1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 2 3 #include <linux/workqueue.h> 4 #include <linux/rtnetlink.h> 5 #include <linux/cache.h> 6 #include <linux/slab.h> 7 #include <linux/list.h> 8 #include <linux/delay.h> 9 #include <linux/sched.h> 10 #include <linux/idr.h> 11 #include <linux/rculist.h> 12 #include <linux/nsproxy.h> 13 #include <linux/fs.h> 14 #include <linux/proc_ns.h> 15 #include <linux/file.h> 16 #include <linux/export.h> 17 #include <linux/user_namespace.h> 18 #include <linux/net_namespace.h> 19 #include <linux/rtnetlink.h> 20 #include <net/sock.h> 21 #include <net/netlink.h> 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 25 /* 26 * Our network namespace constructor/destructor lists 27 */ 28 29 static LIST_HEAD(pernet_list); 30 static struct list_head *first_device = &pernet_list; 31 DEFINE_MUTEX(net_mutex); 32 33 LIST_HEAD(net_namespace_list); 34 EXPORT_SYMBOL_GPL(net_namespace_list); 35 36 struct net init_net = { 37 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 38 }; 39 EXPORT_SYMBOL(init_net); 40 41 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 42 43 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 44 45 static struct net_generic *net_alloc_generic(void) 46 { 47 struct net_generic *ng; 48 size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 49 50 ng = kzalloc(generic_size, GFP_KERNEL); 51 if (ng) 52 ng->len = max_gen_ptrs; 53 54 return ng; 55 } 56 57 static int net_assign_generic(struct net *net, int id, void *data) 58 { 59 struct net_generic *ng, *old_ng; 60 61 BUG_ON(!mutex_is_locked(&net_mutex)); 62 BUG_ON(id == 0); 63 64 old_ng = rcu_dereference_protected(net->gen, 65 lockdep_is_held(&net_mutex)); 66 ng = old_ng; 67 if (old_ng->len >= id) 68 goto assign; 69 70 ng = net_alloc_generic(); 71 if (ng == NULL) 72 return -ENOMEM; 73 74 /* 75 * Some synchronisation notes: 76 * 77 * The net_generic explores the net->gen array inside rcu 78 * read section. Besides once set the net->gen->ptr[x] 79 * pointer never changes (see rules in netns/generic.h). 80 * 81 * That said, we simply duplicate this array and schedule 82 * the old copy for kfree after a grace period. 83 */ 84 85 memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*)); 86 87 rcu_assign_pointer(net->gen, ng); 88 kfree_rcu(old_ng, rcu); 89 assign: 90 ng->ptr[id - 1] = data; 91 return 0; 92 } 93 94 static int ops_init(const struct pernet_operations *ops, struct net *net) 95 { 96 int err = -ENOMEM; 97 void *data = NULL; 98 99 if (ops->id && ops->size) { 100 data = kzalloc(ops->size, GFP_KERNEL); 101 if (!data) 102 goto out; 103 104 err = net_assign_generic(net, *ops->id, data); 105 if (err) 106 goto cleanup; 107 } 108 err = 0; 109 if (ops->init) 110 err = ops->init(net); 111 if (!err) 112 return 0; 113 114 cleanup: 115 kfree(data); 116 117 out: 118 return err; 119 } 120 121 static void ops_free(const struct pernet_operations *ops, struct net *net) 122 { 123 if (ops->id && ops->size) { 124 int id = *ops->id; 125 kfree(net_generic(net, id)); 126 } 127 } 128 129 static void ops_exit_list(const struct pernet_operations *ops, 130 struct list_head *net_exit_list) 131 { 132 struct net *net; 133 if (ops->exit) { 134 list_for_each_entry(net, net_exit_list, exit_list) 135 ops->exit(net); 136 } 137 if (ops->exit_batch) 138 ops->exit_batch(net_exit_list); 139 } 140 141 static void ops_free_list(const struct pernet_operations *ops, 142 struct list_head *net_exit_list) 143 { 144 struct net *net; 145 if (ops->size && ops->id) { 146 list_for_each_entry(net, net_exit_list, exit_list) 147 ops_free(ops, net); 148 } 149 } 150 151 static int alloc_netid(struct net *net, struct net *peer, int reqid) 152 { 153 int min = 0, max = 0; 154 155 ASSERT_RTNL(); 156 157 if (reqid >= 0) { 158 min = reqid; 159 max = reqid + 1; 160 } 161 162 return idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL); 163 } 164 165 /* This function is used by idr_for_each(). If net is equal to peer, the 166 * function returns the id so that idr_for_each() stops. Because we cannot 167 * returns the id 0 (idr_for_each() will not stop), we return the magic value 168 * NET_ID_ZERO (-1) for it. 169 */ 170 #define NET_ID_ZERO -1 171 static int net_eq_idr(int id, void *net, void *peer) 172 { 173 if (net_eq(net, peer)) 174 return id ? : NET_ID_ZERO; 175 return 0; 176 } 177 178 static int __peernet2id(struct net *net, struct net *peer, bool alloc) 179 { 180 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 181 182 ASSERT_RTNL(); 183 184 /* Magic value for id 0. */ 185 if (id == NET_ID_ZERO) 186 return 0; 187 if (id > 0) 188 return id; 189 190 if (alloc) 191 return alloc_netid(net, peer, -1); 192 193 return -ENOENT; 194 } 195 196 /* This function returns the id of a peer netns. If no id is assigned, one will 197 * be allocated and returned. 198 */ 199 int peernet2id(struct net *net, struct net *peer) 200 { 201 bool alloc = atomic_read(&peer->count) == 0 ? false : true; 202 int id; 203 204 id = __peernet2id(net, peer, alloc); 205 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 206 } 207 EXPORT_SYMBOL(peernet2id); 208 209 struct net *get_net_ns_by_id(struct net *net, int id) 210 { 211 struct net *peer; 212 213 if (id < 0) 214 return NULL; 215 216 rcu_read_lock(); 217 peer = idr_find(&net->netns_ids, id); 218 if (peer) 219 get_net(peer); 220 rcu_read_unlock(); 221 222 return peer; 223 } 224 225 /* 226 * setup_net runs the initializers for the network namespace object. 227 */ 228 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 229 { 230 /* Must be called with net_mutex held */ 231 const struct pernet_operations *ops, *saved_ops; 232 int error = 0; 233 LIST_HEAD(net_exit_list); 234 235 atomic_set(&net->count, 1); 236 atomic_set(&net->passive, 1); 237 net->dev_base_seq = 1; 238 net->user_ns = user_ns; 239 idr_init(&net->netns_ids); 240 241 #ifdef NETNS_REFCNT_DEBUG 242 atomic_set(&net->use_count, 0); 243 #endif 244 245 list_for_each_entry(ops, &pernet_list, list) { 246 error = ops_init(ops, net); 247 if (error < 0) 248 goto out_undo; 249 } 250 out: 251 return error; 252 253 out_undo: 254 /* Walk through the list backwards calling the exit functions 255 * for the pernet modules whose init functions did not fail. 256 */ 257 list_add(&net->exit_list, &net_exit_list); 258 saved_ops = ops; 259 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 260 ops_exit_list(ops, &net_exit_list); 261 262 ops = saved_ops; 263 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 264 ops_free_list(ops, &net_exit_list); 265 266 rcu_barrier(); 267 goto out; 268 } 269 270 271 #ifdef CONFIG_NET_NS 272 static struct kmem_cache *net_cachep; 273 static struct workqueue_struct *netns_wq; 274 275 static struct net *net_alloc(void) 276 { 277 struct net *net = NULL; 278 struct net_generic *ng; 279 280 ng = net_alloc_generic(); 281 if (!ng) 282 goto out; 283 284 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 285 if (!net) 286 goto out_free; 287 288 rcu_assign_pointer(net->gen, ng); 289 out: 290 return net; 291 292 out_free: 293 kfree(ng); 294 goto out; 295 } 296 297 static void net_free(struct net *net) 298 { 299 #ifdef NETNS_REFCNT_DEBUG 300 if (unlikely(atomic_read(&net->use_count) != 0)) { 301 pr_emerg("network namespace not free! Usage: %d\n", 302 atomic_read(&net->use_count)); 303 return; 304 } 305 #endif 306 kfree(rcu_access_pointer(net->gen)); 307 kmem_cache_free(net_cachep, net); 308 } 309 310 void net_drop_ns(void *p) 311 { 312 struct net *ns = p; 313 if (ns && atomic_dec_and_test(&ns->passive)) 314 net_free(ns); 315 } 316 317 struct net *copy_net_ns(unsigned long flags, 318 struct user_namespace *user_ns, struct net *old_net) 319 { 320 struct net *net; 321 int rv; 322 323 if (!(flags & CLONE_NEWNET)) 324 return get_net(old_net); 325 326 net = net_alloc(); 327 if (!net) 328 return ERR_PTR(-ENOMEM); 329 330 get_user_ns(user_ns); 331 332 mutex_lock(&net_mutex); 333 rv = setup_net(net, user_ns); 334 if (rv == 0) { 335 rtnl_lock(); 336 list_add_tail_rcu(&net->list, &net_namespace_list); 337 rtnl_unlock(); 338 } 339 mutex_unlock(&net_mutex); 340 if (rv < 0) { 341 put_user_ns(user_ns); 342 net_drop_ns(net); 343 return ERR_PTR(rv); 344 } 345 return net; 346 } 347 348 static DEFINE_SPINLOCK(cleanup_list_lock); 349 static LIST_HEAD(cleanup_list); /* Must hold cleanup_list_lock to touch */ 350 351 static void cleanup_net(struct work_struct *work) 352 { 353 const struct pernet_operations *ops; 354 struct net *net, *tmp; 355 struct list_head net_kill_list; 356 LIST_HEAD(net_exit_list); 357 358 /* Atomically snapshot the list of namespaces to cleanup */ 359 spin_lock_irq(&cleanup_list_lock); 360 list_replace_init(&cleanup_list, &net_kill_list); 361 spin_unlock_irq(&cleanup_list_lock); 362 363 mutex_lock(&net_mutex); 364 365 /* Don't let anyone else find us. */ 366 rtnl_lock(); 367 list_for_each_entry(net, &net_kill_list, cleanup_list) { 368 list_del_rcu(&net->list); 369 list_add_tail(&net->exit_list, &net_exit_list); 370 for_each_net(tmp) { 371 int id = __peernet2id(tmp, net, false); 372 373 if (id >= 0) 374 idr_remove(&tmp->netns_ids, id); 375 } 376 idr_destroy(&net->netns_ids); 377 378 } 379 rtnl_unlock(); 380 381 /* 382 * Another CPU might be rcu-iterating the list, wait for it. 383 * This needs to be before calling the exit() notifiers, so 384 * the rcu_barrier() below isn't sufficient alone. 385 */ 386 synchronize_rcu(); 387 388 /* Run all of the network namespace exit methods */ 389 list_for_each_entry_reverse(ops, &pernet_list, list) 390 ops_exit_list(ops, &net_exit_list); 391 392 /* Free the net generic variables */ 393 list_for_each_entry_reverse(ops, &pernet_list, list) 394 ops_free_list(ops, &net_exit_list); 395 396 mutex_unlock(&net_mutex); 397 398 /* Ensure there are no outstanding rcu callbacks using this 399 * network namespace. 400 */ 401 rcu_barrier(); 402 403 /* Finally it is safe to free my network namespace structure */ 404 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 405 list_del_init(&net->exit_list); 406 put_user_ns(net->user_ns); 407 net_drop_ns(net); 408 } 409 } 410 static DECLARE_WORK(net_cleanup_work, cleanup_net); 411 412 void __put_net(struct net *net) 413 { 414 /* Cleanup the network namespace in process context */ 415 unsigned long flags; 416 417 spin_lock_irqsave(&cleanup_list_lock, flags); 418 list_add(&net->cleanup_list, &cleanup_list); 419 spin_unlock_irqrestore(&cleanup_list_lock, flags); 420 421 queue_work(netns_wq, &net_cleanup_work); 422 } 423 EXPORT_SYMBOL_GPL(__put_net); 424 425 struct net *get_net_ns_by_fd(int fd) 426 { 427 struct file *file; 428 struct ns_common *ns; 429 struct net *net; 430 431 file = proc_ns_fget(fd); 432 if (IS_ERR(file)) 433 return ERR_CAST(file); 434 435 ns = get_proc_ns(file_inode(file)); 436 if (ns->ops == &netns_operations) 437 net = get_net(container_of(ns, struct net, ns)); 438 else 439 net = ERR_PTR(-EINVAL); 440 441 fput(file); 442 return net; 443 } 444 445 #else 446 struct net *get_net_ns_by_fd(int fd) 447 { 448 return ERR_PTR(-EINVAL); 449 } 450 #endif 451 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 452 453 struct net *get_net_ns_by_pid(pid_t pid) 454 { 455 struct task_struct *tsk; 456 struct net *net; 457 458 /* Lookup the network namespace */ 459 net = ERR_PTR(-ESRCH); 460 rcu_read_lock(); 461 tsk = find_task_by_vpid(pid); 462 if (tsk) { 463 struct nsproxy *nsproxy; 464 task_lock(tsk); 465 nsproxy = tsk->nsproxy; 466 if (nsproxy) 467 net = get_net(nsproxy->net_ns); 468 task_unlock(tsk); 469 } 470 rcu_read_unlock(); 471 return net; 472 } 473 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 474 475 static __net_init int net_ns_net_init(struct net *net) 476 { 477 #ifdef CONFIG_NET_NS 478 net->ns.ops = &netns_operations; 479 #endif 480 return ns_alloc_inum(&net->ns); 481 } 482 483 static __net_exit void net_ns_net_exit(struct net *net) 484 { 485 ns_free_inum(&net->ns); 486 } 487 488 static struct pernet_operations __net_initdata net_ns_ops = { 489 .init = net_ns_net_init, 490 .exit = net_ns_net_exit, 491 }; 492 493 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 494 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 495 [NETNSA_NSID] = { .type = NLA_S32 }, 496 [NETNSA_PID] = { .type = NLA_U32 }, 497 [NETNSA_FD] = { .type = NLA_U32 }, 498 }; 499 500 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh) 501 { 502 struct net *net = sock_net(skb->sk); 503 struct nlattr *tb[NETNSA_MAX + 1]; 504 struct net *peer; 505 int nsid, err; 506 507 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 508 rtnl_net_policy); 509 if (err < 0) 510 return err; 511 if (!tb[NETNSA_NSID]) 512 return -EINVAL; 513 nsid = nla_get_s32(tb[NETNSA_NSID]); 514 515 if (tb[NETNSA_PID]) 516 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 517 else if (tb[NETNSA_FD]) 518 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 519 else 520 return -EINVAL; 521 if (IS_ERR(peer)) 522 return PTR_ERR(peer); 523 524 if (__peernet2id(net, peer, false) >= 0) { 525 err = -EEXIST; 526 goto out; 527 } 528 529 err = alloc_netid(net, peer, nsid); 530 if (err > 0) 531 err = 0; 532 out: 533 put_net(peer); 534 return err; 535 } 536 537 static int rtnl_net_get_size(void) 538 { 539 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 540 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 541 ; 542 } 543 544 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags, 545 int cmd, struct net *net, struct net *peer) 546 { 547 struct nlmsghdr *nlh; 548 struct rtgenmsg *rth; 549 int id; 550 551 ASSERT_RTNL(); 552 553 nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags); 554 if (!nlh) 555 return -EMSGSIZE; 556 557 rth = nlmsg_data(nlh); 558 rth->rtgen_family = AF_UNSPEC; 559 560 id = __peernet2id(net, peer, false); 561 if (id < 0) 562 id = NETNSA_NSID_NOT_ASSIGNED; 563 if (nla_put_s32(skb, NETNSA_NSID, id)) 564 goto nla_put_failure; 565 566 nlmsg_end(skb, nlh); 567 return 0; 568 569 nla_put_failure: 570 nlmsg_cancel(skb, nlh); 571 return -EMSGSIZE; 572 } 573 574 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh) 575 { 576 struct net *net = sock_net(skb->sk); 577 struct nlattr *tb[NETNSA_MAX + 1]; 578 struct sk_buff *msg; 579 int err = -ENOBUFS; 580 struct net *peer; 581 582 err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX, 583 rtnl_net_policy); 584 if (err < 0) 585 return err; 586 if (tb[NETNSA_PID]) 587 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 588 else if (tb[NETNSA_FD]) 589 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 590 else 591 return -EINVAL; 592 593 if (IS_ERR(peer)) 594 return PTR_ERR(peer); 595 596 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 597 if (!msg) { 598 err = -ENOMEM; 599 goto out; 600 } 601 602 err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0, 603 RTM_GETNSID, net, peer); 604 if (err < 0) 605 goto err_out; 606 607 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 608 goto out; 609 610 err_out: 611 nlmsg_free(msg); 612 out: 613 put_net(peer); 614 return err; 615 } 616 617 static int __init net_ns_init(void) 618 { 619 struct net_generic *ng; 620 621 #ifdef CONFIG_NET_NS 622 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 623 SMP_CACHE_BYTES, 624 SLAB_PANIC, NULL); 625 626 /* Create workqueue for cleanup */ 627 netns_wq = create_singlethread_workqueue("netns"); 628 if (!netns_wq) 629 panic("Could not create netns workq"); 630 #endif 631 632 ng = net_alloc_generic(); 633 if (!ng) 634 panic("Could not allocate generic netns"); 635 636 rcu_assign_pointer(init_net.gen, ng); 637 638 mutex_lock(&net_mutex); 639 if (setup_net(&init_net, &init_user_ns)) 640 panic("Could not setup the initial network namespace"); 641 642 rtnl_lock(); 643 list_add_tail_rcu(&init_net.list, &net_namespace_list); 644 rtnl_unlock(); 645 646 mutex_unlock(&net_mutex); 647 648 register_pernet_subsys(&net_ns_ops); 649 650 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL); 651 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, NULL, NULL); 652 653 return 0; 654 } 655 656 pure_initcall(net_ns_init); 657 658 #ifdef CONFIG_NET_NS 659 static int __register_pernet_operations(struct list_head *list, 660 struct pernet_operations *ops) 661 { 662 struct net *net; 663 int error; 664 LIST_HEAD(net_exit_list); 665 666 list_add_tail(&ops->list, list); 667 if (ops->init || (ops->id && ops->size)) { 668 for_each_net(net) { 669 error = ops_init(ops, net); 670 if (error) 671 goto out_undo; 672 list_add_tail(&net->exit_list, &net_exit_list); 673 } 674 } 675 return 0; 676 677 out_undo: 678 /* If I have an error cleanup all namespaces I initialized */ 679 list_del(&ops->list); 680 ops_exit_list(ops, &net_exit_list); 681 ops_free_list(ops, &net_exit_list); 682 return error; 683 } 684 685 static void __unregister_pernet_operations(struct pernet_operations *ops) 686 { 687 struct net *net; 688 LIST_HEAD(net_exit_list); 689 690 list_del(&ops->list); 691 for_each_net(net) 692 list_add_tail(&net->exit_list, &net_exit_list); 693 ops_exit_list(ops, &net_exit_list); 694 ops_free_list(ops, &net_exit_list); 695 } 696 697 #else 698 699 static int __register_pernet_operations(struct list_head *list, 700 struct pernet_operations *ops) 701 { 702 return ops_init(ops, &init_net); 703 } 704 705 static void __unregister_pernet_operations(struct pernet_operations *ops) 706 { 707 LIST_HEAD(net_exit_list); 708 list_add(&init_net.exit_list, &net_exit_list); 709 ops_exit_list(ops, &net_exit_list); 710 ops_free_list(ops, &net_exit_list); 711 } 712 713 #endif /* CONFIG_NET_NS */ 714 715 static DEFINE_IDA(net_generic_ids); 716 717 static int register_pernet_operations(struct list_head *list, 718 struct pernet_operations *ops) 719 { 720 int error; 721 722 if (ops->id) { 723 again: 724 error = ida_get_new_above(&net_generic_ids, 1, ops->id); 725 if (error < 0) { 726 if (error == -EAGAIN) { 727 ida_pre_get(&net_generic_ids, GFP_KERNEL); 728 goto again; 729 } 730 return error; 731 } 732 max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id); 733 } 734 error = __register_pernet_operations(list, ops); 735 if (error) { 736 rcu_barrier(); 737 if (ops->id) 738 ida_remove(&net_generic_ids, *ops->id); 739 } 740 741 return error; 742 } 743 744 static void unregister_pernet_operations(struct pernet_operations *ops) 745 { 746 747 __unregister_pernet_operations(ops); 748 rcu_barrier(); 749 if (ops->id) 750 ida_remove(&net_generic_ids, *ops->id); 751 } 752 753 /** 754 * register_pernet_subsys - register a network namespace subsystem 755 * @ops: pernet operations structure for the subsystem 756 * 757 * Register a subsystem which has init and exit functions 758 * that are called when network namespaces are created and 759 * destroyed respectively. 760 * 761 * When registered all network namespace init functions are 762 * called for every existing network namespace. Allowing kernel 763 * modules to have a race free view of the set of network namespaces. 764 * 765 * When a new network namespace is created all of the init 766 * methods are called in the order in which they were registered. 767 * 768 * When a network namespace is destroyed all of the exit methods 769 * are called in the reverse of the order with which they were 770 * registered. 771 */ 772 int register_pernet_subsys(struct pernet_operations *ops) 773 { 774 int error; 775 mutex_lock(&net_mutex); 776 error = register_pernet_operations(first_device, ops); 777 mutex_unlock(&net_mutex); 778 return error; 779 } 780 EXPORT_SYMBOL_GPL(register_pernet_subsys); 781 782 /** 783 * unregister_pernet_subsys - unregister a network namespace subsystem 784 * @ops: pernet operations structure to manipulate 785 * 786 * Remove the pernet operations structure from the list to be 787 * used when network namespaces are created or destroyed. In 788 * addition run the exit method for all existing network 789 * namespaces. 790 */ 791 void unregister_pernet_subsys(struct pernet_operations *ops) 792 { 793 mutex_lock(&net_mutex); 794 unregister_pernet_operations(ops); 795 mutex_unlock(&net_mutex); 796 } 797 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 798 799 /** 800 * register_pernet_device - register a network namespace device 801 * @ops: pernet operations structure for the subsystem 802 * 803 * Register a device which has init and exit functions 804 * that are called when network namespaces are created and 805 * destroyed respectively. 806 * 807 * When registered all network namespace init functions are 808 * called for every existing network namespace. Allowing kernel 809 * modules to have a race free view of the set of network namespaces. 810 * 811 * When a new network namespace is created all of the init 812 * methods are called in the order in which they were registered. 813 * 814 * When a network namespace is destroyed all of the exit methods 815 * are called in the reverse of the order with which they were 816 * registered. 817 */ 818 int register_pernet_device(struct pernet_operations *ops) 819 { 820 int error; 821 mutex_lock(&net_mutex); 822 error = register_pernet_operations(&pernet_list, ops); 823 if (!error && (first_device == &pernet_list)) 824 first_device = &ops->list; 825 mutex_unlock(&net_mutex); 826 return error; 827 } 828 EXPORT_SYMBOL_GPL(register_pernet_device); 829 830 /** 831 * unregister_pernet_device - unregister a network namespace netdevice 832 * @ops: pernet operations structure to manipulate 833 * 834 * Remove the pernet operations structure from the list to be 835 * used when network namespaces are created or destroyed. In 836 * addition run the exit method for all existing network 837 * namespaces. 838 */ 839 void unregister_pernet_device(struct pernet_operations *ops) 840 { 841 mutex_lock(&net_mutex); 842 if (&ops->list == first_device) 843 first_device = first_device->next; 844 unregister_pernet_operations(ops); 845 mutex_unlock(&net_mutex); 846 } 847 EXPORT_SYMBOL_GPL(unregister_pernet_device); 848 849 #ifdef CONFIG_NET_NS 850 static struct ns_common *netns_get(struct task_struct *task) 851 { 852 struct net *net = NULL; 853 struct nsproxy *nsproxy; 854 855 task_lock(task); 856 nsproxy = task->nsproxy; 857 if (nsproxy) 858 net = get_net(nsproxy->net_ns); 859 task_unlock(task); 860 861 return net ? &net->ns : NULL; 862 } 863 864 static inline struct net *to_net_ns(struct ns_common *ns) 865 { 866 return container_of(ns, struct net, ns); 867 } 868 869 static void netns_put(struct ns_common *ns) 870 { 871 put_net(to_net_ns(ns)); 872 } 873 874 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 875 { 876 struct net *net = to_net_ns(ns); 877 878 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 879 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 880 return -EPERM; 881 882 put_net(nsproxy->net_ns); 883 nsproxy->net_ns = get_net(net); 884 return 0; 885 } 886 887 const struct proc_ns_operations netns_operations = { 888 .name = "net", 889 .type = CLONE_NEWNET, 890 .get = netns_get, 891 .put = netns_put, 892 .install = netns_install, 893 }; 894 #endif 895