xref: /linux/net/core/net_namespace.c (revision 7e92e1d7629b00578cef22b1f4c6ada726663701)
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2 
3 #include <linux/workqueue.h>
4 #include <linux/rtnetlink.h>
5 #include <linux/cache.h>
6 #include <linux/slab.h>
7 #include <linux/list.h>
8 #include <linux/delay.h>
9 #include <linux/sched.h>
10 #include <linux/idr.h>
11 #include <linux/rculist.h>
12 #include <linux/nsproxy.h>
13 #include <linux/fs.h>
14 #include <linux/proc_ns.h>
15 #include <linux/file.h>
16 #include <linux/export.h>
17 #include <linux/user_namespace.h>
18 #include <linux/net_namespace.h>
19 #include <linux/rtnetlink.h>
20 #include <net/sock.h>
21 #include <net/netlink.h>
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 
25 /*
26  *	Our network namespace constructor/destructor lists
27  */
28 
29 static LIST_HEAD(pernet_list);
30 static struct list_head *first_device = &pernet_list;
31 DEFINE_MUTEX(net_mutex);
32 
33 LIST_HEAD(net_namespace_list);
34 EXPORT_SYMBOL_GPL(net_namespace_list);
35 
36 struct net init_net = {
37 	.dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head),
38 };
39 EXPORT_SYMBOL(init_net);
40 
41 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
42 
43 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
44 
45 static struct net_generic *net_alloc_generic(void)
46 {
47 	struct net_generic *ng;
48 	size_t generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
49 
50 	ng = kzalloc(generic_size, GFP_KERNEL);
51 	if (ng)
52 		ng->len = max_gen_ptrs;
53 
54 	return ng;
55 }
56 
57 static int net_assign_generic(struct net *net, int id, void *data)
58 {
59 	struct net_generic *ng, *old_ng;
60 
61 	BUG_ON(!mutex_is_locked(&net_mutex));
62 	BUG_ON(id == 0);
63 
64 	old_ng = rcu_dereference_protected(net->gen,
65 					   lockdep_is_held(&net_mutex));
66 	ng = old_ng;
67 	if (old_ng->len >= id)
68 		goto assign;
69 
70 	ng = net_alloc_generic();
71 	if (ng == NULL)
72 		return -ENOMEM;
73 
74 	/*
75 	 * Some synchronisation notes:
76 	 *
77 	 * The net_generic explores the net->gen array inside rcu
78 	 * read section. Besides once set the net->gen->ptr[x]
79 	 * pointer never changes (see rules in netns/generic.h).
80 	 *
81 	 * That said, we simply duplicate this array and schedule
82 	 * the old copy for kfree after a grace period.
83 	 */
84 
85 	memcpy(&ng->ptr, &old_ng->ptr, old_ng->len * sizeof(void*));
86 
87 	rcu_assign_pointer(net->gen, ng);
88 	kfree_rcu(old_ng, rcu);
89 assign:
90 	ng->ptr[id - 1] = data;
91 	return 0;
92 }
93 
94 static int ops_init(const struct pernet_operations *ops, struct net *net)
95 {
96 	int err = -ENOMEM;
97 	void *data = NULL;
98 
99 	if (ops->id && ops->size) {
100 		data = kzalloc(ops->size, GFP_KERNEL);
101 		if (!data)
102 			goto out;
103 
104 		err = net_assign_generic(net, *ops->id, data);
105 		if (err)
106 			goto cleanup;
107 	}
108 	err = 0;
109 	if (ops->init)
110 		err = ops->init(net);
111 	if (!err)
112 		return 0;
113 
114 cleanup:
115 	kfree(data);
116 
117 out:
118 	return err;
119 }
120 
121 static void ops_free(const struct pernet_operations *ops, struct net *net)
122 {
123 	if (ops->id && ops->size) {
124 		int id = *ops->id;
125 		kfree(net_generic(net, id));
126 	}
127 }
128 
129 static void ops_exit_list(const struct pernet_operations *ops,
130 			  struct list_head *net_exit_list)
131 {
132 	struct net *net;
133 	if (ops->exit) {
134 		list_for_each_entry(net, net_exit_list, exit_list)
135 			ops->exit(net);
136 	}
137 	if (ops->exit_batch)
138 		ops->exit_batch(net_exit_list);
139 }
140 
141 static void ops_free_list(const struct pernet_operations *ops,
142 			  struct list_head *net_exit_list)
143 {
144 	struct net *net;
145 	if (ops->size && ops->id) {
146 		list_for_each_entry(net, net_exit_list, exit_list)
147 			ops_free(ops, net);
148 	}
149 }
150 
151 static int alloc_netid(struct net *net, struct net *peer, int reqid)
152 {
153 	int min = 0, max = 0;
154 
155 	ASSERT_RTNL();
156 
157 	if (reqid >= 0) {
158 		min = reqid;
159 		max = reqid + 1;
160 	}
161 
162 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_KERNEL);
163 }
164 
165 /* This function is used by idr_for_each(). If net is equal to peer, the
166  * function returns the id so that idr_for_each() stops. Because we cannot
167  * returns the id 0 (idr_for_each() will not stop), we return the magic value
168  * NET_ID_ZERO (-1) for it.
169  */
170 #define NET_ID_ZERO -1
171 static int net_eq_idr(int id, void *net, void *peer)
172 {
173 	if (net_eq(net, peer))
174 		return id ? : NET_ID_ZERO;
175 	return 0;
176 }
177 
178 static int __peernet2id(struct net *net, struct net *peer, bool alloc)
179 {
180 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
181 
182 	ASSERT_RTNL();
183 
184 	/* Magic value for id 0. */
185 	if (id == NET_ID_ZERO)
186 		return 0;
187 	if (id > 0)
188 		return id;
189 
190 	if (alloc)
191 		return alloc_netid(net, peer, -1);
192 
193 	return -ENOENT;
194 }
195 
196 /* This function returns the id of a peer netns. If no id is assigned, one will
197  * be allocated and returned.
198  */
199 int peernet2id(struct net *net, struct net *peer)
200 {
201 	bool alloc = atomic_read(&peer->count) == 0 ? false : true;
202 	int id;
203 
204 	id = __peernet2id(net, peer, alloc);
205 	return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED;
206 }
207 EXPORT_SYMBOL(peernet2id);
208 
209 struct net *get_net_ns_by_id(struct net *net, int id)
210 {
211 	struct net *peer;
212 
213 	if (id < 0)
214 		return NULL;
215 
216 	rcu_read_lock();
217 	peer = idr_find(&net->netns_ids, id);
218 	if (peer)
219 		get_net(peer);
220 	rcu_read_unlock();
221 
222 	return peer;
223 }
224 
225 /*
226  * setup_net runs the initializers for the network namespace object.
227  */
228 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
229 {
230 	/* Must be called with net_mutex held */
231 	const struct pernet_operations *ops, *saved_ops;
232 	int error = 0;
233 	LIST_HEAD(net_exit_list);
234 
235 	atomic_set(&net->count, 1);
236 	atomic_set(&net->passive, 1);
237 	net->dev_base_seq = 1;
238 	net->user_ns = user_ns;
239 	idr_init(&net->netns_ids);
240 
241 #ifdef NETNS_REFCNT_DEBUG
242 	atomic_set(&net->use_count, 0);
243 #endif
244 
245 	list_for_each_entry(ops, &pernet_list, list) {
246 		error = ops_init(ops, net);
247 		if (error < 0)
248 			goto out_undo;
249 	}
250 out:
251 	return error;
252 
253 out_undo:
254 	/* Walk through the list backwards calling the exit functions
255 	 * for the pernet modules whose init functions did not fail.
256 	 */
257 	list_add(&net->exit_list, &net_exit_list);
258 	saved_ops = ops;
259 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
260 		ops_exit_list(ops, &net_exit_list);
261 
262 	ops = saved_ops;
263 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
264 		ops_free_list(ops, &net_exit_list);
265 
266 	rcu_barrier();
267 	goto out;
268 }
269 
270 
271 #ifdef CONFIG_NET_NS
272 static struct kmem_cache *net_cachep;
273 static struct workqueue_struct *netns_wq;
274 
275 static struct net *net_alloc(void)
276 {
277 	struct net *net = NULL;
278 	struct net_generic *ng;
279 
280 	ng = net_alloc_generic();
281 	if (!ng)
282 		goto out;
283 
284 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
285 	if (!net)
286 		goto out_free;
287 
288 	rcu_assign_pointer(net->gen, ng);
289 out:
290 	return net;
291 
292 out_free:
293 	kfree(ng);
294 	goto out;
295 }
296 
297 static void net_free(struct net *net)
298 {
299 #ifdef NETNS_REFCNT_DEBUG
300 	if (unlikely(atomic_read(&net->use_count) != 0)) {
301 		pr_emerg("network namespace not free! Usage: %d\n",
302 			 atomic_read(&net->use_count));
303 		return;
304 	}
305 #endif
306 	kfree(rcu_access_pointer(net->gen));
307 	kmem_cache_free(net_cachep, net);
308 }
309 
310 void net_drop_ns(void *p)
311 {
312 	struct net *ns = p;
313 	if (ns && atomic_dec_and_test(&ns->passive))
314 		net_free(ns);
315 }
316 
317 struct net *copy_net_ns(unsigned long flags,
318 			struct user_namespace *user_ns, struct net *old_net)
319 {
320 	struct net *net;
321 	int rv;
322 
323 	if (!(flags & CLONE_NEWNET))
324 		return get_net(old_net);
325 
326 	net = net_alloc();
327 	if (!net)
328 		return ERR_PTR(-ENOMEM);
329 
330 	get_user_ns(user_ns);
331 
332 	mutex_lock(&net_mutex);
333 	rv = setup_net(net, user_ns);
334 	if (rv == 0) {
335 		rtnl_lock();
336 		list_add_tail_rcu(&net->list, &net_namespace_list);
337 		rtnl_unlock();
338 	}
339 	mutex_unlock(&net_mutex);
340 	if (rv < 0) {
341 		put_user_ns(user_ns);
342 		net_drop_ns(net);
343 		return ERR_PTR(rv);
344 	}
345 	return net;
346 }
347 
348 static DEFINE_SPINLOCK(cleanup_list_lock);
349 static LIST_HEAD(cleanup_list);  /* Must hold cleanup_list_lock to touch */
350 
351 static void cleanup_net(struct work_struct *work)
352 {
353 	const struct pernet_operations *ops;
354 	struct net *net, *tmp;
355 	struct list_head net_kill_list;
356 	LIST_HEAD(net_exit_list);
357 
358 	/* Atomically snapshot the list of namespaces to cleanup */
359 	spin_lock_irq(&cleanup_list_lock);
360 	list_replace_init(&cleanup_list, &net_kill_list);
361 	spin_unlock_irq(&cleanup_list_lock);
362 
363 	mutex_lock(&net_mutex);
364 
365 	/* Don't let anyone else find us. */
366 	rtnl_lock();
367 	list_for_each_entry(net, &net_kill_list, cleanup_list) {
368 		list_del_rcu(&net->list);
369 		list_add_tail(&net->exit_list, &net_exit_list);
370 		for_each_net(tmp) {
371 			int id = __peernet2id(tmp, net, false);
372 
373 			if (id >= 0)
374 				idr_remove(&tmp->netns_ids, id);
375 		}
376 		idr_destroy(&net->netns_ids);
377 
378 	}
379 	rtnl_unlock();
380 
381 	/*
382 	 * Another CPU might be rcu-iterating the list, wait for it.
383 	 * This needs to be before calling the exit() notifiers, so
384 	 * the rcu_barrier() below isn't sufficient alone.
385 	 */
386 	synchronize_rcu();
387 
388 	/* Run all of the network namespace exit methods */
389 	list_for_each_entry_reverse(ops, &pernet_list, list)
390 		ops_exit_list(ops, &net_exit_list);
391 
392 	/* Free the net generic variables */
393 	list_for_each_entry_reverse(ops, &pernet_list, list)
394 		ops_free_list(ops, &net_exit_list);
395 
396 	mutex_unlock(&net_mutex);
397 
398 	/* Ensure there are no outstanding rcu callbacks using this
399 	 * network namespace.
400 	 */
401 	rcu_barrier();
402 
403 	/* Finally it is safe to free my network namespace structure */
404 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
405 		list_del_init(&net->exit_list);
406 		put_user_ns(net->user_ns);
407 		net_drop_ns(net);
408 	}
409 }
410 static DECLARE_WORK(net_cleanup_work, cleanup_net);
411 
412 void __put_net(struct net *net)
413 {
414 	/* Cleanup the network namespace in process context */
415 	unsigned long flags;
416 
417 	spin_lock_irqsave(&cleanup_list_lock, flags);
418 	list_add(&net->cleanup_list, &cleanup_list);
419 	spin_unlock_irqrestore(&cleanup_list_lock, flags);
420 
421 	queue_work(netns_wq, &net_cleanup_work);
422 }
423 EXPORT_SYMBOL_GPL(__put_net);
424 
425 struct net *get_net_ns_by_fd(int fd)
426 {
427 	struct file *file;
428 	struct ns_common *ns;
429 	struct net *net;
430 
431 	file = proc_ns_fget(fd);
432 	if (IS_ERR(file))
433 		return ERR_CAST(file);
434 
435 	ns = get_proc_ns(file_inode(file));
436 	if (ns->ops == &netns_operations)
437 		net = get_net(container_of(ns, struct net, ns));
438 	else
439 		net = ERR_PTR(-EINVAL);
440 
441 	fput(file);
442 	return net;
443 }
444 
445 #else
446 struct net *get_net_ns_by_fd(int fd)
447 {
448 	return ERR_PTR(-EINVAL);
449 }
450 #endif
451 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
452 
453 struct net *get_net_ns_by_pid(pid_t pid)
454 {
455 	struct task_struct *tsk;
456 	struct net *net;
457 
458 	/* Lookup the network namespace */
459 	net = ERR_PTR(-ESRCH);
460 	rcu_read_lock();
461 	tsk = find_task_by_vpid(pid);
462 	if (tsk) {
463 		struct nsproxy *nsproxy;
464 		task_lock(tsk);
465 		nsproxy = tsk->nsproxy;
466 		if (nsproxy)
467 			net = get_net(nsproxy->net_ns);
468 		task_unlock(tsk);
469 	}
470 	rcu_read_unlock();
471 	return net;
472 }
473 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
474 
475 static __net_init int net_ns_net_init(struct net *net)
476 {
477 #ifdef CONFIG_NET_NS
478 	net->ns.ops = &netns_operations;
479 #endif
480 	return ns_alloc_inum(&net->ns);
481 }
482 
483 static __net_exit void net_ns_net_exit(struct net *net)
484 {
485 	ns_free_inum(&net->ns);
486 }
487 
488 static struct pernet_operations __net_initdata net_ns_ops = {
489 	.init = net_ns_net_init,
490 	.exit = net_ns_net_exit,
491 };
492 
493 static struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
494 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
495 	[NETNSA_NSID]		= { .type = NLA_S32 },
496 	[NETNSA_PID]		= { .type = NLA_U32 },
497 	[NETNSA_FD]		= { .type = NLA_U32 },
498 };
499 
500 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh)
501 {
502 	struct net *net = sock_net(skb->sk);
503 	struct nlattr *tb[NETNSA_MAX + 1];
504 	struct net *peer;
505 	int nsid, err;
506 
507 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
508 			  rtnl_net_policy);
509 	if (err < 0)
510 		return err;
511 	if (!tb[NETNSA_NSID])
512 		return -EINVAL;
513 	nsid = nla_get_s32(tb[NETNSA_NSID]);
514 
515 	if (tb[NETNSA_PID])
516 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
517 	else if (tb[NETNSA_FD])
518 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
519 	else
520 		return -EINVAL;
521 	if (IS_ERR(peer))
522 		return PTR_ERR(peer);
523 
524 	if (__peernet2id(net, peer, false) >= 0) {
525 		err = -EEXIST;
526 		goto out;
527 	}
528 
529 	err = alloc_netid(net, peer, nsid);
530 	if (err > 0)
531 		err = 0;
532 out:
533 	put_net(peer);
534 	return err;
535 }
536 
537 static int rtnl_net_get_size(void)
538 {
539 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
540 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
541 	       ;
542 }
543 
544 static int rtnl_net_fill(struct sk_buff *skb, u32 portid, u32 seq, int flags,
545 			 int cmd, struct net *net, struct net *peer)
546 {
547 	struct nlmsghdr *nlh;
548 	struct rtgenmsg *rth;
549 	int id;
550 
551 	ASSERT_RTNL();
552 
553 	nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rth), flags);
554 	if (!nlh)
555 		return -EMSGSIZE;
556 
557 	rth = nlmsg_data(nlh);
558 	rth->rtgen_family = AF_UNSPEC;
559 
560 	id = __peernet2id(net, peer, false);
561 	if  (id < 0)
562 		id = NETNSA_NSID_NOT_ASSIGNED;
563 	if (nla_put_s32(skb, NETNSA_NSID, id))
564 		goto nla_put_failure;
565 
566 	nlmsg_end(skb, nlh);
567 	return 0;
568 
569 nla_put_failure:
570 	nlmsg_cancel(skb, nlh);
571 	return -EMSGSIZE;
572 }
573 
574 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh)
575 {
576 	struct net *net = sock_net(skb->sk);
577 	struct nlattr *tb[NETNSA_MAX + 1];
578 	struct sk_buff *msg;
579 	int err = -ENOBUFS;
580 	struct net *peer;
581 
582 	err = nlmsg_parse(nlh, sizeof(struct rtgenmsg), tb, NETNSA_MAX,
583 			  rtnl_net_policy);
584 	if (err < 0)
585 		return err;
586 	if (tb[NETNSA_PID])
587 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
588 	else if (tb[NETNSA_FD])
589 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
590 	else
591 		return -EINVAL;
592 
593 	if (IS_ERR(peer))
594 		return PTR_ERR(peer);
595 
596 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
597 	if (!msg) {
598 		err = -ENOMEM;
599 		goto out;
600 	}
601 
602 	err = rtnl_net_fill(msg, NETLINK_CB(skb).portid, nlh->nlmsg_seq, 0,
603 			    RTM_GETNSID, net, peer);
604 	if (err < 0)
605 		goto err_out;
606 
607 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
608 	goto out;
609 
610 err_out:
611 	nlmsg_free(msg);
612 out:
613 	put_net(peer);
614 	return err;
615 }
616 
617 static int __init net_ns_init(void)
618 {
619 	struct net_generic *ng;
620 
621 #ifdef CONFIG_NET_NS
622 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
623 					SMP_CACHE_BYTES,
624 					SLAB_PANIC, NULL);
625 
626 	/* Create workqueue for cleanup */
627 	netns_wq = create_singlethread_workqueue("netns");
628 	if (!netns_wq)
629 		panic("Could not create netns workq");
630 #endif
631 
632 	ng = net_alloc_generic();
633 	if (!ng)
634 		panic("Could not allocate generic netns");
635 
636 	rcu_assign_pointer(init_net.gen, ng);
637 
638 	mutex_lock(&net_mutex);
639 	if (setup_net(&init_net, &init_user_ns))
640 		panic("Could not setup the initial network namespace");
641 
642 	rtnl_lock();
643 	list_add_tail_rcu(&init_net.list, &net_namespace_list);
644 	rtnl_unlock();
645 
646 	mutex_unlock(&net_mutex);
647 
648 	register_pernet_subsys(&net_ns_ops);
649 
650 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, NULL);
651 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, NULL, NULL);
652 
653 	return 0;
654 }
655 
656 pure_initcall(net_ns_init);
657 
658 #ifdef CONFIG_NET_NS
659 static int __register_pernet_operations(struct list_head *list,
660 					struct pernet_operations *ops)
661 {
662 	struct net *net;
663 	int error;
664 	LIST_HEAD(net_exit_list);
665 
666 	list_add_tail(&ops->list, list);
667 	if (ops->init || (ops->id && ops->size)) {
668 		for_each_net(net) {
669 			error = ops_init(ops, net);
670 			if (error)
671 				goto out_undo;
672 			list_add_tail(&net->exit_list, &net_exit_list);
673 		}
674 	}
675 	return 0;
676 
677 out_undo:
678 	/* If I have an error cleanup all namespaces I initialized */
679 	list_del(&ops->list);
680 	ops_exit_list(ops, &net_exit_list);
681 	ops_free_list(ops, &net_exit_list);
682 	return error;
683 }
684 
685 static void __unregister_pernet_operations(struct pernet_operations *ops)
686 {
687 	struct net *net;
688 	LIST_HEAD(net_exit_list);
689 
690 	list_del(&ops->list);
691 	for_each_net(net)
692 		list_add_tail(&net->exit_list, &net_exit_list);
693 	ops_exit_list(ops, &net_exit_list);
694 	ops_free_list(ops, &net_exit_list);
695 }
696 
697 #else
698 
699 static int __register_pernet_operations(struct list_head *list,
700 					struct pernet_operations *ops)
701 {
702 	return ops_init(ops, &init_net);
703 }
704 
705 static void __unregister_pernet_operations(struct pernet_operations *ops)
706 {
707 	LIST_HEAD(net_exit_list);
708 	list_add(&init_net.exit_list, &net_exit_list);
709 	ops_exit_list(ops, &net_exit_list);
710 	ops_free_list(ops, &net_exit_list);
711 }
712 
713 #endif /* CONFIG_NET_NS */
714 
715 static DEFINE_IDA(net_generic_ids);
716 
717 static int register_pernet_operations(struct list_head *list,
718 				      struct pernet_operations *ops)
719 {
720 	int error;
721 
722 	if (ops->id) {
723 again:
724 		error = ida_get_new_above(&net_generic_ids, 1, ops->id);
725 		if (error < 0) {
726 			if (error == -EAGAIN) {
727 				ida_pre_get(&net_generic_ids, GFP_KERNEL);
728 				goto again;
729 			}
730 			return error;
731 		}
732 		max_gen_ptrs = max_t(unsigned int, max_gen_ptrs, *ops->id);
733 	}
734 	error = __register_pernet_operations(list, ops);
735 	if (error) {
736 		rcu_barrier();
737 		if (ops->id)
738 			ida_remove(&net_generic_ids, *ops->id);
739 	}
740 
741 	return error;
742 }
743 
744 static void unregister_pernet_operations(struct pernet_operations *ops)
745 {
746 
747 	__unregister_pernet_operations(ops);
748 	rcu_barrier();
749 	if (ops->id)
750 		ida_remove(&net_generic_ids, *ops->id);
751 }
752 
753 /**
754  *      register_pernet_subsys - register a network namespace subsystem
755  *	@ops:  pernet operations structure for the subsystem
756  *
757  *	Register a subsystem which has init and exit functions
758  *	that are called when network namespaces are created and
759  *	destroyed respectively.
760  *
761  *	When registered all network namespace init functions are
762  *	called for every existing network namespace.  Allowing kernel
763  *	modules to have a race free view of the set of network namespaces.
764  *
765  *	When a new network namespace is created all of the init
766  *	methods are called in the order in which they were registered.
767  *
768  *	When a network namespace is destroyed all of the exit methods
769  *	are called in the reverse of the order with which they were
770  *	registered.
771  */
772 int register_pernet_subsys(struct pernet_operations *ops)
773 {
774 	int error;
775 	mutex_lock(&net_mutex);
776 	error =  register_pernet_operations(first_device, ops);
777 	mutex_unlock(&net_mutex);
778 	return error;
779 }
780 EXPORT_SYMBOL_GPL(register_pernet_subsys);
781 
782 /**
783  *      unregister_pernet_subsys - unregister a network namespace subsystem
784  *	@ops: pernet operations structure to manipulate
785  *
786  *	Remove the pernet operations structure from the list to be
787  *	used when network namespaces are created or destroyed.  In
788  *	addition run the exit method for all existing network
789  *	namespaces.
790  */
791 void unregister_pernet_subsys(struct pernet_operations *ops)
792 {
793 	mutex_lock(&net_mutex);
794 	unregister_pernet_operations(ops);
795 	mutex_unlock(&net_mutex);
796 }
797 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
798 
799 /**
800  *      register_pernet_device - register a network namespace device
801  *	@ops:  pernet operations structure for the subsystem
802  *
803  *	Register a device which has init and exit functions
804  *	that are called when network namespaces are created and
805  *	destroyed respectively.
806  *
807  *	When registered all network namespace init functions are
808  *	called for every existing network namespace.  Allowing kernel
809  *	modules to have a race free view of the set of network namespaces.
810  *
811  *	When a new network namespace is created all of the init
812  *	methods are called in the order in which they were registered.
813  *
814  *	When a network namespace is destroyed all of the exit methods
815  *	are called in the reverse of the order with which they were
816  *	registered.
817  */
818 int register_pernet_device(struct pernet_operations *ops)
819 {
820 	int error;
821 	mutex_lock(&net_mutex);
822 	error = register_pernet_operations(&pernet_list, ops);
823 	if (!error && (first_device == &pernet_list))
824 		first_device = &ops->list;
825 	mutex_unlock(&net_mutex);
826 	return error;
827 }
828 EXPORT_SYMBOL_GPL(register_pernet_device);
829 
830 /**
831  *      unregister_pernet_device - unregister a network namespace netdevice
832  *	@ops: pernet operations structure to manipulate
833  *
834  *	Remove the pernet operations structure from the list to be
835  *	used when network namespaces are created or destroyed.  In
836  *	addition run the exit method for all existing network
837  *	namespaces.
838  */
839 void unregister_pernet_device(struct pernet_operations *ops)
840 {
841 	mutex_lock(&net_mutex);
842 	if (&ops->list == first_device)
843 		first_device = first_device->next;
844 	unregister_pernet_operations(ops);
845 	mutex_unlock(&net_mutex);
846 }
847 EXPORT_SYMBOL_GPL(unregister_pernet_device);
848 
849 #ifdef CONFIG_NET_NS
850 static struct ns_common *netns_get(struct task_struct *task)
851 {
852 	struct net *net = NULL;
853 	struct nsproxy *nsproxy;
854 
855 	task_lock(task);
856 	nsproxy = task->nsproxy;
857 	if (nsproxy)
858 		net = get_net(nsproxy->net_ns);
859 	task_unlock(task);
860 
861 	return net ? &net->ns : NULL;
862 }
863 
864 static inline struct net *to_net_ns(struct ns_common *ns)
865 {
866 	return container_of(ns, struct net, ns);
867 }
868 
869 static void netns_put(struct ns_common *ns)
870 {
871 	put_net(to_net_ns(ns));
872 }
873 
874 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
875 {
876 	struct net *net = to_net_ns(ns);
877 
878 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
879 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
880 		return -EPERM;
881 
882 	put_net(nsproxy->net_ns);
883 	nsproxy->net_ns = get_net(net);
884 	return 0;
885 }
886 
887 const struct proc_ns_operations netns_operations = {
888 	.name		= "net",
889 	.type		= CLONE_NEWNET,
890 	.get		= netns_get,
891 	.put		= netns_put,
892 	.install	= netns_install,
893 };
894 #endif
895