1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/proc_fs.h> 23 24 #include <net/aligned_data.h> 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 static struct net_generic *net_alloc_generic(void) 68 { 69 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 70 unsigned int generic_size; 71 struct net_generic *ng; 72 73 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 74 75 ng = kzalloc(generic_size, GFP_KERNEL); 76 if (ng) 77 ng->s.len = gen_ptrs; 78 79 return ng; 80 } 81 82 static int net_assign_generic(struct net *net, unsigned int id, void *data) 83 { 84 struct net_generic *ng, *old_ng; 85 86 BUG_ON(id < MIN_PERNET_OPS_ID); 87 88 old_ng = rcu_dereference_protected(net->gen, 89 lockdep_is_held(&pernet_ops_rwsem)); 90 if (old_ng->s.len > id) { 91 old_ng->ptr[id] = data; 92 return 0; 93 } 94 95 ng = net_alloc_generic(); 96 if (!ng) 97 return -ENOMEM; 98 99 /* 100 * Some synchronisation notes: 101 * 102 * The net_generic explores the net->gen array inside rcu 103 * read section. Besides once set the net->gen->ptr[x] 104 * pointer never changes (see rules in netns/generic.h). 105 * 106 * That said, we simply duplicate this array and schedule 107 * the old copy for kfree after a grace period. 108 */ 109 110 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 111 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 112 ng->ptr[id] = data; 113 114 rcu_assign_pointer(net->gen, ng); 115 kfree_rcu(old_ng, s.rcu); 116 return 0; 117 } 118 119 static int ops_init(const struct pernet_operations *ops, struct net *net) 120 { 121 struct net_generic *ng; 122 int err = -ENOMEM; 123 void *data = NULL; 124 125 if (ops->id) { 126 data = kzalloc(ops->size, GFP_KERNEL); 127 if (!data) 128 goto out; 129 130 err = net_assign_generic(net, *ops->id, data); 131 if (err) 132 goto cleanup; 133 } 134 err = 0; 135 if (ops->init) 136 err = ops->init(net); 137 if (!err) 138 return 0; 139 140 if (ops->id) { 141 ng = rcu_dereference_protected(net->gen, 142 lockdep_is_held(&pernet_ops_rwsem)); 143 ng->ptr[*ops->id] = NULL; 144 } 145 146 cleanup: 147 kfree(data); 148 149 out: 150 return err; 151 } 152 153 static void ops_pre_exit_list(const struct pernet_operations *ops, 154 struct list_head *net_exit_list) 155 { 156 struct net *net; 157 158 if (ops->pre_exit) { 159 list_for_each_entry(net, net_exit_list, exit_list) 160 ops->pre_exit(net); 161 } 162 } 163 164 static void ops_exit_rtnl_list(const struct list_head *ops_list, 165 const struct pernet_operations *ops, 166 struct list_head *net_exit_list) 167 { 168 const struct pernet_operations *saved_ops = ops; 169 LIST_HEAD(dev_kill_list); 170 struct net *net; 171 172 rtnl_lock(); 173 174 list_for_each_entry(net, net_exit_list, exit_list) { 175 __rtnl_net_lock(net); 176 177 ops = saved_ops; 178 list_for_each_entry_continue_reverse(ops, ops_list, list) { 179 if (ops->exit_rtnl) 180 ops->exit_rtnl(net, &dev_kill_list); 181 } 182 183 __rtnl_net_unlock(net); 184 } 185 186 unregister_netdevice_many(&dev_kill_list); 187 188 rtnl_unlock(); 189 } 190 191 static void ops_exit_list(const struct pernet_operations *ops, 192 struct list_head *net_exit_list) 193 { 194 if (ops->exit) { 195 struct net *net; 196 197 list_for_each_entry(net, net_exit_list, exit_list) { 198 ops->exit(net); 199 cond_resched(); 200 } 201 } 202 203 if (ops->exit_batch) 204 ops->exit_batch(net_exit_list); 205 } 206 207 static void ops_free_list(const struct pernet_operations *ops, 208 struct list_head *net_exit_list) 209 { 210 struct net *net; 211 212 if (ops->id) { 213 list_for_each_entry(net, net_exit_list, exit_list) 214 kfree(net_generic(net, *ops->id)); 215 } 216 } 217 218 static void ops_undo_list(const struct list_head *ops_list, 219 const struct pernet_operations *ops, 220 struct list_head *net_exit_list, 221 bool expedite_rcu) 222 { 223 const struct pernet_operations *saved_ops; 224 bool hold_rtnl = false; 225 226 if (!ops) 227 ops = list_entry(ops_list, typeof(*ops), list); 228 229 saved_ops = ops; 230 231 list_for_each_entry_continue_reverse(ops, ops_list, list) { 232 hold_rtnl |= !!ops->exit_rtnl; 233 ops_pre_exit_list(ops, net_exit_list); 234 } 235 236 /* Another CPU might be rcu-iterating the list, wait for it. 237 * This needs to be before calling the exit() notifiers, so the 238 * rcu_barrier() after ops_undo_list() isn't sufficient alone. 239 * Also the pre_exit() and exit() methods need this barrier. 240 */ 241 if (expedite_rcu) 242 synchronize_rcu_expedited(); 243 else 244 synchronize_rcu(); 245 246 if (hold_rtnl) 247 ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list); 248 249 ops = saved_ops; 250 list_for_each_entry_continue_reverse(ops, ops_list, list) 251 ops_exit_list(ops, net_exit_list); 252 253 ops = saved_ops; 254 list_for_each_entry_continue_reverse(ops, ops_list, list) 255 ops_free_list(ops, net_exit_list); 256 } 257 258 static void ops_undo_single(struct pernet_operations *ops, 259 struct list_head *net_exit_list) 260 { 261 LIST_HEAD(ops_list); 262 263 list_add(&ops->list, &ops_list); 264 ops_undo_list(&ops_list, NULL, net_exit_list, false); 265 list_del(&ops->list); 266 } 267 268 /* should be called with nsid_lock held */ 269 static int alloc_netid(struct net *net, struct net *peer, int reqid) 270 { 271 int min = 0, max = 0; 272 273 if (reqid >= 0) { 274 min = reqid; 275 max = reqid + 1; 276 } 277 278 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 279 } 280 281 /* This function is used by idr_for_each(). If net is equal to peer, the 282 * function returns the id so that idr_for_each() stops. Because we cannot 283 * returns the id 0 (idr_for_each() will not stop), we return the magic value 284 * NET_ID_ZERO (-1) for it. 285 */ 286 #define NET_ID_ZERO -1 287 static int net_eq_idr(int id, void *net, void *peer) 288 { 289 if (net_eq(net, peer)) 290 return id ? : NET_ID_ZERO; 291 return 0; 292 } 293 294 /* Must be called from RCU-critical section or with nsid_lock held */ 295 static int __peernet2id(const struct net *net, struct net *peer) 296 { 297 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 298 299 /* Magic value for id 0. */ 300 if (id == NET_ID_ZERO) 301 return 0; 302 if (id > 0) 303 return id; 304 305 return NETNSA_NSID_NOT_ASSIGNED; 306 } 307 308 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 309 struct nlmsghdr *nlh, gfp_t gfp); 310 /* This function returns the id of a peer netns. If no id is assigned, one will 311 * be allocated and returned. 312 */ 313 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 314 { 315 int id; 316 317 if (refcount_read(&net->ns.count) == 0) 318 return NETNSA_NSID_NOT_ASSIGNED; 319 320 spin_lock(&net->nsid_lock); 321 id = __peernet2id(net, peer); 322 if (id >= 0) { 323 spin_unlock(&net->nsid_lock); 324 return id; 325 } 326 327 /* When peer is obtained from RCU lists, we may race with 328 * its cleanup. Check whether it's alive, and this guarantees 329 * we never hash a peer back to net->netns_ids, after it has 330 * just been idr_remove()'d from there in cleanup_net(). 331 */ 332 if (!maybe_get_net(peer)) { 333 spin_unlock(&net->nsid_lock); 334 return NETNSA_NSID_NOT_ASSIGNED; 335 } 336 337 id = alloc_netid(net, peer, -1); 338 spin_unlock(&net->nsid_lock); 339 340 put_net(peer); 341 if (id < 0) 342 return NETNSA_NSID_NOT_ASSIGNED; 343 344 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 345 346 return id; 347 } 348 EXPORT_SYMBOL_GPL(peernet2id_alloc); 349 350 /* This function returns, if assigned, the id of a peer netns. */ 351 int peernet2id(const struct net *net, struct net *peer) 352 { 353 int id; 354 355 rcu_read_lock(); 356 id = __peernet2id(net, peer); 357 rcu_read_unlock(); 358 359 return id; 360 } 361 EXPORT_SYMBOL(peernet2id); 362 363 /* This function returns true is the peer netns has an id assigned into the 364 * current netns. 365 */ 366 bool peernet_has_id(const struct net *net, struct net *peer) 367 { 368 return peernet2id(net, peer) >= 0; 369 } 370 371 struct net *get_net_ns_by_id(const struct net *net, int id) 372 { 373 struct net *peer; 374 375 if (id < 0) 376 return NULL; 377 378 rcu_read_lock(); 379 peer = idr_find(&net->netns_ids, id); 380 if (peer) 381 peer = maybe_get_net(peer); 382 rcu_read_unlock(); 383 384 return peer; 385 } 386 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 387 388 static __net_init void preinit_net_sysctl(struct net *net) 389 { 390 net->core.sysctl_somaxconn = SOMAXCONN; 391 /* Limits per socket sk_omem_alloc usage. 392 * TCP zerocopy regular usage needs 128 KB. 393 */ 394 net->core.sysctl_optmem_max = 128 * 1024; 395 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 396 net->core.sysctl_tstamp_allow_data = 1; 397 } 398 399 /* init code that must occur even if setup_net() is not called. */ 400 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 401 { 402 refcount_set(&net->passive, 1); 403 refcount_set(&net->ns.count, 1); 404 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net_refcnt"); 405 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net_notrefcnt"); 406 407 get_random_bytes(&net->hash_mix, sizeof(u32)); 408 net->dev_base_seq = 1; 409 net->user_ns = user_ns; 410 411 idr_init(&net->netns_ids); 412 spin_lock_init(&net->nsid_lock); 413 mutex_init(&net->ipv4.ra_mutex); 414 415 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 416 mutex_init(&net->rtnl_mutex); 417 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 418 #endif 419 420 INIT_LIST_HEAD(&net->ptype_all); 421 INIT_LIST_HEAD(&net->ptype_specific); 422 preinit_net_sysctl(net); 423 } 424 425 /* 426 * setup_net runs the initializers for the network namespace object. 427 */ 428 static __net_init int setup_net(struct net *net) 429 { 430 /* Must be called with pernet_ops_rwsem held */ 431 const struct pernet_operations *ops; 432 LIST_HEAD(net_exit_list); 433 int error = 0; 434 435 net->net_cookie = atomic64_inc_return(&net_aligned_data.net_cookie); 436 437 list_for_each_entry(ops, &pernet_list, list) { 438 error = ops_init(ops, net); 439 if (error < 0) 440 goto out_undo; 441 } 442 down_write(&net_rwsem); 443 list_add_tail_rcu(&net->list, &net_namespace_list); 444 up_write(&net_rwsem); 445 out: 446 return error; 447 448 out_undo: 449 /* Walk through the list backwards calling the exit functions 450 * for the pernet modules whose init functions did not fail. 451 */ 452 list_add(&net->exit_list, &net_exit_list); 453 ops_undo_list(&pernet_list, ops, &net_exit_list, false); 454 rcu_barrier(); 455 goto out; 456 } 457 458 #ifdef CONFIG_NET_NS 459 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 460 { 461 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 462 } 463 464 static void dec_net_namespaces(struct ucounts *ucounts) 465 { 466 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 467 } 468 469 static struct kmem_cache *net_cachep __ro_after_init; 470 static struct workqueue_struct *netns_wq; 471 472 static struct net *net_alloc(void) 473 { 474 struct net *net = NULL; 475 struct net_generic *ng; 476 477 ng = net_alloc_generic(); 478 if (!ng) 479 goto out; 480 481 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 482 if (!net) 483 goto out_free; 484 485 #ifdef CONFIG_KEYS 486 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 487 if (!net->key_domain) 488 goto out_free_2; 489 refcount_set(&net->key_domain->usage, 1); 490 #endif 491 492 rcu_assign_pointer(net->gen, ng); 493 out: 494 return net; 495 496 #ifdef CONFIG_KEYS 497 out_free_2: 498 kmem_cache_free(net_cachep, net); 499 net = NULL; 500 #endif 501 out_free: 502 kfree(ng); 503 goto out; 504 } 505 506 static LLIST_HEAD(defer_free_list); 507 508 static void net_complete_free(void) 509 { 510 struct llist_node *kill_list; 511 struct net *net, *next; 512 513 /* Get the list of namespaces to free from last round. */ 514 kill_list = llist_del_all(&defer_free_list); 515 516 llist_for_each_entry_safe(net, next, kill_list, defer_free_list) 517 kmem_cache_free(net_cachep, net); 518 519 } 520 521 void net_passive_dec(struct net *net) 522 { 523 if (refcount_dec_and_test(&net->passive)) { 524 kfree(rcu_access_pointer(net->gen)); 525 526 /* There should not be any trackers left there. */ 527 ref_tracker_dir_exit(&net->notrefcnt_tracker); 528 529 /* Wait for an extra rcu_barrier() before final free. */ 530 llist_add(&net->defer_free_list, &defer_free_list); 531 } 532 } 533 534 void net_drop_ns(void *p) 535 { 536 struct net *net = (struct net *)p; 537 538 if (net) 539 net_passive_dec(net); 540 } 541 542 struct net *copy_net_ns(unsigned long flags, 543 struct user_namespace *user_ns, struct net *old_net) 544 { 545 struct ucounts *ucounts; 546 struct net *net; 547 int rv; 548 549 if (!(flags & CLONE_NEWNET)) 550 return get_net(old_net); 551 552 ucounts = inc_net_namespaces(user_ns); 553 if (!ucounts) 554 return ERR_PTR(-ENOSPC); 555 556 net = net_alloc(); 557 if (!net) { 558 rv = -ENOMEM; 559 goto dec_ucounts; 560 } 561 562 preinit_net(net, user_ns); 563 net->ucounts = ucounts; 564 get_user_ns(user_ns); 565 566 rv = down_read_killable(&pernet_ops_rwsem); 567 if (rv < 0) 568 goto put_userns; 569 570 rv = setup_net(net); 571 572 up_read(&pernet_ops_rwsem); 573 574 if (rv < 0) { 575 put_userns: 576 #ifdef CONFIG_KEYS 577 key_remove_domain(net->key_domain); 578 #endif 579 put_user_ns(user_ns); 580 net_passive_dec(net); 581 dec_ucounts: 582 dec_net_namespaces(ucounts); 583 return ERR_PTR(rv); 584 } 585 return net; 586 } 587 588 /** 589 * net_ns_get_ownership - get sysfs ownership data for @net 590 * @net: network namespace in question (can be NULL) 591 * @uid: kernel user ID for sysfs objects 592 * @gid: kernel group ID for sysfs objects 593 * 594 * Returns the uid/gid pair of root in the user namespace associated with the 595 * given network namespace. 596 */ 597 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 598 { 599 if (net) { 600 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 601 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 602 603 if (uid_valid(ns_root_uid)) 604 *uid = ns_root_uid; 605 606 if (gid_valid(ns_root_gid)) 607 *gid = ns_root_gid; 608 } else { 609 *uid = GLOBAL_ROOT_UID; 610 *gid = GLOBAL_ROOT_GID; 611 } 612 } 613 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 614 615 static void unhash_nsid(struct net *net, struct net *last) 616 { 617 struct net *tmp; 618 /* This function is only called from cleanup_net() work, 619 * and this work is the only process, that may delete 620 * a net from net_namespace_list. So, when the below 621 * is executing, the list may only grow. Thus, we do not 622 * use for_each_net_rcu() or net_rwsem. 623 */ 624 for_each_net(tmp) { 625 int id; 626 627 spin_lock(&tmp->nsid_lock); 628 id = __peernet2id(tmp, net); 629 if (id >= 0) 630 idr_remove(&tmp->netns_ids, id); 631 spin_unlock(&tmp->nsid_lock); 632 if (id >= 0) 633 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 634 GFP_KERNEL); 635 if (tmp == last) 636 break; 637 } 638 spin_lock(&net->nsid_lock); 639 idr_destroy(&net->netns_ids); 640 spin_unlock(&net->nsid_lock); 641 } 642 643 static LLIST_HEAD(cleanup_list); 644 645 struct task_struct *cleanup_net_task; 646 647 static void cleanup_net(struct work_struct *work) 648 { 649 struct llist_node *net_kill_list; 650 struct net *net, *tmp, *last; 651 LIST_HEAD(net_exit_list); 652 653 WRITE_ONCE(cleanup_net_task, current); 654 655 /* Atomically snapshot the list of namespaces to cleanup */ 656 net_kill_list = llist_del_all(&cleanup_list); 657 658 down_read(&pernet_ops_rwsem); 659 660 /* Don't let anyone else find us. */ 661 down_write(&net_rwsem); 662 llist_for_each_entry(net, net_kill_list, cleanup_list) 663 list_del_rcu(&net->list); 664 /* Cache last net. After we unlock rtnl, no one new net 665 * added to net_namespace_list can assign nsid pointer 666 * to a net from net_kill_list (see peernet2id_alloc()). 667 * So, we skip them in unhash_nsid(). 668 * 669 * Note, that unhash_nsid() does not delete nsid links 670 * between net_kill_list's nets, as they've already 671 * deleted from net_namespace_list. But, this would be 672 * useless anyway, as netns_ids are destroyed there. 673 */ 674 last = list_last_entry(&net_namespace_list, struct net, list); 675 up_write(&net_rwsem); 676 677 llist_for_each_entry(net, net_kill_list, cleanup_list) { 678 unhash_nsid(net, last); 679 list_add_tail(&net->exit_list, &net_exit_list); 680 } 681 682 ops_undo_list(&pernet_list, NULL, &net_exit_list, true); 683 684 up_read(&pernet_ops_rwsem); 685 686 /* Ensure there are no outstanding rcu callbacks using this 687 * network namespace. 688 */ 689 rcu_barrier(); 690 691 net_complete_free(); 692 693 /* Finally it is safe to free my network namespace structure */ 694 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 695 list_del_init(&net->exit_list); 696 dec_net_namespaces(net->ucounts); 697 #ifdef CONFIG_KEYS 698 key_remove_domain(net->key_domain); 699 #endif 700 put_user_ns(net->user_ns); 701 net_passive_dec(net); 702 } 703 WRITE_ONCE(cleanup_net_task, NULL); 704 } 705 706 /** 707 * net_ns_barrier - wait until concurrent net_cleanup_work is done 708 * 709 * cleanup_net runs from work queue and will first remove namespaces 710 * from the global list, then run net exit functions. 711 * 712 * Call this in module exit path to make sure that all netns 713 * ->exit ops have been invoked before the function is removed. 714 */ 715 void net_ns_barrier(void) 716 { 717 down_write(&pernet_ops_rwsem); 718 up_write(&pernet_ops_rwsem); 719 } 720 EXPORT_SYMBOL(net_ns_barrier); 721 722 static DECLARE_WORK(net_cleanup_work, cleanup_net); 723 724 void __put_net(struct net *net) 725 { 726 ref_tracker_dir_exit(&net->refcnt_tracker); 727 /* Cleanup the network namespace in process context */ 728 if (llist_add(&net->cleanup_list, &cleanup_list)) 729 queue_work(netns_wq, &net_cleanup_work); 730 } 731 EXPORT_SYMBOL_GPL(__put_net); 732 733 /** 734 * get_net_ns - increment the refcount of the network namespace 735 * @ns: common namespace (net) 736 * 737 * Returns the net's common namespace or ERR_PTR() if ref is zero. 738 */ 739 struct ns_common *get_net_ns(struct ns_common *ns) 740 { 741 struct net *net; 742 743 net = maybe_get_net(container_of(ns, struct net, ns)); 744 if (net) 745 return &net->ns; 746 return ERR_PTR(-EINVAL); 747 } 748 EXPORT_SYMBOL_GPL(get_net_ns); 749 750 struct net *get_net_ns_by_fd(int fd) 751 { 752 CLASS(fd, f)(fd); 753 754 if (fd_empty(f)) 755 return ERR_PTR(-EBADF); 756 757 if (proc_ns_file(fd_file(f))) { 758 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 759 if (ns->ops == &netns_operations) 760 return get_net(container_of(ns, struct net, ns)); 761 } 762 763 return ERR_PTR(-EINVAL); 764 } 765 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 766 #endif 767 768 struct net *get_net_ns_by_pid(pid_t pid) 769 { 770 struct task_struct *tsk; 771 struct net *net; 772 773 /* Lookup the network namespace */ 774 net = ERR_PTR(-ESRCH); 775 rcu_read_lock(); 776 tsk = find_task_by_vpid(pid); 777 if (tsk) { 778 struct nsproxy *nsproxy; 779 task_lock(tsk); 780 nsproxy = tsk->nsproxy; 781 if (nsproxy) 782 net = get_net(nsproxy->net_ns); 783 task_unlock(tsk); 784 } 785 rcu_read_unlock(); 786 return net; 787 } 788 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 789 790 #ifdef CONFIG_NET_NS_REFCNT_TRACKER 791 static void net_ns_net_debugfs(struct net *net) 792 { 793 ref_tracker_dir_symlink(&net->refcnt_tracker, "netns-%llx-%u-refcnt", 794 net->net_cookie, net->ns.inum); 795 ref_tracker_dir_symlink(&net->notrefcnt_tracker, "netns-%llx-%u-notrefcnt", 796 net->net_cookie, net->ns.inum); 797 } 798 799 static int __init init_net_debugfs(void) 800 { 801 ref_tracker_dir_debugfs(&init_net.refcnt_tracker); 802 ref_tracker_dir_debugfs(&init_net.notrefcnt_tracker); 803 net_ns_net_debugfs(&init_net); 804 return 0; 805 } 806 late_initcall(init_net_debugfs); 807 #else 808 static void net_ns_net_debugfs(struct net *net) 809 { 810 } 811 #endif 812 813 static __net_init int net_ns_net_init(struct net *net) 814 { 815 int ret; 816 817 #ifdef CONFIG_NET_NS 818 net->ns.ops = &netns_operations; 819 #endif 820 ret = ns_alloc_inum(&net->ns); 821 if (!ret) 822 net_ns_net_debugfs(net); 823 return ret; 824 } 825 826 static __net_exit void net_ns_net_exit(struct net *net) 827 { 828 ns_free_inum(&net->ns); 829 } 830 831 static struct pernet_operations __net_initdata net_ns_ops = { 832 .init = net_ns_net_init, 833 .exit = net_ns_net_exit, 834 }; 835 836 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 837 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 838 [NETNSA_NSID] = { .type = NLA_S32 }, 839 [NETNSA_PID] = { .type = NLA_U32 }, 840 [NETNSA_FD] = { .type = NLA_U32 }, 841 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 842 }; 843 844 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 845 struct netlink_ext_ack *extack) 846 { 847 struct net *net = sock_net(skb->sk); 848 struct nlattr *tb[NETNSA_MAX + 1]; 849 struct nlattr *nla; 850 struct net *peer; 851 int nsid, err; 852 853 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 854 NETNSA_MAX, rtnl_net_policy, extack); 855 if (err < 0) 856 return err; 857 if (!tb[NETNSA_NSID]) { 858 NL_SET_ERR_MSG(extack, "nsid is missing"); 859 return -EINVAL; 860 } 861 nsid = nla_get_s32(tb[NETNSA_NSID]); 862 863 if (tb[NETNSA_PID]) { 864 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 865 nla = tb[NETNSA_PID]; 866 } else if (tb[NETNSA_FD]) { 867 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 868 nla = tb[NETNSA_FD]; 869 } else { 870 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 871 return -EINVAL; 872 } 873 if (IS_ERR(peer)) { 874 NL_SET_BAD_ATTR(extack, nla); 875 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 876 return PTR_ERR(peer); 877 } 878 879 spin_lock(&net->nsid_lock); 880 if (__peernet2id(net, peer) >= 0) { 881 spin_unlock(&net->nsid_lock); 882 err = -EEXIST; 883 NL_SET_BAD_ATTR(extack, nla); 884 NL_SET_ERR_MSG(extack, 885 "Peer netns already has a nsid assigned"); 886 goto out; 887 } 888 889 err = alloc_netid(net, peer, nsid); 890 spin_unlock(&net->nsid_lock); 891 if (err >= 0) { 892 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 893 nlh, GFP_KERNEL); 894 err = 0; 895 } else if (err == -ENOSPC && nsid >= 0) { 896 err = -EEXIST; 897 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 898 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 899 } 900 out: 901 put_net(peer); 902 return err; 903 } 904 905 static int rtnl_net_get_size(void) 906 { 907 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 908 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 909 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 910 ; 911 } 912 913 struct net_fill_args { 914 u32 portid; 915 u32 seq; 916 int flags; 917 int cmd; 918 int nsid; 919 bool add_ref; 920 int ref_nsid; 921 }; 922 923 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 924 { 925 struct nlmsghdr *nlh; 926 struct rtgenmsg *rth; 927 928 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 929 args->flags); 930 if (!nlh) 931 return -EMSGSIZE; 932 933 rth = nlmsg_data(nlh); 934 rth->rtgen_family = AF_UNSPEC; 935 936 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 937 goto nla_put_failure; 938 939 if (args->add_ref && 940 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 941 goto nla_put_failure; 942 943 nlmsg_end(skb, nlh); 944 return 0; 945 946 nla_put_failure: 947 nlmsg_cancel(skb, nlh); 948 return -EMSGSIZE; 949 } 950 951 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 952 const struct nlmsghdr *nlh, 953 struct nlattr **tb, 954 struct netlink_ext_ack *extack) 955 { 956 int i, err; 957 958 if (!netlink_strict_get_check(skb)) 959 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 960 tb, NETNSA_MAX, rtnl_net_policy, 961 extack); 962 963 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 964 NETNSA_MAX, rtnl_net_policy, 965 extack); 966 if (err) 967 return err; 968 969 for (i = 0; i <= NETNSA_MAX; i++) { 970 if (!tb[i]) 971 continue; 972 973 switch (i) { 974 case NETNSA_PID: 975 case NETNSA_FD: 976 case NETNSA_NSID: 977 case NETNSA_TARGET_NSID: 978 break; 979 default: 980 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 981 return -EINVAL; 982 } 983 } 984 985 return 0; 986 } 987 988 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 989 struct netlink_ext_ack *extack) 990 { 991 struct net *net = sock_net(skb->sk); 992 struct nlattr *tb[NETNSA_MAX + 1]; 993 struct net_fill_args fillargs = { 994 .portid = NETLINK_CB(skb).portid, 995 .seq = nlh->nlmsg_seq, 996 .cmd = RTM_NEWNSID, 997 }; 998 struct net *peer, *target = net; 999 struct nlattr *nla; 1000 struct sk_buff *msg; 1001 int err; 1002 1003 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 1004 if (err < 0) 1005 return err; 1006 if (tb[NETNSA_PID]) { 1007 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 1008 nla = tb[NETNSA_PID]; 1009 } else if (tb[NETNSA_FD]) { 1010 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 1011 nla = tb[NETNSA_FD]; 1012 } else if (tb[NETNSA_NSID]) { 1013 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 1014 if (!peer) 1015 peer = ERR_PTR(-ENOENT); 1016 nla = tb[NETNSA_NSID]; 1017 } else { 1018 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 1019 return -EINVAL; 1020 } 1021 1022 if (IS_ERR(peer)) { 1023 NL_SET_BAD_ATTR(extack, nla); 1024 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 1025 return PTR_ERR(peer); 1026 } 1027 1028 if (tb[NETNSA_TARGET_NSID]) { 1029 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 1030 1031 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 1032 if (IS_ERR(target)) { 1033 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 1034 NL_SET_ERR_MSG(extack, 1035 "Target netns reference is invalid"); 1036 err = PTR_ERR(target); 1037 goto out; 1038 } 1039 fillargs.add_ref = true; 1040 fillargs.ref_nsid = peernet2id(net, peer); 1041 } 1042 1043 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1044 if (!msg) { 1045 err = -ENOMEM; 1046 goto out; 1047 } 1048 1049 fillargs.nsid = peernet2id(target, peer); 1050 err = rtnl_net_fill(msg, &fillargs); 1051 if (err < 0) 1052 goto err_out; 1053 1054 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 1055 goto out; 1056 1057 err_out: 1058 nlmsg_free(msg); 1059 out: 1060 if (fillargs.add_ref) 1061 put_net(target); 1062 put_net(peer); 1063 return err; 1064 } 1065 1066 struct rtnl_net_dump_cb { 1067 struct net *tgt_net; 1068 struct net *ref_net; 1069 struct sk_buff *skb; 1070 struct net_fill_args fillargs; 1071 int idx; 1072 int s_idx; 1073 }; 1074 1075 /* Runs in RCU-critical section. */ 1076 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1077 { 1078 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1079 int ret; 1080 1081 if (net_cb->idx < net_cb->s_idx) 1082 goto cont; 1083 1084 net_cb->fillargs.nsid = id; 1085 if (net_cb->fillargs.add_ref) 1086 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1087 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1088 if (ret < 0) 1089 return ret; 1090 1091 cont: 1092 net_cb->idx++; 1093 return 0; 1094 } 1095 1096 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1097 struct rtnl_net_dump_cb *net_cb, 1098 struct netlink_callback *cb) 1099 { 1100 struct netlink_ext_ack *extack = cb->extack; 1101 struct nlattr *tb[NETNSA_MAX + 1]; 1102 int err, i; 1103 1104 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1105 NETNSA_MAX, rtnl_net_policy, 1106 extack); 1107 if (err < 0) 1108 return err; 1109 1110 for (i = 0; i <= NETNSA_MAX; i++) { 1111 if (!tb[i]) 1112 continue; 1113 1114 if (i == NETNSA_TARGET_NSID) { 1115 struct net *net; 1116 1117 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1118 if (IS_ERR(net)) { 1119 NL_SET_BAD_ATTR(extack, tb[i]); 1120 NL_SET_ERR_MSG(extack, 1121 "Invalid target network namespace id"); 1122 return PTR_ERR(net); 1123 } 1124 net_cb->fillargs.add_ref = true; 1125 net_cb->ref_net = net_cb->tgt_net; 1126 net_cb->tgt_net = net; 1127 } else { 1128 NL_SET_BAD_ATTR(extack, tb[i]); 1129 NL_SET_ERR_MSG(extack, 1130 "Unsupported attribute in dump request"); 1131 return -EINVAL; 1132 } 1133 } 1134 1135 return 0; 1136 } 1137 1138 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1139 { 1140 struct rtnl_net_dump_cb net_cb = { 1141 .tgt_net = sock_net(skb->sk), 1142 .skb = skb, 1143 .fillargs = { 1144 .portid = NETLINK_CB(cb->skb).portid, 1145 .seq = cb->nlh->nlmsg_seq, 1146 .flags = NLM_F_MULTI, 1147 .cmd = RTM_NEWNSID, 1148 }, 1149 .idx = 0, 1150 .s_idx = cb->args[0], 1151 }; 1152 int err = 0; 1153 1154 if (cb->strict_check) { 1155 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1156 if (err < 0) 1157 goto end; 1158 } 1159 1160 rcu_read_lock(); 1161 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1162 rcu_read_unlock(); 1163 1164 cb->args[0] = net_cb.idx; 1165 end: 1166 if (net_cb.fillargs.add_ref) 1167 put_net(net_cb.tgt_net); 1168 return err; 1169 } 1170 1171 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1172 struct nlmsghdr *nlh, gfp_t gfp) 1173 { 1174 struct net_fill_args fillargs = { 1175 .portid = portid, 1176 .seq = nlh ? nlh->nlmsg_seq : 0, 1177 .cmd = cmd, 1178 .nsid = id, 1179 }; 1180 struct sk_buff *msg; 1181 int err = -ENOMEM; 1182 1183 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1184 if (!msg) 1185 goto out; 1186 1187 err = rtnl_net_fill(msg, &fillargs); 1188 if (err < 0) 1189 goto err_out; 1190 1191 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1192 return; 1193 1194 err_out: 1195 nlmsg_free(msg); 1196 out: 1197 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1198 } 1199 1200 #ifdef CONFIG_NET_NS 1201 static void __init netns_ipv4_struct_check(void) 1202 { 1203 /* TX readonly hotpath cache lines */ 1204 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1205 sysctl_tcp_early_retrans); 1206 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1207 sysctl_tcp_tso_win_divisor); 1208 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1209 sysctl_tcp_tso_rtt_log); 1210 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1211 sysctl_tcp_autocorking); 1212 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1213 sysctl_tcp_min_snd_mss); 1214 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1215 sysctl_tcp_notsent_lowat); 1216 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1217 sysctl_tcp_limit_output_bytes); 1218 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1219 sysctl_tcp_min_rtt_wlen); 1220 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1221 sysctl_tcp_wmem); 1222 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1223 sysctl_ip_fwd_use_pmtu); 1224 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1225 1226 /* TXRX readonly hotpath cache lines */ 1227 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1228 sysctl_tcp_moderate_rcvbuf); 1229 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1230 1231 /* RX readonly hotpath cache line */ 1232 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1233 sysctl_ip_early_demux); 1234 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1235 sysctl_tcp_early_demux); 1236 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1237 sysctl_tcp_l3mdev_accept); 1238 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1239 sysctl_tcp_reordering); 1240 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1241 sysctl_tcp_rmem); 1242 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1243 } 1244 #endif 1245 1246 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1247 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1248 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1249 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1250 .dumpit = rtnl_net_dumpid, 1251 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1252 }; 1253 1254 void __init net_ns_init(void) 1255 { 1256 struct net_generic *ng; 1257 1258 #ifdef CONFIG_NET_NS 1259 netns_ipv4_struct_check(); 1260 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1261 SMP_CACHE_BYTES, 1262 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1263 1264 /* Create workqueue for cleanup */ 1265 netns_wq = create_singlethread_workqueue("netns"); 1266 if (!netns_wq) 1267 panic("Could not create netns workq"); 1268 #endif 1269 1270 ng = net_alloc_generic(); 1271 if (!ng) 1272 panic("Could not allocate generic netns"); 1273 1274 rcu_assign_pointer(init_net.gen, ng); 1275 1276 #ifdef CONFIG_KEYS 1277 init_net.key_domain = &init_net_key_domain; 1278 #endif 1279 preinit_net(&init_net, &init_user_ns); 1280 1281 down_write(&pernet_ops_rwsem); 1282 if (setup_net(&init_net)) 1283 panic("Could not setup the initial network namespace"); 1284 1285 init_net_initialized = true; 1286 up_write(&pernet_ops_rwsem); 1287 1288 if (register_pernet_subsys(&net_ns_ops)) 1289 panic("Could not register network namespace subsystems"); 1290 1291 rtnl_register_many(net_ns_rtnl_msg_handlers); 1292 } 1293 1294 #ifdef CONFIG_NET_NS 1295 static int __register_pernet_operations(struct list_head *list, 1296 struct pernet_operations *ops) 1297 { 1298 LIST_HEAD(net_exit_list); 1299 struct net *net; 1300 int error; 1301 1302 list_add_tail(&ops->list, list); 1303 if (ops->init || ops->id) { 1304 /* We held write locked pernet_ops_rwsem, and parallel 1305 * setup_net() and cleanup_net() are not possible. 1306 */ 1307 for_each_net(net) { 1308 error = ops_init(ops, net); 1309 if (error) 1310 goto out_undo; 1311 list_add_tail(&net->exit_list, &net_exit_list); 1312 } 1313 } 1314 return 0; 1315 1316 out_undo: 1317 /* If I have an error cleanup all namespaces I initialized */ 1318 list_del(&ops->list); 1319 ops_undo_single(ops, &net_exit_list); 1320 return error; 1321 } 1322 1323 static void __unregister_pernet_operations(struct pernet_operations *ops) 1324 { 1325 LIST_HEAD(net_exit_list); 1326 struct net *net; 1327 1328 /* See comment in __register_pernet_operations() */ 1329 for_each_net(net) 1330 list_add_tail(&net->exit_list, &net_exit_list); 1331 1332 list_del(&ops->list); 1333 ops_undo_single(ops, &net_exit_list); 1334 } 1335 1336 #else 1337 1338 static int __register_pernet_operations(struct list_head *list, 1339 struct pernet_operations *ops) 1340 { 1341 if (!init_net_initialized) { 1342 list_add_tail(&ops->list, list); 1343 return 0; 1344 } 1345 1346 return ops_init(ops, &init_net); 1347 } 1348 1349 static void __unregister_pernet_operations(struct pernet_operations *ops) 1350 { 1351 if (!init_net_initialized) { 1352 list_del(&ops->list); 1353 } else { 1354 LIST_HEAD(net_exit_list); 1355 1356 list_add(&init_net.exit_list, &net_exit_list); 1357 ops_undo_single(ops, &net_exit_list); 1358 } 1359 } 1360 1361 #endif /* CONFIG_NET_NS */ 1362 1363 static DEFINE_IDA(net_generic_ids); 1364 1365 static int register_pernet_operations(struct list_head *list, 1366 struct pernet_operations *ops) 1367 { 1368 int error; 1369 1370 if (WARN_ON(!!ops->id ^ !!ops->size)) 1371 return -EINVAL; 1372 1373 if (ops->id) { 1374 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1375 GFP_KERNEL); 1376 if (error < 0) 1377 return error; 1378 *ops->id = error; 1379 /* This does not require READ_ONCE as writers already hold 1380 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1381 * net_alloc_generic. 1382 */ 1383 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1384 } 1385 error = __register_pernet_operations(list, ops); 1386 if (error) { 1387 rcu_barrier(); 1388 if (ops->id) 1389 ida_free(&net_generic_ids, *ops->id); 1390 } 1391 1392 return error; 1393 } 1394 1395 static void unregister_pernet_operations(struct pernet_operations *ops) 1396 { 1397 __unregister_pernet_operations(ops); 1398 rcu_barrier(); 1399 if (ops->id) 1400 ida_free(&net_generic_ids, *ops->id); 1401 } 1402 1403 /** 1404 * register_pernet_subsys - register a network namespace subsystem 1405 * @ops: pernet operations structure for the subsystem 1406 * 1407 * Register a subsystem which has init and exit functions 1408 * that are called when network namespaces are created and 1409 * destroyed respectively. 1410 * 1411 * When registered all network namespace init functions are 1412 * called for every existing network namespace. Allowing kernel 1413 * modules to have a race free view of the set of network namespaces. 1414 * 1415 * When a new network namespace is created all of the init 1416 * methods are called in the order in which they were registered. 1417 * 1418 * When a network namespace is destroyed all of the exit methods 1419 * are called in the reverse of the order with which they were 1420 * registered. 1421 */ 1422 int register_pernet_subsys(struct pernet_operations *ops) 1423 { 1424 int error; 1425 down_write(&pernet_ops_rwsem); 1426 error = register_pernet_operations(first_device, ops); 1427 up_write(&pernet_ops_rwsem); 1428 return error; 1429 } 1430 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1431 1432 /** 1433 * unregister_pernet_subsys - unregister a network namespace subsystem 1434 * @ops: pernet operations structure to manipulate 1435 * 1436 * Remove the pernet operations structure from the list to be 1437 * used when network namespaces are created or destroyed. In 1438 * addition run the exit method for all existing network 1439 * namespaces. 1440 */ 1441 void unregister_pernet_subsys(struct pernet_operations *ops) 1442 { 1443 down_write(&pernet_ops_rwsem); 1444 unregister_pernet_operations(ops); 1445 up_write(&pernet_ops_rwsem); 1446 } 1447 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1448 1449 /** 1450 * register_pernet_device - register a network namespace device 1451 * @ops: pernet operations structure for the subsystem 1452 * 1453 * Register a device which has init and exit functions 1454 * that are called when network namespaces are created and 1455 * destroyed respectively. 1456 * 1457 * When registered all network namespace init functions are 1458 * called for every existing network namespace. Allowing kernel 1459 * modules to have a race free view of the set of network namespaces. 1460 * 1461 * When a new network namespace is created all of the init 1462 * methods are called in the order in which they were registered. 1463 * 1464 * When a network namespace is destroyed all of the exit methods 1465 * are called in the reverse of the order with which they were 1466 * registered. 1467 */ 1468 int register_pernet_device(struct pernet_operations *ops) 1469 { 1470 int error; 1471 down_write(&pernet_ops_rwsem); 1472 error = register_pernet_operations(&pernet_list, ops); 1473 if (!error && (first_device == &pernet_list)) 1474 first_device = &ops->list; 1475 up_write(&pernet_ops_rwsem); 1476 return error; 1477 } 1478 EXPORT_SYMBOL_GPL(register_pernet_device); 1479 1480 /** 1481 * unregister_pernet_device - unregister a network namespace netdevice 1482 * @ops: pernet operations structure to manipulate 1483 * 1484 * Remove the pernet operations structure from the list to be 1485 * used when network namespaces are created or destroyed. In 1486 * addition run the exit method for all existing network 1487 * namespaces. 1488 */ 1489 void unregister_pernet_device(struct pernet_operations *ops) 1490 { 1491 down_write(&pernet_ops_rwsem); 1492 if (&ops->list == first_device) 1493 first_device = first_device->next; 1494 unregister_pernet_operations(ops); 1495 up_write(&pernet_ops_rwsem); 1496 } 1497 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1498 1499 #ifdef CONFIG_NET_NS 1500 static struct ns_common *netns_get(struct task_struct *task) 1501 { 1502 struct net *net = NULL; 1503 struct nsproxy *nsproxy; 1504 1505 task_lock(task); 1506 nsproxy = task->nsproxy; 1507 if (nsproxy) 1508 net = get_net(nsproxy->net_ns); 1509 task_unlock(task); 1510 1511 return net ? &net->ns : NULL; 1512 } 1513 1514 static inline struct net *to_net_ns(struct ns_common *ns) 1515 { 1516 return container_of(ns, struct net, ns); 1517 } 1518 1519 static void netns_put(struct ns_common *ns) 1520 { 1521 put_net(to_net_ns(ns)); 1522 } 1523 1524 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1525 { 1526 struct nsproxy *nsproxy = nsset->nsproxy; 1527 struct net *net = to_net_ns(ns); 1528 1529 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1530 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1531 return -EPERM; 1532 1533 put_net(nsproxy->net_ns); 1534 nsproxy->net_ns = get_net(net); 1535 return 0; 1536 } 1537 1538 static struct user_namespace *netns_owner(struct ns_common *ns) 1539 { 1540 return to_net_ns(ns)->user_ns; 1541 } 1542 1543 const struct proc_ns_operations netns_operations = { 1544 .name = "net", 1545 .type = CLONE_NEWNET, 1546 .get = netns_get, 1547 .put = netns_put, 1548 .install = netns_install, 1549 .owner = netns_owner, 1550 }; 1551 #endif 1552