1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 EXPORT_SYMBOL_GPL(pernet_ops_rwsem); 60 61 #define MIN_PERNET_OPS_ID \ 62 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 63 64 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 65 66 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 67 68 DEFINE_COOKIE(net_cookie); 69 70 static struct net_generic *net_alloc_generic(void) 71 { 72 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 73 unsigned int generic_size; 74 struct net_generic *ng; 75 76 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 77 78 ng = kzalloc(generic_size, GFP_KERNEL); 79 if (ng) 80 ng->s.len = gen_ptrs; 81 82 return ng; 83 } 84 85 static int net_assign_generic(struct net *net, unsigned int id, void *data) 86 { 87 struct net_generic *ng, *old_ng; 88 89 BUG_ON(id < MIN_PERNET_OPS_ID); 90 91 old_ng = rcu_dereference_protected(net->gen, 92 lockdep_is_held(&pernet_ops_rwsem)); 93 if (old_ng->s.len > id) { 94 old_ng->ptr[id] = data; 95 return 0; 96 } 97 98 ng = net_alloc_generic(); 99 if (!ng) 100 return -ENOMEM; 101 102 /* 103 * Some synchronisation notes: 104 * 105 * The net_generic explores the net->gen array inside rcu 106 * read section. Besides once set the net->gen->ptr[x] 107 * pointer never changes (see rules in netns/generic.h). 108 * 109 * That said, we simply duplicate this array and schedule 110 * the old copy for kfree after a grace period. 111 */ 112 113 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 114 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 115 ng->ptr[id] = data; 116 117 rcu_assign_pointer(net->gen, ng); 118 kfree_rcu(old_ng, s.rcu); 119 return 0; 120 } 121 122 static int ops_init(const struct pernet_operations *ops, struct net *net) 123 { 124 struct net_generic *ng; 125 int err = -ENOMEM; 126 void *data = NULL; 127 128 if (ops->id && ops->size) { 129 data = kzalloc(ops->size, GFP_KERNEL); 130 if (!data) 131 goto out; 132 133 err = net_assign_generic(net, *ops->id, data); 134 if (err) 135 goto cleanup; 136 } 137 err = 0; 138 if (ops->init) 139 err = ops->init(net); 140 if (!err) 141 return 0; 142 143 if (ops->id && ops->size) { 144 ng = rcu_dereference_protected(net->gen, 145 lockdep_is_held(&pernet_ops_rwsem)); 146 ng->ptr[*ops->id] = NULL; 147 } 148 149 cleanup: 150 kfree(data); 151 152 out: 153 return err; 154 } 155 156 static void ops_pre_exit_list(const struct pernet_operations *ops, 157 struct list_head *net_exit_list) 158 { 159 struct net *net; 160 161 if (ops->pre_exit) { 162 list_for_each_entry(net, net_exit_list, exit_list) 163 ops->pre_exit(net); 164 } 165 } 166 167 static void ops_exit_list(const struct pernet_operations *ops, 168 struct list_head *net_exit_list) 169 { 170 struct net *net; 171 if (ops->exit) { 172 list_for_each_entry(net, net_exit_list, exit_list) { 173 ops->exit(net); 174 cond_resched(); 175 } 176 } 177 if (ops->exit_batch) 178 ops->exit_batch(net_exit_list); 179 } 180 181 static void ops_free_list(const struct pernet_operations *ops, 182 struct list_head *net_exit_list) 183 { 184 struct net *net; 185 if (ops->size && ops->id) { 186 list_for_each_entry(net, net_exit_list, exit_list) 187 kfree(net_generic(net, *ops->id)); 188 } 189 } 190 191 /* should be called with nsid_lock held */ 192 static int alloc_netid(struct net *net, struct net *peer, int reqid) 193 { 194 int min = 0, max = 0; 195 196 if (reqid >= 0) { 197 min = reqid; 198 max = reqid + 1; 199 } 200 201 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 202 } 203 204 /* This function is used by idr_for_each(). If net is equal to peer, the 205 * function returns the id so that idr_for_each() stops. Because we cannot 206 * returns the id 0 (idr_for_each() will not stop), we return the magic value 207 * NET_ID_ZERO (-1) for it. 208 */ 209 #define NET_ID_ZERO -1 210 static int net_eq_idr(int id, void *net, void *peer) 211 { 212 if (net_eq(net, peer)) 213 return id ? : NET_ID_ZERO; 214 return 0; 215 } 216 217 /* Must be called from RCU-critical section or with nsid_lock held */ 218 static int __peernet2id(const struct net *net, struct net *peer) 219 { 220 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 221 222 /* Magic value for id 0. */ 223 if (id == NET_ID_ZERO) 224 return 0; 225 if (id > 0) 226 return id; 227 228 return NETNSA_NSID_NOT_ASSIGNED; 229 } 230 231 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 232 struct nlmsghdr *nlh, gfp_t gfp); 233 /* This function returns the id of a peer netns. If no id is assigned, one will 234 * be allocated and returned. 235 */ 236 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 237 { 238 int id; 239 240 if (refcount_read(&net->ns.count) == 0) 241 return NETNSA_NSID_NOT_ASSIGNED; 242 243 spin_lock_bh(&net->nsid_lock); 244 id = __peernet2id(net, peer); 245 if (id >= 0) { 246 spin_unlock_bh(&net->nsid_lock); 247 return id; 248 } 249 250 /* When peer is obtained from RCU lists, we may race with 251 * its cleanup. Check whether it's alive, and this guarantees 252 * we never hash a peer back to net->netns_ids, after it has 253 * just been idr_remove()'d from there in cleanup_net(). 254 */ 255 if (!maybe_get_net(peer)) { 256 spin_unlock_bh(&net->nsid_lock); 257 return NETNSA_NSID_NOT_ASSIGNED; 258 } 259 260 id = alloc_netid(net, peer, -1); 261 spin_unlock_bh(&net->nsid_lock); 262 263 put_net(peer); 264 if (id < 0) 265 return NETNSA_NSID_NOT_ASSIGNED; 266 267 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 268 269 return id; 270 } 271 EXPORT_SYMBOL_GPL(peernet2id_alloc); 272 273 /* This function returns, if assigned, the id of a peer netns. */ 274 int peernet2id(const struct net *net, struct net *peer) 275 { 276 int id; 277 278 rcu_read_lock(); 279 id = __peernet2id(net, peer); 280 rcu_read_unlock(); 281 282 return id; 283 } 284 EXPORT_SYMBOL(peernet2id); 285 286 /* This function returns true is the peer netns has an id assigned into the 287 * current netns. 288 */ 289 bool peernet_has_id(const struct net *net, struct net *peer) 290 { 291 return peernet2id(net, peer) >= 0; 292 } 293 294 struct net *get_net_ns_by_id(const struct net *net, int id) 295 { 296 struct net *peer; 297 298 if (id < 0) 299 return NULL; 300 301 rcu_read_lock(); 302 peer = idr_find(&net->netns_ids, id); 303 if (peer) 304 peer = maybe_get_net(peer); 305 rcu_read_unlock(); 306 307 return peer; 308 } 309 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 310 311 /* init code that must occur even if setup_net() is not called. */ 312 static __net_init void preinit_net(struct net *net) 313 { 314 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 315 } 316 317 /* 318 * setup_net runs the initializers for the network namespace object. 319 */ 320 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns) 321 { 322 /* Must be called with pernet_ops_rwsem held */ 323 const struct pernet_operations *ops, *saved_ops; 324 LIST_HEAD(net_exit_list); 325 LIST_HEAD(dev_kill_list); 326 int error = 0; 327 328 refcount_set(&net->ns.count, 1); 329 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 330 331 refcount_set(&net->passive, 1); 332 get_random_bytes(&net->hash_mix, sizeof(u32)); 333 preempt_disable(); 334 net->net_cookie = gen_cookie_next(&net_cookie); 335 preempt_enable(); 336 net->dev_base_seq = 1; 337 net->user_ns = user_ns; 338 idr_init(&net->netns_ids); 339 spin_lock_init(&net->nsid_lock); 340 mutex_init(&net->ipv4.ra_mutex); 341 342 list_for_each_entry(ops, &pernet_list, list) { 343 error = ops_init(ops, net); 344 if (error < 0) 345 goto out_undo; 346 } 347 down_write(&net_rwsem); 348 list_add_tail_rcu(&net->list, &net_namespace_list); 349 up_write(&net_rwsem); 350 out: 351 return error; 352 353 out_undo: 354 /* Walk through the list backwards calling the exit functions 355 * for the pernet modules whose init functions did not fail. 356 */ 357 list_add(&net->exit_list, &net_exit_list); 358 saved_ops = ops; 359 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 360 ops_pre_exit_list(ops, &net_exit_list); 361 362 synchronize_rcu(); 363 364 ops = saved_ops; 365 rtnl_lock(); 366 list_for_each_entry_continue_reverse(ops, &pernet_list, list) { 367 if (ops->exit_batch_rtnl) 368 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 369 } 370 unregister_netdevice_many(&dev_kill_list); 371 rtnl_unlock(); 372 373 ops = saved_ops; 374 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 375 ops_exit_list(ops, &net_exit_list); 376 377 ops = saved_ops; 378 list_for_each_entry_continue_reverse(ops, &pernet_list, list) 379 ops_free_list(ops, &net_exit_list); 380 381 rcu_barrier(); 382 goto out; 383 } 384 385 static int __net_init net_defaults_init_net(struct net *net) 386 { 387 net->core.sysctl_somaxconn = SOMAXCONN; 388 /* Limits per socket sk_omem_alloc usage. 389 * TCP zerocopy regular usage needs 128 KB. 390 */ 391 net->core.sysctl_optmem_max = 128 * 1024; 392 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 393 394 return 0; 395 } 396 397 static struct pernet_operations net_defaults_ops = { 398 .init = net_defaults_init_net, 399 }; 400 401 static __init int net_defaults_init(void) 402 { 403 if (register_pernet_subsys(&net_defaults_ops)) 404 panic("Cannot initialize net default settings"); 405 406 return 0; 407 } 408 409 core_initcall(net_defaults_init); 410 411 #ifdef CONFIG_NET_NS 412 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 413 { 414 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 415 } 416 417 static void dec_net_namespaces(struct ucounts *ucounts) 418 { 419 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 420 } 421 422 static struct kmem_cache *net_cachep __ro_after_init; 423 static struct workqueue_struct *netns_wq; 424 425 static struct net *net_alloc(void) 426 { 427 struct net *net = NULL; 428 struct net_generic *ng; 429 430 ng = net_alloc_generic(); 431 if (!ng) 432 goto out; 433 434 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 435 if (!net) 436 goto out_free; 437 438 #ifdef CONFIG_KEYS 439 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 440 if (!net->key_domain) 441 goto out_free_2; 442 refcount_set(&net->key_domain->usage, 1); 443 #endif 444 445 rcu_assign_pointer(net->gen, ng); 446 out: 447 return net; 448 449 #ifdef CONFIG_KEYS 450 out_free_2: 451 kmem_cache_free(net_cachep, net); 452 net = NULL; 453 #endif 454 out_free: 455 kfree(ng); 456 goto out; 457 } 458 459 static void net_free(struct net *net) 460 { 461 if (refcount_dec_and_test(&net->passive)) { 462 kfree(rcu_access_pointer(net->gen)); 463 464 /* There should not be any trackers left there. */ 465 ref_tracker_dir_exit(&net->notrefcnt_tracker); 466 467 kmem_cache_free(net_cachep, net); 468 } 469 } 470 471 void net_drop_ns(void *p) 472 { 473 struct net *net = (struct net *)p; 474 475 if (net) 476 net_free(net); 477 } 478 479 struct net *copy_net_ns(unsigned long flags, 480 struct user_namespace *user_ns, struct net *old_net) 481 { 482 struct ucounts *ucounts; 483 struct net *net; 484 int rv; 485 486 if (!(flags & CLONE_NEWNET)) 487 return get_net(old_net); 488 489 ucounts = inc_net_namespaces(user_ns); 490 if (!ucounts) 491 return ERR_PTR(-ENOSPC); 492 493 net = net_alloc(); 494 if (!net) { 495 rv = -ENOMEM; 496 goto dec_ucounts; 497 } 498 499 preinit_net(net); 500 refcount_set(&net->passive, 1); 501 net->ucounts = ucounts; 502 get_user_ns(user_ns); 503 504 rv = down_read_killable(&pernet_ops_rwsem); 505 if (rv < 0) 506 goto put_userns; 507 508 rv = setup_net(net, user_ns); 509 510 up_read(&pernet_ops_rwsem); 511 512 if (rv < 0) { 513 put_userns: 514 #ifdef CONFIG_KEYS 515 key_remove_domain(net->key_domain); 516 #endif 517 put_user_ns(user_ns); 518 net_free(net); 519 dec_ucounts: 520 dec_net_namespaces(ucounts); 521 return ERR_PTR(rv); 522 } 523 return net; 524 } 525 526 /** 527 * net_ns_get_ownership - get sysfs ownership data for @net 528 * @net: network namespace in question (can be NULL) 529 * @uid: kernel user ID for sysfs objects 530 * @gid: kernel group ID for sysfs objects 531 * 532 * Returns the uid/gid pair of root in the user namespace associated with the 533 * given network namespace. 534 */ 535 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 536 { 537 if (net) { 538 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 539 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 540 541 if (uid_valid(ns_root_uid)) 542 *uid = ns_root_uid; 543 544 if (gid_valid(ns_root_gid)) 545 *gid = ns_root_gid; 546 } else { 547 *uid = GLOBAL_ROOT_UID; 548 *gid = GLOBAL_ROOT_GID; 549 } 550 } 551 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 552 553 static void unhash_nsid(struct net *net, struct net *last) 554 { 555 struct net *tmp; 556 /* This function is only called from cleanup_net() work, 557 * and this work is the only process, that may delete 558 * a net from net_namespace_list. So, when the below 559 * is executing, the list may only grow. Thus, we do not 560 * use for_each_net_rcu() or net_rwsem. 561 */ 562 for_each_net(tmp) { 563 int id; 564 565 spin_lock_bh(&tmp->nsid_lock); 566 id = __peernet2id(tmp, net); 567 if (id >= 0) 568 idr_remove(&tmp->netns_ids, id); 569 spin_unlock_bh(&tmp->nsid_lock); 570 if (id >= 0) 571 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 572 GFP_KERNEL); 573 if (tmp == last) 574 break; 575 } 576 spin_lock_bh(&net->nsid_lock); 577 idr_destroy(&net->netns_ids); 578 spin_unlock_bh(&net->nsid_lock); 579 } 580 581 static LLIST_HEAD(cleanup_list); 582 583 static void cleanup_net(struct work_struct *work) 584 { 585 const struct pernet_operations *ops; 586 struct net *net, *tmp, *last; 587 struct llist_node *net_kill_list; 588 LIST_HEAD(net_exit_list); 589 LIST_HEAD(dev_kill_list); 590 591 /* Atomically snapshot the list of namespaces to cleanup */ 592 net_kill_list = llist_del_all(&cleanup_list); 593 594 down_read(&pernet_ops_rwsem); 595 596 /* Don't let anyone else find us. */ 597 down_write(&net_rwsem); 598 llist_for_each_entry(net, net_kill_list, cleanup_list) 599 list_del_rcu(&net->list); 600 /* Cache last net. After we unlock rtnl, no one new net 601 * added to net_namespace_list can assign nsid pointer 602 * to a net from net_kill_list (see peernet2id_alloc()). 603 * So, we skip them in unhash_nsid(). 604 * 605 * Note, that unhash_nsid() does not delete nsid links 606 * between net_kill_list's nets, as they've already 607 * deleted from net_namespace_list. But, this would be 608 * useless anyway, as netns_ids are destroyed there. 609 */ 610 last = list_last_entry(&net_namespace_list, struct net, list); 611 up_write(&net_rwsem); 612 613 llist_for_each_entry(net, net_kill_list, cleanup_list) { 614 unhash_nsid(net, last); 615 list_add_tail(&net->exit_list, &net_exit_list); 616 } 617 618 /* Run all of the network namespace pre_exit methods */ 619 list_for_each_entry_reverse(ops, &pernet_list, list) 620 ops_pre_exit_list(ops, &net_exit_list); 621 622 /* 623 * Another CPU might be rcu-iterating the list, wait for it. 624 * This needs to be before calling the exit() notifiers, so 625 * the rcu_barrier() below isn't sufficient alone. 626 * Also the pre_exit() and exit() methods need this barrier. 627 */ 628 synchronize_rcu_expedited(); 629 630 rtnl_lock(); 631 list_for_each_entry_reverse(ops, &pernet_list, list) { 632 if (ops->exit_batch_rtnl) 633 ops->exit_batch_rtnl(&net_exit_list, &dev_kill_list); 634 } 635 unregister_netdevice_many(&dev_kill_list); 636 rtnl_unlock(); 637 638 /* Run all of the network namespace exit methods */ 639 list_for_each_entry_reverse(ops, &pernet_list, list) 640 ops_exit_list(ops, &net_exit_list); 641 642 /* Free the net generic variables */ 643 list_for_each_entry_reverse(ops, &pernet_list, list) 644 ops_free_list(ops, &net_exit_list); 645 646 up_read(&pernet_ops_rwsem); 647 648 /* Ensure there are no outstanding rcu callbacks using this 649 * network namespace. 650 */ 651 rcu_barrier(); 652 653 /* Finally it is safe to free my network namespace structure */ 654 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 655 list_del_init(&net->exit_list); 656 dec_net_namespaces(net->ucounts); 657 #ifdef CONFIG_KEYS 658 key_remove_domain(net->key_domain); 659 #endif 660 put_user_ns(net->user_ns); 661 net_free(net); 662 } 663 } 664 665 /** 666 * net_ns_barrier - wait until concurrent net_cleanup_work is done 667 * 668 * cleanup_net runs from work queue and will first remove namespaces 669 * from the global list, then run net exit functions. 670 * 671 * Call this in module exit path to make sure that all netns 672 * ->exit ops have been invoked before the function is removed. 673 */ 674 void net_ns_barrier(void) 675 { 676 down_write(&pernet_ops_rwsem); 677 up_write(&pernet_ops_rwsem); 678 } 679 EXPORT_SYMBOL(net_ns_barrier); 680 681 static DECLARE_WORK(net_cleanup_work, cleanup_net); 682 683 void __put_net(struct net *net) 684 { 685 ref_tracker_dir_exit(&net->refcnt_tracker); 686 /* Cleanup the network namespace in process context */ 687 if (llist_add(&net->cleanup_list, &cleanup_list)) 688 queue_work(netns_wq, &net_cleanup_work); 689 } 690 EXPORT_SYMBOL_GPL(__put_net); 691 692 /** 693 * get_net_ns - increment the refcount of the network namespace 694 * @ns: common namespace (net) 695 * 696 * Returns the net's common namespace or ERR_PTR() if ref is zero. 697 */ 698 struct ns_common *get_net_ns(struct ns_common *ns) 699 { 700 struct net *net; 701 702 net = maybe_get_net(container_of(ns, struct net, ns)); 703 if (net) 704 return &net->ns; 705 return ERR_PTR(-EINVAL); 706 } 707 EXPORT_SYMBOL_GPL(get_net_ns); 708 709 struct net *get_net_ns_by_fd(int fd) 710 { 711 struct fd f = fdget(fd); 712 struct net *net = ERR_PTR(-EINVAL); 713 714 if (!f.file) 715 return ERR_PTR(-EBADF); 716 717 if (proc_ns_file(f.file)) { 718 struct ns_common *ns = get_proc_ns(file_inode(f.file)); 719 if (ns->ops == &netns_operations) 720 net = get_net(container_of(ns, struct net, ns)); 721 } 722 fdput(f); 723 724 return net; 725 } 726 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 727 #endif 728 729 struct net *get_net_ns_by_pid(pid_t pid) 730 { 731 struct task_struct *tsk; 732 struct net *net; 733 734 /* Lookup the network namespace */ 735 net = ERR_PTR(-ESRCH); 736 rcu_read_lock(); 737 tsk = find_task_by_vpid(pid); 738 if (tsk) { 739 struct nsproxy *nsproxy; 740 task_lock(tsk); 741 nsproxy = tsk->nsproxy; 742 if (nsproxy) 743 net = get_net(nsproxy->net_ns); 744 task_unlock(tsk); 745 } 746 rcu_read_unlock(); 747 return net; 748 } 749 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 750 751 static __net_init int net_ns_net_init(struct net *net) 752 { 753 #ifdef CONFIG_NET_NS 754 net->ns.ops = &netns_operations; 755 #endif 756 return ns_alloc_inum(&net->ns); 757 } 758 759 static __net_exit void net_ns_net_exit(struct net *net) 760 { 761 ns_free_inum(&net->ns); 762 } 763 764 static struct pernet_operations __net_initdata net_ns_ops = { 765 .init = net_ns_net_init, 766 .exit = net_ns_net_exit, 767 }; 768 769 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 770 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 771 [NETNSA_NSID] = { .type = NLA_S32 }, 772 [NETNSA_PID] = { .type = NLA_U32 }, 773 [NETNSA_FD] = { .type = NLA_U32 }, 774 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 775 }; 776 777 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 778 struct netlink_ext_ack *extack) 779 { 780 struct net *net = sock_net(skb->sk); 781 struct nlattr *tb[NETNSA_MAX + 1]; 782 struct nlattr *nla; 783 struct net *peer; 784 int nsid, err; 785 786 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 787 NETNSA_MAX, rtnl_net_policy, extack); 788 if (err < 0) 789 return err; 790 if (!tb[NETNSA_NSID]) { 791 NL_SET_ERR_MSG(extack, "nsid is missing"); 792 return -EINVAL; 793 } 794 nsid = nla_get_s32(tb[NETNSA_NSID]); 795 796 if (tb[NETNSA_PID]) { 797 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 798 nla = tb[NETNSA_PID]; 799 } else if (tb[NETNSA_FD]) { 800 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 801 nla = tb[NETNSA_FD]; 802 } else { 803 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 804 return -EINVAL; 805 } 806 if (IS_ERR(peer)) { 807 NL_SET_BAD_ATTR(extack, nla); 808 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 809 return PTR_ERR(peer); 810 } 811 812 spin_lock_bh(&net->nsid_lock); 813 if (__peernet2id(net, peer) >= 0) { 814 spin_unlock_bh(&net->nsid_lock); 815 err = -EEXIST; 816 NL_SET_BAD_ATTR(extack, nla); 817 NL_SET_ERR_MSG(extack, 818 "Peer netns already has a nsid assigned"); 819 goto out; 820 } 821 822 err = alloc_netid(net, peer, nsid); 823 spin_unlock_bh(&net->nsid_lock); 824 if (err >= 0) { 825 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 826 nlh, GFP_KERNEL); 827 err = 0; 828 } else if (err == -ENOSPC && nsid >= 0) { 829 err = -EEXIST; 830 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 831 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 832 } 833 out: 834 put_net(peer); 835 return err; 836 } 837 838 static int rtnl_net_get_size(void) 839 { 840 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 841 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 842 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 843 ; 844 } 845 846 struct net_fill_args { 847 u32 portid; 848 u32 seq; 849 int flags; 850 int cmd; 851 int nsid; 852 bool add_ref; 853 int ref_nsid; 854 }; 855 856 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 857 { 858 struct nlmsghdr *nlh; 859 struct rtgenmsg *rth; 860 861 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 862 args->flags); 863 if (!nlh) 864 return -EMSGSIZE; 865 866 rth = nlmsg_data(nlh); 867 rth->rtgen_family = AF_UNSPEC; 868 869 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 870 goto nla_put_failure; 871 872 if (args->add_ref && 873 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 874 goto nla_put_failure; 875 876 nlmsg_end(skb, nlh); 877 return 0; 878 879 nla_put_failure: 880 nlmsg_cancel(skb, nlh); 881 return -EMSGSIZE; 882 } 883 884 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 885 const struct nlmsghdr *nlh, 886 struct nlattr **tb, 887 struct netlink_ext_ack *extack) 888 { 889 int i, err; 890 891 if (!netlink_strict_get_check(skb)) 892 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 893 tb, NETNSA_MAX, rtnl_net_policy, 894 extack); 895 896 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 897 NETNSA_MAX, rtnl_net_policy, 898 extack); 899 if (err) 900 return err; 901 902 for (i = 0; i <= NETNSA_MAX; i++) { 903 if (!tb[i]) 904 continue; 905 906 switch (i) { 907 case NETNSA_PID: 908 case NETNSA_FD: 909 case NETNSA_NSID: 910 case NETNSA_TARGET_NSID: 911 break; 912 default: 913 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 914 return -EINVAL; 915 } 916 } 917 918 return 0; 919 } 920 921 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 922 struct netlink_ext_ack *extack) 923 { 924 struct net *net = sock_net(skb->sk); 925 struct nlattr *tb[NETNSA_MAX + 1]; 926 struct net_fill_args fillargs = { 927 .portid = NETLINK_CB(skb).portid, 928 .seq = nlh->nlmsg_seq, 929 .cmd = RTM_NEWNSID, 930 }; 931 struct net *peer, *target = net; 932 struct nlattr *nla; 933 struct sk_buff *msg; 934 int err; 935 936 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 937 if (err < 0) 938 return err; 939 if (tb[NETNSA_PID]) { 940 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 941 nla = tb[NETNSA_PID]; 942 } else if (tb[NETNSA_FD]) { 943 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 944 nla = tb[NETNSA_FD]; 945 } else if (tb[NETNSA_NSID]) { 946 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 947 if (!peer) 948 peer = ERR_PTR(-ENOENT); 949 nla = tb[NETNSA_NSID]; 950 } else { 951 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 952 return -EINVAL; 953 } 954 955 if (IS_ERR(peer)) { 956 NL_SET_BAD_ATTR(extack, nla); 957 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 958 return PTR_ERR(peer); 959 } 960 961 if (tb[NETNSA_TARGET_NSID]) { 962 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 963 964 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 965 if (IS_ERR(target)) { 966 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 967 NL_SET_ERR_MSG(extack, 968 "Target netns reference is invalid"); 969 err = PTR_ERR(target); 970 goto out; 971 } 972 fillargs.add_ref = true; 973 fillargs.ref_nsid = peernet2id(net, peer); 974 } 975 976 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 977 if (!msg) { 978 err = -ENOMEM; 979 goto out; 980 } 981 982 fillargs.nsid = peernet2id(target, peer); 983 err = rtnl_net_fill(msg, &fillargs); 984 if (err < 0) 985 goto err_out; 986 987 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 988 goto out; 989 990 err_out: 991 nlmsg_free(msg); 992 out: 993 if (fillargs.add_ref) 994 put_net(target); 995 put_net(peer); 996 return err; 997 } 998 999 struct rtnl_net_dump_cb { 1000 struct net *tgt_net; 1001 struct net *ref_net; 1002 struct sk_buff *skb; 1003 struct net_fill_args fillargs; 1004 int idx; 1005 int s_idx; 1006 }; 1007 1008 /* Runs in RCU-critical section. */ 1009 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1010 { 1011 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1012 int ret; 1013 1014 if (net_cb->idx < net_cb->s_idx) 1015 goto cont; 1016 1017 net_cb->fillargs.nsid = id; 1018 if (net_cb->fillargs.add_ref) 1019 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1020 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1021 if (ret < 0) 1022 return ret; 1023 1024 cont: 1025 net_cb->idx++; 1026 return 0; 1027 } 1028 1029 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1030 struct rtnl_net_dump_cb *net_cb, 1031 struct netlink_callback *cb) 1032 { 1033 struct netlink_ext_ack *extack = cb->extack; 1034 struct nlattr *tb[NETNSA_MAX + 1]; 1035 int err, i; 1036 1037 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1038 NETNSA_MAX, rtnl_net_policy, 1039 extack); 1040 if (err < 0) 1041 return err; 1042 1043 for (i = 0; i <= NETNSA_MAX; i++) { 1044 if (!tb[i]) 1045 continue; 1046 1047 if (i == NETNSA_TARGET_NSID) { 1048 struct net *net; 1049 1050 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1051 if (IS_ERR(net)) { 1052 NL_SET_BAD_ATTR(extack, tb[i]); 1053 NL_SET_ERR_MSG(extack, 1054 "Invalid target network namespace id"); 1055 return PTR_ERR(net); 1056 } 1057 net_cb->fillargs.add_ref = true; 1058 net_cb->ref_net = net_cb->tgt_net; 1059 net_cb->tgt_net = net; 1060 } else { 1061 NL_SET_BAD_ATTR(extack, tb[i]); 1062 NL_SET_ERR_MSG(extack, 1063 "Unsupported attribute in dump request"); 1064 return -EINVAL; 1065 } 1066 } 1067 1068 return 0; 1069 } 1070 1071 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1072 { 1073 struct rtnl_net_dump_cb net_cb = { 1074 .tgt_net = sock_net(skb->sk), 1075 .skb = skb, 1076 .fillargs = { 1077 .portid = NETLINK_CB(cb->skb).portid, 1078 .seq = cb->nlh->nlmsg_seq, 1079 .flags = NLM_F_MULTI, 1080 .cmd = RTM_NEWNSID, 1081 }, 1082 .idx = 0, 1083 .s_idx = cb->args[0], 1084 }; 1085 int err = 0; 1086 1087 if (cb->strict_check) { 1088 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1089 if (err < 0) 1090 goto end; 1091 } 1092 1093 rcu_read_lock(); 1094 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1095 rcu_read_unlock(); 1096 1097 cb->args[0] = net_cb.idx; 1098 end: 1099 if (net_cb.fillargs.add_ref) 1100 put_net(net_cb.tgt_net); 1101 return err; 1102 } 1103 1104 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1105 struct nlmsghdr *nlh, gfp_t gfp) 1106 { 1107 struct net_fill_args fillargs = { 1108 .portid = portid, 1109 .seq = nlh ? nlh->nlmsg_seq : 0, 1110 .cmd = cmd, 1111 .nsid = id, 1112 }; 1113 struct sk_buff *msg; 1114 int err = -ENOMEM; 1115 1116 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1117 if (!msg) 1118 goto out; 1119 1120 err = rtnl_net_fill(msg, &fillargs); 1121 if (err < 0) 1122 goto err_out; 1123 1124 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1125 return; 1126 1127 err_out: 1128 nlmsg_free(msg); 1129 out: 1130 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1131 } 1132 1133 #ifdef CONFIG_NET_NS 1134 static void __init netns_ipv4_struct_check(void) 1135 { 1136 /* TX readonly hotpath cache lines */ 1137 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1138 sysctl_tcp_early_retrans); 1139 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1140 sysctl_tcp_tso_win_divisor); 1141 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1142 sysctl_tcp_tso_rtt_log); 1143 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1144 sysctl_tcp_autocorking); 1145 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1146 sysctl_tcp_min_snd_mss); 1147 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1148 sysctl_tcp_notsent_lowat); 1149 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1150 sysctl_tcp_limit_output_bytes); 1151 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1152 sysctl_tcp_min_rtt_wlen); 1153 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1154 sysctl_tcp_wmem); 1155 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1156 sysctl_ip_fwd_use_pmtu); 1157 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1158 1159 /* TXRX readonly hotpath cache lines */ 1160 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1161 sysctl_tcp_moderate_rcvbuf); 1162 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1163 1164 /* RX readonly hotpath cache line */ 1165 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1166 sysctl_ip_early_demux); 1167 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1168 sysctl_tcp_early_demux); 1169 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1170 sysctl_tcp_reordering); 1171 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1172 sysctl_tcp_rmem); 1173 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 18); 1174 } 1175 #endif 1176 1177 void __init net_ns_init(void) 1178 { 1179 struct net_generic *ng; 1180 1181 #ifdef CONFIG_NET_NS 1182 netns_ipv4_struct_check(); 1183 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1184 SMP_CACHE_BYTES, 1185 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1186 1187 /* Create workqueue for cleanup */ 1188 netns_wq = create_singlethread_workqueue("netns"); 1189 if (!netns_wq) 1190 panic("Could not create netns workq"); 1191 #endif 1192 1193 ng = net_alloc_generic(); 1194 if (!ng) 1195 panic("Could not allocate generic netns"); 1196 1197 rcu_assign_pointer(init_net.gen, ng); 1198 1199 #ifdef CONFIG_KEYS 1200 init_net.key_domain = &init_net_key_domain; 1201 #endif 1202 down_write(&pernet_ops_rwsem); 1203 preinit_net(&init_net); 1204 if (setup_net(&init_net, &init_user_ns)) 1205 panic("Could not setup the initial network namespace"); 1206 1207 init_net_initialized = true; 1208 up_write(&pernet_ops_rwsem); 1209 1210 if (register_pernet_subsys(&net_ns_ops)) 1211 panic("Could not register network namespace subsystems"); 1212 1213 rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL, 1214 RTNL_FLAG_DOIT_UNLOCKED); 1215 rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid, 1216 RTNL_FLAG_DOIT_UNLOCKED | 1217 RTNL_FLAG_DUMP_UNLOCKED); 1218 } 1219 1220 static void free_exit_list(struct pernet_operations *ops, struct list_head *net_exit_list) 1221 { 1222 ops_pre_exit_list(ops, net_exit_list); 1223 synchronize_rcu(); 1224 1225 if (ops->exit_batch_rtnl) { 1226 LIST_HEAD(dev_kill_list); 1227 1228 rtnl_lock(); 1229 ops->exit_batch_rtnl(net_exit_list, &dev_kill_list); 1230 unregister_netdevice_many(&dev_kill_list); 1231 rtnl_unlock(); 1232 } 1233 ops_exit_list(ops, net_exit_list); 1234 1235 ops_free_list(ops, net_exit_list); 1236 } 1237 1238 #ifdef CONFIG_NET_NS 1239 static int __register_pernet_operations(struct list_head *list, 1240 struct pernet_operations *ops) 1241 { 1242 struct net *net; 1243 int error; 1244 LIST_HEAD(net_exit_list); 1245 1246 list_add_tail(&ops->list, list); 1247 if (ops->init || (ops->id && ops->size)) { 1248 /* We held write locked pernet_ops_rwsem, and parallel 1249 * setup_net() and cleanup_net() are not possible. 1250 */ 1251 for_each_net(net) { 1252 error = ops_init(ops, net); 1253 if (error) 1254 goto out_undo; 1255 list_add_tail(&net->exit_list, &net_exit_list); 1256 } 1257 } 1258 return 0; 1259 1260 out_undo: 1261 /* If I have an error cleanup all namespaces I initialized */ 1262 list_del(&ops->list); 1263 free_exit_list(ops, &net_exit_list); 1264 return error; 1265 } 1266 1267 static void __unregister_pernet_operations(struct pernet_operations *ops) 1268 { 1269 struct net *net; 1270 LIST_HEAD(net_exit_list); 1271 1272 list_del(&ops->list); 1273 /* See comment in __register_pernet_operations() */ 1274 for_each_net(net) 1275 list_add_tail(&net->exit_list, &net_exit_list); 1276 1277 free_exit_list(ops, &net_exit_list); 1278 } 1279 1280 #else 1281 1282 static int __register_pernet_operations(struct list_head *list, 1283 struct pernet_operations *ops) 1284 { 1285 if (!init_net_initialized) { 1286 list_add_tail(&ops->list, list); 1287 return 0; 1288 } 1289 1290 return ops_init(ops, &init_net); 1291 } 1292 1293 static void __unregister_pernet_operations(struct pernet_operations *ops) 1294 { 1295 if (!init_net_initialized) { 1296 list_del(&ops->list); 1297 } else { 1298 LIST_HEAD(net_exit_list); 1299 list_add(&init_net.exit_list, &net_exit_list); 1300 free_exit_list(ops, &net_exit_list); 1301 } 1302 } 1303 1304 #endif /* CONFIG_NET_NS */ 1305 1306 static DEFINE_IDA(net_generic_ids); 1307 1308 static int register_pernet_operations(struct list_head *list, 1309 struct pernet_operations *ops) 1310 { 1311 int error; 1312 1313 if (ops->id) { 1314 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1315 GFP_KERNEL); 1316 if (error < 0) 1317 return error; 1318 *ops->id = error; 1319 /* This does not require READ_ONCE as writers already hold 1320 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1321 * net_alloc_generic. 1322 */ 1323 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1324 } 1325 error = __register_pernet_operations(list, ops); 1326 if (error) { 1327 rcu_barrier(); 1328 if (ops->id) 1329 ida_free(&net_generic_ids, *ops->id); 1330 } 1331 1332 return error; 1333 } 1334 1335 static void unregister_pernet_operations(struct pernet_operations *ops) 1336 { 1337 __unregister_pernet_operations(ops); 1338 rcu_barrier(); 1339 if (ops->id) 1340 ida_free(&net_generic_ids, *ops->id); 1341 } 1342 1343 /** 1344 * register_pernet_subsys - register a network namespace subsystem 1345 * @ops: pernet operations structure for the subsystem 1346 * 1347 * Register a subsystem which has init and exit functions 1348 * that are called when network namespaces are created and 1349 * destroyed respectively. 1350 * 1351 * When registered all network namespace init functions are 1352 * called for every existing network namespace. Allowing kernel 1353 * modules to have a race free view of the set of network namespaces. 1354 * 1355 * When a new network namespace is created all of the init 1356 * methods are called in the order in which they were registered. 1357 * 1358 * When a network namespace is destroyed all of the exit methods 1359 * are called in the reverse of the order with which they were 1360 * registered. 1361 */ 1362 int register_pernet_subsys(struct pernet_operations *ops) 1363 { 1364 int error; 1365 down_write(&pernet_ops_rwsem); 1366 error = register_pernet_operations(first_device, ops); 1367 up_write(&pernet_ops_rwsem); 1368 return error; 1369 } 1370 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1371 1372 /** 1373 * unregister_pernet_subsys - unregister a network namespace subsystem 1374 * @ops: pernet operations structure to manipulate 1375 * 1376 * Remove the pernet operations structure from the list to be 1377 * used when network namespaces are created or destroyed. In 1378 * addition run the exit method for all existing network 1379 * namespaces. 1380 */ 1381 void unregister_pernet_subsys(struct pernet_operations *ops) 1382 { 1383 down_write(&pernet_ops_rwsem); 1384 unregister_pernet_operations(ops); 1385 up_write(&pernet_ops_rwsem); 1386 } 1387 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1388 1389 /** 1390 * register_pernet_device - register a network namespace device 1391 * @ops: pernet operations structure for the subsystem 1392 * 1393 * Register a device which has init and exit functions 1394 * that are called when network namespaces are created and 1395 * destroyed respectively. 1396 * 1397 * When registered all network namespace init functions are 1398 * called for every existing network namespace. Allowing kernel 1399 * modules to have a race free view of the set of network namespaces. 1400 * 1401 * When a new network namespace is created all of the init 1402 * methods are called in the order in which they were registered. 1403 * 1404 * When a network namespace is destroyed all of the exit methods 1405 * are called in the reverse of the order with which they were 1406 * registered. 1407 */ 1408 int register_pernet_device(struct pernet_operations *ops) 1409 { 1410 int error; 1411 down_write(&pernet_ops_rwsem); 1412 error = register_pernet_operations(&pernet_list, ops); 1413 if (!error && (first_device == &pernet_list)) 1414 first_device = &ops->list; 1415 up_write(&pernet_ops_rwsem); 1416 return error; 1417 } 1418 EXPORT_SYMBOL_GPL(register_pernet_device); 1419 1420 /** 1421 * unregister_pernet_device - unregister a network namespace netdevice 1422 * @ops: pernet operations structure to manipulate 1423 * 1424 * Remove the pernet operations structure from the list to be 1425 * used when network namespaces are created or destroyed. In 1426 * addition run the exit method for all existing network 1427 * namespaces. 1428 */ 1429 void unregister_pernet_device(struct pernet_operations *ops) 1430 { 1431 down_write(&pernet_ops_rwsem); 1432 if (&ops->list == first_device) 1433 first_device = first_device->next; 1434 unregister_pernet_operations(ops); 1435 up_write(&pernet_ops_rwsem); 1436 } 1437 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1438 1439 #ifdef CONFIG_NET_NS 1440 static struct ns_common *netns_get(struct task_struct *task) 1441 { 1442 struct net *net = NULL; 1443 struct nsproxy *nsproxy; 1444 1445 task_lock(task); 1446 nsproxy = task->nsproxy; 1447 if (nsproxy) 1448 net = get_net(nsproxy->net_ns); 1449 task_unlock(task); 1450 1451 return net ? &net->ns : NULL; 1452 } 1453 1454 static inline struct net *to_net_ns(struct ns_common *ns) 1455 { 1456 return container_of(ns, struct net, ns); 1457 } 1458 1459 static void netns_put(struct ns_common *ns) 1460 { 1461 put_net(to_net_ns(ns)); 1462 } 1463 1464 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1465 { 1466 struct nsproxy *nsproxy = nsset->nsproxy; 1467 struct net *net = to_net_ns(ns); 1468 1469 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1470 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1471 return -EPERM; 1472 1473 put_net(nsproxy->net_ns); 1474 nsproxy->net_ns = get_net(net); 1475 return 0; 1476 } 1477 1478 static struct user_namespace *netns_owner(struct ns_common *ns) 1479 { 1480 return to_net_ns(ns)->user_ns; 1481 } 1482 1483 const struct proc_ns_operations netns_operations = { 1484 .name = "net", 1485 .type = CLONE_NEWNET, 1486 .get = netns_get, 1487 .put = netns_put, 1488 .install = netns_install, 1489 .owner = netns_owner, 1490 }; 1491 #endif 1492