1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 DEFINE_COOKIE(net_cookie); 68 69 static struct net_generic *net_alloc_generic(void) 70 { 71 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 72 unsigned int generic_size; 73 struct net_generic *ng; 74 75 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (!ng) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 struct net_generic *ng; 124 int err = -ENOMEM; 125 void *data = NULL; 126 127 if (ops->id) { 128 data = kzalloc(ops->size, GFP_KERNEL); 129 if (!data) 130 goto out; 131 132 err = net_assign_generic(net, *ops->id, data); 133 if (err) 134 goto cleanup; 135 } 136 err = 0; 137 if (ops->init) 138 err = ops->init(net); 139 if (!err) 140 return 0; 141 142 if (ops->id) { 143 ng = rcu_dereference_protected(net->gen, 144 lockdep_is_held(&pernet_ops_rwsem)); 145 ng->ptr[*ops->id] = NULL; 146 } 147 148 cleanup: 149 kfree(data); 150 151 out: 152 return err; 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_list(const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 struct net *net; 170 if (ops->exit) { 171 list_for_each_entry(net, net_exit_list, exit_list) { 172 ops->exit(net); 173 cond_resched(); 174 } 175 } 176 if (ops->exit_batch) 177 ops->exit_batch(net_exit_list); 178 } 179 180 static void ops_free_list(const struct pernet_operations *ops, 181 struct list_head *net_exit_list) 182 { 183 struct net *net; 184 185 if (ops->id) { 186 list_for_each_entry(net, net_exit_list, exit_list) 187 kfree(net_generic(net, *ops->id)); 188 } 189 } 190 191 /* should be called with nsid_lock held */ 192 static int alloc_netid(struct net *net, struct net *peer, int reqid) 193 { 194 int min = 0, max = 0; 195 196 if (reqid >= 0) { 197 min = reqid; 198 max = reqid + 1; 199 } 200 201 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 202 } 203 204 /* This function is used by idr_for_each(). If net is equal to peer, the 205 * function returns the id so that idr_for_each() stops. Because we cannot 206 * returns the id 0 (idr_for_each() will not stop), we return the magic value 207 * NET_ID_ZERO (-1) for it. 208 */ 209 #define NET_ID_ZERO -1 210 static int net_eq_idr(int id, void *net, void *peer) 211 { 212 if (net_eq(net, peer)) 213 return id ? : NET_ID_ZERO; 214 return 0; 215 } 216 217 /* Must be called from RCU-critical section or with nsid_lock held */ 218 static int __peernet2id(const struct net *net, struct net *peer) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 222 /* Magic value for id 0. */ 223 if (id == NET_ID_ZERO) 224 return 0; 225 if (id > 0) 226 return id; 227 228 return NETNSA_NSID_NOT_ASSIGNED; 229 } 230 231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 232 struct nlmsghdr *nlh, gfp_t gfp); 233 /* This function returns the id of a peer netns. If no id is assigned, one will 234 * be allocated and returned. 235 */ 236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 237 { 238 int id; 239 240 if (refcount_read(&net->ns.count) == 0) 241 return NETNSA_NSID_NOT_ASSIGNED; 242 243 spin_lock_bh(&net->nsid_lock); 244 id = __peernet2id(net, peer); 245 if (id >= 0) { 246 spin_unlock_bh(&net->nsid_lock); 247 return id; 248 } 249 250 /* When peer is obtained from RCU lists, we may race with 251 * its cleanup. Check whether it's alive, and this guarantees 252 * we never hash a peer back to net->netns_ids, after it has 253 * just been idr_remove()'d from there in cleanup_net(). 254 */ 255 if (!maybe_get_net(peer)) { 256 spin_unlock_bh(&net->nsid_lock); 257 return NETNSA_NSID_NOT_ASSIGNED; 258 } 259 260 id = alloc_netid(net, peer, -1); 261 spin_unlock_bh(&net->nsid_lock); 262 263 put_net(peer); 264 if (id < 0) 265 return NETNSA_NSID_NOT_ASSIGNED; 266 267 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 268 269 return id; 270 } 271 EXPORT_SYMBOL_GPL(peernet2id_alloc); 272 273 /* This function returns, if assigned, the id of a peer netns. */ 274 int peernet2id(const struct net *net, struct net *peer) 275 { 276 int id; 277 278 rcu_read_lock(); 279 id = __peernet2id(net, peer); 280 rcu_read_unlock(); 281 282 return id; 283 } 284 EXPORT_SYMBOL(peernet2id); 285 286 /* This function returns true is the peer netns has an id assigned into the 287 * current netns. 288 */ 289 bool peernet_has_id(const struct net *net, struct net *peer) 290 { 291 return peernet2id(net, peer) >= 0; 292 } 293 294 struct net *get_net_ns_by_id(const struct net *net, int id) 295 { 296 struct net *peer; 297 298 if (id < 0) 299 return NULL; 300 301 rcu_read_lock(); 302 peer = idr_find(&net->netns_ids, id); 303 if (peer) 304 peer = maybe_get_net(peer); 305 rcu_read_unlock(); 306 307 return peer; 308 } 309 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 310 311 static __net_init void preinit_net_sysctl(struct net *net) 312 { 313 net->core.sysctl_somaxconn = SOMAXCONN; 314 /* Limits per socket sk_omem_alloc usage. 315 * TCP zerocopy regular usage needs 128 KB. 316 */ 317 net->core.sysctl_optmem_max = 128 * 1024; 318 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 319 net->core.sysctl_tstamp_allow_data = 1; 320 } 321 322 /* init code that must occur even if setup_net() is not called. */ 323 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 324 { 325 refcount_set(&net->passive, 1); 326 refcount_set(&net->ns.count, 1); 327 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 328 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 329 330 get_random_bytes(&net->hash_mix, sizeof(u32)); 331 net->dev_base_seq = 1; 332 net->user_ns = user_ns; 333 334 idr_init(&net->netns_ids); 335 spin_lock_init(&net->nsid_lock); 336 mutex_init(&net->ipv4.ra_mutex); 337 338 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 339 mutex_init(&net->rtnl_mutex); 340 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 341 #endif 342 343 preinit_net_sysctl(net); 344 } 345 346 /* 347 * setup_net runs the initializers for the network namespace object. 348 */ 349 static __net_init int setup_net(struct net *net) 350 { 351 /* Must be called with pernet_ops_rwsem held */ 352 const struct pernet_operations *ops, *saved_ops; 353 LIST_HEAD(net_exit_list); 354 LIST_HEAD(dev_kill_list); 355 int error = 0; 356 357 preempt_disable(); 358 net->net_cookie = gen_cookie_next(&net_cookie); 359 preempt_enable(); 360 361 list_for_each_entry(ops, &pernet_list, list) { 362 error = ops_init(ops, net); 363 if (error < 0) 364 goto out_undo; 365 } 366 down_write(&net_rwsem); 367 list_add_tail_rcu(&net->list, &net_namespace_list); 368 up_write(&net_rwsem); 369 out: 370 return error; 371 372 out_undo: 373 /* Walk through the list backwards calling the exit functions 374 * for the pernet modules whose init functions did not fail. 375 */ 376 list_add(&net->exit_list, &net_exit_list); 377 saved_ops = ops; 378 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 379 ops_pre_exit_list(ops, &net_exit_list); 380 381 synchronize_rcu(); 382 383 ops = saved_ops; 384 rtnl_lock(); 385 list_for_each_entry_continue_reverse(ops, &pernet_list, list) { 386 if (ops->exit_batch_rtnl) 387 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 388 } 389 unregister_netdevice_many(&dev_kill_list); 390 rtnl_unlock(); 391 392 ops = saved_ops; 393 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 394 ops_exit_list(ops, &net_exit_list); 395 396 ops = saved_ops; 397 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 398 ops_free_list(ops, &net_exit_list); 399 400 rcu_barrier(); 401 goto out; 402 } 403 404 #ifdef CONFIG_NET_NS 405 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 406 { 407 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 408 } 409 410 static void dec_net_namespaces(struct ucounts *ucounts) 411 { 412 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 413 } 414 415 static struct kmem_cache *net_cachep __ro_after_init; 416 static struct workqueue_struct *netns_wq; 417 418 static struct net *net_alloc(void) 419 { 420 struct net *net = NULL; 421 struct net_generic *ng; 422 423 ng = net_alloc_generic(); 424 if (!ng) 425 goto out; 426 427 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 428 if (!net) 429 goto out_free; 430 431 #ifdef CONFIG_KEYS 432 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 433 if (!net->key_domain) 434 goto out_free_2; 435 refcount_set(&net->key_domain->usage, 1); 436 #endif 437 438 rcu_assign_pointer(net->gen, ng); 439 out: 440 return net; 441 442 #ifdef CONFIG_KEYS 443 out_free_2: 444 kmem_cache_free(net_cachep, net); 445 net = NULL; 446 #endif 447 out_free: 448 kfree(ng); 449 goto out; 450 } 451 452 static void net_free(struct net *net) 453 { 454 if (refcount_dec_and_test(&net->passive)) { 455 kfree(rcu_access_pointer(net->gen)); 456 457 /* There should not be any trackers left there. */ 458 ref_tracker_dir_exit(&net->notrefcnt_tracker); 459 460 kmem_cache_free(net_cachep, net); 461 } 462 } 463 464 void net_drop_ns(void *p) 465 { 466 struct net *net = (struct net *)p; 467 468 if (net) 469 net_free(net); 470 } 471 472 struct net *copy_net_ns(unsigned long flags, 473 struct user_namespace *user_ns, struct net *old_net) 474 { 475 struct ucounts *ucounts; 476 struct net *net; 477 int rv; 478 479 if (!(flags & CLONE_NEWNET)) 480 return get_net(old_net); 481 482 ucounts = inc_net_namespaces(user_ns); 483 if (!ucounts) 484 return ERR_PTR(-ENOSPC); 485 486 net = net_alloc(); 487 if (!net) { 488 rv = -ENOMEM; 489 goto dec_ucounts; 490 } 491 492 preinit_net(net, user_ns); 493 net->ucounts = ucounts; 494 get_user_ns(user_ns); 495 496 rv = down_read_killable(&pernet_ops_rwsem); 497 if (rv < 0) 498 goto put_userns; 499 500 rv = setup_net(net); 501 502 up_read(&pernet_ops_rwsem); 503 504 if (rv < 0) { 505 put_userns: 506 #ifdef CONFIG_KEYS 507 key_remove_domain(net->key_domain); 508 #endif 509 put_user_ns(user_ns); 510 net_free(net); 511 dec_ucounts: 512 dec_net_namespaces(ucounts); 513 return ERR_PTR(rv); 514 } 515 return net; 516 } 517 518 /** 519 * net_ns_get_ownership - get sysfs ownership data for @net 520 * @net: network namespace in question (can be NULL) 521 * @uid: kernel user ID for sysfs objects 522 * @gid: kernel group ID for sysfs objects 523 * 524 * Returns the uid/gid pair of root in the user namespace associated with the 525 * given network namespace. 526 */ 527 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 528 { 529 if (net) { 530 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 531 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 532 533 if (uid_valid(ns_root_uid)) 534 *uid = ns_root_uid; 535 536 if (gid_valid(ns_root_gid)) 537 *gid = ns_root_gid; 538 } else { 539 *uid = GLOBAL_ROOT_UID; 540 *gid = GLOBAL_ROOT_GID; 541 } 542 } 543 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 544 545 static void unhash_nsid(struct net *net, struct net *last) 546 { 547 struct net *tmp; 548 /* This function is only called from cleanup_net() work, 549 * and this work is the only process, that may delete 550 * a net from net_namespace_list. So, when the below 551 * is executing, the list may only grow. Thus, we do not 552 * use for_each_net_rcu() or net_rwsem. 553 */ 554 for_each_net(tmp) { 555 int id; 556 557 spin_lock_bh(&tmp->nsid_lock); 558 id = __peernet2id(tmp, net); 559 if (id >= 0) 560 idr_remove(&tmp->netns_ids, id); 561 spin_unlock_bh(&tmp->nsid_lock); 562 if (id >= 0) 563 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 564 GFP_KERNEL); 565 if (tmp == last) 566 break; 567 } 568 spin_lock_bh(&net->nsid_lock); 569 idr_destroy(&net->netns_ids); 570 spin_unlock_bh(&net->nsid_lock); 571 } 572 573 static LLIST_HEAD(cleanup_list); 574 575 static void cleanup_net(struct work_struct *work) 576 { 577 const struct pernet_operations *ops; 578 struct net *net, *tmp, *last; 579 struct llist_node *net_kill_list; 580 LIST_HEAD(net_exit_list); 581 LIST_HEAD(dev_kill_list); 582 583 /* Atomically snapshot the list of namespaces to cleanup */ 584 net_kill_list = llist_del_all(&cleanup_list); 585 586 down_read(&pernet_ops_rwsem); 587 588 /* Don't let anyone else find us. */ 589 down_write(&net_rwsem); 590 llist_for_each_entry(net, net_kill_list, cleanup_list) 591 list_del_rcu(&net->list); 592 /* Cache last net. After we unlock rtnl, no one new net 593 * added to net_namespace_list can assign nsid pointer 594 * to a net from net_kill_list (see peernet2id_alloc()). 595 * So, we skip them in unhash_nsid(). 596 * 597 * Note, that unhash_nsid() does not delete nsid links 598 * between net_kill_list's nets, as they've already 599 * deleted from net_namespace_list. But, this would be 600 * useless anyway, as netns_ids are destroyed there. 601 */ 602 last = list_last_entry(&net_namespace_list, struct net, list); 603 up_write(&net_rwsem); 604 605 llist_for_each_entry(net, net_kill_list, cleanup_list) { 606 unhash_nsid(net, last); 607 list_add_tail(&net->exit_list, &net_exit_list); 608 } 609 610 /* Run all of the network namespace pre_exit methods */ 611 list_for_each_entry_reverse(ops, &pernet_list, list) 612 ops_pre_exit_list(ops, &net_exit_list); 613 614 /* 615 * Another CPU might be rcu-iterating the list, wait for it. 616 * This needs to be before calling the exit() notifiers, so 617 * the rcu_barrier() below isn't sufficient alone. 618 * Also the pre_exit() and exit() methods need this barrier. 619 */ 620 synchronize_rcu_expedited(); 621 622 rtnl_lock(); 623 list_for_each_entry_reverse(ops, &pernet_list, list) { 624 if (ops->exit_batch_rtnl) 625 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 626 } 627 unregister_netdevice_many(&dev_kill_list); 628 rtnl_unlock(); 629 630 /* Run all of the network namespace exit methods */ 631 list_for_each_entry_reverse(ops, &pernet_list, list) 632 ops_exit_list(ops, &net_exit_list); 633 634 /* Free the net generic variables */ 635 list_for_each_entry_reverse(ops, &pernet_list, list) 636 ops_free_list(ops, &net_exit_list); 637 638 up_read(&pernet_ops_rwsem); 639 640 /* Ensure there are no outstanding rcu callbacks using this 641 * network namespace. 642 */ 643 rcu_barrier(); 644 645 /* Finally it is safe to free my network namespace structure */ 646 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 647 list_del_init(&net->exit_list); 648 dec_net_namespaces(net->ucounts); 649 #ifdef CONFIG_KEYS 650 key_remove_domain(net->key_domain); 651 #endif 652 put_user_ns(net->user_ns); 653 net_free(net); 654 } 655 } 656 657 /** 658 * net_ns_barrier - wait until concurrent net_cleanup_work is done 659 * 660 * cleanup_net runs from work queue and will first remove namespaces 661 * from the global list, then run net exit functions. 662 * 663 * Call this in module exit path to make sure that all netns 664 * ->exit ops have been invoked before the function is removed. 665 */ 666 void net_ns_barrier(void) 667 { 668 down_write(&pernet_ops_rwsem); 669 up_write(&pernet_ops_rwsem); 670 } 671 EXPORT_SYMBOL(net_ns_barrier); 672 673 static DECLARE_WORK(net_cleanup_work, cleanup_net); 674 675 void __put_net(struct net *net) 676 { 677 ref_tracker_dir_exit(&net->refcnt_tracker); 678 /* Cleanup the network namespace in process context */ 679 if (llist_add(&net->cleanup_list, &cleanup_list)) 680 queue_work(netns_wq, &net_cleanup_work); 681 } 682 EXPORT_SYMBOL_GPL(__put_net); 683 684 /** 685 * get_net_ns - increment the refcount of the network namespace 686 * @ns: common namespace (net) 687 * 688 * Returns the net's common namespace or ERR_PTR() if ref is zero. 689 */ 690 struct ns_common *get_net_ns(struct ns_common *ns) 691 { 692 struct net *net; 693 694 net = maybe_get_net(container_of(ns, struct net, ns)); 695 if (net) 696 return &net->ns; 697 return ERR_PTR(-EINVAL); 698 } 699 EXPORT_SYMBOL_GPL(get_net_ns); 700 701 struct net *get_net_ns_by_fd(int fd) 702 { 703 CLASS(fd, f)(fd); 704 705 if (fd_empty(f)) 706 return ERR_PTR(-EBADF); 707 708 if (proc_ns_file(fd_file(f))) { 709 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 710 if (ns->ops == &netns_operations) 711 return get_net(container_of(ns, struct net, ns)); 712 } 713 714 return ERR_PTR(-EINVAL); 715 } 716 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 717 #endif 718 719 struct net *get_net_ns_by_pid(pid_t pid) 720 { 721 struct task_struct *tsk; 722 struct net *net; 723 724 /* Lookup the network namespace */ 725 net = ERR_PTR(-ESRCH); 726 rcu_read_lock(); 727 tsk = find_task_by_vpid(pid); 728 if (tsk) { 729 struct nsproxy *nsproxy; 730 task_lock(tsk); 731 nsproxy = tsk->nsproxy; 732 if (nsproxy) 733 net = get_net(nsproxy->net_ns); 734 task_unlock(tsk); 735 } 736 rcu_read_unlock(); 737 return net; 738 } 739 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 740 741 static __net_init int net_ns_net_init(struct net *net) 742 { 743 #ifdef CONFIG_NET_NS 744 net->ns.ops = &netns_operations; 745 #endif 746 return ns_alloc_inum(&net->ns); 747 } 748 749 static __net_exit void net_ns_net_exit(struct net *net) 750 { 751 ns_free_inum(&net->ns); 752 } 753 754 static struct pernet_operations __net_initdata net_ns_ops = { 755 .init = net_ns_net_init, 756 .exit = net_ns_net_exit, 757 }; 758 759 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 760 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 761 [NETNSA_NSID] = { .type = NLA_S32 }, 762 [NETNSA_PID] = { .type = NLA_U32 }, 763 [NETNSA_FD] = { .type = NLA_U32 }, 764 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 765 }; 766 767 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 768 struct netlink_ext_ack *extack) 769 { 770 struct net *net = sock_net(skb->sk); 771 struct nlattr *tb[NETNSA_MAX + 1]; 772 struct nlattr *nla; 773 struct net *peer; 774 int nsid, err; 775 776 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 777 NETNSA_MAX, rtnl_net_policy, extack); 778 if (err < 0) 779 return err; 780 if (!tb[NETNSA_NSID]) { 781 NL_SET_ERR_MSG(extack, "nsid is missing"); 782 return -EINVAL; 783 } 784 nsid = nla_get_s32(tb[NETNSA_NSID]); 785 786 if (tb[NETNSA_PID]) { 787 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 788 nla = tb[NETNSA_PID]; 789 } else if (tb[NETNSA_FD]) { 790 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 791 nla = tb[NETNSA_FD]; 792 } else { 793 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 794 return -EINVAL; 795 } 796 if (IS_ERR(peer)) { 797 NL_SET_BAD_ATTR(extack, nla); 798 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 799 return PTR_ERR(peer); 800 } 801 802 spin_lock_bh(&net->nsid_lock); 803 if (__peernet2id(net, peer) >= 0) { 804 spin_unlock_bh(&net->nsid_lock); 805 err = -EEXIST; 806 NL_SET_BAD_ATTR(extack, nla); 807 NL_SET_ERR_MSG(extack, 808 "Peer netns already has a nsid assigned"); 809 goto out; 810 } 811 812 err = alloc_netid(net, peer, nsid); 813 spin_unlock_bh(&net->nsid_lock); 814 if (err >= 0) { 815 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 816 nlh, GFP_KERNEL); 817 err = 0; 818 } else if (err == -ENOSPC && nsid >= 0) { 819 err = -EEXIST; 820 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 821 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 822 } 823 out: 824 put_net(peer); 825 return err; 826 } 827 828 static int rtnl_net_get_size(void) 829 { 830 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 831 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 832 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 833 ; 834 } 835 836 struct net_fill_args { 837 u32 portid; 838 u32 seq; 839 int flags; 840 int cmd; 841 int nsid; 842 bool add_ref; 843 int ref_nsid; 844 }; 845 846 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 847 { 848 struct nlmsghdr *nlh; 849 struct rtgenmsg *rth; 850 851 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 852 args->flags); 853 if (!nlh) 854 return -EMSGSIZE; 855 856 rth = nlmsg_data(nlh); 857 rth->rtgen_family = AF_UNSPEC; 858 859 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 860 goto nla_put_failure; 861 862 if (args->add_ref && 863 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 864 goto nla_put_failure; 865 866 nlmsg_end(skb, nlh); 867 return 0; 868 869 nla_put_failure: 870 nlmsg_cancel(skb, nlh); 871 return -EMSGSIZE; 872 } 873 874 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 875 const struct nlmsghdr *nlh, 876 struct nlattr **tb, 877 struct netlink_ext_ack *extack) 878 { 879 int i, err; 880 881 if (!netlink_strict_get_check(skb)) 882 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 883 tb, NETNSA_MAX, rtnl_net_policy, 884 extack); 885 886 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 887 NETNSA_MAX, rtnl_net_policy, 888 extack); 889 if (err) 890 return err; 891 892 for (i = 0; i <= NETNSA_MAX; i++) { 893 if (!tb[i]) 894 continue; 895 896 switch (i) { 897 case NETNSA_PID: 898 case NETNSA_FD: 899 case NETNSA_NSID: 900 case NETNSA_TARGET_NSID: 901 break; 902 default: 903 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 904 return -EINVAL; 905 } 906 } 907 908 return 0; 909 } 910 911 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 912 struct netlink_ext_ack *extack) 913 { 914 struct net *net = sock_net(skb->sk); 915 struct nlattr *tb[NETNSA_MAX + 1]; 916 struct net_fill_args fillargs = { 917 .portid = NETLINK_CB(skb).portid, 918 .seq = nlh->nlmsg_seq, 919 .cmd = RTM_NEWNSID, 920 }; 921 struct net *peer, *target = net; 922 struct nlattr *nla; 923 struct sk_buff *msg; 924 int err; 925 926 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 927 if (err < 0) 928 return err; 929 if (tb[NETNSA_PID]) { 930 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 931 nla = tb[NETNSA_PID]; 932 } else if (tb[NETNSA_FD]) { 933 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 934 nla = tb[NETNSA_FD]; 935 } else if (tb[NETNSA_NSID]) { 936 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 937 if (!peer) 938 peer = ERR_PTR(-ENOENT); 939 nla = tb[NETNSA_NSID]; 940 } else { 941 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 942 return -EINVAL; 943 } 944 945 if (IS_ERR(peer)) { 946 NL_SET_BAD_ATTR(extack, nla); 947 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 948 return PTR_ERR(peer); 949 } 950 951 if (tb[NETNSA_TARGET_NSID]) { 952 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 953 954 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 955 if (IS_ERR(target)) { 956 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 957 NL_SET_ERR_MSG(extack, 958 "Target netns reference is invalid"); 959 err = PTR_ERR(target); 960 goto out; 961 } 962 fillargs.add_ref = true; 963 fillargs.ref_nsid = peernet2id(net, peer); 964 } 965 966 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 967 if (!msg) { 968 err = -ENOMEM; 969 goto out; 970 } 971 972 fillargs.nsid = peernet2id(target, peer); 973 err = rtnl_net_fill(msg, &fillargs); 974 if (err < 0) 975 goto err_out; 976 977 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 978 goto out; 979 980 err_out: 981 nlmsg_free(msg); 982 out: 983 if (fillargs.add_ref) 984 put_net(target); 985 put_net(peer); 986 return err; 987 } 988 989 struct rtnl_net_dump_cb { 990 struct net *tgt_net; 991 struct net *ref_net; 992 struct sk_buff *skb; 993 struct net_fill_args fillargs; 994 int idx; 995 int s_idx; 996 }; 997 998 /* Runs in RCU-critical section. */ 999 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1000 { 1001 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1002 int ret; 1003 1004 if (net_cb->idx < net_cb->s_idx) 1005 goto cont; 1006 1007 net_cb->fillargs.nsid = id; 1008 if (net_cb->fillargs.add_ref) 1009 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1010 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1011 if (ret < 0) 1012 return ret; 1013 1014 cont: 1015 net_cb->idx++; 1016 return 0; 1017 } 1018 1019 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1020 struct rtnl_net_dump_cb *net_cb, 1021 struct netlink_callback *cb) 1022 { 1023 struct netlink_ext_ack *extack = cb->extack; 1024 struct nlattr *tb[NETNSA_MAX + 1]; 1025 int err, i; 1026 1027 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1028 NETNSA_MAX, rtnl_net_policy, 1029 extack); 1030 if (err < 0) 1031 return err; 1032 1033 for (i = 0; i <= NETNSA_MAX; i++) { 1034 if (!tb[i]) 1035 continue; 1036 1037 if (i == NETNSA_TARGET_NSID) { 1038 struct net *net; 1039 1040 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1041 if (IS_ERR(net)) { 1042 NL_SET_BAD_ATTR(extack, tb[i]); 1043 NL_SET_ERR_MSG(extack, 1044 "Invalid target network namespace id"); 1045 return PTR_ERR(net); 1046 } 1047 net_cb->fillargs.add_ref = true; 1048 net_cb->ref_net = net_cb->tgt_net; 1049 net_cb->tgt_net = net; 1050 } else { 1051 NL_SET_BAD_ATTR(extack, tb[i]); 1052 NL_SET_ERR_MSG(extack, 1053 "Unsupported attribute in dump request"); 1054 return -EINVAL; 1055 } 1056 } 1057 1058 return 0; 1059 } 1060 1061 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1062 { 1063 struct rtnl_net_dump_cb net_cb = { 1064 .tgt_net = sock_net(skb->sk), 1065 .skb = skb, 1066 .fillargs = { 1067 .portid = NETLINK_CB(cb->skb).portid, 1068 .seq = cb->nlh->nlmsg_seq, 1069 .flags = NLM_F_MULTI, 1070 .cmd = RTM_NEWNSID, 1071 }, 1072 .idx = 0, 1073 .s_idx = cb->args[0], 1074 }; 1075 int err = 0; 1076 1077 if (cb->strict_check) { 1078 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1079 if (err < 0) 1080 goto end; 1081 } 1082 1083 rcu_read_lock(); 1084 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1085 rcu_read_unlock(); 1086 1087 cb->args[0] = net_cb.idx; 1088 end: 1089 if (net_cb.fillargs.add_ref) 1090 put_net(net_cb.tgt_net); 1091 return err; 1092 } 1093 1094 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1095 struct nlmsghdr *nlh, gfp_t gfp) 1096 { 1097 struct net_fill_args fillargs = { 1098 .portid = portid, 1099 .seq = nlh ? nlh->nlmsg_seq : 0, 1100 .cmd = cmd, 1101 .nsid = id, 1102 }; 1103 struct sk_buff *msg; 1104 int err = -ENOMEM; 1105 1106 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1107 if (!msg) 1108 goto out; 1109 1110 err = rtnl_net_fill(msg, &fillargs); 1111 if (err < 0) 1112 goto err_out; 1113 1114 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1115 return; 1116 1117 err_out: 1118 nlmsg_free(msg); 1119 out: 1120 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1121 } 1122 1123 #ifdef CONFIG_NET_NS 1124 static void __init netns_ipv4_struct_check(void) 1125 { 1126 /* TX readonly hotpath cache lines */ 1127 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1128 sysctl_tcp_early_retrans); 1129 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1130 sysctl_tcp_tso_win_divisor); 1131 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1132 sysctl_tcp_tso_rtt_log); 1133 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1134 sysctl_tcp_autocorking); 1135 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1136 sysctl_tcp_min_snd_mss); 1137 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1138 sysctl_tcp_notsent_lowat); 1139 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1140 sysctl_tcp_limit_output_bytes); 1141 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1142 sysctl_tcp_min_rtt_wlen); 1143 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1144 sysctl_tcp_wmem); 1145 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1146 sysctl_ip_fwd_use_pmtu); 1147 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1148 1149 /* TXRX readonly hotpath cache lines */ 1150 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1151 sysctl_tcp_moderate_rcvbuf); 1152 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1153 1154 /* RX readonly hotpath cache line */ 1155 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1156 sysctl_ip_early_demux); 1157 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1158 sysctl_tcp_early_demux); 1159 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1160 sysctl_tcp_l3mdev_accept); 1161 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1162 sysctl_tcp_reordering); 1163 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1164 sysctl_tcp_rmem); 1165 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1166 } 1167 #endif 1168 1169 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1170 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1171 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1172 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1173 .dumpit = rtnl_net_dumpid, 1174 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1175 }; 1176 1177 void __init net_ns_init(void) 1178 { 1179 struct net_generic *ng; 1180 1181 #ifdef CONFIG_NET_NS 1182 netns_ipv4_struct_check(); 1183 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1184 SMP_CACHE_BYTES, 1185 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1186 1187 /* Create workqueue for cleanup */ 1188 netns_wq = create_singlethread_workqueue("netns"); 1189 if (!netns_wq) 1190 panic("Could not create netns workq"); 1191 #endif 1192 1193 ng = net_alloc_generic(); 1194 if (!ng) 1195 panic("Could not allocate generic netns"); 1196 1197 rcu_assign_pointer(init_net.gen, ng); 1198 1199 #ifdef CONFIG_KEYS 1200 init_net.key_domain = &init_net_key_domain; 1201 #endif 1202 preinit_net(&init_net, &init_user_ns); 1203 1204 down_write(&pernet_ops_rwsem); 1205 if (setup_net(&init_net)) 1206 panic("Could not setup the initial network namespace"); 1207 1208 init_net_initialized = true; 1209 up_write(&pernet_ops_rwsem); 1210 1211 if (register_pernet_subsys(&net_ns_ops)) 1212 panic("Could not register network namespace subsystems"); 1213 1214 rtnl_register_many(net_ns_rtnl_msg_handlers); 1215 } 1216 1217 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1218 { 1219 ops_pre_exit_list(ops, net_exit_list); 1220 synchronize_rcu(); 1221 1222 if (ops->exit_batch_rtnl) { 1223 LIST_HEAD(dev_kill_list); 1224 1225 rtnl_lock(); 1226 ops->exit_batch_rtnl(net_exit_list, &dev_kill_list); 1227 unregister_netdevice_many(&dev_kill_list); 1228 rtnl_unlock(); 1229 } 1230 ops_exit_list(ops, net_exit_list); 1231 1232 ops_free_list(ops, net_exit_list); 1233 } 1234 1235 #ifdef CONFIG_NET_NS 1236 static int __register_pernet_operations(struct list_head *list, 1237 struct pernet_operations *ops) 1238 { 1239 struct net *net; 1240 int error; 1241 LIST_HEAD(net_exit_list); 1242 1243 list_add_tail(&ops->list, list); 1244 if (ops->init || ops->id) { 1245 /* We held write locked pernet_ops_rwsem, and parallel 1246 * setup_net() and cleanup_net() are not possible. 1247 */ 1248 for_each_net(net) { 1249 error = ops_init(ops, net); 1250 if (error) 1251 goto out_undo; 1252 list_add_tail(&net->exit_list, &net_exit_list); 1253 } 1254 } 1255 return 0; 1256 1257 out_undo: 1258 /* If I have an error cleanup all namespaces I initialized */ 1259 list_del(&ops->list); 1260 free_exit_list(ops, &net_exit_list); 1261 return error; 1262 } 1263 1264 static void __unregister_pernet_operations(struct pernet_operations *ops) 1265 { 1266 struct net *net; 1267 LIST_HEAD(net_exit_list); 1268 1269 list_del(&ops->list); 1270 /* See comment in __register_pernet_operations() */ 1271 for_each_net(net) 1272 list_add_tail(&net->exit_list, &net_exit_list); 1273 1274 free_exit_list(ops, &net_exit_list); 1275 } 1276 1277 #else 1278 1279 static int __register_pernet_operations(struct list_head *list, 1280 struct pernet_operations *ops) 1281 { 1282 if (!init_net_initialized) { 1283 list_add_tail(&ops->list, list); 1284 return 0; 1285 } 1286 1287 return ops_init(ops, &init_net); 1288 } 1289 1290 static void __unregister_pernet_operations(struct pernet_operations *ops) 1291 { 1292 if (!init_net_initialized) { 1293 list_del(&ops->list); 1294 } else { 1295 LIST_HEAD(net_exit_list); 1296 list_add(&init_net.exit_list, &net_exit_list); 1297 free_exit_list(ops, &net_exit_list); 1298 } 1299 } 1300 1301 #endif /* CONFIG_NET_NS */ 1302 1303 static DEFINE_IDA(net_generic_ids); 1304 1305 static int register_pernet_operations(struct list_head *list, 1306 struct pernet_operations *ops) 1307 { 1308 int error; 1309 1310 if (WARN_ON(!!ops->id ^ !!ops->size)) 1311 return -EINVAL; 1312 1313 if (ops->id) { 1314 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1315 GFP_KERNEL); 1316 if (error < 0) 1317 return error; 1318 *ops->id = error; 1319 /* This does not require READ_ONCE as writers already hold 1320 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1321 * net_alloc_generic. 1322 */ 1323 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1324 } 1325 error = __register_pernet_operations(list, ops); 1326 if (error) { 1327 rcu_barrier(); 1328 if (ops->id) 1329 ida_free(&net_generic_ids, *ops->id); 1330 } 1331 1332 return error; 1333 } 1334 1335 static void unregister_pernet_operations(struct pernet_operations *ops) 1336 { 1337 __unregister_pernet_operations(ops); 1338 rcu_barrier(); 1339 if (ops->id) 1340 ida_free(&net_generic_ids, *ops->id); 1341 } 1342 1343 /** 1344 * register_pernet_subsys - register a network namespace subsystem 1345 * @ops: pernet operations structure for the subsystem 1346 * 1347 * Register a subsystem which has init and exit functions 1348 * that are called when network namespaces are created and 1349 * destroyed respectively. 1350 * 1351 * When registered all network namespace init functions are 1352 * called for every existing network namespace. Allowing kernel 1353 * modules to have a race free view of the set of network namespaces. 1354 * 1355 * When a new network namespace is created all of the init 1356 * methods are called in the order in which they were registered. 1357 * 1358 * When a network namespace is destroyed all of the exit methods 1359 * are called in the reverse of the order with which they were 1360 * registered. 1361 */ 1362 int register_pernet_subsys(struct pernet_operations *ops) 1363 { 1364 int error; 1365 down_write(&pernet_ops_rwsem); 1366 error = register_pernet_operations(first_device, ops); 1367 up_write(&pernet_ops_rwsem); 1368 return error; 1369 } 1370 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1371 1372 /** 1373 * unregister_pernet_subsys - unregister a network namespace subsystem 1374 * @ops: pernet operations structure to manipulate 1375 * 1376 * Remove the pernet operations structure from the list to be 1377 * used when network namespaces are created or destroyed. In 1378 * addition run the exit method for all existing network 1379 * namespaces. 1380 */ 1381 void unregister_pernet_subsys(struct pernet_operations *ops) 1382 { 1383 down_write(&pernet_ops_rwsem); 1384 unregister_pernet_operations(ops); 1385 up_write(&pernet_ops_rwsem); 1386 } 1387 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1388 1389 /** 1390 * register_pernet_device - register a network namespace device 1391 * @ops: pernet operations structure for the subsystem 1392 * 1393 * Register a device which has init and exit functions 1394 * that are called when network namespaces are created and 1395 * destroyed respectively. 1396 * 1397 * When registered all network namespace init functions are 1398 * called for every existing network namespace. Allowing kernel 1399 * modules to have a race free view of the set of network namespaces. 1400 * 1401 * When a new network namespace is created all of the init 1402 * methods are called in the order in which they were registered. 1403 * 1404 * When a network namespace is destroyed all of the exit methods 1405 * are called in the reverse of the order with which they were 1406 * registered. 1407 */ 1408 int register_pernet_device(struct pernet_operations *ops) 1409 { 1410 int error; 1411 down_write(&pernet_ops_rwsem); 1412 error = register_pernet_operations(&pernet_list, ops); 1413 if (!error && (first_device == &pernet_list)) 1414 first_device = &ops->list; 1415 up_write(&pernet_ops_rwsem); 1416 return error; 1417 } 1418 EXPORT_SYMBOL_GPL(register_pernet_device); 1419 1420 /** 1421 * unregister_pernet_device - unregister a network namespace netdevice 1422 * @ops: pernet operations structure to manipulate 1423 * 1424 * Remove the pernet operations structure from the list to be 1425 * used when network namespaces are created or destroyed. In 1426 * addition run the exit method for all existing network 1427 * namespaces. 1428 */ 1429 void unregister_pernet_device(struct pernet_operations *ops) 1430 { 1431 down_write(&pernet_ops_rwsem); 1432 if (&ops->list == first_device) 1433 first_device = first_device->next; 1434 unregister_pernet_operations(ops); 1435 up_write(&pernet_ops_rwsem); 1436 } 1437 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1438 1439 #ifdef CONFIG_NET_NS 1440 static struct ns_common *netns_get(struct task_struct *task) 1441 { 1442 struct net *net = NULL; 1443 struct nsproxy *nsproxy; 1444 1445 task_lock(task); 1446 nsproxy = task->nsproxy; 1447 if (nsproxy) 1448 net = get_net(nsproxy->net_ns); 1449 task_unlock(task); 1450 1451 return net ? &net->ns : NULL; 1452 } 1453 1454 static inline struct net *to_net_ns(struct ns_common *ns) 1455 { 1456 return container_of(ns, struct net, ns); 1457 } 1458 1459 static void netns_put(struct ns_common *ns) 1460 { 1461 put_net(to_net_ns(ns)); 1462 } 1463 1464 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1465 { 1466 struct nsproxy *nsproxy = nsset->nsproxy; 1467 struct net *net = to_net_ns(ns); 1468 1469 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1470 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1471 return -EPERM; 1472 1473 put_net(nsproxy->net_ns); 1474 nsproxy->net_ns = get_net(net); 1475 return 0; 1476 } 1477 1478 static struct user_namespace *netns_owner(struct ns_common *ns) 1479 { 1480 return to_net_ns(ns)->user_ns; 1481 } 1482 1483 const struct proc_ns_operations netns_operations = { 1484 .name = "net", 1485 .type = CLONE_NEWNET, 1486 .get = netns_get, 1487 .put = netns_put, 1488 .install = netns_install, 1489 .owner = netns_owner, 1490 }; 1491 #endif 1492