xref: /linux/net/core/net_namespace.c (revision 6c363eafc4d637ac4bd83d4a7dd06dd3cfbe7c5f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 #include <linux/cookie.h>
23 
24 #include <net/sock.h>
25 #include <net/netlink.h>
26 #include <net/net_namespace.h>
27 #include <net/netns/generic.h>
28 
29 /*
30  *	Our network namespace constructor/destructor lists
31  */
32 
33 static LIST_HEAD(pernet_list);
34 static struct list_head *first_device = &pernet_list;
35 
36 LIST_HEAD(net_namespace_list);
37 EXPORT_SYMBOL_GPL(net_namespace_list);
38 
39 /* Protects net_namespace_list. Nests iside rtnl_lock() */
40 DECLARE_RWSEM(net_rwsem);
41 EXPORT_SYMBOL_GPL(net_rwsem);
42 
43 #ifdef CONFIG_KEYS
44 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
45 #endif
46 
47 struct net init_net = {
48 	.ns.count	= REFCOUNT_INIT(1),
49 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
50 #ifdef CONFIG_KEYS
51 	.key_domain	= &init_net_key_domain,
52 #endif
53 };
54 EXPORT_SYMBOL(init_net);
55 
56 static bool init_net_initialized;
57 /*
58  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
59  * init_net_initialized and first_device pointer.
60  * This is internal net namespace object. Please, don't use it
61  * outside.
62  */
63 DECLARE_RWSEM(pernet_ops_rwsem);
64 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
65 
66 #define MIN_PERNET_OPS_ID	\
67 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
68 
69 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
70 
71 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
72 
73 DEFINE_COOKIE(net_cookie);
74 
75 static struct net_generic *net_alloc_generic(void)
76 {
77 	struct net_generic *ng;
78 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
79 
80 	ng = kzalloc(generic_size, GFP_KERNEL);
81 	if (ng)
82 		ng->s.len = max_gen_ptrs;
83 
84 	return ng;
85 }
86 
87 static int net_assign_generic(struct net *net, unsigned int id, void *data)
88 {
89 	struct net_generic *ng, *old_ng;
90 
91 	BUG_ON(id < MIN_PERNET_OPS_ID);
92 
93 	old_ng = rcu_dereference_protected(net->gen,
94 					   lockdep_is_held(&pernet_ops_rwsem));
95 	if (old_ng->s.len > id) {
96 		old_ng->ptr[id] = data;
97 		return 0;
98 	}
99 
100 	ng = net_alloc_generic();
101 	if (ng == NULL)
102 		return -ENOMEM;
103 
104 	/*
105 	 * Some synchronisation notes:
106 	 *
107 	 * The net_generic explores the net->gen array inside rcu
108 	 * read section. Besides once set the net->gen->ptr[x]
109 	 * pointer never changes (see rules in netns/generic.h).
110 	 *
111 	 * That said, we simply duplicate this array and schedule
112 	 * the old copy for kfree after a grace period.
113 	 */
114 
115 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
116 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
117 	ng->ptr[id] = data;
118 
119 	rcu_assign_pointer(net->gen, ng);
120 	kfree_rcu(old_ng, s.rcu);
121 	return 0;
122 }
123 
124 static int ops_init(const struct pernet_operations *ops, struct net *net)
125 {
126 	int err = -ENOMEM;
127 	void *data = NULL;
128 
129 	if (ops->id && ops->size) {
130 		data = kzalloc(ops->size, GFP_KERNEL);
131 		if (!data)
132 			goto out;
133 
134 		err = net_assign_generic(net, *ops->id, data);
135 		if (err)
136 			goto cleanup;
137 	}
138 	err = 0;
139 	if (ops->init)
140 		err = ops->init(net);
141 	if (!err)
142 		return 0;
143 
144 cleanup:
145 	kfree(data);
146 
147 out:
148 	return err;
149 }
150 
151 static void ops_free(const struct pernet_operations *ops, struct net *net)
152 {
153 	if (ops->id && ops->size) {
154 		kfree(net_generic(net, *ops->id));
155 	}
156 }
157 
158 static void ops_pre_exit_list(const struct pernet_operations *ops,
159 			      struct list_head *net_exit_list)
160 {
161 	struct net *net;
162 
163 	if (ops->pre_exit) {
164 		list_for_each_entry(net, net_exit_list, exit_list)
165 			ops->pre_exit(net);
166 	}
167 }
168 
169 static void ops_exit_list(const struct pernet_operations *ops,
170 			  struct list_head *net_exit_list)
171 {
172 	struct net *net;
173 	if (ops->exit) {
174 		list_for_each_entry(net, net_exit_list, exit_list)
175 			ops->exit(net);
176 	}
177 	if (ops->exit_batch)
178 		ops->exit_batch(net_exit_list);
179 }
180 
181 static void ops_free_list(const struct pernet_operations *ops,
182 			  struct list_head *net_exit_list)
183 {
184 	struct net *net;
185 	if (ops->size && ops->id) {
186 		list_for_each_entry(net, net_exit_list, exit_list)
187 			ops_free(ops, net);
188 	}
189 }
190 
191 /* should be called with nsid_lock held */
192 static int alloc_netid(struct net *net, struct net *peer, int reqid)
193 {
194 	int min = 0, max = 0;
195 
196 	if (reqid >= 0) {
197 		min = reqid;
198 		max = reqid + 1;
199 	}
200 
201 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
202 }
203 
204 /* This function is used by idr_for_each(). If net is equal to peer, the
205  * function returns the id so that idr_for_each() stops. Because we cannot
206  * returns the id 0 (idr_for_each() will not stop), we return the magic value
207  * NET_ID_ZERO (-1) for it.
208  */
209 #define NET_ID_ZERO -1
210 static int net_eq_idr(int id, void *net, void *peer)
211 {
212 	if (net_eq(net, peer))
213 		return id ? : NET_ID_ZERO;
214 	return 0;
215 }
216 
217 /* Must be called from RCU-critical section or with nsid_lock held */
218 static int __peernet2id(const struct net *net, struct net *peer)
219 {
220 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
221 
222 	/* Magic value for id 0. */
223 	if (id == NET_ID_ZERO)
224 		return 0;
225 	if (id > 0)
226 		return id;
227 
228 	return NETNSA_NSID_NOT_ASSIGNED;
229 }
230 
231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
232 			      struct nlmsghdr *nlh, gfp_t gfp);
233 /* This function returns the id of a peer netns. If no id is assigned, one will
234  * be allocated and returned.
235  */
236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
237 {
238 	int id;
239 
240 	if (refcount_read(&net->ns.count) == 0)
241 		return NETNSA_NSID_NOT_ASSIGNED;
242 
243 	spin_lock_bh(&net->nsid_lock);
244 	id = __peernet2id(net, peer);
245 	if (id >= 0) {
246 		spin_unlock_bh(&net->nsid_lock);
247 		return id;
248 	}
249 
250 	/* When peer is obtained from RCU lists, we may race with
251 	 * its cleanup. Check whether it's alive, and this guarantees
252 	 * we never hash a peer back to net->netns_ids, after it has
253 	 * just been idr_remove()'d from there in cleanup_net().
254 	 */
255 	if (!maybe_get_net(peer)) {
256 		spin_unlock_bh(&net->nsid_lock);
257 		return NETNSA_NSID_NOT_ASSIGNED;
258 	}
259 
260 	id = alloc_netid(net, peer, -1);
261 	spin_unlock_bh(&net->nsid_lock);
262 
263 	put_net(peer);
264 	if (id < 0)
265 		return NETNSA_NSID_NOT_ASSIGNED;
266 
267 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
268 
269 	return id;
270 }
271 EXPORT_SYMBOL_GPL(peernet2id_alloc);
272 
273 /* This function returns, if assigned, the id of a peer netns. */
274 int peernet2id(const struct net *net, struct net *peer)
275 {
276 	int id;
277 
278 	rcu_read_lock();
279 	id = __peernet2id(net, peer);
280 	rcu_read_unlock();
281 
282 	return id;
283 }
284 EXPORT_SYMBOL(peernet2id);
285 
286 /* This function returns true is the peer netns has an id assigned into the
287  * current netns.
288  */
289 bool peernet_has_id(const struct net *net, struct net *peer)
290 {
291 	return peernet2id(net, peer) >= 0;
292 }
293 
294 struct net *get_net_ns_by_id(const struct net *net, int id)
295 {
296 	struct net *peer;
297 
298 	if (id < 0)
299 		return NULL;
300 
301 	rcu_read_lock();
302 	peer = idr_find(&net->netns_ids, id);
303 	if (peer)
304 		peer = maybe_get_net(peer);
305 	rcu_read_unlock();
306 
307 	return peer;
308 }
309 
310 /*
311  * setup_net runs the initializers for the network namespace object.
312  */
313 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
314 {
315 	/* Must be called with pernet_ops_rwsem held */
316 	const struct pernet_operations *ops, *saved_ops;
317 	int error = 0;
318 	LIST_HEAD(net_exit_list);
319 
320 	refcount_set(&net->ns.count, 1);
321 	refcount_set(&net->passive, 1);
322 	get_random_bytes(&net->hash_mix, sizeof(u32));
323 	preempt_disable();
324 	net->net_cookie = gen_cookie_next(&net_cookie);
325 	preempt_enable();
326 	net->dev_base_seq = 1;
327 	net->user_ns = user_ns;
328 	idr_init(&net->netns_ids);
329 	spin_lock_init(&net->nsid_lock);
330 	mutex_init(&net->ipv4.ra_mutex);
331 
332 	list_for_each_entry(ops, &pernet_list, list) {
333 		error = ops_init(ops, net);
334 		if (error < 0)
335 			goto out_undo;
336 	}
337 	down_write(&net_rwsem);
338 	list_add_tail_rcu(&net->list, &net_namespace_list);
339 	up_write(&net_rwsem);
340 out:
341 	return error;
342 
343 out_undo:
344 	/* Walk through the list backwards calling the exit functions
345 	 * for the pernet modules whose init functions did not fail.
346 	 */
347 	list_add(&net->exit_list, &net_exit_list);
348 	saved_ops = ops;
349 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
350 		ops_pre_exit_list(ops, &net_exit_list);
351 
352 	synchronize_rcu();
353 
354 	ops = saved_ops;
355 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
356 		ops_exit_list(ops, &net_exit_list);
357 
358 	ops = saved_ops;
359 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
360 		ops_free_list(ops, &net_exit_list);
361 
362 	rcu_barrier();
363 	goto out;
364 }
365 
366 static int __net_init net_defaults_init_net(struct net *net)
367 {
368 	net->core.sysctl_somaxconn = SOMAXCONN;
369 	return 0;
370 }
371 
372 static struct pernet_operations net_defaults_ops = {
373 	.init = net_defaults_init_net,
374 };
375 
376 static __init int net_defaults_init(void)
377 {
378 	if (register_pernet_subsys(&net_defaults_ops))
379 		panic("Cannot initialize net default settings");
380 
381 	return 0;
382 }
383 
384 core_initcall(net_defaults_init);
385 
386 #ifdef CONFIG_NET_NS
387 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
388 {
389 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
390 }
391 
392 static void dec_net_namespaces(struct ucounts *ucounts)
393 {
394 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
395 }
396 
397 static struct kmem_cache *net_cachep __ro_after_init;
398 static struct workqueue_struct *netns_wq;
399 
400 static struct net *net_alloc(void)
401 {
402 	struct net *net = NULL;
403 	struct net_generic *ng;
404 
405 	ng = net_alloc_generic();
406 	if (!ng)
407 		goto out;
408 
409 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
410 	if (!net)
411 		goto out_free;
412 
413 #ifdef CONFIG_KEYS
414 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
415 	if (!net->key_domain)
416 		goto out_free_2;
417 	refcount_set(&net->key_domain->usage, 1);
418 #endif
419 
420 	rcu_assign_pointer(net->gen, ng);
421 out:
422 	return net;
423 
424 #ifdef CONFIG_KEYS
425 out_free_2:
426 	kmem_cache_free(net_cachep, net);
427 	net = NULL;
428 #endif
429 out_free:
430 	kfree(ng);
431 	goto out;
432 }
433 
434 static void net_free(struct net *net)
435 {
436 	kfree(rcu_access_pointer(net->gen));
437 	kmem_cache_free(net_cachep, net);
438 }
439 
440 void net_drop_ns(void *p)
441 {
442 	struct net *ns = p;
443 	if (ns && refcount_dec_and_test(&ns->passive))
444 		net_free(ns);
445 }
446 
447 struct net *copy_net_ns(unsigned long flags,
448 			struct user_namespace *user_ns, struct net *old_net)
449 {
450 	struct ucounts *ucounts;
451 	struct net *net;
452 	int rv;
453 
454 	if (!(flags & CLONE_NEWNET))
455 		return get_net(old_net);
456 
457 	ucounts = inc_net_namespaces(user_ns);
458 	if (!ucounts)
459 		return ERR_PTR(-ENOSPC);
460 
461 	net = net_alloc();
462 	if (!net) {
463 		rv = -ENOMEM;
464 		goto dec_ucounts;
465 	}
466 	refcount_set(&net->passive, 1);
467 	net->ucounts = ucounts;
468 	get_user_ns(user_ns);
469 
470 	rv = down_read_killable(&pernet_ops_rwsem);
471 	if (rv < 0)
472 		goto put_userns;
473 
474 	rv = setup_net(net, user_ns);
475 
476 	up_read(&pernet_ops_rwsem);
477 
478 	if (rv < 0) {
479 put_userns:
480 		key_remove_domain(net->key_domain);
481 		put_user_ns(user_ns);
482 		net_drop_ns(net);
483 dec_ucounts:
484 		dec_net_namespaces(ucounts);
485 		return ERR_PTR(rv);
486 	}
487 	return net;
488 }
489 
490 /**
491  * net_ns_get_ownership - get sysfs ownership data for @net
492  * @net: network namespace in question (can be NULL)
493  * @uid: kernel user ID for sysfs objects
494  * @gid: kernel group ID for sysfs objects
495  *
496  * Returns the uid/gid pair of root in the user namespace associated with the
497  * given network namespace.
498  */
499 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
500 {
501 	if (net) {
502 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
503 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
504 
505 		if (uid_valid(ns_root_uid))
506 			*uid = ns_root_uid;
507 
508 		if (gid_valid(ns_root_gid))
509 			*gid = ns_root_gid;
510 	} else {
511 		*uid = GLOBAL_ROOT_UID;
512 		*gid = GLOBAL_ROOT_GID;
513 	}
514 }
515 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
516 
517 static void unhash_nsid(struct net *net, struct net *last)
518 {
519 	struct net *tmp;
520 	/* This function is only called from cleanup_net() work,
521 	 * and this work is the only process, that may delete
522 	 * a net from net_namespace_list. So, when the below
523 	 * is executing, the list may only grow. Thus, we do not
524 	 * use for_each_net_rcu() or net_rwsem.
525 	 */
526 	for_each_net(tmp) {
527 		int id;
528 
529 		spin_lock_bh(&tmp->nsid_lock);
530 		id = __peernet2id(tmp, net);
531 		if (id >= 0)
532 			idr_remove(&tmp->netns_ids, id);
533 		spin_unlock_bh(&tmp->nsid_lock);
534 		if (id >= 0)
535 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
536 					  GFP_KERNEL);
537 		if (tmp == last)
538 			break;
539 	}
540 	spin_lock_bh(&net->nsid_lock);
541 	idr_destroy(&net->netns_ids);
542 	spin_unlock_bh(&net->nsid_lock);
543 }
544 
545 static LLIST_HEAD(cleanup_list);
546 
547 static void cleanup_net(struct work_struct *work)
548 {
549 	const struct pernet_operations *ops;
550 	struct net *net, *tmp, *last;
551 	struct llist_node *net_kill_list;
552 	LIST_HEAD(net_exit_list);
553 
554 	/* Atomically snapshot the list of namespaces to cleanup */
555 	net_kill_list = llist_del_all(&cleanup_list);
556 
557 	down_read(&pernet_ops_rwsem);
558 
559 	/* Don't let anyone else find us. */
560 	down_write(&net_rwsem);
561 	llist_for_each_entry(net, net_kill_list, cleanup_list)
562 		list_del_rcu(&net->list);
563 	/* Cache last net. After we unlock rtnl, no one new net
564 	 * added to net_namespace_list can assign nsid pointer
565 	 * to a net from net_kill_list (see peernet2id_alloc()).
566 	 * So, we skip them in unhash_nsid().
567 	 *
568 	 * Note, that unhash_nsid() does not delete nsid links
569 	 * between net_kill_list's nets, as they've already
570 	 * deleted from net_namespace_list. But, this would be
571 	 * useless anyway, as netns_ids are destroyed there.
572 	 */
573 	last = list_last_entry(&net_namespace_list, struct net, list);
574 	up_write(&net_rwsem);
575 
576 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
577 		unhash_nsid(net, last);
578 		list_add_tail(&net->exit_list, &net_exit_list);
579 	}
580 
581 	/* Run all of the network namespace pre_exit methods */
582 	list_for_each_entry_reverse(ops, &pernet_list, list)
583 		ops_pre_exit_list(ops, &net_exit_list);
584 
585 	/*
586 	 * Another CPU might be rcu-iterating the list, wait for it.
587 	 * This needs to be before calling the exit() notifiers, so
588 	 * the rcu_barrier() below isn't sufficient alone.
589 	 * Also the pre_exit() and exit() methods need this barrier.
590 	 */
591 	synchronize_rcu();
592 
593 	/* Run all of the network namespace exit methods */
594 	list_for_each_entry_reverse(ops, &pernet_list, list)
595 		ops_exit_list(ops, &net_exit_list);
596 
597 	/* Free the net generic variables */
598 	list_for_each_entry_reverse(ops, &pernet_list, list)
599 		ops_free_list(ops, &net_exit_list);
600 
601 	up_read(&pernet_ops_rwsem);
602 
603 	/* Ensure there are no outstanding rcu callbacks using this
604 	 * network namespace.
605 	 */
606 	rcu_barrier();
607 
608 	/* Finally it is safe to free my network namespace structure */
609 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
610 		list_del_init(&net->exit_list);
611 		dec_net_namespaces(net->ucounts);
612 		key_remove_domain(net->key_domain);
613 		put_user_ns(net->user_ns);
614 		net_drop_ns(net);
615 	}
616 }
617 
618 /**
619  * net_ns_barrier - wait until concurrent net_cleanup_work is done
620  *
621  * cleanup_net runs from work queue and will first remove namespaces
622  * from the global list, then run net exit functions.
623  *
624  * Call this in module exit path to make sure that all netns
625  * ->exit ops have been invoked before the function is removed.
626  */
627 void net_ns_barrier(void)
628 {
629 	down_write(&pernet_ops_rwsem);
630 	up_write(&pernet_ops_rwsem);
631 }
632 EXPORT_SYMBOL(net_ns_barrier);
633 
634 static DECLARE_WORK(net_cleanup_work, cleanup_net);
635 
636 void __put_net(struct net *net)
637 {
638 	/* Cleanup the network namespace in process context */
639 	if (llist_add(&net->cleanup_list, &cleanup_list))
640 		queue_work(netns_wq, &net_cleanup_work);
641 }
642 EXPORT_SYMBOL_GPL(__put_net);
643 
644 struct net *get_net_ns_by_fd(int fd)
645 {
646 	struct file *file;
647 	struct ns_common *ns;
648 	struct net *net;
649 
650 	file = proc_ns_fget(fd);
651 	if (IS_ERR(file))
652 		return ERR_CAST(file);
653 
654 	ns = get_proc_ns(file_inode(file));
655 	if (ns->ops == &netns_operations)
656 		net = get_net(container_of(ns, struct net, ns));
657 	else
658 		net = ERR_PTR(-EINVAL);
659 
660 	fput(file);
661 	return net;
662 }
663 
664 #else
665 struct net *get_net_ns_by_fd(int fd)
666 {
667 	return ERR_PTR(-EINVAL);
668 }
669 #endif
670 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
671 
672 struct net *get_net_ns_by_pid(pid_t pid)
673 {
674 	struct task_struct *tsk;
675 	struct net *net;
676 
677 	/* Lookup the network namespace */
678 	net = ERR_PTR(-ESRCH);
679 	rcu_read_lock();
680 	tsk = find_task_by_vpid(pid);
681 	if (tsk) {
682 		struct nsproxy *nsproxy;
683 		task_lock(tsk);
684 		nsproxy = tsk->nsproxy;
685 		if (nsproxy)
686 			net = get_net(nsproxy->net_ns);
687 		task_unlock(tsk);
688 	}
689 	rcu_read_unlock();
690 	return net;
691 }
692 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
693 
694 static __net_init int net_ns_net_init(struct net *net)
695 {
696 #ifdef CONFIG_NET_NS
697 	net->ns.ops = &netns_operations;
698 #endif
699 	return ns_alloc_inum(&net->ns);
700 }
701 
702 static __net_exit void net_ns_net_exit(struct net *net)
703 {
704 	ns_free_inum(&net->ns);
705 }
706 
707 static struct pernet_operations __net_initdata net_ns_ops = {
708 	.init = net_ns_net_init,
709 	.exit = net_ns_net_exit,
710 };
711 
712 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
713 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
714 	[NETNSA_NSID]		= { .type = NLA_S32 },
715 	[NETNSA_PID]		= { .type = NLA_U32 },
716 	[NETNSA_FD]		= { .type = NLA_U32 },
717 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
718 };
719 
720 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
721 			  struct netlink_ext_ack *extack)
722 {
723 	struct net *net = sock_net(skb->sk);
724 	struct nlattr *tb[NETNSA_MAX + 1];
725 	struct nlattr *nla;
726 	struct net *peer;
727 	int nsid, err;
728 
729 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
730 				     NETNSA_MAX, rtnl_net_policy, extack);
731 	if (err < 0)
732 		return err;
733 	if (!tb[NETNSA_NSID]) {
734 		NL_SET_ERR_MSG(extack, "nsid is missing");
735 		return -EINVAL;
736 	}
737 	nsid = nla_get_s32(tb[NETNSA_NSID]);
738 
739 	if (tb[NETNSA_PID]) {
740 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
741 		nla = tb[NETNSA_PID];
742 	} else if (tb[NETNSA_FD]) {
743 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
744 		nla = tb[NETNSA_FD];
745 	} else {
746 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
747 		return -EINVAL;
748 	}
749 	if (IS_ERR(peer)) {
750 		NL_SET_BAD_ATTR(extack, nla);
751 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
752 		return PTR_ERR(peer);
753 	}
754 
755 	spin_lock_bh(&net->nsid_lock);
756 	if (__peernet2id(net, peer) >= 0) {
757 		spin_unlock_bh(&net->nsid_lock);
758 		err = -EEXIST;
759 		NL_SET_BAD_ATTR(extack, nla);
760 		NL_SET_ERR_MSG(extack,
761 			       "Peer netns already has a nsid assigned");
762 		goto out;
763 	}
764 
765 	err = alloc_netid(net, peer, nsid);
766 	spin_unlock_bh(&net->nsid_lock);
767 	if (err >= 0) {
768 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
769 				  nlh, GFP_KERNEL);
770 		err = 0;
771 	} else if (err == -ENOSPC && nsid >= 0) {
772 		err = -EEXIST;
773 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
774 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
775 	}
776 out:
777 	put_net(peer);
778 	return err;
779 }
780 
781 static int rtnl_net_get_size(void)
782 {
783 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
784 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
785 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
786 	       ;
787 }
788 
789 struct net_fill_args {
790 	u32 portid;
791 	u32 seq;
792 	int flags;
793 	int cmd;
794 	int nsid;
795 	bool add_ref;
796 	int ref_nsid;
797 };
798 
799 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
800 {
801 	struct nlmsghdr *nlh;
802 	struct rtgenmsg *rth;
803 
804 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
805 			args->flags);
806 	if (!nlh)
807 		return -EMSGSIZE;
808 
809 	rth = nlmsg_data(nlh);
810 	rth->rtgen_family = AF_UNSPEC;
811 
812 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
813 		goto nla_put_failure;
814 
815 	if (args->add_ref &&
816 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
817 		goto nla_put_failure;
818 
819 	nlmsg_end(skb, nlh);
820 	return 0;
821 
822 nla_put_failure:
823 	nlmsg_cancel(skb, nlh);
824 	return -EMSGSIZE;
825 }
826 
827 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
828 				    const struct nlmsghdr *nlh,
829 				    struct nlattr **tb,
830 				    struct netlink_ext_ack *extack)
831 {
832 	int i, err;
833 
834 	if (!netlink_strict_get_check(skb))
835 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
836 					      tb, NETNSA_MAX, rtnl_net_policy,
837 					      extack);
838 
839 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
840 					    NETNSA_MAX, rtnl_net_policy,
841 					    extack);
842 	if (err)
843 		return err;
844 
845 	for (i = 0; i <= NETNSA_MAX; i++) {
846 		if (!tb[i])
847 			continue;
848 
849 		switch (i) {
850 		case NETNSA_PID:
851 		case NETNSA_FD:
852 		case NETNSA_NSID:
853 		case NETNSA_TARGET_NSID:
854 			break;
855 		default:
856 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
857 			return -EINVAL;
858 		}
859 	}
860 
861 	return 0;
862 }
863 
864 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
865 			  struct netlink_ext_ack *extack)
866 {
867 	struct net *net = sock_net(skb->sk);
868 	struct nlattr *tb[NETNSA_MAX + 1];
869 	struct net_fill_args fillargs = {
870 		.portid = NETLINK_CB(skb).portid,
871 		.seq = nlh->nlmsg_seq,
872 		.cmd = RTM_NEWNSID,
873 	};
874 	struct net *peer, *target = net;
875 	struct nlattr *nla;
876 	struct sk_buff *msg;
877 	int err;
878 
879 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
880 	if (err < 0)
881 		return err;
882 	if (tb[NETNSA_PID]) {
883 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
884 		nla = tb[NETNSA_PID];
885 	} else if (tb[NETNSA_FD]) {
886 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
887 		nla = tb[NETNSA_FD];
888 	} else if (tb[NETNSA_NSID]) {
889 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
890 		if (!peer)
891 			peer = ERR_PTR(-ENOENT);
892 		nla = tb[NETNSA_NSID];
893 	} else {
894 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
895 		return -EINVAL;
896 	}
897 
898 	if (IS_ERR(peer)) {
899 		NL_SET_BAD_ATTR(extack, nla);
900 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
901 		return PTR_ERR(peer);
902 	}
903 
904 	if (tb[NETNSA_TARGET_NSID]) {
905 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
906 
907 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
908 		if (IS_ERR(target)) {
909 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
910 			NL_SET_ERR_MSG(extack,
911 				       "Target netns reference is invalid");
912 			err = PTR_ERR(target);
913 			goto out;
914 		}
915 		fillargs.add_ref = true;
916 		fillargs.ref_nsid = peernet2id(net, peer);
917 	}
918 
919 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
920 	if (!msg) {
921 		err = -ENOMEM;
922 		goto out;
923 	}
924 
925 	fillargs.nsid = peernet2id(target, peer);
926 	err = rtnl_net_fill(msg, &fillargs);
927 	if (err < 0)
928 		goto err_out;
929 
930 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
931 	goto out;
932 
933 err_out:
934 	nlmsg_free(msg);
935 out:
936 	if (fillargs.add_ref)
937 		put_net(target);
938 	put_net(peer);
939 	return err;
940 }
941 
942 struct rtnl_net_dump_cb {
943 	struct net *tgt_net;
944 	struct net *ref_net;
945 	struct sk_buff *skb;
946 	struct net_fill_args fillargs;
947 	int idx;
948 	int s_idx;
949 };
950 
951 /* Runs in RCU-critical section. */
952 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
953 {
954 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
955 	int ret;
956 
957 	if (net_cb->idx < net_cb->s_idx)
958 		goto cont;
959 
960 	net_cb->fillargs.nsid = id;
961 	if (net_cb->fillargs.add_ref)
962 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
963 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
964 	if (ret < 0)
965 		return ret;
966 
967 cont:
968 	net_cb->idx++;
969 	return 0;
970 }
971 
972 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
973 				   struct rtnl_net_dump_cb *net_cb,
974 				   struct netlink_callback *cb)
975 {
976 	struct netlink_ext_ack *extack = cb->extack;
977 	struct nlattr *tb[NETNSA_MAX + 1];
978 	int err, i;
979 
980 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
981 					    NETNSA_MAX, rtnl_net_policy,
982 					    extack);
983 	if (err < 0)
984 		return err;
985 
986 	for (i = 0; i <= NETNSA_MAX; i++) {
987 		if (!tb[i])
988 			continue;
989 
990 		if (i == NETNSA_TARGET_NSID) {
991 			struct net *net;
992 
993 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
994 			if (IS_ERR(net)) {
995 				NL_SET_BAD_ATTR(extack, tb[i]);
996 				NL_SET_ERR_MSG(extack,
997 					       "Invalid target network namespace id");
998 				return PTR_ERR(net);
999 			}
1000 			net_cb->fillargs.add_ref = true;
1001 			net_cb->ref_net = net_cb->tgt_net;
1002 			net_cb->tgt_net = net;
1003 		} else {
1004 			NL_SET_BAD_ATTR(extack, tb[i]);
1005 			NL_SET_ERR_MSG(extack,
1006 				       "Unsupported attribute in dump request");
1007 			return -EINVAL;
1008 		}
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1015 {
1016 	struct rtnl_net_dump_cb net_cb = {
1017 		.tgt_net = sock_net(skb->sk),
1018 		.skb = skb,
1019 		.fillargs = {
1020 			.portid = NETLINK_CB(cb->skb).portid,
1021 			.seq = cb->nlh->nlmsg_seq,
1022 			.flags = NLM_F_MULTI,
1023 			.cmd = RTM_NEWNSID,
1024 		},
1025 		.idx = 0,
1026 		.s_idx = cb->args[0],
1027 	};
1028 	int err = 0;
1029 
1030 	if (cb->strict_check) {
1031 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1032 		if (err < 0)
1033 			goto end;
1034 	}
1035 
1036 	rcu_read_lock();
1037 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1038 	rcu_read_unlock();
1039 
1040 	cb->args[0] = net_cb.idx;
1041 end:
1042 	if (net_cb.fillargs.add_ref)
1043 		put_net(net_cb.tgt_net);
1044 	return err < 0 ? err : skb->len;
1045 }
1046 
1047 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1048 			      struct nlmsghdr *nlh, gfp_t gfp)
1049 {
1050 	struct net_fill_args fillargs = {
1051 		.portid = portid,
1052 		.seq = nlh ? nlh->nlmsg_seq : 0,
1053 		.cmd = cmd,
1054 		.nsid = id,
1055 	};
1056 	struct sk_buff *msg;
1057 	int err = -ENOMEM;
1058 
1059 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1060 	if (!msg)
1061 		goto out;
1062 
1063 	err = rtnl_net_fill(msg, &fillargs);
1064 	if (err < 0)
1065 		goto err_out;
1066 
1067 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1068 	return;
1069 
1070 err_out:
1071 	nlmsg_free(msg);
1072 out:
1073 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1074 }
1075 
1076 static int __init net_ns_init(void)
1077 {
1078 	struct net_generic *ng;
1079 
1080 #ifdef CONFIG_NET_NS
1081 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1082 					SMP_CACHE_BYTES,
1083 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1084 
1085 	/* Create workqueue for cleanup */
1086 	netns_wq = create_singlethread_workqueue("netns");
1087 	if (!netns_wq)
1088 		panic("Could not create netns workq");
1089 #endif
1090 
1091 	ng = net_alloc_generic();
1092 	if (!ng)
1093 		panic("Could not allocate generic netns");
1094 
1095 	rcu_assign_pointer(init_net.gen, ng);
1096 
1097 	down_write(&pernet_ops_rwsem);
1098 	if (setup_net(&init_net, &init_user_ns))
1099 		panic("Could not setup the initial network namespace");
1100 
1101 	init_net_initialized = true;
1102 	up_write(&pernet_ops_rwsem);
1103 
1104 	if (register_pernet_subsys(&net_ns_ops))
1105 		panic("Could not register network namespace subsystems");
1106 
1107 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1108 		      RTNL_FLAG_DOIT_UNLOCKED);
1109 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1110 		      RTNL_FLAG_DOIT_UNLOCKED);
1111 
1112 	return 0;
1113 }
1114 
1115 pure_initcall(net_ns_init);
1116 
1117 #ifdef CONFIG_NET_NS
1118 static int __register_pernet_operations(struct list_head *list,
1119 					struct pernet_operations *ops)
1120 {
1121 	struct net *net;
1122 	int error;
1123 	LIST_HEAD(net_exit_list);
1124 
1125 	list_add_tail(&ops->list, list);
1126 	if (ops->init || (ops->id && ops->size)) {
1127 		/* We held write locked pernet_ops_rwsem, and parallel
1128 		 * setup_net() and cleanup_net() are not possible.
1129 		 */
1130 		for_each_net(net) {
1131 			error = ops_init(ops, net);
1132 			if (error)
1133 				goto out_undo;
1134 			list_add_tail(&net->exit_list, &net_exit_list);
1135 		}
1136 	}
1137 	return 0;
1138 
1139 out_undo:
1140 	/* If I have an error cleanup all namespaces I initialized */
1141 	list_del(&ops->list);
1142 	ops_pre_exit_list(ops, &net_exit_list);
1143 	synchronize_rcu();
1144 	ops_exit_list(ops, &net_exit_list);
1145 	ops_free_list(ops, &net_exit_list);
1146 	return error;
1147 }
1148 
1149 static void __unregister_pernet_operations(struct pernet_operations *ops)
1150 {
1151 	struct net *net;
1152 	LIST_HEAD(net_exit_list);
1153 
1154 	list_del(&ops->list);
1155 	/* See comment in __register_pernet_operations() */
1156 	for_each_net(net)
1157 		list_add_tail(&net->exit_list, &net_exit_list);
1158 	ops_pre_exit_list(ops, &net_exit_list);
1159 	synchronize_rcu();
1160 	ops_exit_list(ops, &net_exit_list);
1161 	ops_free_list(ops, &net_exit_list);
1162 }
1163 
1164 #else
1165 
1166 static int __register_pernet_operations(struct list_head *list,
1167 					struct pernet_operations *ops)
1168 {
1169 	if (!init_net_initialized) {
1170 		list_add_tail(&ops->list, list);
1171 		return 0;
1172 	}
1173 
1174 	return ops_init(ops, &init_net);
1175 }
1176 
1177 static void __unregister_pernet_operations(struct pernet_operations *ops)
1178 {
1179 	if (!init_net_initialized) {
1180 		list_del(&ops->list);
1181 	} else {
1182 		LIST_HEAD(net_exit_list);
1183 		list_add(&init_net.exit_list, &net_exit_list);
1184 		ops_pre_exit_list(ops, &net_exit_list);
1185 		synchronize_rcu();
1186 		ops_exit_list(ops, &net_exit_list);
1187 		ops_free_list(ops, &net_exit_list);
1188 	}
1189 }
1190 
1191 #endif /* CONFIG_NET_NS */
1192 
1193 static DEFINE_IDA(net_generic_ids);
1194 
1195 static int register_pernet_operations(struct list_head *list,
1196 				      struct pernet_operations *ops)
1197 {
1198 	int error;
1199 
1200 	if (ops->id) {
1201 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1202 				GFP_KERNEL);
1203 		if (error < 0)
1204 			return error;
1205 		*ops->id = error;
1206 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1207 	}
1208 	error = __register_pernet_operations(list, ops);
1209 	if (error) {
1210 		rcu_barrier();
1211 		if (ops->id)
1212 			ida_free(&net_generic_ids, *ops->id);
1213 	}
1214 
1215 	return error;
1216 }
1217 
1218 static void unregister_pernet_operations(struct pernet_operations *ops)
1219 {
1220 	__unregister_pernet_operations(ops);
1221 	rcu_barrier();
1222 	if (ops->id)
1223 		ida_free(&net_generic_ids, *ops->id);
1224 }
1225 
1226 /**
1227  *      register_pernet_subsys - register a network namespace subsystem
1228  *	@ops:  pernet operations structure for the subsystem
1229  *
1230  *	Register a subsystem which has init and exit functions
1231  *	that are called when network namespaces are created and
1232  *	destroyed respectively.
1233  *
1234  *	When registered all network namespace init functions are
1235  *	called for every existing network namespace.  Allowing kernel
1236  *	modules to have a race free view of the set of network namespaces.
1237  *
1238  *	When a new network namespace is created all of the init
1239  *	methods are called in the order in which they were registered.
1240  *
1241  *	When a network namespace is destroyed all of the exit methods
1242  *	are called in the reverse of the order with which they were
1243  *	registered.
1244  */
1245 int register_pernet_subsys(struct pernet_operations *ops)
1246 {
1247 	int error;
1248 	down_write(&pernet_ops_rwsem);
1249 	error =  register_pernet_operations(first_device, ops);
1250 	up_write(&pernet_ops_rwsem);
1251 	return error;
1252 }
1253 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1254 
1255 /**
1256  *      unregister_pernet_subsys - unregister a network namespace subsystem
1257  *	@ops: pernet operations structure to manipulate
1258  *
1259  *	Remove the pernet operations structure from the list to be
1260  *	used when network namespaces are created or destroyed.  In
1261  *	addition run the exit method for all existing network
1262  *	namespaces.
1263  */
1264 void unregister_pernet_subsys(struct pernet_operations *ops)
1265 {
1266 	down_write(&pernet_ops_rwsem);
1267 	unregister_pernet_operations(ops);
1268 	up_write(&pernet_ops_rwsem);
1269 }
1270 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1271 
1272 /**
1273  *      register_pernet_device - register a network namespace device
1274  *	@ops:  pernet operations structure for the subsystem
1275  *
1276  *	Register a device which has init and exit functions
1277  *	that are called when network namespaces are created and
1278  *	destroyed respectively.
1279  *
1280  *	When registered all network namespace init functions are
1281  *	called for every existing network namespace.  Allowing kernel
1282  *	modules to have a race free view of the set of network namespaces.
1283  *
1284  *	When a new network namespace is created all of the init
1285  *	methods are called in the order in which they were registered.
1286  *
1287  *	When a network namespace is destroyed all of the exit methods
1288  *	are called in the reverse of the order with which they were
1289  *	registered.
1290  */
1291 int register_pernet_device(struct pernet_operations *ops)
1292 {
1293 	int error;
1294 	down_write(&pernet_ops_rwsem);
1295 	error = register_pernet_operations(&pernet_list, ops);
1296 	if (!error && (first_device == &pernet_list))
1297 		first_device = &ops->list;
1298 	up_write(&pernet_ops_rwsem);
1299 	return error;
1300 }
1301 EXPORT_SYMBOL_GPL(register_pernet_device);
1302 
1303 /**
1304  *      unregister_pernet_device - unregister a network namespace netdevice
1305  *	@ops: pernet operations structure to manipulate
1306  *
1307  *	Remove the pernet operations structure from the list to be
1308  *	used when network namespaces are created or destroyed.  In
1309  *	addition run the exit method for all existing network
1310  *	namespaces.
1311  */
1312 void unregister_pernet_device(struct pernet_operations *ops)
1313 {
1314 	down_write(&pernet_ops_rwsem);
1315 	if (&ops->list == first_device)
1316 		first_device = first_device->next;
1317 	unregister_pernet_operations(ops);
1318 	up_write(&pernet_ops_rwsem);
1319 }
1320 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1321 
1322 #ifdef CONFIG_NET_NS
1323 static struct ns_common *netns_get(struct task_struct *task)
1324 {
1325 	struct net *net = NULL;
1326 	struct nsproxy *nsproxy;
1327 
1328 	task_lock(task);
1329 	nsproxy = task->nsproxy;
1330 	if (nsproxy)
1331 		net = get_net(nsproxy->net_ns);
1332 	task_unlock(task);
1333 
1334 	return net ? &net->ns : NULL;
1335 }
1336 
1337 static inline struct net *to_net_ns(struct ns_common *ns)
1338 {
1339 	return container_of(ns, struct net, ns);
1340 }
1341 
1342 static void netns_put(struct ns_common *ns)
1343 {
1344 	put_net(to_net_ns(ns));
1345 }
1346 
1347 static int netns_install(struct nsset *nsset, struct ns_common *ns)
1348 {
1349 	struct nsproxy *nsproxy = nsset->nsproxy;
1350 	struct net *net = to_net_ns(ns);
1351 
1352 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1353 	    !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
1354 		return -EPERM;
1355 
1356 	put_net(nsproxy->net_ns);
1357 	nsproxy->net_ns = get_net(net);
1358 	return 0;
1359 }
1360 
1361 static struct user_namespace *netns_owner(struct ns_common *ns)
1362 {
1363 	return to_net_ns(ns)->user_ns;
1364 }
1365 
1366 const struct proc_ns_operations netns_operations = {
1367 	.name		= "net",
1368 	.type		= CLONE_NEWNET,
1369 	.get		= netns_get,
1370 	.put		= netns_put,
1371 	.install	= netns_install,
1372 	.owner		= netns_owner,
1373 };
1374 #endif
1375