1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 DEFINE_COOKIE(net_cookie); 68 69 static struct net_generic *net_alloc_generic(void) 70 { 71 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 72 unsigned int generic_size; 73 struct net_generic *ng; 74 75 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (!ng) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 struct net_generic *ng; 124 int err = -ENOMEM; 125 void *data = NULL; 126 127 if (ops->id) { 128 data = kzalloc(ops->size, GFP_KERNEL); 129 if (!data) 130 goto out; 131 132 err = net_assign_generic(net, *ops->id, data); 133 if (err) 134 goto cleanup; 135 } 136 err = 0; 137 if (ops->init) 138 err = ops->init(net); 139 if (!err) 140 return 0; 141 142 if (ops->id) { 143 ng = rcu_dereference_protected(net->gen, 144 lockdep_is_held(&pernet_ops_rwsem)); 145 ng->ptr[*ops->id] = NULL; 146 } 147 148 cleanup: 149 kfree(data); 150 151 out: 152 return err; 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_list(const struct pernet_operations *ops, 167 struct list_head *net_exit_list) 168 { 169 struct net *net; 170 if (ops->exit) { 171 list_for_each_entry(net, net_exit_list, exit_list) { 172 ops->exit(net); 173 cond_resched(); 174 } 175 } 176 if (ops->exit_batch) 177 ops->exit_batch(net_exit_list); 178 } 179 180 static void ops_free_list(const struct pernet_operations *ops, 181 struct list_head *net_exit_list) 182 { 183 struct net *net; 184 185 if (ops->id) { 186 list_for_each_entry(net, net_exit_list, exit_list) 187 kfree(net_generic(net, *ops->id)); 188 } 189 } 190 191 /* should be called with nsid_lock held */ 192 static int alloc_netid(struct net *net, struct net *peer, int reqid) 193 { 194 int min = 0, max = 0; 195 196 if (reqid >= 0) { 197 min = reqid; 198 max = reqid + 1; 199 } 200 201 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 202 } 203 204 /* This function is used by idr_for_each(). If net is equal to peer, the 205 * function returns the id so that idr_for_each() stops. Because we cannot 206 * returns the id 0 (idr_for_each() will not stop), we return the magic value 207 * NET_ID_ZERO (-1) for it. 208 */ 209 #define NET_ID_ZERO -1 210 static int net_eq_idr(int id, void *net, void *peer) 211 { 212 if (net_eq(net, peer)) 213 return id ? : NET_ID_ZERO; 214 return 0; 215 } 216 217 /* Must be called from RCU-critical section or with nsid_lock held */ 218 static int __peernet2id(const struct net *net, struct net *peer) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 222 /* Magic value for id 0. */ 223 if (id == NET_ID_ZERO) 224 return 0; 225 if (id > 0) 226 return id; 227 228 return NETNSA_NSID_NOT_ASSIGNED; 229 } 230 231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 232 struct nlmsghdr *nlh, gfp_t gfp); 233 /* This function returns the id of a peer netns. If no id is assigned, one will 234 * be allocated and returned. 235 */ 236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 237 { 238 int id; 239 240 if (refcount_read(&net->ns.count) == 0) 241 return NETNSA_NSID_NOT_ASSIGNED; 242 243 spin_lock_bh(&net->nsid_lock); 244 id = __peernet2id(net, peer); 245 if (id >= 0) { 246 spin_unlock_bh(&net->nsid_lock); 247 return id; 248 } 249 250 /* When peer is obtained from RCU lists, we may race with 251 * its cleanup. Check whether it's alive, and this guarantees 252 * we never hash a peer back to net->netns_ids, after it has 253 * just been idr_remove()'d from there in cleanup_net(). 254 */ 255 if (!maybe_get_net(peer)) { 256 spin_unlock_bh(&net->nsid_lock); 257 return NETNSA_NSID_NOT_ASSIGNED; 258 } 259 260 id = alloc_netid(net, peer, -1); 261 spin_unlock_bh(&net->nsid_lock); 262 263 put_net(peer); 264 if (id < 0) 265 return NETNSA_NSID_NOT_ASSIGNED; 266 267 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 268 269 return id; 270 } 271 EXPORT_SYMBOL_GPL(peernet2id_alloc); 272 273 /* This function returns, if assigned, the id of a peer netns. */ 274 int peernet2id(const struct net *net, struct net *peer) 275 { 276 int id; 277 278 rcu_read_lock(); 279 id = __peernet2id(net, peer); 280 rcu_read_unlock(); 281 282 return id; 283 } 284 EXPORT_SYMBOL(peernet2id); 285 286 /* This function returns true is the peer netns has an id assigned into the 287 * current netns. 288 */ 289 bool peernet_has_id(const struct net *net, struct net *peer) 290 { 291 return peernet2id(net, peer) >= 0; 292 } 293 294 struct net *get_net_ns_by_id(const struct net *net, int id) 295 { 296 struct net *peer; 297 298 if (id < 0) 299 return NULL; 300 301 rcu_read_lock(); 302 peer = idr_find(&net->netns_ids, id); 303 if (peer) 304 peer = maybe_get_net(peer); 305 rcu_read_unlock(); 306 307 return peer; 308 } 309 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 310 311 static __net_init void preinit_net_sysctl(struct net *net) 312 { 313 net->core.sysctl_somaxconn = SOMAXCONN; 314 /* Limits per socket sk_omem_alloc usage. 315 * TCP zerocopy regular usage needs 128 KB. 316 */ 317 net->core.sysctl_optmem_max = 128 * 1024; 318 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 319 net->core.sysctl_tstamp_allow_data = 1; 320 } 321 322 /* init code that must occur even if setup_net() is not called. */ 323 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 324 { 325 refcount_set(&net->passive, 1); 326 refcount_set(&net->ns.count, 1); 327 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 328 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 329 330 get_random_bytes(&net->hash_mix, sizeof(u32)); 331 net->dev_base_seq = 1; 332 net->user_ns = user_ns; 333 334 idr_init(&net->netns_ids); 335 spin_lock_init(&net->nsid_lock); 336 mutex_init(&net->ipv4.ra_mutex); 337 338 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 339 mutex_init(&net->rtnl_mutex); 340 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 341 #endif 342 343 preinit_net_sysctl(net); 344 } 345 346 /* 347 * setup_net runs the initializers for the network namespace object. 348 */ 349 static __net_init int setup_net(struct net *net) 350 { 351 /* Must be called with pernet_ops_rwsem held */ 352 const struct pernet_operations *ops, *saved_ops; 353 LIST_HEAD(net_exit_list); 354 LIST_HEAD(dev_kill_list); 355 int error = 0; 356 357 preempt_disable(); 358 net->net_cookie = gen_cookie_next(&net_cookie); 359 preempt_enable(); 360 361 list_for_each_entry(ops, &pernet_list, list) { 362 error = ops_init(ops, net); 363 if (error < 0) 364 goto out_undo; 365 } 366 down_write(&net_rwsem); 367 list_add_tail_rcu(&net->list, &net_namespace_list); 368 up_write(&net_rwsem); 369 out: 370 return error; 371 372 out_undo: 373 /* Walk through the list backwards calling the exit functions 374 * for the pernet modules whose init functions did not fail. 375 */ 376 list_add(&net->exit_list, &net_exit_list); 377 saved_ops = ops; 378 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 379 ops_pre_exit_list(ops, &net_exit_list); 380 381 synchronize_rcu(); 382 383 ops = saved_ops; 384 rtnl_lock(); 385 list_for_each_entry_continue_reverse(ops, &pernet_list, list) { 386 if (ops->exit_batch_rtnl) 387 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 388 } 389 unregister_netdevice_many(&dev_kill_list); 390 rtnl_unlock(); 391 392 ops = saved_ops; 393 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 394 ops_exit_list(ops, &net_exit_list); 395 396 ops = saved_ops; 397 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 398 ops_free_list(ops, &net_exit_list); 399 400 rcu_barrier(); 401 goto out; 402 } 403 404 #ifdef CONFIG_NET_NS 405 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 406 { 407 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 408 } 409 410 static void dec_net_namespaces(struct ucounts *ucounts) 411 { 412 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 413 } 414 415 static struct kmem_cache *net_cachep __ro_after_init; 416 static struct workqueue_struct *netns_wq; 417 418 static struct net *net_alloc(void) 419 { 420 struct net *net = NULL; 421 struct net_generic *ng; 422 423 ng = net_alloc_generic(); 424 if (!ng) 425 goto out; 426 427 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 428 if (!net) 429 goto out_free; 430 431 #ifdef CONFIG_KEYS 432 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 433 if (!net->key_domain) 434 goto out_free_2; 435 refcount_set(&net->key_domain->usage, 1); 436 #endif 437 438 rcu_assign_pointer(net->gen, ng); 439 out: 440 return net; 441 442 #ifdef CONFIG_KEYS 443 out_free_2: 444 kmem_cache_free(net_cachep, net); 445 net = NULL; 446 #endif 447 out_free: 448 kfree(ng); 449 goto out; 450 } 451 452 static void net_free(struct net *net) 453 { 454 if (refcount_dec_and_test(&net->passive)) { 455 kfree(rcu_access_pointer(net->gen)); 456 457 /* There should not be any trackers left there. */ 458 ref_tracker_dir_exit(&net->notrefcnt_tracker); 459 460 kmem_cache_free(net_cachep, net); 461 } 462 } 463 464 void net_drop_ns(void *p) 465 { 466 struct net *net = (struct net *)p; 467 468 if (net) 469 net_free(net); 470 } 471 472 struct net *copy_net_ns(unsigned long flags, 473 struct user_namespace *user_ns, struct net *old_net) 474 { 475 struct ucounts *ucounts; 476 struct net *net; 477 int rv; 478 479 if (!(flags & CLONE_NEWNET)) 480 return get_net(old_net); 481 482 ucounts = inc_net_namespaces(user_ns); 483 if (!ucounts) 484 return ERR_PTR(-ENOSPC); 485 486 net = net_alloc(); 487 if (!net) { 488 rv = -ENOMEM; 489 goto dec_ucounts; 490 } 491 492 preinit_net(net, user_ns); 493 net->ucounts = ucounts; 494 get_user_ns(user_ns); 495 496 rv = down_read_killable(&pernet_ops_rwsem); 497 if (rv < 0) 498 goto put_userns; 499 500 rv = setup_net(net); 501 502 up_read(&pernet_ops_rwsem); 503 504 if (rv < 0) { 505 put_userns: 506 #ifdef CONFIG_KEYS 507 key_remove_domain(net->key_domain); 508 #endif 509 put_user_ns(user_ns); 510 net_free(net); 511 dec_ucounts: 512 dec_net_namespaces(ucounts); 513 return ERR_PTR(rv); 514 } 515 return net; 516 } 517 518 /** 519 * net_ns_get_ownership - get sysfs ownership data for @net 520 * @net: network namespace in question (can be NULL) 521 * @uid: kernel user ID for sysfs objects 522 * @gid: kernel group ID for sysfs objects 523 * 524 * Returns the uid/gid pair of root in the user namespace associated with the 525 * given network namespace. 526 */ 527 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 528 { 529 if (net) { 530 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 531 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 532 533 if (uid_valid(ns_root_uid)) 534 *uid = ns_root_uid; 535 536 if (gid_valid(ns_root_gid)) 537 *gid = ns_root_gid; 538 } else { 539 *uid = GLOBAL_ROOT_UID; 540 *gid = GLOBAL_ROOT_GID; 541 } 542 } 543 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 544 545 static void unhash_nsid(struct net *net, struct net *last) 546 { 547 struct net *tmp; 548 /* This function is only called from cleanup_net() work, 549 * and this work is the only process, that may delete 550 * a net from net_namespace_list. So, when the below 551 * is executing, the list may only grow. Thus, we do not 552 * use for_each_net_rcu() or net_rwsem. 553 */ 554 for_each_net(tmp) { 555 int id; 556 557 spin_lock_bh(&tmp->nsid_lock); 558 id = __peernet2id(tmp, net); 559 if (id >= 0) 560 idr_remove(&tmp->netns_ids, id); 561 spin_unlock_bh(&tmp->nsid_lock); 562 if (id >= 0) 563 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 564 GFP_KERNEL); 565 if (tmp == last) 566 break; 567 } 568 spin_lock_bh(&net->nsid_lock); 569 idr_destroy(&net->netns_ids); 570 spin_unlock_bh(&net->nsid_lock); 571 } 572 573 static LLIST_HEAD(cleanup_list); 574 575 static void cleanup_net(struct work_struct *work) 576 { 577 const struct pernet_operations *ops; 578 struct net *net, *tmp, *last; 579 struct llist_node *net_kill_list; 580 LIST_HEAD(net_exit_list); 581 LIST_HEAD(dev_kill_list); 582 583 /* Atomically snapshot the list of namespaces to cleanup */ 584 net_kill_list = llist_del_all(&cleanup_list); 585 586 down_read(&pernet_ops_rwsem); 587 588 /* Don't let anyone else find us. */ 589 down_write(&net_rwsem); 590 llist_for_each_entry(net, net_kill_list, cleanup_list) 591 list_del_rcu(&net->list); 592 /* Cache last net. After we unlock rtnl, no one new net 593 * added to net_namespace_list can assign nsid pointer 594 * to a net from net_kill_list (see peernet2id_alloc()). 595 * So, we skip them in unhash_nsid(). 596 * 597 * Note, that unhash_nsid() does not delete nsid links 598 * between net_kill_list's nets, as they've already 599 * deleted from net_namespace_list. But, this would be 600 * useless anyway, as netns_ids are destroyed there. 601 */ 602 last = list_last_entry(&net_namespace_list, struct net, list); 603 up_write(&net_rwsem); 604 605 llist_for_each_entry(net, net_kill_list, cleanup_list) { 606 unhash_nsid(net, last); 607 list_add_tail(&net->exit_list, &net_exit_list); 608 } 609 610 /* Run all of the network namespace pre_exit methods */ 611 list_for_each_entry_reverse(ops, &pernet_list, list) 612 ops_pre_exit_list(ops, &net_exit_list); 613 614 /* 615 * Another CPU might be rcu-iterating the list, wait for it. 616 * This needs to be before calling the exit() notifiers, so 617 * the rcu_barrier() below isn't sufficient alone. 618 * Also the pre_exit() and exit() methods need this barrier. 619 */ 620 synchronize_rcu_expedited(); 621 622 rtnl_lock(); 623 list_for_each_entry_reverse(ops, &pernet_list, list) { 624 if (ops->exit_batch_rtnl) 625 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 626 } 627 unregister_netdevice_many(&dev_kill_list); 628 rtnl_unlock(); 629 630 /* Run all of the network namespace exit methods */ 631 list_for_each_entry_reverse(ops, &pernet_list, list) 632 ops_exit_list(ops, &net_exit_list); 633 634 /* Free the net generic variables */ 635 list_for_each_entry_reverse(ops, &pernet_list, list) 636 ops_free_list(ops, &net_exit_list); 637 638 up_read(&pernet_ops_rwsem); 639 640 /* Ensure there are no outstanding rcu callbacks using this 641 * network namespace. 642 */ 643 rcu_barrier(); 644 645 /* Finally it is safe to free my network namespace structure */ 646 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 647 list_del_init(&net->exit_list); 648 dec_net_namespaces(net->ucounts); 649 #ifdef CONFIG_KEYS 650 key_remove_domain(net->key_domain); 651 #endif 652 put_user_ns(net->user_ns); 653 net_free(net); 654 } 655 } 656 657 /** 658 * net_ns_barrier - wait until concurrent net_cleanup_work is done 659 * 660 * cleanup_net runs from work queue and will first remove namespaces 661 * from the global list, then run net exit functions. 662 * 663 * Call this in module exit path to make sure that all netns 664 * ->exit ops have been invoked before the function is removed. 665 */ 666 void net_ns_barrier(void) 667 { 668 down_write(&pernet_ops_rwsem); 669 up_write(&pernet_ops_rwsem); 670 } 671 EXPORT_SYMBOL(net_ns_barrier); 672 673 static DECLARE_WORK(net_cleanup_work, cleanup_net); 674 675 void __put_net(struct net *net) 676 { 677 ref_tracker_dir_exit(&net->refcnt_tracker); 678 /* Cleanup the network namespace in process context */ 679 if (llist_add(&net->cleanup_list, &cleanup_list)) 680 queue_work(netns_wq, &net_cleanup_work); 681 } 682 EXPORT_SYMBOL_GPL(__put_net); 683 684 /** 685 * get_net_ns - increment the refcount of the network namespace 686 * @ns: common namespace (net) 687 * 688 * Returns the net's common namespace or ERR_PTR() if ref is zero. 689 */ 690 struct ns_common *get_net_ns(struct ns_common *ns) 691 { 692 struct net *net; 693 694 net = maybe_get_net(container_of(ns, struct net, ns)); 695 if (net) 696 return &net->ns; 697 return ERR_PTR(-EINVAL); 698 } 699 EXPORT_SYMBOL_GPL(get_net_ns); 700 701 struct net *get_net_ns_by_fd(int fd) 702 { 703 struct fd f = fdget(fd); 704 struct net *net = ERR_PTR(-EINVAL); 705 706 if (!fd_file(f)) 707 return ERR_PTR(-EBADF); 708 709 if (proc_ns_file(fd_file(f))) { 710 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 711 if (ns->ops == &netns_operations) 712 net = get_net(container_of(ns, struct net, ns)); 713 } 714 fdput(f); 715 716 return net; 717 } 718 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 719 #endif 720 721 struct net *get_net_ns_by_pid(pid_t pid) 722 { 723 struct task_struct *tsk; 724 struct net *net; 725 726 /* Lookup the network namespace */ 727 net = ERR_PTR(-ESRCH); 728 rcu_read_lock(); 729 tsk = find_task_by_vpid(pid); 730 if (tsk) { 731 struct nsproxy *nsproxy; 732 task_lock(tsk); 733 nsproxy = tsk->nsproxy; 734 if (nsproxy) 735 net = get_net(nsproxy->net_ns); 736 task_unlock(tsk); 737 } 738 rcu_read_unlock(); 739 return net; 740 } 741 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 742 743 static __net_init int net_ns_net_init(struct net *net) 744 { 745 #ifdef CONFIG_NET_NS 746 net->ns.ops = &netns_operations; 747 #endif 748 return ns_alloc_inum(&net->ns); 749 } 750 751 static __net_exit void net_ns_net_exit(struct net *net) 752 { 753 ns_free_inum(&net->ns); 754 } 755 756 static struct pernet_operations __net_initdata net_ns_ops = { 757 .init = net_ns_net_init, 758 .exit = net_ns_net_exit, 759 }; 760 761 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 762 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 763 [NETNSA_NSID] = { .type = NLA_S32 }, 764 [NETNSA_PID] = { .type = NLA_U32 }, 765 [NETNSA_FD] = { .type = NLA_U32 }, 766 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 767 }; 768 769 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 770 struct netlink_ext_ack *extack) 771 { 772 struct net *net = sock_net(skb->sk); 773 struct nlattr *tb[NETNSA_MAX + 1]; 774 struct nlattr *nla; 775 struct net *peer; 776 int nsid, err; 777 778 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 779 NETNSA_MAX, rtnl_net_policy, extack); 780 if (err < 0) 781 return err; 782 if (!tb[NETNSA_NSID]) { 783 NL_SET_ERR_MSG(extack, "nsid is missing"); 784 return -EINVAL; 785 } 786 nsid = nla_get_s32(tb[NETNSA_NSID]); 787 788 if (tb[NETNSA_PID]) { 789 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 790 nla = tb[NETNSA_PID]; 791 } else if (tb[NETNSA_FD]) { 792 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 793 nla = tb[NETNSA_FD]; 794 } else { 795 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 796 return -EINVAL; 797 } 798 if (IS_ERR(peer)) { 799 NL_SET_BAD_ATTR(extack, nla); 800 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 801 return PTR_ERR(peer); 802 } 803 804 spin_lock_bh(&net->nsid_lock); 805 if (__peernet2id(net, peer) >= 0) { 806 spin_unlock_bh(&net->nsid_lock); 807 err = -EEXIST; 808 NL_SET_BAD_ATTR(extack, nla); 809 NL_SET_ERR_MSG(extack, 810 "Peer netns already has a nsid assigned"); 811 goto out; 812 } 813 814 err = alloc_netid(net, peer, nsid); 815 spin_unlock_bh(&net->nsid_lock); 816 if (err >= 0) { 817 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 818 nlh, GFP_KERNEL); 819 err = 0; 820 } else if (err == -ENOSPC && nsid >= 0) { 821 err = -EEXIST; 822 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 823 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 824 } 825 out: 826 put_net(peer); 827 return err; 828 } 829 830 static int rtnl_net_get_size(void) 831 { 832 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 833 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 834 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 835 ; 836 } 837 838 struct net_fill_args { 839 u32 portid; 840 u32 seq; 841 int flags; 842 int cmd; 843 int nsid; 844 bool add_ref; 845 int ref_nsid; 846 }; 847 848 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 849 { 850 struct nlmsghdr *nlh; 851 struct rtgenmsg *rth; 852 853 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 854 args->flags); 855 if (!nlh) 856 return -EMSGSIZE; 857 858 rth = nlmsg_data(nlh); 859 rth->rtgen_family = AF_UNSPEC; 860 861 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 862 goto nla_put_failure; 863 864 if (args->add_ref && 865 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 866 goto nla_put_failure; 867 868 nlmsg_end(skb, nlh); 869 return 0; 870 871 nla_put_failure: 872 nlmsg_cancel(skb, nlh); 873 return -EMSGSIZE; 874 } 875 876 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 877 const struct nlmsghdr *nlh, 878 struct nlattr **tb, 879 struct netlink_ext_ack *extack) 880 { 881 int i, err; 882 883 if (!netlink_strict_get_check(skb)) 884 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 885 tb, NETNSA_MAX, rtnl_net_policy, 886 extack); 887 888 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 889 NETNSA_MAX, rtnl_net_policy, 890 extack); 891 if (err) 892 return err; 893 894 for (i = 0; i <= NETNSA_MAX; i++) { 895 if (!tb[i]) 896 continue; 897 898 switch (i) { 899 case NETNSA_PID: 900 case NETNSA_FD: 901 case NETNSA_NSID: 902 case NETNSA_TARGET_NSID: 903 break; 904 default: 905 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 906 return -EINVAL; 907 } 908 } 909 910 return 0; 911 } 912 913 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 914 struct netlink_ext_ack *extack) 915 { 916 struct net *net = sock_net(skb->sk); 917 struct nlattr *tb[NETNSA_MAX + 1]; 918 struct net_fill_args fillargs = { 919 .portid = NETLINK_CB(skb).portid, 920 .seq = nlh->nlmsg_seq, 921 .cmd = RTM_NEWNSID, 922 }; 923 struct net *peer, *target = net; 924 struct nlattr *nla; 925 struct sk_buff *msg; 926 int err; 927 928 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 929 if (err < 0) 930 return err; 931 if (tb[NETNSA_PID]) { 932 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 933 nla = tb[NETNSA_PID]; 934 } else if (tb[NETNSA_FD]) { 935 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 936 nla = tb[NETNSA_FD]; 937 } else if (tb[NETNSA_NSID]) { 938 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 939 if (!peer) 940 peer = ERR_PTR(-ENOENT); 941 nla = tb[NETNSA_NSID]; 942 } else { 943 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 944 return -EINVAL; 945 } 946 947 if (IS_ERR(peer)) { 948 NL_SET_BAD_ATTR(extack, nla); 949 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 950 return PTR_ERR(peer); 951 } 952 953 if (tb[NETNSA_TARGET_NSID]) { 954 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 955 956 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 957 if (IS_ERR(target)) { 958 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 959 NL_SET_ERR_MSG(extack, 960 "Target netns reference is invalid"); 961 err = PTR_ERR(target); 962 goto out; 963 } 964 fillargs.add_ref = true; 965 fillargs.ref_nsid = peernet2id(net, peer); 966 } 967 968 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 969 if (!msg) { 970 err = -ENOMEM; 971 goto out; 972 } 973 974 fillargs.nsid = peernet2id(target, peer); 975 err = rtnl_net_fill(msg, &fillargs); 976 if (err < 0) 977 goto err_out; 978 979 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 980 goto out; 981 982 err_out: 983 nlmsg_free(msg); 984 out: 985 if (fillargs.add_ref) 986 put_net(target); 987 put_net(peer); 988 return err; 989 } 990 991 struct rtnl_net_dump_cb { 992 struct net *tgt_net; 993 struct net *ref_net; 994 struct sk_buff *skb; 995 struct net_fill_args fillargs; 996 int idx; 997 int s_idx; 998 }; 999 1000 /* Runs in RCU-critical section. */ 1001 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1002 { 1003 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1004 int ret; 1005 1006 if (net_cb->idx < net_cb->s_idx) 1007 goto cont; 1008 1009 net_cb->fillargs.nsid = id; 1010 if (net_cb->fillargs.add_ref) 1011 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1012 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1013 if (ret < 0) 1014 return ret; 1015 1016 cont: 1017 net_cb->idx++; 1018 return 0; 1019 } 1020 1021 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1022 struct rtnl_net_dump_cb *net_cb, 1023 struct netlink_callback *cb) 1024 { 1025 struct netlink_ext_ack *extack = cb->extack; 1026 struct nlattr *tb[NETNSA_MAX + 1]; 1027 int err, i; 1028 1029 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1030 NETNSA_MAX, rtnl_net_policy, 1031 extack); 1032 if (err < 0) 1033 return err; 1034 1035 for (i = 0; i <= NETNSA_MAX; i++) { 1036 if (!tb[i]) 1037 continue; 1038 1039 if (i == NETNSA_TARGET_NSID) { 1040 struct net *net; 1041 1042 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1043 if (IS_ERR(net)) { 1044 NL_SET_BAD_ATTR(extack, tb[i]); 1045 NL_SET_ERR_MSG(extack, 1046 "Invalid target network namespace id"); 1047 return PTR_ERR(net); 1048 } 1049 net_cb->fillargs.add_ref = true; 1050 net_cb->ref_net = net_cb->tgt_net; 1051 net_cb->tgt_net = net; 1052 } else { 1053 NL_SET_BAD_ATTR(extack, tb[i]); 1054 NL_SET_ERR_MSG(extack, 1055 "Unsupported attribute in dump request"); 1056 return -EINVAL; 1057 } 1058 } 1059 1060 return 0; 1061 } 1062 1063 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1064 { 1065 struct rtnl_net_dump_cb net_cb = { 1066 .tgt_net = sock_net(skb->sk), 1067 .skb = skb, 1068 .fillargs = { 1069 .portid = NETLINK_CB(cb->skb).portid, 1070 .seq = cb->nlh->nlmsg_seq, 1071 .flags = NLM_F_MULTI, 1072 .cmd = RTM_NEWNSID, 1073 }, 1074 .idx = 0, 1075 .s_idx = cb->args[0], 1076 }; 1077 int err = 0; 1078 1079 if (cb->strict_check) { 1080 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1081 if (err < 0) 1082 goto end; 1083 } 1084 1085 rcu_read_lock(); 1086 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1087 rcu_read_unlock(); 1088 1089 cb->args[0] = net_cb.idx; 1090 end: 1091 if (net_cb.fillargs.add_ref) 1092 put_net(net_cb.tgt_net); 1093 return err; 1094 } 1095 1096 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1097 struct nlmsghdr *nlh, gfp_t gfp) 1098 { 1099 struct net_fill_args fillargs = { 1100 .portid = portid, 1101 .seq = nlh ? nlh->nlmsg_seq : 0, 1102 .cmd = cmd, 1103 .nsid = id, 1104 }; 1105 struct sk_buff *msg; 1106 int err = -ENOMEM; 1107 1108 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1109 if (!msg) 1110 goto out; 1111 1112 err = rtnl_net_fill(msg, &fillargs); 1113 if (err < 0) 1114 goto err_out; 1115 1116 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1117 return; 1118 1119 err_out: 1120 nlmsg_free(msg); 1121 out: 1122 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1123 } 1124 1125 #ifdef CONFIG_NET_NS 1126 static void __init netns_ipv4_struct_check(void) 1127 { 1128 /* TX readonly hotpath cache lines */ 1129 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1130 sysctl_tcp_early_retrans); 1131 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1132 sysctl_tcp_tso_win_divisor); 1133 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1134 sysctl_tcp_tso_rtt_log); 1135 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1136 sysctl_tcp_autocorking); 1137 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1138 sysctl_tcp_min_snd_mss); 1139 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1140 sysctl_tcp_notsent_lowat); 1141 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1142 sysctl_tcp_limit_output_bytes); 1143 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1144 sysctl_tcp_min_rtt_wlen); 1145 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1146 sysctl_tcp_wmem); 1147 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1148 sysctl_ip_fwd_use_pmtu); 1149 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1150 1151 /* TXRX readonly hotpath cache lines */ 1152 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1153 sysctl_tcp_moderate_rcvbuf); 1154 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1155 1156 /* RX readonly hotpath cache line */ 1157 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1158 sysctl_ip_early_demux); 1159 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1160 sysctl_tcp_early_demux); 1161 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1162 sysctl_tcp_l3mdev_accept); 1163 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1164 sysctl_tcp_reordering); 1165 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1166 sysctl_tcp_rmem); 1167 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1168 } 1169 #endif 1170 1171 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1172 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1173 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1174 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1175 .dumpit = rtnl_net_dumpid, 1176 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1177 }; 1178 1179 void __init net_ns_init(void) 1180 { 1181 struct net_generic *ng; 1182 1183 #ifdef CONFIG_NET_NS 1184 netns_ipv4_struct_check(); 1185 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1186 SMP_CACHE_BYTES, 1187 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1188 1189 /* Create workqueue for cleanup */ 1190 netns_wq = create_singlethread_workqueue("netns"); 1191 if (!netns_wq) 1192 panic("Could not create netns workq"); 1193 #endif 1194 1195 ng = net_alloc_generic(); 1196 if (!ng) 1197 panic("Could not allocate generic netns"); 1198 1199 rcu_assign_pointer(init_net.gen, ng); 1200 1201 #ifdef CONFIG_KEYS 1202 init_net.key_domain = &init_net_key_domain; 1203 #endif 1204 preinit_net(&init_net, &init_user_ns); 1205 1206 down_write(&pernet_ops_rwsem); 1207 if (setup_net(&init_net)) 1208 panic("Could not setup the initial network namespace"); 1209 1210 init_net_initialized = true; 1211 up_write(&pernet_ops_rwsem); 1212 1213 if (register_pernet_subsys(&net_ns_ops)) 1214 panic("Could not register network namespace subsystems"); 1215 1216 rtnl_register_many(net_ns_rtnl_msg_handlers); 1217 } 1218 1219 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1220 { 1221 ops_pre_exit_list(ops, net_exit_list); 1222 synchronize_rcu(); 1223 1224 if (ops->exit_batch_rtnl) { 1225 LIST_HEAD(dev_kill_list); 1226 1227 rtnl_lock(); 1228 ops->exit_batch_rtnl(net_exit_list, &dev_kill_list); 1229 unregister_netdevice_many(&dev_kill_list); 1230 rtnl_unlock(); 1231 } 1232 ops_exit_list(ops, net_exit_list); 1233 1234 ops_free_list(ops, net_exit_list); 1235 } 1236 1237 #ifdef CONFIG_NET_NS 1238 static int __register_pernet_operations(struct list_head *list, 1239 struct pernet_operations *ops) 1240 { 1241 struct net *net; 1242 int error; 1243 LIST_HEAD(net_exit_list); 1244 1245 list_add_tail(&ops->list, list); 1246 if (ops->init || ops->id) { 1247 /* We held write locked pernet_ops_rwsem, and parallel 1248 * setup_net() and cleanup_net() are not possible. 1249 */ 1250 for_each_net(net) { 1251 error = ops_init(ops, net); 1252 if (error) 1253 goto out_undo; 1254 list_add_tail(&net->exit_list, &net_exit_list); 1255 } 1256 } 1257 return 0; 1258 1259 out_undo: 1260 /* If I have an error cleanup all namespaces I initialized */ 1261 list_del(&ops->list); 1262 free_exit_list(ops, &net_exit_list); 1263 return error; 1264 } 1265 1266 static void __unregister_pernet_operations(struct pernet_operations *ops) 1267 { 1268 struct net *net; 1269 LIST_HEAD(net_exit_list); 1270 1271 list_del(&ops->list); 1272 /* See comment in __register_pernet_operations() */ 1273 for_each_net(net) 1274 list_add_tail(&net->exit_list, &net_exit_list); 1275 1276 free_exit_list(ops, &net_exit_list); 1277 } 1278 1279 #else 1280 1281 static int __register_pernet_operations(struct list_head *list, 1282 struct pernet_operations *ops) 1283 { 1284 if (!init_net_initialized) { 1285 list_add_tail(&ops->list, list); 1286 return 0; 1287 } 1288 1289 return ops_init(ops, &init_net); 1290 } 1291 1292 static void __unregister_pernet_operations(struct pernet_operations *ops) 1293 { 1294 if (!init_net_initialized) { 1295 list_del(&ops->list); 1296 } else { 1297 LIST_HEAD(net_exit_list); 1298 list_add(&init_net.exit_list, &net_exit_list); 1299 free_exit_list(ops, &net_exit_list); 1300 } 1301 } 1302 1303 #endif /* CONFIG_NET_NS */ 1304 1305 static DEFINE_IDA(net_generic_ids); 1306 1307 static int register_pernet_operations(struct list_head *list, 1308 struct pernet_operations *ops) 1309 { 1310 int error; 1311 1312 if (WARN_ON(!!ops->id ^ !!ops->size)) 1313 return -EINVAL; 1314 1315 if (ops->id) { 1316 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1317 GFP_KERNEL); 1318 if (error < 0) 1319 return error; 1320 *ops->id = error; 1321 /* This does not require READ_ONCE as writers already hold 1322 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1323 * net_alloc_generic. 1324 */ 1325 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1326 } 1327 error = __register_pernet_operations(list, ops); 1328 if (error) { 1329 rcu_barrier(); 1330 if (ops->id) 1331 ida_free(&net_generic_ids, *ops->id); 1332 } 1333 1334 return error; 1335 } 1336 1337 static void unregister_pernet_operations(struct pernet_operations *ops) 1338 { 1339 __unregister_pernet_operations(ops); 1340 rcu_barrier(); 1341 if (ops->id) 1342 ida_free(&net_generic_ids, *ops->id); 1343 } 1344 1345 /** 1346 * register_pernet_subsys - register a network namespace subsystem 1347 * @ops: pernet operations structure for the subsystem 1348 * 1349 * Register a subsystem which has init and exit functions 1350 * that are called when network namespaces are created and 1351 * destroyed respectively. 1352 * 1353 * When registered all network namespace init functions are 1354 * called for every existing network namespace. Allowing kernel 1355 * modules to have a race free view of the set of network namespaces. 1356 * 1357 * When a new network namespace is created all of the init 1358 * methods are called in the order in which they were registered. 1359 * 1360 * When a network namespace is destroyed all of the exit methods 1361 * are called in the reverse of the order with which they were 1362 * registered. 1363 */ 1364 int register_pernet_subsys(struct pernet_operations *ops) 1365 { 1366 int error; 1367 down_write(&pernet_ops_rwsem); 1368 error = register_pernet_operations(first_device, ops); 1369 up_write(&pernet_ops_rwsem); 1370 return error; 1371 } 1372 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1373 1374 /** 1375 * unregister_pernet_subsys - unregister a network namespace subsystem 1376 * @ops: pernet operations structure to manipulate 1377 * 1378 * Remove the pernet operations structure from the list to be 1379 * used when network namespaces are created or destroyed. In 1380 * addition run the exit method for all existing network 1381 * namespaces. 1382 */ 1383 void unregister_pernet_subsys(struct pernet_operations *ops) 1384 { 1385 down_write(&pernet_ops_rwsem); 1386 unregister_pernet_operations(ops); 1387 up_write(&pernet_ops_rwsem); 1388 } 1389 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1390 1391 /** 1392 * register_pernet_device - register a network namespace device 1393 * @ops: pernet operations structure for the subsystem 1394 * 1395 * Register a device which has init and exit functions 1396 * that are called when network namespaces are created and 1397 * destroyed respectively. 1398 * 1399 * When registered all network namespace init functions are 1400 * called for every existing network namespace. Allowing kernel 1401 * modules to have a race free view of the set of network namespaces. 1402 * 1403 * When a new network namespace is created all of the init 1404 * methods are called in the order in which they were registered. 1405 * 1406 * When a network namespace is destroyed all of the exit methods 1407 * are called in the reverse of the order with which they were 1408 * registered. 1409 */ 1410 int register_pernet_device(struct pernet_operations *ops) 1411 { 1412 int error; 1413 down_write(&pernet_ops_rwsem); 1414 error = register_pernet_operations(&pernet_list, ops); 1415 if (!error && (first_device == &pernet_list)) 1416 first_device = &ops->list; 1417 up_write(&pernet_ops_rwsem); 1418 return error; 1419 } 1420 EXPORT_SYMBOL_GPL(register_pernet_device); 1421 1422 /** 1423 * unregister_pernet_device - unregister a network namespace netdevice 1424 * @ops: pernet operations structure to manipulate 1425 * 1426 * Remove the pernet operations structure from the list to be 1427 * used when network namespaces are created or destroyed. In 1428 * addition run the exit method for all existing network 1429 * namespaces. 1430 */ 1431 void unregister_pernet_device(struct pernet_operations *ops) 1432 { 1433 down_write(&pernet_ops_rwsem); 1434 if (&ops->list == first_device) 1435 first_device = first_device->next; 1436 unregister_pernet_operations(ops); 1437 up_write(&pernet_ops_rwsem); 1438 } 1439 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1440 1441 #ifdef CONFIG_NET_NS 1442 static struct ns_common *netns_get(struct task_struct *task) 1443 { 1444 struct net *net = NULL; 1445 struct nsproxy *nsproxy; 1446 1447 task_lock(task); 1448 nsproxy = task->nsproxy; 1449 if (nsproxy) 1450 net = get_net(nsproxy->net_ns); 1451 task_unlock(task); 1452 1453 return net ? &net->ns : NULL; 1454 } 1455 1456 static inline struct net *to_net_ns(struct ns_common *ns) 1457 { 1458 return container_of(ns, struct net, ns); 1459 } 1460 1461 static void netns_put(struct ns_common *ns) 1462 { 1463 put_net(to_net_ns(ns)); 1464 } 1465 1466 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1467 { 1468 struct nsproxy *nsproxy = nsset->nsproxy; 1469 struct net *net = to_net_ns(ns); 1470 1471 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1472 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1473 return -EPERM; 1474 1475 put_net(nsproxy->net_ns); 1476 nsproxy->net_ns = get_net(net); 1477 return 0; 1478 } 1479 1480 static struct user_namespace *netns_owner(struct ns_common *ns) 1481 { 1482 return to_net_ns(ns)->user_ns; 1483 } 1484 1485 const struct proc_ns_operations netns_operations = { 1486 .name = "net", 1487 .type = CLONE_NEWNET, 1488 .get = netns_get, 1489 .put = netns_put, 1490 .install = netns_install, 1491 .owner = netns_owner, 1492 }; 1493 #endif 1494