1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 23 #include <net/sock.h> 24 #include <net/netlink.h> 25 #include <net/net_namespace.h> 26 #include <net/netns/generic.h> 27 28 /* 29 * Our network namespace constructor/destructor lists 30 */ 31 32 static LIST_HEAD(pernet_list); 33 static struct list_head *first_device = &pernet_list; 34 35 LIST_HEAD(net_namespace_list); 36 EXPORT_SYMBOL_GPL(net_namespace_list); 37 38 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 39 DECLARE_RWSEM(net_rwsem); 40 EXPORT_SYMBOL_GPL(net_rwsem); 41 42 struct net init_net = { 43 .count = REFCOUNT_INIT(1), 44 .dev_base_head = LIST_HEAD_INIT(init_net.dev_base_head), 45 }; 46 EXPORT_SYMBOL(init_net); 47 48 static bool init_net_initialized; 49 /* 50 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 51 * init_net_initialized and first_device pointer. 52 * This is internal net namespace object. Please, don't use it 53 * outside. 54 */ 55 DECLARE_RWSEM(pernet_ops_rwsem); 56 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 57 58 #define MIN_PERNET_OPS_ID \ 59 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 60 61 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 62 63 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 64 65 static struct net_generic *net_alloc_generic(void) 66 { 67 struct net_generic *ng; 68 unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]); 69 70 ng = kzalloc(generic_size, GFP_KERNEL); 71 if (ng) 72 ng->s.len = max_gen_ptrs; 73 74 return ng; 75 } 76 77 static int net_assign_generic(struct net *net, unsigned int id, void *data) 78 { 79 struct net_generic *ng, *old_ng; 80 81 BUG_ON(id < MIN_PERNET_OPS_ID); 82 83 old_ng = rcu_dereference_protected(net->gen, 84 lockdep_is_held(&pernet_ops_rwsem)); 85 if (old_ng->s.len > id) { 86 old_ng->ptr[id] = data; 87 return 0; 88 } 89 90 ng = net_alloc_generic(); 91 if (ng == NULL) 92 return -ENOMEM; 93 94 /* 95 * Some synchronisation notes: 96 * 97 * The net_generic explores the net->gen array inside rcu 98 * read section. Besides once set the net->gen->ptr[x] 99 * pointer never changes (see rules in netns/generic.h). 100 * 101 * That said, we simply duplicate this array and schedule 102 * the old copy for kfree after a grace period. 103 */ 104 105 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 106 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 107 ng->ptr[id] = data; 108 109 rcu_assign_pointer(net->gen, ng); 110 kfree_rcu(old_ng, s.rcu); 111 return 0; 112 } 113 114 static int ops_init(const struct pernet_operations *ops, struct net *net) 115 { 116 int err = -ENOMEM; 117 void *data = NULL; 118 119 if (ops->id && ops->size) { 120 data = kzalloc(ops->size, GFP_KERNEL); 121 if (!data) 122 goto out; 123 124 err = net_assign_generic(net, *ops->id, data); 125 if (err) 126 goto cleanup; 127 } 128 err = 0; 129 if (ops->init) 130 err = ops->init(net); 131 if (!err) 132 return 0; 133 134 cleanup: 135 kfree(data); 136 137 out: 138 return err; 139 } 140 141 static void ops_free(const struct pernet_operations *ops, struct net *net) 142 { 143 if (ops->id && ops->size) { 144 kfree(net_generic(net, *ops->id)); 145 } 146 } 147 148 static void ops_exit_list(const struct pernet_operations *ops, 149 struct list_head *net_exit_list) 150 { 151 struct net *net; 152 if (ops->exit) { 153 list_for_each_entry(net, net_exit_list, exit_list) 154 ops->exit(net); 155 } 156 if (ops->exit_batch) 157 ops->exit_batch(net_exit_list); 158 } 159 160 static void ops_free_list(const struct pernet_operations *ops, 161 struct list_head *net_exit_list) 162 { 163 struct net *net; 164 if (ops->size && ops->id) { 165 list_for_each_entry(net, net_exit_list, exit_list) 166 ops_free(ops, net); 167 } 168 } 169 170 /* should be called with nsid_lock held */ 171 static int alloc_netid(struct net *net, struct net *peer, int reqid) 172 { 173 int min = 0, max = 0; 174 175 if (reqid >= 0) { 176 min = reqid; 177 max = reqid + 1; 178 } 179 180 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 181 } 182 183 /* This function is used by idr_for_each(). If net is equal to peer, the 184 * function returns the id so that idr_for_each() stops. Because we cannot 185 * returns the id 0 (idr_for_each() will not stop), we return the magic value 186 * NET_ID_ZERO (-1) for it. 187 */ 188 #define NET_ID_ZERO -1 189 static int net_eq_idr(int id, void *net, void *peer) 190 { 191 if (net_eq(net, peer)) 192 return id ? : NET_ID_ZERO; 193 return 0; 194 } 195 196 /* Should be called with nsid_lock held. If a new id is assigned, the bool alloc 197 * is set to true, thus the caller knows that the new id must be notified via 198 * rtnl. 199 */ 200 static int __peernet2id_alloc(struct net *net, struct net *peer, bool *alloc) 201 { 202 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 203 bool alloc_it = *alloc; 204 205 *alloc = false; 206 207 /* Magic value for id 0. */ 208 if (id == NET_ID_ZERO) 209 return 0; 210 if (id > 0) 211 return id; 212 213 if (alloc_it) { 214 id = alloc_netid(net, peer, -1); 215 *alloc = true; 216 return id >= 0 ? id : NETNSA_NSID_NOT_ASSIGNED; 217 } 218 219 return NETNSA_NSID_NOT_ASSIGNED; 220 } 221 222 /* should be called with nsid_lock held */ 223 static int __peernet2id(struct net *net, struct net *peer) 224 { 225 bool no = false; 226 227 return __peernet2id_alloc(net, peer, &no); 228 } 229 230 static void rtnl_net_notifyid(struct net *net, int cmd, int id); 231 /* This function returns the id of a peer netns. If no id is assigned, one will 232 * be allocated and returned. 233 */ 234 int peernet2id_alloc(struct net *net, struct net *peer) 235 { 236 bool alloc = false, alive = false; 237 int id; 238 239 if (refcount_read(&net->count) == 0) 240 return NETNSA_NSID_NOT_ASSIGNED; 241 spin_lock_bh(&net->nsid_lock); 242 /* 243 * When peer is obtained from RCU lists, we may race with 244 * its cleanup. Check whether it's alive, and this guarantees 245 * we never hash a peer back to net->netns_ids, after it has 246 * just been idr_remove()'d from there in cleanup_net(). 247 */ 248 if (maybe_get_net(peer)) 249 alive = alloc = true; 250 id = __peernet2id_alloc(net, peer, &alloc); 251 spin_unlock_bh(&net->nsid_lock); 252 if (alloc && id >= 0) 253 rtnl_net_notifyid(net, RTM_NEWNSID, id); 254 if (alive) 255 put_net(peer); 256 return id; 257 } 258 EXPORT_SYMBOL_GPL(peernet2id_alloc); 259 260 /* This function returns, if assigned, the id of a peer netns. */ 261 int peernet2id(struct net *net, struct net *peer) 262 { 263 int id; 264 265 spin_lock_bh(&net->nsid_lock); 266 id = __peernet2id(net, peer); 267 spin_unlock_bh(&net->nsid_lock); 268 return id; 269 } 270 EXPORT_SYMBOL(peernet2id); 271 272 /* This function returns true is the peer netns has an id assigned into the 273 * current netns. 274 */ 275 bool peernet_has_id(struct net *net, struct net *peer) 276 { 277 return peernet2id(net, peer) >= 0; 278 } 279 280 struct net *get_net_ns_by_id(struct net *net, int id) 281 { 282 struct net *peer; 283 284 if (id < 0) 285 return NULL; 286 287 rcu_read_lock(); 288 peer = idr_find(&net->netns_ids, id); 289 if (peer) 290 peer = maybe_get_net(peer); 291 rcu_read_unlock(); 292 293 return peer; 294 } 295 296 /* 297 * setup_net runs the initializers for the network namespace object. 298 */ 299 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 300 { 301 /* Must be called with pernet_ops_rwsem held */ 302 const struct pernet_operations *ops, *saved_ops; 303 int error = 0; 304 LIST_HEAD(net_exit_list); 305 306 refcount_set(&net->count, 1); 307 refcount_set(&net->passive, 1); 308 get_random_bytes(&net->hash_mix, sizeof(u32)); 309 net->dev_base_seq = 1; 310 net->user_ns = user_ns; 311 idr_init(&net->netns_ids); 312 spin_lock_init(&net->nsid_lock); 313 mutex_init(&net->ipv4.ra_mutex); 314 315 list_for_each_entry(ops, &pernet_list, list) { 316 error = ops_init(ops, net); 317 if (error < 0) 318 goto out_undo; 319 } 320 down_write(&net_rwsem); 321 list_add_tail_rcu(&net->list, &net_namespace_list); 322 up_write(&net_rwsem); 323 out: 324 return error; 325 326 out_undo: 327 /* Walk through the list backwards calling the exit functions 328 * for the pernet modules whose init functions did not fail. 329 */ 330 list_add(&net->exit_list, &net_exit_list); 331 saved_ops = ops; 332 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 333 ops_exit_list(ops, &net_exit_list); 334 335 ops = saved_ops; 336 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 337 ops_free_list(ops, &net_exit_list); 338 339 rcu_barrier(); 340 goto out; 341 } 342 343 static int __net_init net_defaults_init_net(struct net *net) 344 { 345 net->core.sysctl_somaxconn = SOMAXCONN; 346 return 0; 347 } 348 349 static struct pernet_operations net_defaults_ops = { 350 .init = net_defaults_init_net, 351 }; 352 353 static __init int net_defaults_init(void) 354 { 355 if (register_pernet_subsys(&net_defaults_ops)) 356 panic("Cannot initialize net default settings"); 357 358 return 0; 359 } 360 361 core_initcall(net_defaults_init); 362 363 #ifdef CONFIG_NET_NS 364 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 365 { 366 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 367 } 368 369 static void dec_net_namespaces(struct ucounts *ucounts) 370 { 371 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 372 } 373 374 static struct kmem_cache *net_cachep __ro_after_init; 375 static struct workqueue_struct *netns_wq; 376 377 static struct net *net_alloc(void) 378 { 379 struct net *net = NULL; 380 struct net_generic *ng; 381 382 ng = net_alloc_generic(); 383 if (!ng) 384 goto out; 385 386 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 387 if (!net) 388 goto out_free; 389 390 rcu_assign_pointer(net->gen, ng); 391 out: 392 return net; 393 394 out_free: 395 kfree(ng); 396 goto out; 397 } 398 399 static void net_free(struct net *net) 400 { 401 kfree(rcu_access_pointer(net->gen)); 402 kmem_cache_free(net_cachep, net); 403 } 404 405 void net_drop_ns(void *p) 406 { 407 struct net *ns = p; 408 if (ns && refcount_dec_and_test(&ns->passive)) 409 net_free(ns); 410 } 411 412 struct net *copy_net_ns(unsigned long flags, 413 struct user_namespace *user_ns, struct net *old_net) 414 { 415 struct ucounts *ucounts; 416 struct net *net; 417 int rv; 418 419 if (!(flags & CLONE_NEWNET)) 420 return get_net(old_net); 421 422 ucounts = inc_net_namespaces(user_ns); 423 if (!ucounts) 424 return ERR_PTR(-ENOSPC); 425 426 net = net_alloc(); 427 if (!net) { 428 rv = -ENOMEM; 429 goto dec_ucounts; 430 } 431 refcount_set(&net->passive, 1); 432 net->ucounts = ucounts; 433 get_user_ns(user_ns); 434 435 rv = down_read_killable(&pernet_ops_rwsem); 436 if (rv < 0) 437 goto put_userns; 438 439 rv = setup_net(net, user_ns); 440 441 up_read(&pernet_ops_rwsem); 442 443 if (rv < 0) { 444 put_userns: 445 put_user_ns(user_ns); 446 net_drop_ns(net); 447 dec_ucounts: 448 dec_net_namespaces(ucounts); 449 return ERR_PTR(rv); 450 } 451 return net; 452 } 453 454 /** 455 * net_ns_get_ownership - get sysfs ownership data for @net 456 * @net: network namespace in question (can be NULL) 457 * @uid: kernel user ID for sysfs objects 458 * @gid: kernel group ID for sysfs objects 459 * 460 * Returns the uid/gid pair of root in the user namespace associated with the 461 * given network namespace. 462 */ 463 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 464 { 465 if (net) { 466 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 467 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 468 469 if (uid_valid(ns_root_uid)) 470 *uid = ns_root_uid; 471 472 if (gid_valid(ns_root_gid)) 473 *gid = ns_root_gid; 474 } else { 475 *uid = GLOBAL_ROOT_UID; 476 *gid = GLOBAL_ROOT_GID; 477 } 478 } 479 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 480 481 static void unhash_nsid(struct net *net, struct net *last) 482 { 483 struct net *tmp; 484 /* This function is only called from cleanup_net() work, 485 * and this work is the only process, that may delete 486 * a net from net_namespace_list. So, when the below 487 * is executing, the list may only grow. Thus, we do not 488 * use for_each_net_rcu() or net_rwsem. 489 */ 490 for_each_net(tmp) { 491 int id; 492 493 spin_lock_bh(&tmp->nsid_lock); 494 id = __peernet2id(tmp, net); 495 if (id >= 0) 496 idr_remove(&tmp->netns_ids, id); 497 spin_unlock_bh(&tmp->nsid_lock); 498 if (id >= 0) 499 rtnl_net_notifyid(tmp, RTM_DELNSID, id); 500 if (tmp == last) 501 break; 502 } 503 spin_lock_bh(&net->nsid_lock); 504 idr_destroy(&net->netns_ids); 505 spin_unlock_bh(&net->nsid_lock); 506 } 507 508 static LLIST_HEAD(cleanup_list); 509 510 static void cleanup_net(struct work_struct *work) 511 { 512 const struct pernet_operations *ops; 513 struct net *net, *tmp, *last; 514 struct llist_node *net_kill_list; 515 LIST_HEAD(net_exit_list); 516 517 /* Atomically snapshot the list of namespaces to cleanup */ 518 net_kill_list = llist_del_all(&cleanup_list); 519 520 down_read(&pernet_ops_rwsem); 521 522 /* Don't let anyone else find us. */ 523 down_write(&net_rwsem); 524 llist_for_each_entry(net, net_kill_list, cleanup_list) 525 list_del_rcu(&net->list); 526 /* Cache last net. After we unlock rtnl, no one new net 527 * added to net_namespace_list can assign nsid pointer 528 * to a net from net_kill_list (see peernet2id_alloc()). 529 * So, we skip them in unhash_nsid(). 530 * 531 * Note, that unhash_nsid() does not delete nsid links 532 * between net_kill_list's nets, as they've already 533 * deleted from net_namespace_list. But, this would be 534 * useless anyway, as netns_ids are destroyed there. 535 */ 536 last = list_last_entry(&net_namespace_list, struct net, list); 537 up_write(&net_rwsem); 538 539 llist_for_each_entry(net, net_kill_list, cleanup_list) { 540 unhash_nsid(net, last); 541 list_add_tail(&net->exit_list, &net_exit_list); 542 } 543 544 /* 545 * Another CPU might be rcu-iterating the list, wait for it. 546 * This needs to be before calling the exit() notifiers, so 547 * the rcu_barrier() below isn't sufficient alone. 548 */ 549 synchronize_rcu(); 550 551 /* Run all of the network namespace exit methods */ 552 list_for_each_entry_reverse(ops, &pernet_list, list) 553 ops_exit_list(ops, &net_exit_list); 554 555 /* Free the net generic variables */ 556 list_for_each_entry_reverse(ops, &pernet_list, list) 557 ops_free_list(ops, &net_exit_list); 558 559 up_read(&pernet_ops_rwsem); 560 561 /* Ensure there are no outstanding rcu callbacks using this 562 * network namespace. 563 */ 564 rcu_barrier(); 565 566 /* Finally it is safe to free my network namespace structure */ 567 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 568 list_del_init(&net->exit_list); 569 dec_net_namespaces(net->ucounts); 570 put_user_ns(net->user_ns); 571 net_drop_ns(net); 572 } 573 } 574 575 /** 576 * net_ns_barrier - wait until concurrent net_cleanup_work is done 577 * 578 * cleanup_net runs from work queue and will first remove namespaces 579 * from the global list, then run net exit functions. 580 * 581 * Call this in module exit path to make sure that all netns 582 * ->exit ops have been invoked before the function is removed. 583 */ 584 void net_ns_barrier(void) 585 { 586 down_write(&pernet_ops_rwsem); 587 up_write(&pernet_ops_rwsem); 588 } 589 EXPORT_SYMBOL(net_ns_barrier); 590 591 static DECLARE_WORK(net_cleanup_work, cleanup_net); 592 593 void __put_net(struct net *net) 594 { 595 /* Cleanup the network namespace in process context */ 596 if (llist_add(&net->cleanup_list, &cleanup_list)) 597 queue_work(netns_wq, &net_cleanup_work); 598 } 599 EXPORT_SYMBOL_GPL(__put_net); 600 601 struct net *get_net_ns_by_fd(int fd) 602 { 603 struct file *file; 604 struct ns_common *ns; 605 struct net *net; 606 607 file = proc_ns_fget(fd); 608 if (IS_ERR(file)) 609 return ERR_CAST(file); 610 611 ns = get_proc_ns(file_inode(file)); 612 if (ns->ops == &netns_operations) 613 net = get_net(container_of(ns, struct net, ns)); 614 else 615 net = ERR_PTR(-EINVAL); 616 617 fput(file); 618 return net; 619 } 620 621 #else 622 struct net *get_net_ns_by_fd(int fd) 623 { 624 return ERR_PTR(-EINVAL); 625 } 626 #endif 627 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 628 629 struct net *get_net_ns_by_pid(pid_t pid) 630 { 631 struct task_struct *tsk; 632 struct net *net; 633 634 /* Lookup the network namespace */ 635 net = ERR_PTR(-ESRCH); 636 rcu_read_lock(); 637 tsk = find_task_by_vpid(pid); 638 if (tsk) { 639 struct nsproxy *nsproxy; 640 task_lock(tsk); 641 nsproxy = tsk->nsproxy; 642 if (nsproxy) 643 net = get_net(nsproxy->net_ns); 644 task_unlock(tsk); 645 } 646 rcu_read_unlock(); 647 return net; 648 } 649 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 650 651 static __net_init int net_ns_net_init(struct net *net) 652 { 653 #ifdef CONFIG_NET_NS 654 net->ns.ops = &netns_operations; 655 #endif 656 return ns_alloc_inum(&net->ns); 657 } 658 659 static __net_exit void net_ns_net_exit(struct net *net) 660 { 661 ns_free_inum(&net->ns); 662 } 663 664 static struct pernet_operations __net_initdata net_ns_ops = { 665 .init = net_ns_net_init, 666 .exit = net_ns_net_exit, 667 }; 668 669 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 670 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 671 [NETNSA_NSID] = { .type = NLA_S32 }, 672 [NETNSA_PID] = { .type = NLA_U32 }, 673 [NETNSA_FD] = { .type = NLA_U32 }, 674 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 675 }; 676 677 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 678 struct netlink_ext_ack *extack) 679 { 680 struct net *net = sock_net(skb->sk); 681 struct nlattr *tb[NETNSA_MAX + 1]; 682 struct nlattr *nla; 683 struct net *peer; 684 int nsid, err; 685 686 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 687 NETNSA_MAX, rtnl_net_policy, extack); 688 if (err < 0) 689 return err; 690 if (!tb[NETNSA_NSID]) { 691 NL_SET_ERR_MSG(extack, "nsid is missing"); 692 return -EINVAL; 693 } 694 nsid = nla_get_s32(tb[NETNSA_NSID]); 695 696 if (tb[NETNSA_PID]) { 697 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 698 nla = tb[NETNSA_PID]; 699 } else if (tb[NETNSA_FD]) { 700 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 701 nla = tb[NETNSA_FD]; 702 } else { 703 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 704 return -EINVAL; 705 } 706 if (IS_ERR(peer)) { 707 NL_SET_BAD_ATTR(extack, nla); 708 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 709 return PTR_ERR(peer); 710 } 711 712 spin_lock_bh(&net->nsid_lock); 713 if (__peernet2id(net, peer) >= 0) { 714 spin_unlock_bh(&net->nsid_lock); 715 err = -EEXIST; 716 NL_SET_BAD_ATTR(extack, nla); 717 NL_SET_ERR_MSG(extack, 718 "Peer netns already has a nsid assigned"); 719 goto out; 720 } 721 722 err = alloc_netid(net, peer, nsid); 723 spin_unlock_bh(&net->nsid_lock); 724 if (err >= 0) { 725 rtnl_net_notifyid(net, RTM_NEWNSID, err); 726 err = 0; 727 } else if (err == -ENOSPC && nsid >= 0) { 728 err = -EEXIST; 729 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 730 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 731 } 732 out: 733 put_net(peer); 734 return err; 735 } 736 737 static int rtnl_net_get_size(void) 738 { 739 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 740 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 741 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 742 ; 743 } 744 745 struct net_fill_args { 746 u32 portid; 747 u32 seq; 748 int flags; 749 int cmd; 750 int nsid; 751 bool add_ref; 752 int ref_nsid; 753 }; 754 755 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 756 { 757 struct nlmsghdr *nlh; 758 struct rtgenmsg *rth; 759 760 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 761 args->flags); 762 if (!nlh) 763 return -EMSGSIZE; 764 765 rth = nlmsg_data(nlh); 766 rth->rtgen_family = AF_UNSPEC; 767 768 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 769 goto nla_put_failure; 770 771 if (args->add_ref && 772 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 773 goto nla_put_failure; 774 775 nlmsg_end(skb, nlh); 776 return 0; 777 778 nla_put_failure: 779 nlmsg_cancel(skb, nlh); 780 return -EMSGSIZE; 781 } 782 783 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 784 const struct nlmsghdr *nlh, 785 struct nlattr **tb, 786 struct netlink_ext_ack *extack) 787 { 788 int i, err; 789 790 if (!netlink_strict_get_check(skb)) 791 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 792 tb, NETNSA_MAX, rtnl_net_policy, 793 extack); 794 795 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 796 NETNSA_MAX, rtnl_net_policy, 797 extack); 798 if (err) 799 return err; 800 801 for (i = 0; i <= NETNSA_MAX; i++) { 802 if (!tb[i]) 803 continue; 804 805 switch (i) { 806 case NETNSA_PID: 807 case NETNSA_FD: 808 case NETNSA_NSID: 809 case NETNSA_TARGET_NSID: 810 break; 811 default: 812 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 813 return -EINVAL; 814 } 815 } 816 817 return 0; 818 } 819 820 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 821 struct netlink_ext_ack *extack) 822 { 823 struct net *net = sock_net(skb->sk); 824 struct nlattr *tb[NETNSA_MAX + 1]; 825 struct net_fill_args fillargs = { 826 .portid = NETLINK_CB(skb).portid, 827 .seq = nlh->nlmsg_seq, 828 .cmd = RTM_NEWNSID, 829 }; 830 struct net *peer, *target = net; 831 struct nlattr *nla; 832 struct sk_buff *msg; 833 int err; 834 835 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 836 if (err < 0) 837 return err; 838 if (tb[NETNSA_PID]) { 839 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 840 nla = tb[NETNSA_PID]; 841 } else if (tb[NETNSA_FD]) { 842 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 843 nla = tb[NETNSA_FD]; 844 } else if (tb[NETNSA_NSID]) { 845 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 846 if (!peer) 847 peer = ERR_PTR(-ENOENT); 848 nla = tb[NETNSA_NSID]; 849 } else { 850 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 851 return -EINVAL; 852 } 853 854 if (IS_ERR(peer)) { 855 NL_SET_BAD_ATTR(extack, nla); 856 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 857 return PTR_ERR(peer); 858 } 859 860 if (tb[NETNSA_TARGET_NSID]) { 861 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 862 863 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 864 if (IS_ERR(target)) { 865 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 866 NL_SET_ERR_MSG(extack, 867 "Target netns reference is invalid"); 868 err = PTR_ERR(target); 869 goto out; 870 } 871 fillargs.add_ref = true; 872 fillargs.ref_nsid = peernet2id(net, peer); 873 } 874 875 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 876 if (!msg) { 877 err = -ENOMEM; 878 goto out; 879 } 880 881 fillargs.nsid = peernet2id(target, peer); 882 err = rtnl_net_fill(msg, &fillargs); 883 if (err < 0) 884 goto err_out; 885 886 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 887 goto out; 888 889 err_out: 890 nlmsg_free(msg); 891 out: 892 if (fillargs.add_ref) 893 put_net(target); 894 put_net(peer); 895 return err; 896 } 897 898 struct rtnl_net_dump_cb { 899 struct net *tgt_net; 900 struct net *ref_net; 901 struct sk_buff *skb; 902 struct net_fill_args fillargs; 903 int idx; 904 int s_idx; 905 }; 906 907 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 908 { 909 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 910 int ret; 911 912 if (net_cb->idx < net_cb->s_idx) 913 goto cont; 914 915 net_cb->fillargs.nsid = id; 916 if (net_cb->fillargs.add_ref) 917 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 918 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 919 if (ret < 0) 920 return ret; 921 922 cont: 923 net_cb->idx++; 924 return 0; 925 } 926 927 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 928 struct rtnl_net_dump_cb *net_cb, 929 struct netlink_callback *cb) 930 { 931 struct netlink_ext_ack *extack = cb->extack; 932 struct nlattr *tb[NETNSA_MAX + 1]; 933 int err, i; 934 935 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 936 NETNSA_MAX, rtnl_net_policy, 937 extack); 938 if (err < 0) 939 return err; 940 941 for (i = 0; i <= NETNSA_MAX; i++) { 942 if (!tb[i]) 943 continue; 944 945 if (i == NETNSA_TARGET_NSID) { 946 struct net *net; 947 948 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 949 if (IS_ERR(net)) { 950 NL_SET_BAD_ATTR(extack, tb[i]); 951 NL_SET_ERR_MSG(extack, 952 "Invalid target network namespace id"); 953 return PTR_ERR(net); 954 } 955 net_cb->fillargs.add_ref = true; 956 net_cb->ref_net = net_cb->tgt_net; 957 net_cb->tgt_net = net; 958 } else { 959 NL_SET_BAD_ATTR(extack, tb[i]); 960 NL_SET_ERR_MSG(extack, 961 "Unsupported attribute in dump request"); 962 return -EINVAL; 963 } 964 } 965 966 return 0; 967 } 968 969 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 970 { 971 struct rtnl_net_dump_cb net_cb = { 972 .tgt_net = sock_net(skb->sk), 973 .skb = skb, 974 .fillargs = { 975 .portid = NETLINK_CB(cb->skb).portid, 976 .seq = cb->nlh->nlmsg_seq, 977 .flags = NLM_F_MULTI, 978 .cmd = RTM_NEWNSID, 979 }, 980 .idx = 0, 981 .s_idx = cb->args[0], 982 }; 983 int err = 0; 984 985 if (cb->strict_check) { 986 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 987 if (err < 0) 988 goto end; 989 } 990 991 spin_lock_bh(&net_cb.tgt_net->nsid_lock); 992 if (net_cb.fillargs.add_ref && 993 !net_eq(net_cb.ref_net, net_cb.tgt_net) && 994 !spin_trylock_bh(&net_cb.ref_net->nsid_lock)) { 995 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 996 err = -EAGAIN; 997 goto end; 998 } 999 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1000 if (net_cb.fillargs.add_ref && 1001 !net_eq(net_cb.ref_net, net_cb.tgt_net)) 1002 spin_unlock_bh(&net_cb.ref_net->nsid_lock); 1003 spin_unlock_bh(&net_cb.tgt_net->nsid_lock); 1004 1005 cb->args[0] = net_cb.idx; 1006 end: 1007 if (net_cb.fillargs.add_ref) 1008 put_net(net_cb.tgt_net); 1009 return err < 0 ? err : skb->len; 1010 } 1011 1012 static void rtnl_net_notifyid(struct net *net, int cmd, int id) 1013 { 1014 struct net_fill_args fillargs = { 1015 .cmd = cmd, 1016 .nsid = id, 1017 }; 1018 struct sk_buff *msg; 1019 int err = -ENOMEM; 1020 1021 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1022 if (!msg) 1023 goto out; 1024 1025 err = rtnl_net_fill(msg, &fillargs); 1026 if (err < 0) 1027 goto err_out; 1028 1029 rtnl_notify(msg, net, 0, RTNLGRP_NSID, NULL, 0); 1030 return; 1031 1032 err_out: 1033 nlmsg_free(msg); 1034 out: 1035 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1036 } 1037 1038 static int __init net_ns_init(void) 1039 { 1040 struct net_generic *ng; 1041 1042 #ifdef CONFIG_NET_NS 1043 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1044 SMP_CACHE_BYTES, 1045 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1046 1047 /* Create workqueue for cleanup */ 1048 netns_wq = create_singlethread_workqueue("netns"); 1049 if (!netns_wq) 1050 panic("Could not create netns workq"); 1051 #endif 1052 1053 ng = net_alloc_generic(); 1054 if (!ng) 1055 panic("Could not allocate generic netns"); 1056 1057 rcu_assign_pointer(init_net.gen, ng); 1058 1059 down_write(&pernet_ops_rwsem); 1060 if (setup_net(&init_net, &init_user_ns)) 1061 panic("Could not setup the initial network namespace"); 1062 1063 init_net_initialized = true; 1064 up_write(&pernet_ops_rwsem); 1065 1066 if (register_pernet_subsys(&net_ns_ops)) 1067 panic("Could not register network namespace subsystems"); 1068 1069 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1070 RTNL_FLAG_DOIT_UNLOCKED); 1071 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1072 RTNL_FLAG_DOIT_UNLOCKED); 1073 1074 return 0; 1075 } 1076 1077 pure_initcall(net_ns_init); 1078 1079 #ifdef CONFIG_NET_NS 1080 static int __register_pernet_operations(struct list_head *list, 1081 struct pernet_operations *ops) 1082 { 1083 struct net *net; 1084 int error; 1085 LIST_HEAD(net_exit_list); 1086 1087 list_add_tail(&ops->list, list); 1088 if (ops->init || (ops->id && ops->size)) { 1089 /* We held write locked pernet_ops_rwsem, and parallel 1090 * setup_net() and cleanup_net() are not possible. 1091 */ 1092 for_each_net(net) { 1093 error = ops_init(ops, net); 1094 if (error) 1095 goto out_undo; 1096 list_add_tail(&net->exit_list, &net_exit_list); 1097 } 1098 } 1099 return 0; 1100 1101 out_undo: 1102 /* If I have an error cleanup all namespaces I initialized */ 1103 list_del(&ops->list); 1104 ops_exit_list(ops, &net_exit_list); 1105 ops_free_list(ops, &net_exit_list); 1106 return error; 1107 } 1108 1109 static void __unregister_pernet_operations(struct pernet_operations *ops) 1110 { 1111 struct net *net; 1112 LIST_HEAD(net_exit_list); 1113 1114 list_del(&ops->list); 1115 /* See comment in __register_pernet_operations() */ 1116 for_each_net(net) 1117 list_add_tail(&net->exit_list, &net_exit_list); 1118 ops_exit_list(ops, &net_exit_list); 1119 ops_free_list(ops, &net_exit_list); 1120 } 1121 1122 #else 1123 1124 static int __register_pernet_operations(struct list_head *list, 1125 struct pernet_operations *ops) 1126 { 1127 if (!init_net_initialized) { 1128 list_add_tail(&ops->list, list); 1129 return 0; 1130 } 1131 1132 return ops_init(ops, &init_net); 1133 } 1134 1135 static void __unregister_pernet_operations(struct pernet_operations *ops) 1136 { 1137 if (!init_net_initialized) { 1138 list_del(&ops->list); 1139 } else { 1140 LIST_HEAD(net_exit_list); 1141 list_add(&init_net.exit_list, &net_exit_list); 1142 ops_exit_list(ops, &net_exit_list); 1143 ops_free_list(ops, &net_exit_list); 1144 } 1145 } 1146 1147 #endif /* CONFIG_NET_NS */ 1148 1149 static DEFINE_IDA(net_generic_ids); 1150 1151 static int register_pernet_operations(struct list_head *list, 1152 struct pernet_operations *ops) 1153 { 1154 int error; 1155 1156 if (ops->id) { 1157 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1158 GFP_KERNEL); 1159 if (error < 0) 1160 return error; 1161 *ops->id = error; 1162 max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1); 1163 } 1164 error = __register_pernet_operations(list, ops); 1165 if (error) { 1166 rcu_barrier(); 1167 if (ops->id) 1168 ida_free(&net_generic_ids, *ops->id); 1169 } 1170 1171 return error; 1172 } 1173 1174 static void unregister_pernet_operations(struct pernet_operations *ops) 1175 { 1176 __unregister_pernet_operations(ops); 1177 rcu_barrier(); 1178 if (ops->id) 1179 ida_free(&net_generic_ids, *ops->id); 1180 } 1181 1182 /** 1183 * register_pernet_subsys - register a network namespace subsystem 1184 * @ops: pernet operations structure for the subsystem 1185 * 1186 * Register a subsystem which has init and exit functions 1187 * that are called when network namespaces are created and 1188 * destroyed respectively. 1189 * 1190 * When registered all network namespace init functions are 1191 * called for every existing network namespace. Allowing kernel 1192 * modules to have a race free view of the set of network namespaces. 1193 * 1194 * When a new network namespace is created all of the init 1195 * methods are called in the order in which they were registered. 1196 * 1197 * When a network namespace is destroyed all of the exit methods 1198 * are called in the reverse of the order with which they were 1199 * registered. 1200 */ 1201 int register_pernet_subsys(struct pernet_operations *ops) 1202 { 1203 int error; 1204 down_write(&pernet_ops_rwsem); 1205 error = register_pernet_operations(first_device, ops); 1206 up_write(&pernet_ops_rwsem); 1207 return error; 1208 } 1209 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1210 1211 /** 1212 * unregister_pernet_subsys - unregister a network namespace subsystem 1213 * @ops: pernet operations structure to manipulate 1214 * 1215 * Remove the pernet operations structure from the list to be 1216 * used when network namespaces are created or destroyed. In 1217 * addition run the exit method for all existing network 1218 * namespaces. 1219 */ 1220 void unregister_pernet_subsys(struct pernet_operations *ops) 1221 { 1222 down_write(&pernet_ops_rwsem); 1223 unregister_pernet_operations(ops); 1224 up_write(&pernet_ops_rwsem); 1225 } 1226 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1227 1228 /** 1229 * register_pernet_device - register a network namespace device 1230 * @ops: pernet operations structure for the subsystem 1231 * 1232 * Register a device which has init and exit functions 1233 * that are called when network namespaces are created and 1234 * destroyed respectively. 1235 * 1236 * When registered all network namespace init functions are 1237 * called for every existing network namespace. Allowing kernel 1238 * modules to have a race free view of the set of network namespaces. 1239 * 1240 * When a new network namespace is created all of the init 1241 * methods are called in the order in which they were registered. 1242 * 1243 * When a network namespace is destroyed all of the exit methods 1244 * are called in the reverse of the order with which they were 1245 * registered. 1246 */ 1247 int register_pernet_device(struct pernet_operations *ops) 1248 { 1249 int error; 1250 down_write(&pernet_ops_rwsem); 1251 error = register_pernet_operations(&pernet_list, ops); 1252 if (!error && (first_device == &pernet_list)) 1253 first_device = &ops->list; 1254 up_write(&pernet_ops_rwsem); 1255 return error; 1256 } 1257 EXPORT_SYMBOL_GPL(register_pernet_device); 1258 1259 /** 1260 * unregister_pernet_device - unregister a network namespace netdevice 1261 * @ops: pernet operations structure to manipulate 1262 * 1263 * Remove the pernet operations structure from the list to be 1264 * used when network namespaces are created or destroyed. In 1265 * addition run the exit method for all existing network 1266 * namespaces. 1267 */ 1268 void unregister_pernet_device(struct pernet_operations *ops) 1269 { 1270 down_write(&pernet_ops_rwsem); 1271 if (&ops->list == first_device) 1272 first_device = first_device->next; 1273 unregister_pernet_operations(ops); 1274 up_write(&pernet_ops_rwsem); 1275 } 1276 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1277 1278 #ifdef CONFIG_NET_NS 1279 static struct ns_common *netns_get(struct task_struct *task) 1280 { 1281 struct net *net = NULL; 1282 struct nsproxy *nsproxy; 1283 1284 task_lock(task); 1285 nsproxy = task->nsproxy; 1286 if (nsproxy) 1287 net = get_net(nsproxy->net_ns); 1288 task_unlock(task); 1289 1290 return net ? &net->ns : NULL; 1291 } 1292 1293 static inline struct net *to_net_ns(struct ns_common *ns) 1294 { 1295 return container_of(ns, struct net, ns); 1296 } 1297 1298 static void netns_put(struct ns_common *ns) 1299 { 1300 put_net(to_net_ns(ns)); 1301 } 1302 1303 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns) 1304 { 1305 struct net *net = to_net_ns(ns); 1306 1307 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1308 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 1309 return -EPERM; 1310 1311 put_net(nsproxy->net_ns); 1312 nsproxy->net_ns = get_net(net); 1313 return 0; 1314 } 1315 1316 static struct user_namespace *netns_owner(struct ns_common *ns) 1317 { 1318 return to_net_ns(ns)->user_ns; 1319 } 1320 1321 const struct proc_ns_operations netns_operations = { 1322 .name = "net", 1323 .type = CLONE_NEWNET, 1324 .get = netns_get, 1325 .put = netns_put, 1326 .install = netns_install, 1327 .owner = netns_owner, 1328 }; 1329 #endif 1330