xref: /linux/net/core/net_namespace.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 #include <linux/proc_fs.h>
24 
25 #include <net/sock.h>
26 #include <net/netlink.h>
27 #include <net/net_namespace.h>
28 #include <net/netns/generic.h>
29 
30 /*
31  *	Our network namespace constructor/destructor lists
32  */
33 
34 static LIST_HEAD(pernet_list);
35 static struct list_head *first_device = &pernet_list;
36 
37 LIST_HEAD(net_namespace_list);
38 EXPORT_SYMBOL_GPL(net_namespace_list);
39 
40 /* Protects net_namespace_list. Nests iside rtnl_lock() */
41 DECLARE_RWSEM(net_rwsem);
42 EXPORT_SYMBOL_GPL(net_rwsem);
43 
44 #ifdef CONFIG_KEYS
45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
46 #endif
47 
48 struct net init_net;
49 EXPORT_SYMBOL(init_net);
50 
51 static bool init_net_initialized;
52 /*
53  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
54  * init_net_initialized and first_device pointer.
55  * This is internal net namespace object. Please, don't use it
56  * outside.
57  */
58 DECLARE_RWSEM(pernet_ops_rwsem);
59 
60 #define MIN_PERNET_OPS_ID	\
61 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
62 
63 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
64 
65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
66 
67 DEFINE_COOKIE(net_cookie);
68 
69 static struct net_generic *net_alloc_generic(void)
70 {
71 	unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs);
72 	unsigned int generic_size;
73 	struct net_generic *ng;
74 
75 	generic_size = offsetof(struct net_generic, ptr[gen_ptrs]);
76 
77 	ng = kzalloc(generic_size, GFP_KERNEL);
78 	if (ng)
79 		ng->s.len = gen_ptrs;
80 
81 	return ng;
82 }
83 
84 static int net_assign_generic(struct net *net, unsigned int id, void *data)
85 {
86 	struct net_generic *ng, *old_ng;
87 
88 	BUG_ON(id < MIN_PERNET_OPS_ID);
89 
90 	old_ng = rcu_dereference_protected(net->gen,
91 					   lockdep_is_held(&pernet_ops_rwsem));
92 	if (old_ng->s.len > id) {
93 		old_ng->ptr[id] = data;
94 		return 0;
95 	}
96 
97 	ng = net_alloc_generic();
98 	if (!ng)
99 		return -ENOMEM;
100 
101 	/*
102 	 * Some synchronisation notes:
103 	 *
104 	 * The net_generic explores the net->gen array inside rcu
105 	 * read section. Besides once set the net->gen->ptr[x]
106 	 * pointer never changes (see rules in netns/generic.h).
107 	 *
108 	 * That said, we simply duplicate this array and schedule
109 	 * the old copy for kfree after a grace period.
110 	 */
111 
112 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
113 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
114 	ng->ptr[id] = data;
115 
116 	rcu_assign_pointer(net->gen, ng);
117 	kfree_rcu(old_ng, s.rcu);
118 	return 0;
119 }
120 
121 static int ops_init(const struct pernet_operations *ops, struct net *net)
122 {
123 	struct net_generic *ng;
124 	int err = -ENOMEM;
125 	void *data = NULL;
126 
127 	if (ops->id) {
128 		data = kzalloc(ops->size, GFP_KERNEL);
129 		if (!data)
130 			goto out;
131 
132 		err = net_assign_generic(net, *ops->id, data);
133 		if (err)
134 			goto cleanup;
135 	}
136 	err = 0;
137 	if (ops->init)
138 		err = ops->init(net);
139 	if (!err)
140 		return 0;
141 
142 	if (ops->id) {
143 		ng = rcu_dereference_protected(net->gen,
144 					       lockdep_is_held(&pernet_ops_rwsem));
145 		ng->ptr[*ops->id] = NULL;
146 	}
147 
148 cleanup:
149 	kfree(data);
150 
151 out:
152 	return err;
153 }
154 
155 static void ops_pre_exit_list(const struct pernet_operations *ops,
156 			      struct list_head *net_exit_list)
157 {
158 	struct net *net;
159 
160 	if (ops->pre_exit) {
161 		list_for_each_entry(net, net_exit_list, exit_list)
162 			ops->pre_exit(net);
163 	}
164 }
165 
166 static void ops_exit_list(const struct pernet_operations *ops,
167 			  struct list_head *net_exit_list)
168 {
169 	struct net *net;
170 	if (ops->exit) {
171 		list_for_each_entry(net, net_exit_list, exit_list) {
172 			ops->exit(net);
173 			cond_resched();
174 		}
175 	}
176 	if (ops->exit_batch)
177 		ops->exit_batch(net_exit_list);
178 }
179 
180 static void ops_free_list(const struct pernet_operations *ops,
181 			  struct list_head *net_exit_list)
182 {
183 	struct net *net;
184 
185 	if (ops->id) {
186 		list_for_each_entry(net, net_exit_list, exit_list)
187 			kfree(net_generic(net, *ops->id));
188 	}
189 }
190 
191 /* should be called with nsid_lock held */
192 static int alloc_netid(struct net *net, struct net *peer, int reqid)
193 {
194 	int min = 0, max = 0;
195 
196 	if (reqid >= 0) {
197 		min = reqid;
198 		max = reqid + 1;
199 	}
200 
201 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
202 }
203 
204 /* This function is used by idr_for_each(). If net is equal to peer, the
205  * function returns the id so that idr_for_each() stops. Because we cannot
206  * returns the id 0 (idr_for_each() will not stop), we return the magic value
207  * NET_ID_ZERO (-1) for it.
208  */
209 #define NET_ID_ZERO -1
210 static int net_eq_idr(int id, void *net, void *peer)
211 {
212 	if (net_eq(net, peer))
213 		return id ? : NET_ID_ZERO;
214 	return 0;
215 }
216 
217 /* Must be called from RCU-critical section or with nsid_lock held */
218 static int __peernet2id(const struct net *net, struct net *peer)
219 {
220 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
221 
222 	/* Magic value for id 0. */
223 	if (id == NET_ID_ZERO)
224 		return 0;
225 	if (id > 0)
226 		return id;
227 
228 	return NETNSA_NSID_NOT_ASSIGNED;
229 }
230 
231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
232 			      struct nlmsghdr *nlh, gfp_t gfp);
233 /* This function returns the id of a peer netns. If no id is assigned, one will
234  * be allocated and returned.
235  */
236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
237 {
238 	int id;
239 
240 	if (refcount_read(&net->ns.count) == 0)
241 		return NETNSA_NSID_NOT_ASSIGNED;
242 
243 	spin_lock_bh(&net->nsid_lock);
244 	id = __peernet2id(net, peer);
245 	if (id >= 0) {
246 		spin_unlock_bh(&net->nsid_lock);
247 		return id;
248 	}
249 
250 	/* When peer is obtained from RCU lists, we may race with
251 	 * its cleanup. Check whether it's alive, and this guarantees
252 	 * we never hash a peer back to net->netns_ids, after it has
253 	 * just been idr_remove()'d from there in cleanup_net().
254 	 */
255 	if (!maybe_get_net(peer)) {
256 		spin_unlock_bh(&net->nsid_lock);
257 		return NETNSA_NSID_NOT_ASSIGNED;
258 	}
259 
260 	id = alloc_netid(net, peer, -1);
261 	spin_unlock_bh(&net->nsid_lock);
262 
263 	put_net(peer);
264 	if (id < 0)
265 		return NETNSA_NSID_NOT_ASSIGNED;
266 
267 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
268 
269 	return id;
270 }
271 EXPORT_SYMBOL_GPL(peernet2id_alloc);
272 
273 /* This function returns, if assigned, the id of a peer netns. */
274 int peernet2id(const struct net *net, struct net *peer)
275 {
276 	int id;
277 
278 	rcu_read_lock();
279 	id = __peernet2id(net, peer);
280 	rcu_read_unlock();
281 
282 	return id;
283 }
284 EXPORT_SYMBOL(peernet2id);
285 
286 /* This function returns true is the peer netns has an id assigned into the
287  * current netns.
288  */
289 bool peernet_has_id(const struct net *net, struct net *peer)
290 {
291 	return peernet2id(net, peer) >= 0;
292 }
293 
294 struct net *get_net_ns_by_id(const struct net *net, int id)
295 {
296 	struct net *peer;
297 
298 	if (id < 0)
299 		return NULL;
300 
301 	rcu_read_lock();
302 	peer = idr_find(&net->netns_ids, id);
303 	if (peer)
304 		peer = maybe_get_net(peer);
305 	rcu_read_unlock();
306 
307 	return peer;
308 }
309 EXPORT_SYMBOL_GPL(get_net_ns_by_id);
310 
311 static __net_init void preinit_net_sysctl(struct net *net)
312 {
313 	net->core.sysctl_somaxconn = SOMAXCONN;
314 	/* Limits per socket sk_omem_alloc usage.
315 	 * TCP zerocopy regular usage needs 128 KB.
316 	 */
317 	net->core.sysctl_optmem_max = 128 * 1024;
318 	net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED;
319 	net->core.sysctl_tstamp_allow_data = 1;
320 }
321 
322 /* init code that must occur even if setup_net() is not called. */
323 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns)
324 {
325 	refcount_set(&net->passive, 1);
326 	refcount_set(&net->ns.count, 1);
327 	ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt");
328 	ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt");
329 
330 	get_random_bytes(&net->hash_mix, sizeof(u32));
331 	net->dev_base_seq = 1;
332 	net->user_ns = user_ns;
333 
334 	idr_init(&net->netns_ids);
335 	spin_lock_init(&net->nsid_lock);
336 	mutex_init(&net->ipv4.ra_mutex);
337 
338 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL
339 	mutex_init(&net->rtnl_mutex);
340 	lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL);
341 #endif
342 
343 	preinit_net_sysctl(net);
344 }
345 
346 /*
347  * setup_net runs the initializers for the network namespace object.
348  */
349 static __net_init int setup_net(struct net *net)
350 {
351 	/* Must be called with pernet_ops_rwsem held */
352 	const struct pernet_operations *ops, *saved_ops;
353 	LIST_HEAD(net_exit_list);
354 	LIST_HEAD(dev_kill_list);
355 	int error = 0;
356 
357 	preempt_disable();
358 	net->net_cookie = gen_cookie_next(&net_cookie);
359 	preempt_enable();
360 
361 	list_for_each_entry(ops, &pernet_list, list) {
362 		error = ops_init(ops, net);
363 		if (error < 0)
364 			goto out_undo;
365 	}
366 	down_write(&net_rwsem);
367 	list_add_tail_rcu(&net->list, &net_namespace_list);
368 	up_write(&net_rwsem);
369 out:
370 	return error;
371 
372 out_undo:
373 	/* Walk through the list backwards calling the exit functions
374 	 * for the pernet modules whose init functions did not fail.
375 	 */
376 	list_add(&net->exit_list, &net_exit_list);
377 	saved_ops = ops;
378 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
379 		ops_pre_exit_list(ops, &net_exit_list);
380 
381 	synchronize_rcu();
382 
383 	ops = saved_ops;
384 	rtnl_lock();
385 	list_for_each_entry_continue_reverse(ops, &pernet_list, list) {
386 		if (ops->exit_batch_rtnl)
387 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
388 	}
389 	unregister_netdevice_many(&dev_kill_list);
390 	rtnl_unlock();
391 
392 	ops = saved_ops;
393 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
394 		ops_exit_list(ops, &net_exit_list);
395 
396 	ops = saved_ops;
397 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
398 		ops_free_list(ops, &net_exit_list);
399 
400 	rcu_barrier();
401 	goto out;
402 }
403 
404 #ifdef CONFIG_NET_NS
405 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
406 {
407 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
408 }
409 
410 static void dec_net_namespaces(struct ucounts *ucounts)
411 {
412 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
413 }
414 
415 static struct kmem_cache *net_cachep __ro_after_init;
416 static struct workqueue_struct *netns_wq;
417 
418 static struct net *net_alloc(void)
419 {
420 	struct net *net = NULL;
421 	struct net_generic *ng;
422 
423 	ng = net_alloc_generic();
424 	if (!ng)
425 		goto out;
426 
427 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
428 	if (!net)
429 		goto out_free;
430 
431 #ifdef CONFIG_KEYS
432 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
433 	if (!net->key_domain)
434 		goto out_free_2;
435 	refcount_set(&net->key_domain->usage, 1);
436 #endif
437 
438 	rcu_assign_pointer(net->gen, ng);
439 out:
440 	return net;
441 
442 #ifdef CONFIG_KEYS
443 out_free_2:
444 	kmem_cache_free(net_cachep, net);
445 	net = NULL;
446 #endif
447 out_free:
448 	kfree(ng);
449 	goto out;
450 }
451 
452 static void net_free(struct net *net)
453 {
454 	if (refcount_dec_and_test(&net->passive)) {
455 		kfree(rcu_access_pointer(net->gen));
456 
457 		/* There should not be any trackers left there. */
458 		ref_tracker_dir_exit(&net->notrefcnt_tracker);
459 
460 		kmem_cache_free(net_cachep, net);
461 	}
462 }
463 
464 void net_drop_ns(void *p)
465 {
466 	struct net *net = (struct net *)p;
467 
468 	if (net)
469 		net_free(net);
470 }
471 
472 struct net *copy_net_ns(unsigned long flags,
473 			struct user_namespace *user_ns, struct net *old_net)
474 {
475 	struct ucounts *ucounts;
476 	struct net *net;
477 	int rv;
478 
479 	if (!(flags & CLONE_NEWNET))
480 		return get_net(old_net);
481 
482 	ucounts = inc_net_namespaces(user_ns);
483 	if (!ucounts)
484 		return ERR_PTR(-ENOSPC);
485 
486 	net = net_alloc();
487 	if (!net) {
488 		rv = -ENOMEM;
489 		goto dec_ucounts;
490 	}
491 
492 	preinit_net(net, user_ns);
493 	net->ucounts = ucounts;
494 	get_user_ns(user_ns);
495 
496 	rv = down_read_killable(&pernet_ops_rwsem);
497 	if (rv < 0)
498 		goto put_userns;
499 
500 	rv = setup_net(net);
501 
502 	up_read(&pernet_ops_rwsem);
503 
504 	if (rv < 0) {
505 put_userns:
506 #ifdef CONFIG_KEYS
507 		key_remove_domain(net->key_domain);
508 #endif
509 		put_user_ns(user_ns);
510 		net_free(net);
511 dec_ucounts:
512 		dec_net_namespaces(ucounts);
513 		return ERR_PTR(rv);
514 	}
515 	return net;
516 }
517 
518 /**
519  * net_ns_get_ownership - get sysfs ownership data for @net
520  * @net: network namespace in question (can be NULL)
521  * @uid: kernel user ID for sysfs objects
522  * @gid: kernel group ID for sysfs objects
523  *
524  * Returns the uid/gid pair of root in the user namespace associated with the
525  * given network namespace.
526  */
527 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
528 {
529 	if (net) {
530 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
531 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
532 
533 		if (uid_valid(ns_root_uid))
534 			*uid = ns_root_uid;
535 
536 		if (gid_valid(ns_root_gid))
537 			*gid = ns_root_gid;
538 	} else {
539 		*uid = GLOBAL_ROOT_UID;
540 		*gid = GLOBAL_ROOT_GID;
541 	}
542 }
543 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
544 
545 static void unhash_nsid(struct net *net, struct net *last)
546 {
547 	struct net *tmp;
548 	/* This function is only called from cleanup_net() work,
549 	 * and this work is the only process, that may delete
550 	 * a net from net_namespace_list. So, when the below
551 	 * is executing, the list may only grow. Thus, we do not
552 	 * use for_each_net_rcu() or net_rwsem.
553 	 */
554 	for_each_net(tmp) {
555 		int id;
556 
557 		spin_lock_bh(&tmp->nsid_lock);
558 		id = __peernet2id(tmp, net);
559 		if (id >= 0)
560 			idr_remove(&tmp->netns_ids, id);
561 		spin_unlock_bh(&tmp->nsid_lock);
562 		if (id >= 0)
563 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
564 					  GFP_KERNEL);
565 		if (tmp == last)
566 			break;
567 	}
568 	spin_lock_bh(&net->nsid_lock);
569 	idr_destroy(&net->netns_ids);
570 	spin_unlock_bh(&net->nsid_lock);
571 }
572 
573 static LLIST_HEAD(cleanup_list);
574 
575 static void cleanup_net(struct work_struct *work)
576 {
577 	const struct pernet_operations *ops;
578 	struct net *net, *tmp, *last;
579 	struct llist_node *net_kill_list;
580 	LIST_HEAD(net_exit_list);
581 	LIST_HEAD(dev_kill_list);
582 
583 	/* Atomically snapshot the list of namespaces to cleanup */
584 	net_kill_list = llist_del_all(&cleanup_list);
585 
586 	down_read(&pernet_ops_rwsem);
587 
588 	/* Don't let anyone else find us. */
589 	down_write(&net_rwsem);
590 	llist_for_each_entry(net, net_kill_list, cleanup_list)
591 		list_del_rcu(&net->list);
592 	/* Cache last net. After we unlock rtnl, no one new net
593 	 * added to net_namespace_list can assign nsid pointer
594 	 * to a net from net_kill_list (see peernet2id_alloc()).
595 	 * So, we skip them in unhash_nsid().
596 	 *
597 	 * Note, that unhash_nsid() does not delete nsid links
598 	 * between net_kill_list's nets, as they've already
599 	 * deleted from net_namespace_list. But, this would be
600 	 * useless anyway, as netns_ids are destroyed there.
601 	 */
602 	last = list_last_entry(&net_namespace_list, struct net, list);
603 	up_write(&net_rwsem);
604 
605 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
606 		unhash_nsid(net, last);
607 		list_add_tail(&net->exit_list, &net_exit_list);
608 	}
609 
610 	/* Run all of the network namespace pre_exit methods */
611 	list_for_each_entry_reverse(ops, &pernet_list, list)
612 		ops_pre_exit_list(ops, &net_exit_list);
613 
614 	/*
615 	 * Another CPU might be rcu-iterating the list, wait for it.
616 	 * This needs to be before calling the exit() notifiers, so
617 	 * the rcu_barrier() below isn't sufficient alone.
618 	 * Also the pre_exit() and exit() methods need this barrier.
619 	 */
620 	synchronize_rcu_expedited();
621 
622 	rtnl_lock();
623 	list_for_each_entry_reverse(ops, &pernet_list, list) {
624 		if (ops->exit_batch_rtnl)
625 			ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list);
626 	}
627 	unregister_netdevice_many(&dev_kill_list);
628 	rtnl_unlock();
629 
630 	/* Run all of the network namespace exit methods */
631 	list_for_each_entry_reverse(ops, &pernet_list, list)
632 		ops_exit_list(ops, &net_exit_list);
633 
634 	/* Free the net generic variables */
635 	list_for_each_entry_reverse(ops, &pernet_list, list)
636 		ops_free_list(ops, &net_exit_list);
637 
638 	up_read(&pernet_ops_rwsem);
639 
640 	/* Ensure there are no outstanding rcu callbacks using this
641 	 * network namespace.
642 	 */
643 	rcu_barrier();
644 
645 	/* Finally it is safe to free my network namespace structure */
646 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
647 		list_del_init(&net->exit_list);
648 		dec_net_namespaces(net->ucounts);
649 #ifdef CONFIG_KEYS
650 		key_remove_domain(net->key_domain);
651 #endif
652 		put_user_ns(net->user_ns);
653 		net_free(net);
654 	}
655 }
656 
657 /**
658  * net_ns_barrier - wait until concurrent net_cleanup_work is done
659  *
660  * cleanup_net runs from work queue and will first remove namespaces
661  * from the global list, then run net exit functions.
662  *
663  * Call this in module exit path to make sure that all netns
664  * ->exit ops have been invoked before the function is removed.
665  */
666 void net_ns_barrier(void)
667 {
668 	down_write(&pernet_ops_rwsem);
669 	up_write(&pernet_ops_rwsem);
670 }
671 EXPORT_SYMBOL(net_ns_barrier);
672 
673 static DECLARE_WORK(net_cleanup_work, cleanup_net);
674 
675 void __put_net(struct net *net)
676 {
677 	ref_tracker_dir_exit(&net->refcnt_tracker);
678 	/* Cleanup the network namespace in process context */
679 	if (llist_add(&net->cleanup_list, &cleanup_list))
680 		queue_work(netns_wq, &net_cleanup_work);
681 }
682 EXPORT_SYMBOL_GPL(__put_net);
683 
684 /**
685  * get_net_ns - increment the refcount of the network namespace
686  * @ns: common namespace (net)
687  *
688  * Returns the net's common namespace or ERR_PTR() if ref is zero.
689  */
690 struct ns_common *get_net_ns(struct ns_common *ns)
691 {
692 	struct net *net;
693 
694 	net = maybe_get_net(container_of(ns, struct net, ns));
695 	if (net)
696 		return &net->ns;
697 	return ERR_PTR(-EINVAL);
698 }
699 EXPORT_SYMBOL_GPL(get_net_ns);
700 
701 struct net *get_net_ns_by_fd(int fd)
702 {
703 	CLASS(fd, f)(fd);
704 
705 	if (fd_empty(f))
706 		return ERR_PTR(-EBADF);
707 
708 	if (proc_ns_file(fd_file(f))) {
709 		struct ns_common *ns = get_proc_ns(file_inode(fd_file(f)));
710 		if (ns->ops == &netns_operations)
711 			return get_net(container_of(ns, struct net, ns));
712 	}
713 
714 	return ERR_PTR(-EINVAL);
715 }
716 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
717 #endif
718 
719 struct net *get_net_ns_by_pid(pid_t pid)
720 {
721 	struct task_struct *tsk;
722 	struct net *net;
723 
724 	/* Lookup the network namespace */
725 	net = ERR_PTR(-ESRCH);
726 	rcu_read_lock();
727 	tsk = find_task_by_vpid(pid);
728 	if (tsk) {
729 		struct nsproxy *nsproxy;
730 		task_lock(tsk);
731 		nsproxy = tsk->nsproxy;
732 		if (nsproxy)
733 			net = get_net(nsproxy->net_ns);
734 		task_unlock(tsk);
735 	}
736 	rcu_read_unlock();
737 	return net;
738 }
739 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
740 
741 static __net_init int net_ns_net_init(struct net *net)
742 {
743 #ifdef CONFIG_NET_NS
744 	net->ns.ops = &netns_operations;
745 #endif
746 	return ns_alloc_inum(&net->ns);
747 }
748 
749 static __net_exit void net_ns_net_exit(struct net *net)
750 {
751 	ns_free_inum(&net->ns);
752 }
753 
754 static struct pernet_operations __net_initdata net_ns_ops = {
755 	.init = net_ns_net_init,
756 	.exit = net_ns_net_exit,
757 };
758 
759 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
760 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
761 	[NETNSA_NSID]		= { .type = NLA_S32 },
762 	[NETNSA_PID]		= { .type = NLA_U32 },
763 	[NETNSA_FD]		= { .type = NLA_U32 },
764 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
765 };
766 
767 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
768 			  struct netlink_ext_ack *extack)
769 {
770 	struct net *net = sock_net(skb->sk);
771 	struct nlattr *tb[NETNSA_MAX + 1];
772 	struct nlattr *nla;
773 	struct net *peer;
774 	int nsid, err;
775 
776 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
777 				     NETNSA_MAX, rtnl_net_policy, extack);
778 	if (err < 0)
779 		return err;
780 	if (!tb[NETNSA_NSID]) {
781 		NL_SET_ERR_MSG(extack, "nsid is missing");
782 		return -EINVAL;
783 	}
784 	nsid = nla_get_s32(tb[NETNSA_NSID]);
785 
786 	if (tb[NETNSA_PID]) {
787 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
788 		nla = tb[NETNSA_PID];
789 	} else if (tb[NETNSA_FD]) {
790 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
791 		nla = tb[NETNSA_FD];
792 	} else {
793 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
794 		return -EINVAL;
795 	}
796 	if (IS_ERR(peer)) {
797 		NL_SET_BAD_ATTR(extack, nla);
798 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
799 		return PTR_ERR(peer);
800 	}
801 
802 	spin_lock_bh(&net->nsid_lock);
803 	if (__peernet2id(net, peer) >= 0) {
804 		spin_unlock_bh(&net->nsid_lock);
805 		err = -EEXIST;
806 		NL_SET_BAD_ATTR(extack, nla);
807 		NL_SET_ERR_MSG(extack,
808 			       "Peer netns already has a nsid assigned");
809 		goto out;
810 	}
811 
812 	err = alloc_netid(net, peer, nsid);
813 	spin_unlock_bh(&net->nsid_lock);
814 	if (err >= 0) {
815 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
816 				  nlh, GFP_KERNEL);
817 		err = 0;
818 	} else if (err == -ENOSPC && nsid >= 0) {
819 		err = -EEXIST;
820 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
821 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
822 	}
823 out:
824 	put_net(peer);
825 	return err;
826 }
827 
828 static int rtnl_net_get_size(void)
829 {
830 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
831 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
832 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
833 	       ;
834 }
835 
836 struct net_fill_args {
837 	u32 portid;
838 	u32 seq;
839 	int flags;
840 	int cmd;
841 	int nsid;
842 	bool add_ref;
843 	int ref_nsid;
844 };
845 
846 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
847 {
848 	struct nlmsghdr *nlh;
849 	struct rtgenmsg *rth;
850 
851 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
852 			args->flags);
853 	if (!nlh)
854 		return -EMSGSIZE;
855 
856 	rth = nlmsg_data(nlh);
857 	rth->rtgen_family = AF_UNSPEC;
858 
859 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
860 		goto nla_put_failure;
861 
862 	if (args->add_ref &&
863 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
864 		goto nla_put_failure;
865 
866 	nlmsg_end(skb, nlh);
867 	return 0;
868 
869 nla_put_failure:
870 	nlmsg_cancel(skb, nlh);
871 	return -EMSGSIZE;
872 }
873 
874 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
875 				    const struct nlmsghdr *nlh,
876 				    struct nlattr **tb,
877 				    struct netlink_ext_ack *extack)
878 {
879 	int i, err;
880 
881 	if (!netlink_strict_get_check(skb))
882 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
883 					      tb, NETNSA_MAX, rtnl_net_policy,
884 					      extack);
885 
886 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
887 					    NETNSA_MAX, rtnl_net_policy,
888 					    extack);
889 	if (err)
890 		return err;
891 
892 	for (i = 0; i <= NETNSA_MAX; i++) {
893 		if (!tb[i])
894 			continue;
895 
896 		switch (i) {
897 		case NETNSA_PID:
898 		case NETNSA_FD:
899 		case NETNSA_NSID:
900 		case NETNSA_TARGET_NSID:
901 			break;
902 		default:
903 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
904 			return -EINVAL;
905 		}
906 	}
907 
908 	return 0;
909 }
910 
911 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
912 			  struct netlink_ext_ack *extack)
913 {
914 	struct net *net = sock_net(skb->sk);
915 	struct nlattr *tb[NETNSA_MAX + 1];
916 	struct net_fill_args fillargs = {
917 		.portid = NETLINK_CB(skb).portid,
918 		.seq = nlh->nlmsg_seq,
919 		.cmd = RTM_NEWNSID,
920 	};
921 	struct net *peer, *target = net;
922 	struct nlattr *nla;
923 	struct sk_buff *msg;
924 	int err;
925 
926 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
927 	if (err < 0)
928 		return err;
929 	if (tb[NETNSA_PID]) {
930 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
931 		nla = tb[NETNSA_PID];
932 	} else if (tb[NETNSA_FD]) {
933 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
934 		nla = tb[NETNSA_FD];
935 	} else if (tb[NETNSA_NSID]) {
936 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
937 		if (!peer)
938 			peer = ERR_PTR(-ENOENT);
939 		nla = tb[NETNSA_NSID];
940 	} else {
941 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
942 		return -EINVAL;
943 	}
944 
945 	if (IS_ERR(peer)) {
946 		NL_SET_BAD_ATTR(extack, nla);
947 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
948 		return PTR_ERR(peer);
949 	}
950 
951 	if (tb[NETNSA_TARGET_NSID]) {
952 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
953 
954 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
955 		if (IS_ERR(target)) {
956 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
957 			NL_SET_ERR_MSG(extack,
958 				       "Target netns reference is invalid");
959 			err = PTR_ERR(target);
960 			goto out;
961 		}
962 		fillargs.add_ref = true;
963 		fillargs.ref_nsid = peernet2id(net, peer);
964 	}
965 
966 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
967 	if (!msg) {
968 		err = -ENOMEM;
969 		goto out;
970 	}
971 
972 	fillargs.nsid = peernet2id(target, peer);
973 	err = rtnl_net_fill(msg, &fillargs);
974 	if (err < 0)
975 		goto err_out;
976 
977 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
978 	goto out;
979 
980 err_out:
981 	nlmsg_free(msg);
982 out:
983 	if (fillargs.add_ref)
984 		put_net(target);
985 	put_net(peer);
986 	return err;
987 }
988 
989 struct rtnl_net_dump_cb {
990 	struct net *tgt_net;
991 	struct net *ref_net;
992 	struct sk_buff *skb;
993 	struct net_fill_args fillargs;
994 	int idx;
995 	int s_idx;
996 };
997 
998 /* Runs in RCU-critical section. */
999 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
1000 {
1001 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
1002 	int ret;
1003 
1004 	if (net_cb->idx < net_cb->s_idx)
1005 		goto cont;
1006 
1007 	net_cb->fillargs.nsid = id;
1008 	if (net_cb->fillargs.add_ref)
1009 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
1010 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
1011 	if (ret < 0)
1012 		return ret;
1013 
1014 cont:
1015 	net_cb->idx++;
1016 	return 0;
1017 }
1018 
1019 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
1020 				   struct rtnl_net_dump_cb *net_cb,
1021 				   struct netlink_callback *cb)
1022 {
1023 	struct netlink_ext_ack *extack = cb->extack;
1024 	struct nlattr *tb[NETNSA_MAX + 1];
1025 	int err, i;
1026 
1027 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
1028 					    NETNSA_MAX, rtnl_net_policy,
1029 					    extack);
1030 	if (err < 0)
1031 		return err;
1032 
1033 	for (i = 0; i <= NETNSA_MAX; i++) {
1034 		if (!tb[i])
1035 			continue;
1036 
1037 		if (i == NETNSA_TARGET_NSID) {
1038 			struct net *net;
1039 
1040 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
1041 			if (IS_ERR(net)) {
1042 				NL_SET_BAD_ATTR(extack, tb[i]);
1043 				NL_SET_ERR_MSG(extack,
1044 					       "Invalid target network namespace id");
1045 				return PTR_ERR(net);
1046 			}
1047 			net_cb->fillargs.add_ref = true;
1048 			net_cb->ref_net = net_cb->tgt_net;
1049 			net_cb->tgt_net = net;
1050 		} else {
1051 			NL_SET_BAD_ATTR(extack, tb[i]);
1052 			NL_SET_ERR_MSG(extack,
1053 				       "Unsupported attribute in dump request");
1054 			return -EINVAL;
1055 		}
1056 	}
1057 
1058 	return 0;
1059 }
1060 
1061 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1062 {
1063 	struct rtnl_net_dump_cb net_cb = {
1064 		.tgt_net = sock_net(skb->sk),
1065 		.skb = skb,
1066 		.fillargs = {
1067 			.portid = NETLINK_CB(cb->skb).portid,
1068 			.seq = cb->nlh->nlmsg_seq,
1069 			.flags = NLM_F_MULTI,
1070 			.cmd = RTM_NEWNSID,
1071 		},
1072 		.idx = 0,
1073 		.s_idx = cb->args[0],
1074 	};
1075 	int err = 0;
1076 
1077 	if (cb->strict_check) {
1078 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1079 		if (err < 0)
1080 			goto end;
1081 	}
1082 
1083 	rcu_read_lock();
1084 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1085 	rcu_read_unlock();
1086 
1087 	cb->args[0] = net_cb.idx;
1088 end:
1089 	if (net_cb.fillargs.add_ref)
1090 		put_net(net_cb.tgt_net);
1091 	return err;
1092 }
1093 
1094 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1095 			      struct nlmsghdr *nlh, gfp_t gfp)
1096 {
1097 	struct net_fill_args fillargs = {
1098 		.portid = portid,
1099 		.seq = nlh ? nlh->nlmsg_seq : 0,
1100 		.cmd = cmd,
1101 		.nsid = id,
1102 	};
1103 	struct sk_buff *msg;
1104 	int err = -ENOMEM;
1105 
1106 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1107 	if (!msg)
1108 		goto out;
1109 
1110 	err = rtnl_net_fill(msg, &fillargs);
1111 	if (err < 0)
1112 		goto err_out;
1113 
1114 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1115 	return;
1116 
1117 err_out:
1118 	nlmsg_free(msg);
1119 out:
1120 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1121 }
1122 
1123 #ifdef CONFIG_NET_NS
1124 static void __init netns_ipv4_struct_check(void)
1125 {
1126 	/* TX readonly hotpath cache lines */
1127 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1128 				      sysctl_tcp_early_retrans);
1129 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1130 				      sysctl_tcp_tso_win_divisor);
1131 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1132 				      sysctl_tcp_tso_rtt_log);
1133 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1134 				      sysctl_tcp_autocorking);
1135 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1136 				      sysctl_tcp_min_snd_mss);
1137 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1138 				      sysctl_tcp_notsent_lowat);
1139 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1140 				      sysctl_tcp_limit_output_bytes);
1141 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1142 				      sysctl_tcp_min_rtt_wlen);
1143 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1144 				      sysctl_tcp_wmem);
1145 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx,
1146 				      sysctl_ip_fwd_use_pmtu);
1147 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33);
1148 
1149 	/* TXRX readonly hotpath cache lines */
1150 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx,
1151 				      sysctl_tcp_moderate_rcvbuf);
1152 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1);
1153 
1154 	/* RX readonly hotpath cache line */
1155 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1156 				      sysctl_ip_early_demux);
1157 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1158 				      sysctl_tcp_early_demux);
1159 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1160 				      sysctl_tcp_l3mdev_accept);
1161 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1162 				      sysctl_tcp_reordering);
1163 	CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx,
1164 				      sysctl_tcp_rmem);
1165 	CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22);
1166 }
1167 #endif
1168 
1169 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = {
1170 	{.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid,
1171 	 .flags = RTNL_FLAG_DOIT_UNLOCKED},
1172 	{.msgtype = RTM_GETNSID, .doit = rtnl_net_getid,
1173 	 .dumpit = rtnl_net_dumpid,
1174 	 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED},
1175 };
1176 
1177 void __init net_ns_init(void)
1178 {
1179 	struct net_generic *ng;
1180 
1181 #ifdef CONFIG_NET_NS
1182 	netns_ipv4_struct_check();
1183 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1184 					SMP_CACHE_BYTES,
1185 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1186 
1187 	/* Create workqueue for cleanup */
1188 	netns_wq = create_singlethread_workqueue("netns");
1189 	if (!netns_wq)
1190 		panic("Could not create netns workq");
1191 #endif
1192 
1193 	ng = net_alloc_generic();
1194 	if (!ng)
1195 		panic("Could not allocate generic netns");
1196 
1197 	rcu_assign_pointer(init_net.gen, ng);
1198 
1199 #ifdef CONFIG_KEYS
1200 	init_net.key_domain = &init_net_key_domain;
1201 #endif
1202 	preinit_net(&init_net, &init_user_ns);
1203 
1204 	down_write(&pernet_ops_rwsem);
1205 	if (setup_net(&init_net))
1206 		panic("Could not setup the initial network namespace");
1207 
1208 	init_net_initialized = true;
1209 	up_write(&pernet_ops_rwsem);
1210 
1211 	if (register_pernet_subsys(&net_ns_ops))
1212 		panic("Could not register network namespace subsystems");
1213 
1214 	rtnl_register_many(net_ns_rtnl_msg_handlers);
1215 }
1216 
1217 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list)
1218 {
1219 	ops_pre_exit_list(ops, net_exit_list);
1220 	synchronize_rcu();
1221 
1222 	if (ops->exit_batch_rtnl) {
1223 		LIST_HEAD(dev_kill_list);
1224 
1225 		rtnl_lock();
1226 		ops->exit_batch_rtnl(net_exit_list, &dev_kill_list);
1227 		unregister_netdevice_many(&dev_kill_list);
1228 		rtnl_unlock();
1229 	}
1230 	ops_exit_list(ops, net_exit_list);
1231 
1232 	ops_free_list(ops, net_exit_list);
1233 }
1234 
1235 #ifdef CONFIG_NET_NS
1236 static int __register_pernet_operations(struct list_head *list,
1237 					struct pernet_operations *ops)
1238 {
1239 	struct net *net;
1240 	int error;
1241 	LIST_HEAD(net_exit_list);
1242 
1243 	list_add_tail(&ops->list, list);
1244 	if (ops->init || ops->id) {
1245 		/* We held write locked pernet_ops_rwsem, and parallel
1246 		 * setup_net() and cleanup_net() are not possible.
1247 		 */
1248 		for_each_net(net) {
1249 			error = ops_init(ops, net);
1250 			if (error)
1251 				goto out_undo;
1252 			list_add_tail(&net->exit_list, &net_exit_list);
1253 		}
1254 	}
1255 	return 0;
1256 
1257 out_undo:
1258 	/* If I have an error cleanup all namespaces I initialized */
1259 	list_del(&ops->list);
1260 	free_exit_list(ops, &net_exit_list);
1261 	return error;
1262 }
1263 
1264 static void __unregister_pernet_operations(struct pernet_operations *ops)
1265 {
1266 	struct net *net;
1267 	LIST_HEAD(net_exit_list);
1268 
1269 	list_del(&ops->list);
1270 	/* See comment in __register_pernet_operations() */
1271 	for_each_net(net)
1272 		list_add_tail(&net->exit_list, &net_exit_list);
1273 
1274 	free_exit_list(ops, &net_exit_list);
1275 }
1276 
1277 #else
1278 
1279 static int __register_pernet_operations(struct list_head *list,
1280 					struct pernet_operations *ops)
1281 {
1282 	if (!init_net_initialized) {
1283 		list_add_tail(&ops->list, list);
1284 		return 0;
1285 	}
1286 
1287 	return ops_init(ops, &init_net);
1288 }
1289 
1290 static void __unregister_pernet_operations(struct pernet_operations *ops)
1291 {
1292 	if (!init_net_initialized) {
1293 		list_del(&ops->list);
1294 	} else {
1295 		LIST_HEAD(net_exit_list);
1296 		list_add(&init_net.exit_list, &net_exit_list);
1297 		free_exit_list(ops, &net_exit_list);
1298 	}
1299 }
1300 
1301 #endif /* CONFIG_NET_NS */
1302 
1303 static DEFINE_IDA(net_generic_ids);
1304 
1305 static int register_pernet_operations(struct list_head *list,
1306 				      struct pernet_operations *ops)
1307 {
1308 	int error;
1309 
1310 	if (WARN_ON(!!ops->id ^ !!ops->size))
1311 		return -EINVAL;
1312 
1313 	if (ops->id) {
1314 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1315 				GFP_KERNEL);
1316 		if (error < 0)
1317 			return error;
1318 		*ops->id = error;
1319 		/* This does not require READ_ONCE as writers already hold
1320 		 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect
1321 		 * net_alloc_generic.
1322 		 */
1323 		WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1));
1324 	}
1325 	error = __register_pernet_operations(list, ops);
1326 	if (error) {
1327 		rcu_barrier();
1328 		if (ops->id)
1329 			ida_free(&net_generic_ids, *ops->id);
1330 	}
1331 
1332 	return error;
1333 }
1334 
1335 static void unregister_pernet_operations(struct pernet_operations *ops)
1336 {
1337 	__unregister_pernet_operations(ops);
1338 	rcu_barrier();
1339 	if (ops->id)
1340 		ida_free(&net_generic_ids, *ops->id);
1341 }
1342 
1343 /**
1344  *      register_pernet_subsys - register a network namespace subsystem
1345  *	@ops:  pernet operations structure for the subsystem
1346  *
1347  *	Register a subsystem which has init and exit functions
1348  *	that are called when network namespaces are created and
1349  *	destroyed respectively.
1350  *
1351  *	When registered all network namespace init functions are
1352  *	called for every existing network namespace.  Allowing kernel
1353  *	modules to have a race free view of the set of network namespaces.
1354  *
1355  *	When a new network namespace is created all of the init
1356  *	methods are called in the order in which they were registered.
1357  *
1358  *	When a network namespace is destroyed all of the exit methods
1359  *	are called in the reverse of the order with which they were
1360  *	registered.
1361  */
1362 int register_pernet_subsys(struct pernet_operations *ops)
1363 {
1364 	int error;
1365 	down_write(&pernet_ops_rwsem);
1366 	error =  register_pernet_operations(first_device, ops);
1367 	up_write(&pernet_ops_rwsem);
1368 	return error;
1369 }
1370 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1371 
1372 /**
1373  *      unregister_pernet_subsys - unregister a network namespace subsystem
1374  *	@ops: pernet operations structure to manipulate
1375  *
1376  *	Remove the pernet operations structure from the list to be
1377  *	used when network namespaces are created or destroyed.  In
1378  *	addition run the exit method for all existing network
1379  *	namespaces.
1380  */
1381 void unregister_pernet_subsys(struct pernet_operations *ops)
1382 {
1383 	down_write(&pernet_ops_rwsem);
1384 	unregister_pernet_operations(ops);
1385 	up_write(&pernet_ops_rwsem);
1386 }
1387 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1388 
1389 /**
1390  *      register_pernet_device - register a network namespace device
1391  *	@ops:  pernet operations structure for the subsystem
1392  *
1393  *	Register a device which has init and exit functions
1394  *	that are called when network namespaces are created and
1395  *	destroyed respectively.
1396  *
1397  *	When registered all network namespace init functions are
1398  *	called for every existing network namespace.  Allowing kernel
1399  *	modules to have a race free view of the set of network namespaces.
1400  *
1401  *	When a new network namespace is created all of the init
1402  *	methods are called in the order in which they were registered.
1403  *
1404  *	When a network namespace is destroyed all of the exit methods
1405  *	are called in the reverse of the order with which they were
1406  *	registered.
1407  */
1408 int register_pernet_device(struct pernet_operations *ops)
1409 {
1410 	int error;
1411 	down_write(&pernet_ops_rwsem);
1412 	error = register_pernet_operations(&pernet_list, ops);
1413 	if (!error && (first_device == &pernet_list))
1414 		first_device = &ops->list;
1415 	up_write(&pernet_ops_rwsem);
1416 	return error;
1417 }
1418 EXPORT_SYMBOL_GPL(register_pernet_device);
1419 
1420 /**
1421  *      unregister_pernet_device - unregister a network namespace netdevice
1422  *	@ops: pernet operations structure to manipulate
1423  *
1424  *	Remove the pernet operations structure from the list to be
1425  *	used when network namespaces are created or destroyed.  In
1426  *	addition run the exit method for all existing network
1427  *	namespaces.
1428  */
1429 void unregister_pernet_device(struct pernet_operations *ops)
1430 {
1431 	down_write(&pernet_ops_rwsem);
1432 	if (&ops->list == first_device)
1433 		first_device = first_device->next;
1434 	unregister_pernet_operations(ops);
1435 	up_write(&pernet_ops_rwsem);
1436 }
1437 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1438 
1439 #ifdef CONFIG_NET_NS
1440 static struct ns_common *netns_get(struct task_struct *task)
1441 {
1442 	struct net *net = NULL;
1443 	struct nsproxy *nsproxy;
1444 
1445 	task_lock(task);
1446 	nsproxy = task->nsproxy;
1447 	if (nsproxy)
1448 		net = get_net(nsproxy->net_ns);
1449 	task_unlock(task);
1450 
1451 	return net ? &net->ns : NULL;
1452 }
1453 
1454 static inline struct net *to_net_ns(struct ns_common *ns)
1455 {
1456 	return container_of(ns, struct net, ns);
1457 }
1458 
1459 static void netns_put(struct ns_common *ns)
1460 {
1461 	put_net(to_net_ns(ns));
1462 }
1463 
1464 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1465 {
1466 	struct nsproxy *nsproxy = nsset->nsproxy;
1467 	struct net *net = to_net_ns(ns);
1468 
1469 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1470 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1471 		return -EPERM;
1472 
1473 	put_net(nsproxy->net_ns);
1474 	nsproxy->net_ns = get_net(net);
1475 	return 0;
1476 }
1477 
1478 static struct user_namespace *netns_owner(struct ns_common *ns)
1479 {
1480 	return to_net_ns(ns)->user_ns;
1481 }
1482 
1483 const struct proc_ns_operations netns_operations = {
1484 	.name		= "net",
1485 	.type		= CLONE_NEWNET,
1486 	.get		= netns_get,
1487 	.put		= netns_put,
1488 	.install	= netns_install,
1489 	.owner		= netns_owner,
1490 };
1491 #endif
1492