1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 DEFINE_COOKIE(net_cookie); 68 69 static struct net_generic *net_alloc_generic(void) 70 { 71 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 72 unsigned int generic_size; 73 struct net_generic *ng; 74 75 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (!ng) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 struct net_generic *ng; 124 int err = -ENOMEM; 125 void *data = NULL; 126 127 if (ops->id) { 128 data = kzalloc(ops->size, GFP_KERNEL); 129 if (!data) 130 goto out; 131 132 err = net_assign_generic(net, *ops->id, data); 133 if (err) 134 goto cleanup; 135 } 136 err = 0; 137 if (ops->init) 138 err = ops->init(net); 139 if (!err) 140 return 0; 141 142 if (ops->id) { 143 ng = rcu_dereference_protected(net->gen, 144 lockdep_is_held(&pernet_ops_rwsem)); 145 ng->ptr[*ops->id] = NULL; 146 } 147 148 cleanup: 149 kfree(data); 150 151 out: 152 return err; 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_list(const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 struct net *net; 170 if (ops->exit) { 171 list_for_each_entry(net, net_exit_list, exit_list) { 172 ops->exit(net); 173 cond_resched(); 174 } 175 } 176 if (ops->exit_batch) 177 ops->exit_batch(net_exit_list); 178 } 179 180 static void ops_free_list(const struct pernet_operations *ops, 181 struct list_head *net_exit_list) 182 { 183 struct net *net; 184 185 if (ops->id) { 186 list_for_each_entry(net, net_exit_list, exit_list) 187 kfree(net_generic(net, *ops->id)); 188 } 189 } 190 191 /* should be called with nsid_lock held */ 192 static int alloc_netid(struct net *net, struct net *peer, int reqid) 193 { 194 int min = 0, max = 0; 195 196 if (reqid >= 0) { 197 min = reqid; 198 max = reqid + 1; 199 } 200 201 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 202 } 203 204 /* This function is used by idr_for_each(). If net is equal to peer, the 205 * function returns the id so that idr_for_each() stops. Because we cannot 206 * returns the id 0 (idr_for_each() will not stop), we return the magic value 207 * NET_ID_ZERO (-1) for it. 208 */ 209 #define NET_ID_ZERO -1 210 static int net_eq_idr(int id, void *net, void *peer) 211 { 212 if (net_eq(net, peer)) 213 return id ? : NET_ID_ZERO; 214 return 0; 215 } 216 217 /* Must be called from RCU-critical section or with nsid_lock held */ 218 static int __peernet2id(const struct net *net, struct net *peer) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 222 /* Magic value for id 0. */ 223 if (id == NET_ID_ZERO) 224 return 0; 225 if (id > 0) 226 return id; 227 228 return NETNSA_NSID_NOT_ASSIGNED; 229 } 230 231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 232 struct nlmsghdr *nlh, gfp_t gfp); 233 /* This function returns the id of a peer netns. If no id is assigned, one will 234 * be allocated and returned. 235 */ 236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 237 { 238 int id; 239 240 if (refcount_read(&net->ns.count) == 0) 241 return NETNSA_NSID_NOT_ASSIGNED; 242 243 spin_lock_bh(&net->nsid_lock); 244 id = __peernet2id(net, peer); 245 if (id >= 0) { 246 spin_unlock_bh(&net->nsid_lock); 247 return id; 248 } 249 250 /* When peer is obtained from RCU lists, we may race with 251 * its cleanup. Check whether it's alive, and this guarantees 252 * we never hash a peer back to net->netns_ids, after it has 253 * just been idr_remove()'d from there in cleanup_net(). 254 */ 255 if (!maybe_get_net(peer)) { 256 spin_unlock_bh(&net->nsid_lock); 257 return NETNSA_NSID_NOT_ASSIGNED; 258 } 259 260 id = alloc_netid(net, peer, -1); 261 spin_unlock_bh(&net->nsid_lock); 262 263 put_net(peer); 264 if (id < 0) 265 return NETNSA_NSID_NOT_ASSIGNED; 266 267 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 268 269 return id; 270 } 271 EXPORT_SYMBOL_GPL(peernet2id_alloc); 272 273 /* This function returns, if assigned, the id of a peer netns. */ 274 int peernet2id(const struct net *net, struct net *peer) 275 { 276 int id; 277 278 rcu_read_lock(); 279 id = __peernet2id(net, peer); 280 rcu_read_unlock(); 281 282 return id; 283 } 284 EXPORT_SYMBOL(peernet2id); 285 286 /* This function returns true is the peer netns has an id assigned into the 287 * current netns. 288 */ 289 bool peernet_has_id(const struct net *net, struct net *peer) 290 { 291 return peernet2id(net, peer) >= 0; 292 } 293 294 struct net *get_net_ns_by_id(const struct net *net, int id) 295 { 296 struct net *peer; 297 298 if (id < 0) 299 return NULL; 300 301 rcu_read_lock(); 302 peer = idr_find(&net->netns_ids, id); 303 if (peer) 304 peer = maybe_get_net(peer); 305 rcu_read_unlock(); 306 307 return peer; 308 } 309 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 310 311 static __net_init void preinit_net_sysctl(struct net *net) 312 { 313 net->core.sysctl_somaxconn = SOMAXCONN; 314 /* Limits per socket sk_omem_alloc usage. 315 * TCP zerocopy regular usage needs 128 KB. 316 */ 317 net->core.sysctl_optmem_max = 128 * 1024; 318 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 319 net->core.sysctl_tstamp_allow_data = 1; 320 } 321 322 /* init code that must occur even if setup_net() is not called. */ 323 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 324 { 325 refcount_set(&net->passive, 1); 326 refcount_set(&net->ns.count, 1); 327 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 328 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 329 330 get_random_bytes(&net->hash_mix, sizeof(u32)); 331 net->dev_base_seq = 1; 332 net->user_ns = user_ns; 333 334 idr_init(&net->netns_ids); 335 spin_lock_init(&net->nsid_lock); 336 mutex_init(&net->ipv4.ra_mutex); 337 338 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 339 mutex_init(&net->rtnl_mutex); 340 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 341 #endif 342 343 INIT_LIST_HEAD(&net->ptype_all); 344 INIT_LIST_HEAD(&net->ptype_specific); 345 preinit_net_sysctl(net); 346 } 347 348 /* 349 * setup_net runs the initializers for the network namespace object. 350 */ 351 static __net_init int setup_net(struct net *net) 352 { 353 /* Must be called with pernet_ops_rwsem held */ 354 const struct pernet_operations *ops, *saved_ops; 355 LIST_HEAD(net_exit_list); 356 LIST_HEAD(dev_kill_list); 357 int error = 0; 358 359 preempt_disable(); 360 net->net_cookie = gen_cookie_next(&net_cookie); 361 preempt_enable(); 362 363 list_for_each_entry(ops, &pernet_list, list) { 364 error = ops_init(ops, net); 365 if (error < 0) 366 goto out_undo; 367 } 368 down_write(&net_rwsem); 369 list_add_tail_rcu(&net->list, &net_namespace_list); 370 up_write(&net_rwsem); 371 out: 372 return error; 373 374 out_undo: 375 /* Walk through the list backwards calling the exit functions 376 * for the pernet modules whose init functions did not fail. 377 */ 378 list_add(&net->exit_list, &net_exit_list); 379 saved_ops = ops; 380 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 381 ops_pre_exit_list(ops, &net_exit_list); 382 383 synchronize_rcu(); 384 385 ops = saved_ops; 386 rtnl_lock(); 387 list_for_each_entry_continue_reverse(ops, &pernet_list, list) { 388 if (ops->exit_batch_rtnl) 389 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 390 } 391 unregister_netdevice_many(&dev_kill_list); 392 rtnl_unlock(); 393 394 ops = saved_ops; 395 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 396 ops_exit_list(ops, &net_exit_list); 397 398 ops = saved_ops; 399 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 400 ops_free_list(ops, &net_exit_list); 401 402 rcu_barrier(); 403 goto out; 404 } 405 406 #ifdef CONFIG_NET_NS 407 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 408 { 409 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 410 } 411 412 static void dec_net_namespaces(struct ucounts *ucounts) 413 { 414 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 415 } 416 417 static struct kmem_cache *net_cachep __ro_after_init; 418 static struct workqueue_struct *netns_wq; 419 420 static struct net *net_alloc(void) 421 { 422 struct net *net = NULL; 423 struct net_generic *ng; 424 425 ng = net_alloc_generic(); 426 if (!ng) 427 goto out; 428 429 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 430 if (!net) 431 goto out_free; 432 433 #ifdef CONFIG_KEYS 434 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 435 if (!net->key_domain) 436 goto out_free_2; 437 refcount_set(&net->key_domain->usage, 1); 438 #endif 439 440 rcu_assign_pointer(net->gen, ng); 441 out: 442 return net; 443 444 #ifdef CONFIG_KEYS 445 out_free_2: 446 kmem_cache_free(net_cachep, net); 447 net = NULL; 448 #endif 449 out_free: 450 kfree(ng); 451 goto out; 452 } 453 454 static LLIST_HEAD(defer_free_list); 455 456 static void net_complete_free(void) 457 { 458 struct llist_node *kill_list; 459 struct net *net, *next; 460 461 /* Get the list of namespaces to free from last round. */ 462 kill_list = llist_del_all(&defer_free_list); 463 464 llist_for_each_entry_safe(net, next, kill_list, defer_free_list) 465 kmem_cache_free(net_cachep, net); 466 467 } 468 469 void net_passive_dec(struct net *net) 470 { 471 if (refcount_dec_and_test(&net->passive)) { 472 kfree(rcu_access_pointer(net->gen)); 473 474 /* There should not be any trackers left there. */ 475 ref_tracker_dir_exit(&net->notrefcnt_tracker); 476 477 /* Wait for an extra rcu_barrier() before final free. */ 478 llist_add(&net->defer_free_list, &defer_free_list); 479 } 480 } 481 482 void net_drop_ns(void *p) 483 { 484 struct net *net = (struct net *)p; 485 486 if (net) 487 net_passive_dec(net); 488 } 489 490 struct net *copy_net_ns(unsigned long flags, 491 struct user_namespace *user_ns, struct net *old_net) 492 { 493 struct ucounts *ucounts; 494 struct net *net; 495 int rv; 496 497 if (!(flags & CLONE_NEWNET)) 498 return get_net(old_net); 499 500 ucounts = inc_net_namespaces(user_ns); 501 if (!ucounts) 502 return ERR_PTR(-ENOSPC); 503 504 net = net_alloc(); 505 if (!net) { 506 rv = -ENOMEM; 507 goto dec_ucounts; 508 } 509 510 preinit_net(net, user_ns); 511 net->ucounts = ucounts; 512 get_user_ns(user_ns); 513 514 rv = down_read_killable(&pernet_ops_rwsem); 515 if (rv < 0) 516 goto put_userns; 517 518 rv = setup_net(net); 519 520 up_read(&pernet_ops_rwsem); 521 522 if (rv < 0) { 523 put_userns: 524 #ifdef CONFIG_KEYS 525 key_remove_domain(net->key_domain); 526 #endif 527 put_user_ns(user_ns); 528 net_passive_dec(net); 529 dec_ucounts: 530 dec_net_namespaces(ucounts); 531 return ERR_PTR(rv); 532 } 533 return net; 534 } 535 536 /** 537 * net_ns_get_ownership - get sysfs ownership data for @net 538 * @net: network namespace in question (can be NULL) 539 * @uid: kernel user ID for sysfs objects 540 * @gid: kernel group ID for sysfs objects 541 * 542 * Returns the uid/gid pair of root in the user namespace associated with the 543 * given network namespace. 544 */ 545 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 546 { 547 if (net) { 548 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 549 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 550 551 if (uid_valid(ns_root_uid)) 552 *uid = ns_root_uid; 553 554 if (gid_valid(ns_root_gid)) 555 *gid = ns_root_gid; 556 } else { 557 *uid = GLOBAL_ROOT_UID; 558 *gid = GLOBAL_ROOT_GID; 559 } 560 } 561 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 562 563 static void unhash_nsid(struct net *net, struct net *last) 564 { 565 struct net *tmp; 566 /* This function is only called from cleanup_net() work, 567 * and this work is the only process, that may delete 568 * a net from net_namespace_list. So, when the below 569 * is executing, the list may only grow. Thus, we do not 570 * use for_each_net_rcu() or net_rwsem. 571 */ 572 for_each_net(tmp) { 573 int id; 574 575 spin_lock_bh(&tmp->nsid_lock); 576 id = __peernet2id(tmp, net); 577 if (id >= 0) 578 idr_remove(&tmp->netns_ids, id); 579 spin_unlock_bh(&tmp->nsid_lock); 580 if (id >= 0) 581 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 582 GFP_KERNEL); 583 if (tmp == last) 584 break; 585 } 586 spin_lock_bh(&net->nsid_lock); 587 idr_destroy(&net->netns_ids); 588 spin_unlock_bh(&net->nsid_lock); 589 } 590 591 static LLIST_HEAD(cleanup_list); 592 593 struct task_struct *cleanup_net_task; 594 595 static void cleanup_net(struct work_struct *work) 596 { 597 const struct pernet_operations *ops; 598 struct net *net, *tmp, *last; 599 struct llist_node *net_kill_list; 600 LIST_HEAD(net_exit_list); 601 LIST_HEAD(dev_kill_list); 602 603 cleanup_net_task = current; 604 605 /* Atomically snapshot the list of namespaces to cleanup */ 606 net_kill_list = llist_del_all(&cleanup_list); 607 608 down_read(&pernet_ops_rwsem); 609 610 /* Don't let anyone else find us. */ 611 down_write(&net_rwsem); 612 llist_for_each_entry(net, net_kill_list, cleanup_list) 613 list_del_rcu(&net->list); 614 /* Cache last net. After we unlock rtnl, no one new net 615 * added to net_namespace_list can assign nsid pointer 616 * to a net from net_kill_list (see peernet2id_alloc()). 617 * So, we skip them in unhash_nsid(). 618 * 619 * Note, that unhash_nsid() does not delete nsid links 620 * between net_kill_list's nets, as they've already 621 * deleted from net_namespace_list. But, this would be 622 * useless anyway, as netns_ids are destroyed there. 623 */ 624 last = list_last_entry(&net_namespace_list, struct net, list); 625 up_write(&net_rwsem); 626 627 llist_for_each_entry(net, net_kill_list, cleanup_list) { 628 unhash_nsid(net, last); 629 list_add_tail(&net->exit_list, &net_exit_list); 630 } 631 632 /* Run all of the network namespace pre_exit methods */ 633 list_for_each_entry_reverse(ops, &pernet_list, list) 634 ops_pre_exit_list(ops, &net_exit_list); 635 636 /* 637 * Another CPU might be rcu-iterating the list, wait for it. 638 * This needs to be before calling the exit() notifiers, so 639 * the rcu_barrier() below isn't sufficient alone. 640 * Also the pre_exit() and exit() methods need this barrier. 641 */ 642 synchronize_rcu_expedited(); 643 644 rtnl_lock(); 645 list_for_each_entry_reverse(ops, &pernet_list, list) { 646 if (ops->exit_batch_rtnl) 647 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 648 } 649 unregister_netdevice_many(&dev_kill_list); 650 rtnl_unlock(); 651 652 /* Run all of the network namespace exit methods */ 653 list_for_each_entry_reverse(ops, &pernet_list, list) 654 ops_exit_list(ops, &net_exit_list); 655 656 /* Free the net generic variables */ 657 list_for_each_entry_reverse(ops, &pernet_list, list) 658 ops_free_list(ops, &net_exit_list); 659 660 up_read(&pernet_ops_rwsem); 661 662 /* Ensure there are no outstanding rcu callbacks using this 663 * network namespace. 664 */ 665 rcu_barrier(); 666 667 net_complete_free(); 668 669 /* Finally it is safe to free my network namespace structure */ 670 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 671 list_del_init(&net->exit_list); 672 dec_net_namespaces(net->ucounts); 673 #ifdef CONFIG_KEYS 674 key_remove_domain(net->key_domain); 675 #endif 676 put_user_ns(net->user_ns); 677 net_passive_dec(net); 678 } 679 cleanup_net_task = NULL; 680 } 681 682 /** 683 * net_ns_barrier - wait until concurrent net_cleanup_work is done 684 * 685 * cleanup_net runs from work queue and will first remove namespaces 686 * from the global list, then run net exit functions. 687 * 688 * Call this in module exit path to make sure that all netns 689 * ->exit ops have been invoked before the function is removed. 690 */ 691 void net_ns_barrier(void) 692 { 693 down_write(&pernet_ops_rwsem); 694 up_write(&pernet_ops_rwsem); 695 } 696 EXPORT_SYMBOL(net_ns_barrier); 697 698 static DECLARE_WORK(net_cleanup_work, cleanup_net); 699 700 void __put_net(struct net *net) 701 { 702 ref_tracker_dir_exit(&net->refcnt_tracker); 703 /* Cleanup the network namespace in process context */ 704 if (llist_add(&net->cleanup_list, &cleanup_list)) 705 queue_work(netns_wq, &net_cleanup_work); 706 } 707 EXPORT_SYMBOL_GPL(__put_net); 708 709 /** 710 * get_net_ns - increment the refcount of the network namespace 711 * @ns: common namespace (net) 712 * 713 * Returns the net's common namespace or ERR_PTR() if ref is zero. 714 */ 715 struct ns_common *get_net_ns(struct ns_common *ns) 716 { 717 struct net *net; 718 719 net = maybe_get_net(container_of(ns, struct net, ns)); 720 if (net) 721 return &net->ns; 722 return ERR_PTR(-EINVAL); 723 } 724 EXPORT_SYMBOL_GPL(get_net_ns); 725 726 struct net *get_net_ns_by_fd(int fd) 727 { 728 CLASS(fd, f)(fd); 729 730 if (fd_empty(f)) 731 return ERR_PTR(-EBADF); 732 733 if (proc_ns_file(fd_file(f))) { 734 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 735 if (ns->ops == &netns_operations) 736 return get_net(container_of(ns, struct net, ns)); 737 } 738 739 return ERR_PTR(-EINVAL); 740 } 741 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 742 #endif 743 744 struct net *get_net_ns_by_pid(pid_t pid) 745 { 746 struct task_struct *tsk; 747 struct net *net; 748 749 /* Lookup the network namespace */ 750 net = ERR_PTR(-ESRCH); 751 rcu_read_lock(); 752 tsk = find_task_by_vpid(pid); 753 if (tsk) { 754 struct nsproxy *nsproxy; 755 task_lock(tsk); 756 nsproxy = tsk->nsproxy; 757 if (nsproxy) 758 net = get_net(nsproxy->net_ns); 759 task_unlock(tsk); 760 } 761 rcu_read_unlock(); 762 return net; 763 } 764 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 765 766 static __net_init int net_ns_net_init(struct net *net) 767 { 768 #ifdef CONFIG_NET_NS 769 net->ns.ops = &netns_operations; 770 #endif 771 return ns_alloc_inum(&net->ns); 772 } 773 774 static __net_exit void net_ns_net_exit(struct net *net) 775 { 776 ns_free_inum(&net->ns); 777 } 778 779 static struct pernet_operations __net_initdata net_ns_ops = { 780 .init = net_ns_net_init, 781 .exit = net_ns_net_exit, 782 }; 783 784 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 785 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 786 [NETNSA_NSID] = { .type = NLA_S32 }, 787 [NETNSA_PID] = { .type = NLA_U32 }, 788 [NETNSA_FD] = { .type = NLA_U32 }, 789 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 790 }; 791 792 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 793 struct netlink_ext_ack *extack) 794 { 795 struct net *net = sock_net(skb->sk); 796 struct nlattr *tb[NETNSA_MAX + 1]; 797 struct nlattr *nla; 798 struct net *peer; 799 int nsid, err; 800 801 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 802 NETNSA_MAX, rtnl_net_policy, extack); 803 if (err < 0) 804 return err; 805 if (!tb[NETNSA_NSID]) { 806 NL_SET_ERR_MSG(extack, "nsid is missing"); 807 return -EINVAL; 808 } 809 nsid = nla_get_s32(tb[NETNSA_NSID]); 810 811 if (tb[NETNSA_PID]) { 812 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 813 nla = tb[NETNSA_PID]; 814 } else if (tb[NETNSA_FD]) { 815 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 816 nla = tb[NETNSA_FD]; 817 } else { 818 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 819 return -EINVAL; 820 } 821 if (IS_ERR(peer)) { 822 NL_SET_BAD_ATTR(extack, nla); 823 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 824 return PTR_ERR(peer); 825 } 826 827 spin_lock_bh(&net->nsid_lock); 828 if (__peernet2id(net, peer) >= 0) { 829 spin_unlock_bh(&net->nsid_lock); 830 err = -EEXIST; 831 NL_SET_BAD_ATTR(extack, nla); 832 NL_SET_ERR_MSG(extack, 833 "Peer netns already has a nsid assigned"); 834 goto out; 835 } 836 837 err = alloc_netid(net, peer, nsid); 838 spin_unlock_bh(&net->nsid_lock); 839 if (err >= 0) { 840 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 841 nlh, GFP_KERNEL); 842 err = 0; 843 } else if (err == -ENOSPC && nsid >= 0) { 844 err = -EEXIST; 845 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 846 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 847 } 848 out: 849 put_net(peer); 850 return err; 851 } 852 853 static int rtnl_net_get_size(void) 854 { 855 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 856 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 857 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 858 ; 859 } 860 861 struct net_fill_args { 862 u32 portid; 863 u32 seq; 864 int flags; 865 int cmd; 866 int nsid; 867 bool add_ref; 868 int ref_nsid; 869 }; 870 871 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 872 { 873 struct nlmsghdr *nlh; 874 struct rtgenmsg *rth; 875 876 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 877 args->flags); 878 if (!nlh) 879 return -EMSGSIZE; 880 881 rth = nlmsg_data(nlh); 882 rth->rtgen_family = AF_UNSPEC; 883 884 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 885 goto nla_put_failure; 886 887 if (args->add_ref && 888 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 889 goto nla_put_failure; 890 891 nlmsg_end(skb, nlh); 892 return 0; 893 894 nla_put_failure: 895 nlmsg_cancel(skb, nlh); 896 return -EMSGSIZE; 897 } 898 899 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 900 const struct nlmsghdr *nlh, 901 struct nlattr **tb, 902 struct netlink_ext_ack *extack) 903 { 904 int i, err; 905 906 if (!netlink_strict_get_check(skb)) 907 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 908 tb, NETNSA_MAX, rtnl_net_policy, 909 extack); 910 911 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 912 NETNSA_MAX, rtnl_net_policy, 913 extack); 914 if (err) 915 return err; 916 917 for (i = 0; i <= NETNSA_MAX; i++) { 918 if (!tb[i]) 919 continue; 920 921 switch (i) { 922 case NETNSA_PID: 923 case NETNSA_FD: 924 case NETNSA_NSID: 925 case NETNSA_TARGET_NSID: 926 break; 927 default: 928 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 929 return -EINVAL; 930 } 931 } 932 933 return 0; 934 } 935 936 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 937 struct netlink_ext_ack *extack) 938 { 939 struct net *net = sock_net(skb->sk); 940 struct nlattr *tb[NETNSA_MAX + 1]; 941 struct net_fill_args fillargs = { 942 .portid = NETLINK_CB(skb).portid, 943 .seq = nlh->nlmsg_seq, 944 .cmd = RTM_NEWNSID, 945 }; 946 struct net *peer, *target = net; 947 struct nlattr *nla; 948 struct sk_buff *msg; 949 int err; 950 951 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 952 if (err < 0) 953 return err; 954 if (tb[NETNSA_PID]) { 955 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 956 nla = tb[NETNSA_PID]; 957 } else if (tb[NETNSA_FD]) { 958 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 959 nla = tb[NETNSA_FD]; 960 } else if (tb[NETNSA_NSID]) { 961 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 962 if (!peer) 963 peer = ERR_PTR(-ENOENT); 964 nla = tb[NETNSA_NSID]; 965 } else { 966 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 967 return -EINVAL; 968 } 969 970 if (IS_ERR(peer)) { 971 NL_SET_BAD_ATTR(extack, nla); 972 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 973 return PTR_ERR(peer); 974 } 975 976 if (tb[NETNSA_TARGET_NSID]) { 977 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 978 979 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 980 if (IS_ERR(target)) { 981 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 982 NL_SET_ERR_MSG(extack, 983 "Target netns reference is invalid"); 984 err = PTR_ERR(target); 985 goto out; 986 } 987 fillargs.add_ref = true; 988 fillargs.ref_nsid = peernet2id(net, peer); 989 } 990 991 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 992 if (!msg) { 993 err = -ENOMEM; 994 goto out; 995 } 996 997 fillargs.nsid = peernet2id(target, peer); 998 err = rtnl_net_fill(msg, &fillargs); 999 if (err < 0) 1000 goto err_out; 1001 1002 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 1003 goto out; 1004 1005 err_out: 1006 nlmsg_free(msg); 1007 out: 1008 if (fillargs.add_ref) 1009 put_net(target); 1010 put_net(peer); 1011 return err; 1012 } 1013 1014 struct rtnl_net_dump_cb { 1015 struct net *tgt_net; 1016 struct net *ref_net; 1017 struct sk_buff *skb; 1018 struct net_fill_args fillargs; 1019 int idx; 1020 int s_idx; 1021 }; 1022 1023 /* Runs in RCU-critical section. */ 1024 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1025 { 1026 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1027 int ret; 1028 1029 if (net_cb->idx < net_cb->s_idx) 1030 goto cont; 1031 1032 net_cb->fillargs.nsid = id; 1033 if (net_cb->fillargs.add_ref) 1034 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1035 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1036 if (ret < 0) 1037 return ret; 1038 1039 cont: 1040 net_cb->idx++; 1041 return 0; 1042 } 1043 1044 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1045 struct rtnl_net_dump_cb *net_cb, 1046 struct netlink_callback *cb) 1047 { 1048 struct netlink_ext_ack *extack = cb->extack; 1049 struct nlattr *tb[NETNSA_MAX + 1]; 1050 int err, i; 1051 1052 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1053 NETNSA_MAX, rtnl_net_policy, 1054 extack); 1055 if (err < 0) 1056 return err; 1057 1058 for (i = 0; i <= NETNSA_MAX; i++) { 1059 if (!tb[i]) 1060 continue; 1061 1062 if (i == NETNSA_TARGET_NSID) { 1063 struct net *net; 1064 1065 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1066 if (IS_ERR(net)) { 1067 NL_SET_BAD_ATTR(extack, tb[i]); 1068 NL_SET_ERR_MSG(extack, 1069 "Invalid target network namespace id"); 1070 return PTR_ERR(net); 1071 } 1072 net_cb->fillargs.add_ref = true; 1073 net_cb->ref_net = net_cb->tgt_net; 1074 net_cb->tgt_net = net; 1075 } else { 1076 NL_SET_BAD_ATTR(extack, tb[i]); 1077 NL_SET_ERR_MSG(extack, 1078 "Unsupported attribute in dump request"); 1079 return -EINVAL; 1080 } 1081 } 1082 1083 return 0; 1084 } 1085 1086 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1087 { 1088 struct rtnl_net_dump_cb net_cb = { 1089 .tgt_net = sock_net(skb->sk), 1090 .skb = skb, 1091 .fillargs = { 1092 .portid = NETLINK_CB(cb->skb).portid, 1093 .seq = cb->nlh->nlmsg_seq, 1094 .flags = NLM_F_MULTI, 1095 .cmd = RTM_NEWNSID, 1096 }, 1097 .idx = 0, 1098 .s_idx = cb->args[0], 1099 }; 1100 int err = 0; 1101 1102 if (cb->strict_check) { 1103 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1104 if (err < 0) 1105 goto end; 1106 } 1107 1108 rcu_read_lock(); 1109 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1110 rcu_read_unlock(); 1111 1112 cb->args[0] = net_cb.idx; 1113 end: 1114 if (net_cb.fillargs.add_ref) 1115 put_net(net_cb.tgt_net); 1116 return err; 1117 } 1118 1119 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1120 struct nlmsghdr *nlh, gfp_t gfp) 1121 { 1122 struct net_fill_args fillargs = { 1123 .portid = portid, 1124 .seq = nlh ? nlh->nlmsg_seq : 0, 1125 .cmd = cmd, 1126 .nsid = id, 1127 }; 1128 struct sk_buff *msg; 1129 int err = -ENOMEM; 1130 1131 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1132 if (!msg) 1133 goto out; 1134 1135 err = rtnl_net_fill(msg, &fillargs); 1136 if (err < 0) 1137 goto err_out; 1138 1139 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1140 return; 1141 1142 err_out: 1143 nlmsg_free(msg); 1144 out: 1145 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1146 } 1147 1148 #ifdef CONFIG_NET_NS 1149 static void __init netns_ipv4_struct_check(void) 1150 { 1151 /* TX readonly hotpath cache lines */ 1152 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1153 sysctl_tcp_early_retrans); 1154 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1155 sysctl_tcp_tso_win_divisor); 1156 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1157 sysctl_tcp_tso_rtt_log); 1158 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1159 sysctl_tcp_autocorking); 1160 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1161 sysctl_tcp_min_snd_mss); 1162 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1163 sysctl_tcp_notsent_lowat); 1164 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1165 sysctl_tcp_limit_output_bytes); 1166 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1167 sysctl_tcp_min_rtt_wlen); 1168 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1169 sysctl_tcp_wmem); 1170 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1171 sysctl_ip_fwd_use_pmtu); 1172 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1173 1174 /* TXRX readonly hotpath cache lines */ 1175 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1176 sysctl_tcp_moderate_rcvbuf); 1177 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1178 1179 /* RX readonly hotpath cache line */ 1180 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1181 sysctl_ip_early_demux); 1182 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1183 sysctl_tcp_early_demux); 1184 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1185 sysctl_tcp_l3mdev_accept); 1186 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1187 sysctl_tcp_reordering); 1188 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1189 sysctl_tcp_rmem); 1190 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1191 } 1192 #endif 1193 1194 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1195 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1196 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1197 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1198 .dumpit = rtnl_net_dumpid, 1199 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1200 }; 1201 1202 void __init net_ns_init(void) 1203 { 1204 struct net_generic *ng; 1205 1206 #ifdef CONFIG_NET_NS 1207 netns_ipv4_struct_check(); 1208 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1209 SMP_CACHE_BYTES, 1210 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1211 1212 /* Create workqueue for cleanup */ 1213 netns_wq = create_singlethread_workqueue("netns"); 1214 if (!netns_wq) 1215 panic("Could not create netns workq"); 1216 #endif 1217 1218 ng = net_alloc_generic(); 1219 if (!ng) 1220 panic("Could not allocate generic netns"); 1221 1222 rcu_assign_pointer(init_net.gen, ng); 1223 1224 #ifdef CONFIG_KEYS 1225 init_net.key_domain = &init_net_key_domain; 1226 #endif 1227 preinit_net(&init_net, &init_user_ns); 1228 1229 down_write(&pernet_ops_rwsem); 1230 if (setup_net(&init_net)) 1231 panic("Could not setup the initial network namespace"); 1232 1233 init_net_initialized = true; 1234 up_write(&pernet_ops_rwsem); 1235 1236 if (register_pernet_subsys(&net_ns_ops)) 1237 panic("Could not register network namespace subsystems"); 1238 1239 rtnl_register_many(net_ns_rtnl_msg_handlers); 1240 } 1241 1242 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1243 { 1244 ops_pre_exit_list(ops, net_exit_list); 1245 synchronize_rcu(); 1246 1247 if (ops->exit_batch_rtnl) { 1248 LIST_HEAD(dev_kill_list); 1249 1250 rtnl_lock(); 1251 ops->exit_batch_rtnl(net_exit_list, &dev_kill_list); 1252 unregister_netdevice_many(&dev_kill_list); 1253 rtnl_unlock(); 1254 } 1255 ops_exit_list(ops, net_exit_list); 1256 1257 ops_free_list(ops, net_exit_list); 1258 } 1259 1260 #ifdef CONFIG_NET_NS 1261 static int __register_pernet_operations(struct list_head *list, 1262 struct pernet_operations *ops) 1263 { 1264 struct net *net; 1265 int error; 1266 LIST_HEAD(net_exit_list); 1267 1268 list_add_tail(&ops->list, list); 1269 if (ops->init || ops->id) { 1270 /* We held write locked pernet_ops_rwsem, and parallel 1271 * setup_net() and cleanup_net() are not possible. 1272 */ 1273 for_each_net(net) { 1274 error = ops_init(ops, net); 1275 if (error) 1276 goto out_undo; 1277 list_add_tail(&net->exit_list, &net_exit_list); 1278 } 1279 } 1280 return 0; 1281 1282 out_undo: 1283 /* If I have an error cleanup all namespaces I initialized */ 1284 list_del(&ops->list); 1285 free_exit_list(ops, &net_exit_list); 1286 return error; 1287 } 1288 1289 static void __unregister_pernet_operations(struct pernet_operations *ops) 1290 { 1291 struct net *net; 1292 LIST_HEAD(net_exit_list); 1293 1294 list_del(&ops->list); 1295 /* See comment in __register_pernet_operations() */ 1296 for_each_net(net) 1297 list_add_tail(&net->exit_list, &net_exit_list); 1298 1299 free_exit_list(ops, &net_exit_list); 1300 } 1301 1302 #else 1303 1304 static int __register_pernet_operations(struct list_head *list, 1305 struct pernet_operations *ops) 1306 { 1307 if (!init_net_initialized) { 1308 list_add_tail(&ops->list, list); 1309 return 0; 1310 } 1311 1312 return ops_init(ops, &init_net); 1313 } 1314 1315 static void __unregister_pernet_operations(struct pernet_operations *ops) 1316 { 1317 if (!init_net_initialized) { 1318 list_del(&ops->list); 1319 } else { 1320 LIST_HEAD(net_exit_list); 1321 list_add(&init_net.exit_list, &net_exit_list); 1322 free_exit_list(ops, &net_exit_list); 1323 } 1324 } 1325 1326 #endif /* CONFIG_NET_NS */ 1327 1328 static DEFINE_IDA(net_generic_ids); 1329 1330 static int register_pernet_operations(struct list_head *list, 1331 struct pernet_operations *ops) 1332 { 1333 int error; 1334 1335 if (WARN_ON(!!ops->id ^ !!ops->size)) 1336 return -EINVAL; 1337 1338 if (ops->id) { 1339 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1340 GFP_KERNEL); 1341 if (error < 0) 1342 return error; 1343 *ops->id = error; 1344 /* This does not require READ_ONCE as writers already hold 1345 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1346 * net_alloc_generic. 1347 */ 1348 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1349 } 1350 error = __register_pernet_operations(list, ops); 1351 if (error) { 1352 rcu_barrier(); 1353 if (ops->id) 1354 ida_free(&net_generic_ids, *ops->id); 1355 } 1356 1357 return error; 1358 } 1359 1360 static void unregister_pernet_operations(struct pernet_operations *ops) 1361 { 1362 __unregister_pernet_operations(ops); 1363 rcu_barrier(); 1364 if (ops->id) 1365 ida_free(&net_generic_ids, *ops->id); 1366 } 1367 1368 /** 1369 * register_pernet_subsys - register a network namespace subsystem 1370 * @ops: pernet operations structure for the subsystem 1371 * 1372 * Register a subsystem which has init and exit functions 1373 * that are called when network namespaces are created and 1374 * destroyed respectively. 1375 * 1376 * When registered all network namespace init functions are 1377 * called for every existing network namespace. Allowing kernel 1378 * modules to have a race free view of the set of network namespaces. 1379 * 1380 * When a new network namespace is created all of the init 1381 * methods are called in the order in which they were registered. 1382 * 1383 * When a network namespace is destroyed all of the exit methods 1384 * are called in the reverse of the order with which they were 1385 * registered. 1386 */ 1387 int register_pernet_subsys(struct pernet_operations *ops) 1388 { 1389 int error; 1390 down_write(&pernet_ops_rwsem); 1391 error = register_pernet_operations(first_device, ops); 1392 up_write(&pernet_ops_rwsem); 1393 return error; 1394 } 1395 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1396 1397 /** 1398 * unregister_pernet_subsys - unregister a network namespace subsystem 1399 * @ops: pernet operations structure to manipulate 1400 * 1401 * Remove the pernet operations structure from the list to be 1402 * used when network namespaces are created or destroyed. In 1403 * addition run the exit method for all existing network 1404 * namespaces. 1405 */ 1406 void unregister_pernet_subsys(struct pernet_operations *ops) 1407 { 1408 down_write(&pernet_ops_rwsem); 1409 unregister_pernet_operations(ops); 1410 up_write(&pernet_ops_rwsem); 1411 } 1412 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1413 1414 /** 1415 * register_pernet_device - register a network namespace device 1416 * @ops: pernet operations structure for the subsystem 1417 * 1418 * Register a device which has init and exit functions 1419 * that are called when network namespaces are created and 1420 * destroyed respectively. 1421 * 1422 * When registered all network namespace init functions are 1423 * called for every existing network namespace. Allowing kernel 1424 * modules to have a race free view of the set of network namespaces. 1425 * 1426 * When a new network namespace is created all of the init 1427 * methods are called in the order in which they were registered. 1428 * 1429 * When a network namespace is destroyed all of the exit methods 1430 * are called in the reverse of the order with which they were 1431 * registered. 1432 */ 1433 int register_pernet_device(struct pernet_operations *ops) 1434 { 1435 int error; 1436 down_write(&pernet_ops_rwsem); 1437 error = register_pernet_operations(&pernet_list, ops); 1438 if (!error && (first_device == &pernet_list)) 1439 first_device = &ops->list; 1440 up_write(&pernet_ops_rwsem); 1441 return error; 1442 } 1443 EXPORT_SYMBOL_GPL(register_pernet_device); 1444 1445 /** 1446 * unregister_pernet_device - unregister a network namespace netdevice 1447 * @ops: pernet operations structure to manipulate 1448 * 1449 * Remove the pernet operations structure from the list to be 1450 * used when network namespaces are created or destroyed. In 1451 * addition run the exit method for all existing network 1452 * namespaces. 1453 */ 1454 void unregister_pernet_device(struct pernet_operations *ops) 1455 { 1456 down_write(&pernet_ops_rwsem); 1457 if (&ops->list == first_device) 1458 first_device = first_device->next; 1459 unregister_pernet_operations(ops); 1460 up_write(&pernet_ops_rwsem); 1461 } 1462 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1463 1464 #ifdef CONFIG_NET_NS 1465 static struct ns_common *netns_get(struct task_struct *task) 1466 { 1467 struct net *net = NULL; 1468 struct nsproxy *nsproxy; 1469 1470 task_lock(task); 1471 nsproxy = task->nsproxy; 1472 if (nsproxy) 1473 net = get_net(nsproxy->net_ns); 1474 task_unlock(task); 1475 1476 return net ? &net->ns : NULL; 1477 } 1478 1479 static inline struct net *to_net_ns(struct ns_common *ns) 1480 { 1481 return container_of(ns, struct net, ns); 1482 } 1483 1484 static void netns_put(struct ns_common *ns) 1485 { 1486 put_net(to_net_ns(ns)); 1487 } 1488 1489 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1490 { 1491 struct nsproxy *nsproxy = nsset->nsproxy; 1492 struct net *net = to_net_ns(ns); 1493 1494 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1495 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1496 return -EPERM; 1497 1498 put_net(nsproxy->net_ns); 1499 nsproxy->net_ns = get_net(net); 1500 return 0; 1501 } 1502 1503 static struct user_namespace *netns_owner(struct ns_common *ns) 1504 { 1505 return to_net_ns(ns)->user_ns; 1506 } 1507 1508 const struct proc_ns_operations netns_operations = { 1509 .name = "net", 1510 .type = CLONE_NEWNET, 1511 .get = netns_get, 1512 .put = netns_put, 1513 .install = netns_install, 1514 .owner = netns_owner, 1515 }; 1516 #endif 1517