __init int net_defaults_init(void)
370 {
371 	if (register_pernet_subsys(&net_defaults_ops))
372 		panic("Cannot initialize net default settings");
373 
374 	return 0;
375 }
376 
377 core_initcall(net_defaults_init);
378 
379 #ifdef CONFIG_NET_NS
380 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
381 {
382 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
383 }
384 
385 static void dec_net_namespaces(struct ucounts *ucounts)
386 {
387 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
388 }
389 
390 static struct kmem_cache *net_cachep __ro_after_init;
391 static struct workqueue_struct *netns_wq;
392 
393 static struct net *net_alloc(void)
394 {
395 	struct net *net = NULL;
396 	struct net_generic *ng;
397 
398 	ng = net_alloc_generic();
399 	if (!ng)
400 		goto out;
401 
402 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
403 	if (!net)
404 		goto out_free;
405 
406 #ifdef CONFIG_KEYS
407 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
408 	if (!net->key_domain)
409 		goto out_free_2;
410 	refcount_set(&net->key_domain->usage, 1);
411 #endif
412 
413 	rcu_assign_pointer(net->gen, ng);
414 out:
415 	return net;
416 
417 #ifdef CONFIG_KEYS
418 out_free_2:
419 	kmem_cache_free(net_cachep, net);
420 	net = NULL;
421 #endif
422 out_free:
423 	kfree(ng);
424 	goto out;
425 }
426 
427 static void net_free(struct net *net)
428 {
429 	if (refcount_dec_and_test(&net->passive)) {
430 		kfree(rcu_access_pointer(net->gen));
431 		kmem_cache_free(net_cachep, net);
432 	}
433 }
434 
435 void net_drop_ns(void *p)
436 {
437 	struct net *net = (struct net *)p;
438 
439 	if (net)
440 		net_free(net);
441 }
442 
443 struct net *copy_net_ns(unsigned long flags,
444 			struct user_namespace *user_ns, struct net *old_net)
445 {
446 	struct ucounts *ucounts;
447 	struct net *net;
448 	int rv;
449 
450 	if (!(flags & CLONE_NEWNET))
451 		return get_net(old_net);
452 
453 	ucounts = inc_net_namespaces(user_ns);
454 	if (!ucounts)
455 		return ERR_PTR(-ENOSPC);
456 
457 	net = net_alloc();
458 	if (!net) {
459 		rv = -ENOMEM;
460 		goto dec_ucounts;
461 	}
462 	refcount_set(&net->passive, 1);
463 	net->ucounts = ucounts;
464 	get_user_ns(user_ns);
465 
466 	rv = down_read_killable(&pernet_ops_rwsem);
467 	if (rv < 0)
468 		goto put_userns;
469 
470 	rv = setup_net(net, user_ns);
471 
472 	up_read(&pernet_ops_rwsem);
473 
474 	if (rv < 0) {
475 put_userns:
476 		key_remove_domain(net->key_domain);
477 		put_user_ns(user_ns);
478 		net_free(net);
479 dec_ucounts:
480 		dec_net_namespaces(ucounts);
481 		return ERR_PTR(rv);
482 	}
483 	return net;
484 }
485 
486 /**
487  * net_ns_get_ownership - get sysfs ownership data for @net
488  * @net: network namespace in question (can be NULL)
489  * @uid: kernel user ID for sysfs objects
490  * @gid: kernel group ID for sysfs objects
491  *
492  * Returns the uid/gid pair of root in the user namespace associated with the
493  * given network namespace.
494  */
495 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
496 {
497 	if (net) {
498 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
499 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
500 
501 		if (uid_valid(ns_root_uid))
502 			*uid = ns_root_uid;
503 
504 		if (gid_valid(ns_root_gid))
505 			*gid = ns_root_gid;
506 	} else {
507 		*uid = GLOBAL_ROOT_UID;
508 		*gid = GLOBAL_ROOT_GID;
509 	}
510 }
511 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
512 
513 static void unhash_nsid(struct net *net, struct net *last)
514 {
515 	struct net *tmp;
516 	/* This function is only called from cleanup_net() work,
517 	 * and this work is the only process, that may delete
518 	 * a net from net_namespace_list. So, when the below
519 	 * is executing, the list may only grow. Thus, we do not
520 	 * use for_each_net_rcu() or net_rwsem.
521 	 */
522 	for_each_net(tmp) {
523 		int id;
524 
525 		spin_lock_bh(&tmp->nsid_lock);
526 		id = __peernet2id(tmp, net);
527 		if (id >= 0)
528 			idr_remove(&tmp->netns_ids, id);
529 		spin_unlock_bh(&tmp->nsid_lock);
530 		if (id >= 0)
531 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
532 					  GFP_KERNEL);
533 		if (tmp == last)
534 			break;
535 	}
536 	spin_lock_bh(&net->nsid_lock);
537 	idr_destroy(&net->netns_ids);
538 	spin_unlock_bh(&net->nsid_lock);
539 }
540 
541 static LLIST_HEAD(cleanup_list);
542 
543 static void cleanup_net(struct work_struct *work)
544 {
545 	const struct pernet_operations *ops;
546 	struct net *net, *tmp, *last;
547 	struct llist_node *net_kill_list;
548 	LIST_HEAD(net_exit_list);
549 
550 	/* Atomically snapshot the list of namespaces to cleanup */
551 	net_kill_list = llist_del_all(&cleanup_list);
552 
553 	down_read(&pernet_ops_rwsem);
554 
555 	/* Don't let anyone else find us. */
556 	down_write(&net_rwsem);
557 	llist_for_each_entry(net, net_kill_list, cleanup_list)
558 		list_del_rcu(&net->list);
559 	/* Cache last net. After we unlock rtnl, no one new net
560 	 * added to net_namespace_list can assign nsid pointer
561 	 * to a net from net_kill_list (see peernet2id_alloc()).
562 	 * So, we skip them in unhash_nsid().
563 	 *
564 	 * Note, that unhash_nsid() does not delete nsid links
565 	 * between net_kill_list's nets, as they've already
566 	 * deleted from net_namespace_list. But, this would be
567 	 * useless anyway, as netns_ids are destroyed there.
568 	 */
569 	last = list_last_entry(&net_namespace_list, struct net, list);
570 	up_write(&net_rwsem);
571 
572 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
573 		unhash_nsid(net, last);
574 		list_add_tail(&net->exit_list, &net_exit_list);
575 	}
576 
577 	/* Run all of the network namespace pre_exit methods */
578 	list_for_each_entry_reverse(ops, &pernet_list, list)
579 		ops_pre_exit_list(ops, &net_exit_list);
580 
581 	/*
582 	 * Another CPU might be rcu-iterating the list, wait for it.
583 	 * This needs to be before calling the exit() notifiers, so
584 	 * the rcu_barrier() below isn't sufficient alone.
585 	 * Also the pre_exit() and exit() methods need this barrier.
586 	 */
587 	synchronize_rcu();
588 
589 	/* Run all of the network namespace exit methods */
590 	list_for_each_entry_reverse(ops, &pernet_list, list)
591 		ops_exit_list(ops, &net_exit_list);
592 
593 	/* Free the net generic variables */
594 	list_for_each_entry_reverse(ops, &pernet_list, list)
595 		ops_free_list(ops, &net_exit_list);
596 
597 	up_read(&pernet_ops_rwsem);
598 
599 	/* Ensure there are no outstanding rcu callbacks using this
600 	 * network namespace.
601 	 */
602 	rcu_barrier();
603 
604 	/* Finally it is safe to free my network namespace structure */
605 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
606 		list_del_init(&net->exit_list);
607 		dec_net_namespaces(net->ucounts);
608 		key_remove_domain(net->key_domain);
609 		put_user_ns(net->user_ns);
610 		net_free(net);
611 	}
612 }
613 
614 /**
615  * net_ns_barrier - wait until concurrent net_cleanup_work is done
616  *
617  * cleanup_net runs from work queue and will first remove namespaces
618  * from the global list, then run net exit functions.
619  *
620  * Call this in module exit path to make sure that all netns
621  * ->exit ops have been invoked before the function is removed.
622  */
623 void net_ns_barrier(void)
624 {
625 	down_write(&pernet_ops_rwsem);
626 	up_write(&pernet_ops_rwsem);
627 }
628 EXPORT_SYMBOL(net_ns_barrier);
629 
630 static DECLARE_WORK(net_cleanup_work, cleanup_net);
631 
632 void __put_net(struct net *net)
633 {
634 	/* Cleanup the network namespace in process context */
635 	if (llist_add(&net->cleanup_list, &cleanup_list))
636 		queue_work(netns_wq, &net_cleanup_work);
637 }
638 EXPORT_SYMBOL_GPL(__put_net);
639 
640 /**
641  * get_net_ns - increment the refcount of the network namespace
642  * @ns: common namespace (net)
643  *
644  * Returns the net's common namespace.
645  */
646 struct ns_common *get_net_ns(struct ns_common *ns)
647 {
648 	return &get_net(container_of(ns, struct net, ns))->ns;
649 }
650 EXPORT_SYMBOL_GPL(get_net_ns);
651 
652 struct net *get_net_ns_by_fd(int fd)
653 {
654 	struct file *file;
655 	struct ns_common *ns;
656 	struct net *net;
657 
658 	file = proc_ns_fget(fd);
659 	if (IS_ERR(file))
660 		return ERR_CAST(file);
661 
662 	ns = get_proc_ns(file_inode(file));
663 	if (ns->ops == &netns_operations)
664 		net = get_net(container_of(ns, struct net, ns));
665 	else
666 		net = ERR_PTR(-EINVAL);
667 
668 	fput(file);
669 	return net;
670 }
671 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
672 #endif
673 
674 struct net *get_net_ns_by_pid(pid_t pid)
675 {
676 	struct task_struct *tsk;
677 	struct net *net;
678 
679 	/* Lookup the network namespace */
680 	net = ERR_PTR(-ESRCH);
681 	rcu_read_lock();
682 	tsk = find_task_by_vpid(pid);
683 	if (tsk) {
684 		struct nsproxy *nsproxy;
685 		task_lock(tsk);
686 		nsproxy = tsk->nsproxy;
687 		if (nsproxy)
688 			net = get_net(nsproxy->net_ns);
689 		task_unlock(tsk);
690 	}
691 	rcu_read_unlock();
692 	return net;
693 }
694 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
695 
696 static __net_init int net_ns_net_init(struct net *net)
697 {
698 #ifdef CONFIG_NET_NS
699 	net->ns.ops = &netns_operations;
700 #endif
701 	return ns_alloc_inum(&net->ns);
702 }
703 
704 static __net_exit void net_ns_net_exit(struct net *net)
705 {
706 	ns_free_inum(&net->ns);
707 }
708 
709 static struct pernet_operations __net_initdata net_ns_ops = {
710 	.init = net_ns_net_init,
711 	.exit = net_ns_net_exit,
712 };
713 
714 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
715 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
716 	[NETNSA_NSID]		= { .type = NLA_S32 },
717 	[NETNSA_PID]		= { .type = NLA_U32 },
718 	[NETNSA_FD]		= { .type = NLA_U32 },
719 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
720 };
721 
722 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
723 			  struct netlink_ext_ack *extack)
724 {
725 	struct net *net = sock_net(skb->sk);
726 	struct nlattr *tb[NETNSA_MAX + 1];
727 	struct nlattr *nla;
728 	struct net *peer;
729 	int nsid, err;
730 
731 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
732 				     NETNSA_MAX, rtnl_net_policy, extack);
733 	if (err < 0)
734 		return err;
735 	if (!tb[NETNSA_NSID]) {
736 		NL_SET_ERR_MSG(extack, "nsid is missing");
737 		return -EINVAL;
738 	}
739 	nsid = nla_get_s32(tb[NETNSA_NSID]);
740 
741 	if (tb[NETNSA_PID]) {
742 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
743 		nla = tb[NETNSA_PID];
744 	} else if (tb[NETNSA_FD]) {
745 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
746 		nla = tb[NETNSA_FD];
747 	} else {
748 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
749 		return -EINVAL;
750 	}
751 	if (IS_ERR(peer)) {
752 		NL_SET_BAD_ATTR(extack, nla);
753 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
754 		return PTR_ERR(peer);
755 	}
756 
757 	spin_lock_bh(&net->nsid_lock);
758 	if (__peernet2id(net, peer) >= 0) {
759 		spin_unlock_bh(&net->nsid_lock);
760 		err = -EEXIST;
761 		NL_SET_BAD_ATTR(extack, nla);
762 		NL_SET_ERR_MSG(extack,
763 			       "Peer netns already has a nsid assigned");
764 		goto out;
765 	}
766 
767 	err = alloc_netid(net, peer, nsid);
768 	spin_unlock_bh(&net->nsid_lock);
769 	if (err >= 0) {
770 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
771 				  nlh, GFP_KERNEL);
772 		err = 0;
773 	} else if (err == -ENOSPC && nsid >= 0) {
774 		err = -EEXIST;
775 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
776 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
777 	}
778 out:
779 	put_net(peer);
780 	return err;
781 }
782 
783 static int rtnl_net_get_size(void)
784 {
785 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
786 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
787 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
788 	       ;
789 }
790 
791 struct net_fill_args {
792 	u32 portid;
793 	u32 seq;
794 	int flags;
795 	int cmd;
796 	int nsid;
797 	bool add_ref;
798 	int ref_nsid;
799 };
800 
801 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
802 {
803 	struct nlmsghdr *nlh;
804 	struct rtgenmsg *rth;
805 
806 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
807 			args->flags);
808 	if (!nlh)
809 		return -EMSGSIZE;
810 
811 	rth = nlmsg_data(nlh);
812 	rth->rtgen_family = AF_UNSPEC;
813 
814 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
815 		goto nla_put_failure;
816 
817 	if (args->add_ref &&
818 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
819 		goto nla_put_failure;
820 
821 	nlmsg_end(skb, nlh);
822 	return 0;
823 
824 nla_put_failure:
825 	nlmsg_cancel(skb, nlh);
826 	return -EMSGSIZE;
827 }
828 
829 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
830 				    const struct nlmsghdr *nlh,
831 				    struct nlattr **tb,
832 				    struct netlink_ext_ack *extack)
833 {
834 	int i, err;
835 
836 	if (!netlink_strict_get_check(skb))
837 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
838 					      tb, NETNSA_MAX, rtnl_net_policy,
839 					      extack);
840 
841 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
842 					    NETNSA_MAX, rtnl_net_policy,
843 					    extack);
844 	if (err)
845 		return err;
846 
847 	for (i = 0; i <= NETNSA_MAX; i++) {
848 		if (!tb[i])
849 			continue;
850 
851 		switch (i) {
852 		case NETNSA_PID:
853 		case NETNSA_FD:
854 		case NETNSA_NSID:
855 		case NETNSA_TARGET_NSID:
856 			break;
857 		default:
858 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
859 			return -EINVAL;
860 		}
861 	}
862 
863 	return 0;
864 }
865 
866 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
867 			  struct netlink_ext_ack *extack)
868 {
869 	struct net *net = sock_net(skb->sk);
870 	struct nlattr *tb[NETNSA_MAX + 1];
871 	struct net_fill_args fillargs = {
872 		.portid = NETLINK_CB(skb).portid,
873 		.seq = nlh->nlmsg_seq,
874 		.cmd = RTM_NEWNSID,
875 	};
876 	struct net *peer, *target = net;
877 	struct nlattr *nla;
878 	struct sk_buff *msg;
879 	int err;
880 
881 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
882 	if (err < 0)
883 		return err;
884 	if (tb[NETNSA_PID]) {
885 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
886 		nla = tb[NETNSA_PID];
887 	} else if (tb[NETNSA_FD]) {
888 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
889 		nla = tb[NETNSA_FD];
890 	} else if (tb[NETNSA_NSID]) {
891 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
892 		if (!peer)
893 			peer = ERR_PTR(-ENOENT);
894 		nla = tb[NETNSA_NSID];
895 	} else {
896 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
897 		return -EINVAL;
898 	}
899 
900 	if (IS_ERR(peer)) {
901 		NL_SET_BAD_ATTR(extack, nla);
902 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
903 		return PTR_ERR(peer);
904 	}
905 
906 	if (tb[NETNSA_TARGET_NSID]) {
907 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
908 
909 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
910 		if (IS_ERR(target)) {
911 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
912 			NL_SET_ERR_MSG(extack,
913 				       "Target netns reference is invalid");
914 			err = PTR_ERR(target);
915 			goto out;
916 		}
917 		fillargs.add_ref = true;
918 		fillargs.ref_nsid = peernet2id(net, peer);
919 	}
920 
921 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
922 	if (!msg) {
923 		err = -ENOMEM;
924 		goto out;
925 	}
926 
927 	fillargs.nsid = peernet2id(target, peer);
928 	err = rtnl_net_fill(msg, &fillargs);
929 	if (err < 0)
930 		goto err_out;
931 
932 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
933 	goto out;
934 
935 err_out:
936 	nlmsg_free(msg);
937 out:
938 	if (fillargs.add_ref)
939 		put_net(target);
940 	put_net(peer);
941 	return err;
942 }
943 
944 struct rtnl_net_dump_cb {
945 	struct net *tgt_net;
946 	struct net *ref_net;
947 	struct sk_buff *skb;
948 	struct net_fill_args fillargs;
949 	int idx;
950 	int s_idx;
951 };
952 
953 /* Runs in RCU-critical section. */
954 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
955 {
956 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
957 	int ret;
958 
959 	if (net_cb->idx < net_cb->s_idx)
960 		goto cont;
961 
962 	net_cb->fillargs.nsid = id;
963 	if (net_cb->fillargs.add_ref)
964 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
965 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
966 	if (ret < 0)
967 		return ret;
968 
969 cont:
970 	net_cb->idx++;
971 	return 0;
972 }
973 
974 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
975 				   struct rtnl_net_dump_cb *net_cb,
976 				   struct netlink_callback *cb)
977 {
978 	struct netlink_ext_ack *extack = cb->extack;
979 	struct nlattr *tb[NETNSA_MAX + 1];
980 	int err, i;
981 
982 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
983 					    NETNSA_MAX, rtnl_net_policy,
984 					    extack);
985 	if (err < 0)
986 		return err;
987 
988 	for (i = 0; i <= NETNSA_MAX; i++) {
989 		if (!tb[i])
990 			continue;
991 
992 		if (i == NETNSA_TARGET_NSID) {
993 			struct net *net;
994 
995 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
996 			if (IS_ERR(net)) {
997 				NL_SET_BAD_ATTR(extack, tb[i]);
998 				NL_SET_ERR_MSG(extack,
999 					       "Invalid target network namespace id");
1000 				return PTR_ERR(net);
1001 			}
1002 			net_cb->fillargs.add_ref = true;
1003 			net_cb->ref_net = net_cb->tgt_net;
1004 			net_cb->tgt_net = net;
1005 		} else {
1006 			NL_SET_BAD_ATTR(extack, tb[i]);
1007 			NL_SET_ERR_MSG(extack,
1008 				       "Unsupported attribute in dump request");
1009 			return -EINVAL;
1010 		}
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1017 {
1018 	struct rtnl_net_dump_cb net_cb = {
1019 		.tgt_net = sock_net(skb->sk),
1020 		.skb = skb,
1021 		.fillargs = {
1022 			.portid = NETLINK_CB(cb->skb).portid,
1023 			.seq = cb->nlh->nlmsg_seq,
1024 			.flags = NLM_F_MULTI,
1025 			.cmd = RTM_NEWNSID,
1026 		},
1027 		.idx = 0,
1028 		.s_idx = cb->args[0],
1029 	};
1030 	int err = 0;
1031 
1032 	if (cb->strict_check) {
1033 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1034 		if (err < 0)
1035 			goto end;
1036 	}
1037 
1038 	rcu_read_lock();
1039 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1040 	rcu_read_unlock();
1041 
1042 	cb->args[0] = net_cb.idx;
1043 end:
1044 	if (net_cb.fillargs.add_ref)
1045 		put_net(net_cb.tgt_net);
1046 	return err < 0 ? err : skb->len;
1047 }
1048 
1049 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1050 			      struct nlmsghdr *nlh, gfp_t gfp)
1051 {
1052 	struct net_fill_args fillargs = {
1053 		.portid = portid,
1054 		.seq = nlh ? nlh->nlmsg_seq : 0,
1055 		.cmd = cmd,
1056 		.nsid = id,
1057 	};
1058 	struct sk_buff *msg;
1059 	int err = -ENOMEM;
1060 
1061 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1062 	if (!msg)
1063 		goto out;
1064 
1065 	err = rtnl_net_fill(msg, &fillargs);
1066 	if (err < 0)
1067 		goto err_out;
1068 
1069 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1070 	return;
1071 
1072 err_out:
1073 	nlmsg_free(msg);
1074 out:
1075 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1076 }
1077 
1078 static int __init net_ns_init(void)
1079 {
1080 	struct net_generic *ng;
1081 
1082 #ifdef CONFIG_NET_NS
1083 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1084 					SMP_CACHE_BYTES,
1085 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1086 
1087 	/* Create workqueue for cleanup */
1088 	netns_wq = create_singlethread_workqueue("netns");
1089 	if (!netns_wq)
1090 		panic("Could not create netns workq");
1091 #endif
1092 
1093 	ng = net_alloc_generic();
1094 	if (!ng)
1095 		panic("Could not allocate generic netns");
1096 
1097 	rcu_assign_pointer(init_net.gen, ng);
1098 
1099 	down_write(&pernet_ops_rwsem);
1100 	if (setup_net(&init_net, &init_user_ns))
1101 		panic("Could not setup the initial network namespace");
1102 
1103 	init_net_initialized = true;
1104 	up_write(&pernet_ops_rwsem);
1105 
1106 	if (register_pernet_subsys(&net_ns_ops))
1107 		panic("Could not register network namespace subsystems");
1108 
1109 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1110 		      RTNL_FLAG_DOIT_UNLOCKED);
1111 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1112 		      RTNL_FLAG_DOIT_UNLOCKED);
1113 
1114 	return 0;
1115 }
1116 
1117 pure_initcall(net_ns_init);
1118 
1119 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1120 {
1121 	ops_pre_exit_list(ops, net_exit_list);
1122 	synchronize_rcu();
1123 	ops_exit_list(ops, net_exit_list);
1124 	ops_free_list(ops, net_exit_list);
1125 }
1126 
1127 #ifdef CONFIG_NET_NS
1128 static int __register_pernet_operations(struct list_head *list,
1129 					struct pernet_operations *ops)
1130 {
1131 	struct net *net;
1132 	int error;
1133 	LIST_HEAD(net_exit_list);
1134 
1135 	list_add_tail(&ops->list, list);
1136 	if (ops->init || (ops->id && ops->size)) {
1137 		/* We held write locked pernet_ops_rwsem, and parallel
1138 		 * setup_net() and cleanup_net() are not possible.
1139 		 */
1140 		for_each_net(net) {
1141 			error = ops_init(ops, net);
1142 			if (error)
1143 				goto out_undo;
1144 			list_add_tail(&net->exit_list, &net_exit_list);
1145 		}
1146 	}
1147 	return 0;
1148 
1149 out_undo:
1150 	/* If I have an error cleanup all namespaces I initialized */
1151 	list_del(&ops->list);
1152 	free_exit_list(ops, &net_exit_list);
1153 	return error;
1154 }
1155 
1156 static void __unregister_pernet_operations(struct pernet_operations *ops)
1157 {
1158 	struct net *net;
1159 	LIST_HEAD(net_exit_list);
1160 
1161 	list_del(&ops->list);
1162 	/* See comment in __register_pernet_operations() */
1163 	for_each_net(net)
1164 		list_add_tail(&net->exit_list, &net_exit_list);
1165 
1166 	free_exit_list(ops, &net_exit_list);
1167 }
1168 
1169 #else
1170 
1171 static int __register_pernet_operations(struct list_head *list,
1172 					struct pernet_operations *ops)
1173 {
1174 	if (!init_net_initialized) {
1175 		list_add_tail(&ops->list, list);
1176 		return 0;
1177 	}
1178 
1179 	return ops_init(ops, &init_net);
1180 }
1181 
1182 static void __unregister_pernet_operations(struct pernet_operations *ops)
1183 {
1184 	if (!init_net_initialized) {
1185 		list_del(&ops->list);
1186 	} else {
1187 		LIST_HEAD(net_exit_list);
1188 		list_add(&init_net.exit_list, &net_exit_list);
1189 		free_exit_list(ops, &net_exit_list);
1190 	}
1191 }
1192 
1193 #endif /* CONFIG_NET_NS */
1194 
1195 static DEFINE_IDA(net_generic_ids);
1196 
1197 static int register_pernet_operations(struct list_head *list,
1198 				      struct pernet_operations *ops)
1199 {
1200 	int error;
1201 
1202 	if (ops->id) {
1203 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1204 				GFP_KERNEL);
1205 		if (error < 0)
1206 			return error;
1207 		*ops->id = error;
1208 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1209 	}
1210 	error = __register_pernet_operations(list, ops);
1211 	if (error) {
1212 		rcu_barrier();
1213 		if (ops->id)
1214 			ida_free(&net_generic_ids, *ops->id);
1215 	}
1216 
1217 	return error;
1218 }
1219 
1220 static void unregister_pernet_operations(struct pernet_operations *ops)
1221 {
1222 	__unregister_pernet_operations(ops);
1223 	rcu_barrier();
1224 	if (ops->id)
1225 		ida_free(&net_generic_ids, *ops->id);
1226 }
1227 
1228 /**
1229  *      register_pernet_subsys - register a network namespace subsystem
1230  *	@ops:  pernet operations structure for the subsystem
1231  *
1232  *	Register a subsystem which has init and exit functions
1233  *	that are called when network namespaces are created and
1234  *	destroyed respectively.
1235  *
1236  *	When registered all network namespace init functions are
1237  *	called for every existing network namespace.  Allowing kernel
1238  *	modules to have a race free view of the set of network namespaces.
1239  *
1240  *	When a new network namespace is created all of the init
1241  *	methods are called in the order in which they were registered.
1242  *
1243  *	When a network namespace is destroyed all of the exit methods
1244  *	are called in the reverse of the order with which they were
1245  *	registered.
1246  */
1247 int register_pernet_subsys(struct pernet_operations *ops)
1248 {
1249 	int error;
1250 	down_write(&pernet_ops_rwsem);
1251 	error =  register_pernet_operations(first_device, ops);
1252 	up_write(&pernet_ops_rwsem);
1253 	return error;
1254 }
1255 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1256 
1257 /**
1258  *      unregister_pernet_subsys - unregister a network namespace subsystem
1259  *	@ops: pernet operations structure to manipulate
1260  *
1261  *	Remove the pernet operations structure from the list to be
1262  *	used when network namespaces are created or destroyed.  In
1263  *	addition run the exit method for all existing network
1264  *	namespaces.
1265  */
1266 void unregister_pernet_subsys(struct pernet_operations *ops)
1267 {
1268 	down_write(&pernet_ops_rwsem);
1269 	unregister_pernet_operations(ops);
1270 	up_write(&pernet_ops_rwsem);
1271 }
1272 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1273 
1274 /**
1275  *      register_pernet_device - register a network namespace device
1276  *	@ops:  pernet operations structure for the subsystem
1277  *
1278  *	Register a device which has init and exit functions
1279  *	that are called when network namespaces are created and
1280  *	destroyed respectively.
1281  *
1282  *	When registered all network namespace init functions are
1283  *	called for every existing network namespace.  Allowing kernel
1284  *	modules to have a race free view of the set of network namespaces.
1285  *
1286  *	When a new network namespace is created all of the init
1287  *	methods are called in the order in which they were registered.
1288  *
1289  *	When a network namespace is destroyed all of the exit methods
1290  *	are called in the reverse of the order with which they were
1291  *	registered.
1292  */
1293 int register_pernet_device(struct pernet_operations *ops)
1294 {
1295 	int error;
1296 	down_write(&pernet_ops_rwsem);
1297 	error = register_pernet_operations(&pernet_list, ops);
1298 	if (!error && (first_device == &pernet_list))
1299 		first_device = &ops->list;
1300 	up_write(&pernet_ops_rwsem);
1301 	return error;
1302 }
1303 EXPORT_SYMBOL_GPL(register_pernet_device);
1304 
1305 /**
1306  *      unregister_pernet_device - unregister a network namespace netdevice
1307  *	@ops: pernet operations structure to manipulate
1308  *
1309  *	Remove the pernet operations structure from the list to be
1310  *	used when network namespaces are created or destroyed.  In
1311  *	addition run the exit method for all existing network
1312  *	namespaces.
1313  */
1314 void unregister_pernet_device(struct pernet_operations *ops)
1315 {
1316 	down_write(&pernet_ops_rwsem);
1317 	if (&ops->list == first_device)
1318 		first_device = first_device->next;
1319 	unregister_pernet_operations(ops);
1320 	up_write(&pernet_ops_rwsem);
1321 }
1322 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1323 
1324 #ifdef CONFIG_NET_NS
1325 static struct ns_common *netns_get(struct task_struct *task)
1326 {
1327 	struct net *net = NULL;
1328 	struct nsproxy *nsproxy;
1329 
1330 	task_lock(task);
1331 	nsproxy = task->nsproxy;
1332 	if (nsproxy)
1333 		net = get_net(nsproxy->net_ns);
1334 	task_unlock(task);
1335 
1336 	return net ? &net->ns : NULL;
1337 }
1338 
1339 static inline struct net *to_net_ns(struct ns_common *ns)
1340 {
1341 	return container_of(ns, struct net, ns);
1342 }
1343 
1344 static void netns_put(struct ns_common *ns)
1345 {
1346 	put_net(to_net_ns(ns));
1347 }
1348 
1349 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1350 {
1351 	struct nsproxy *nsproxy = nsset->nsproxy;
1352 	struct net *net = to_net_ns(ns);
1353 
1354 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1355 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1356 		return -EPERM;
1357 
1358 	put_net(nsproxy->net_ns);
1359 	nsproxy->net_ns = get_net(net);
1360 	return 0;
1361 }
1362 
1363 static struct user_namespace *netns_owner(struct ns_common *ns)
1364 {
1365 	return to_net_ns(ns)->user_ns;
1366 }
1367 
1368 const struct proc_ns_operations netns_operations = {
1369 	.name		= "net",
1370 	.type		= CLONE_NEWNET,
1371 	.get		= netns_get,
1372 	.put		= netns_put,
1373 	.install	= netns_install,
1374 	.owner		= netns_owner,
1375 };
1376 #endif
1377