1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 DEFINE_COOKIE(net_cookie); 68 69 static struct net_generic *net_alloc_generic(void) 70 { 71 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 72 unsigned int generic_size; 73 struct net_generic *ng; 74 75 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (!ng) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 struct net_generic *ng; 124 int err = -ENOMEM; 125 void *data = NULL; 126 127 if (ops->id) { 128 data = kzalloc(ops->size, GFP_KERNEL); 129 if (!data) 130 goto out; 131 132 err = net_assign_generic(net, *ops->id, data); 133 if (err) 134 goto cleanup; 135 } 136 err = 0; 137 if (ops->init) 138 err = ops->init(net); 139 if (!err) 140 return 0; 141 142 if (ops->id) { 143 ng = rcu_dereference_protected(net->gen, 144 lockdep_is_held(&pernet_ops_rwsem)); 145 ng->ptr[*ops->id] = NULL; 146 } 147 148 cleanup: 149 kfree(data); 150 151 out: 152 return err; 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_rtnl_list(const struct list_head *ops_list, 167 const struct pernet_operations *ops, 168 struct list_head *net_exit_list) 169 { 170 const struct pernet_operations *saved_ops = ops; 171 LIST_HEAD(dev_kill_list); 172 struct net *net; 173 174 rtnl_lock(); 175 176 list_for_each_entry(net, net_exit_list, exit_list) { 177 __rtnl_net_lock(net); 178 179 ops = saved_ops; 180 list_for_each_entry_continue_reverse(ops, ops_list, list) { 181 if (ops->exit_rtnl) 182 ops->exit_rtnl(net, &dev_kill_list); 183 } 184 185 __rtnl_net_unlock(net); 186 } 187 188 unregister_netdevice_many(&dev_kill_list); 189 190 rtnl_unlock(); 191 } 192 193 static void ops_exit_list(const struct pernet_operations *ops, 194 struct list_head *net_exit_list) 195 { 196 if (ops->exit) { 197 struct net *net; 198 199 list_for_each_entry(net, net_exit_list, exit_list) { 200 ops->exit(net); 201 cond_resched(); 202 } 203 } 204 205 if (ops->exit_batch) 206 ops->exit_batch(net_exit_list); 207 } 208 209 static void ops_free_list(const struct pernet_operations *ops, 210 struct list_head *net_exit_list) 211 { 212 struct net *net; 213 214 if (ops->id) { 215 list_for_each_entry(net, net_exit_list, exit_list) 216 kfree(net_generic(net, *ops->id)); 217 } 218 } 219 220 static void ops_undo_list(const struct list_head *ops_list, 221 const struct pernet_operations *ops, 222 struct list_head *net_exit_list, 223 bool expedite_rcu) 224 { 225 const struct pernet_operations *saved_ops; 226 bool hold_rtnl = false; 227 228 if (!ops) 229 ops = list_entry(ops_list, typeof(*ops), list); 230 231 saved_ops = ops; 232 233 list_for_each_entry_continue_reverse(ops, ops_list, list) { 234 hold_rtnl |= !!ops->exit_rtnl; 235 ops_pre_exit_list(ops, net_exit_list); 236 } 237 238 /* Another CPU might be rcu-iterating the list, wait for it. 239 * This needs to be before calling the exit() notifiers, so the 240 * rcu_barrier() after ops_undo_list() isn't sufficient alone. 241 * Also the pre_exit() and exit() methods need this barrier. 242 */ 243 if (expedite_rcu) 244 synchronize_rcu_expedited(); 245 else 246 synchronize_rcu(); 247 248 if (hold_rtnl) 249 ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list); 250 251 ops = saved_ops; 252 list_for_each_entry_continue_reverse(ops, ops_list, list) 253 ops_exit_list(ops, net_exit_list); 254 255 ops = saved_ops; 256 list_for_each_entry_continue_reverse(ops, ops_list, list) 257 ops_free_list(ops, net_exit_list); 258 } 259 260 static void ops_undo_single(struct pernet_operations *ops, 261 struct list_head *net_exit_list) 262 { 263 LIST_HEAD(ops_list); 264 265 list_add(&ops->list, &ops_list); 266 ops_undo_list(&ops_list, NULL, net_exit_list, false); 267 list_del(&ops->list); 268 } 269 270 /* should be called with nsid_lock held */ 271 static int alloc_netid(struct net *net, struct net *peer, int reqid) 272 { 273 int min = 0, max = 0; 274 275 if (reqid >= 0) { 276 min = reqid; 277 max = reqid + 1; 278 } 279 280 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 281 } 282 283 /* This function is used by idr_for_each(). If net is equal to peer, the 284 * function returns the id so that idr_for_each() stops. Because we cannot 285 * returns the id 0 (idr_for_each() will not stop), we return the magic value 286 * NET_ID_ZERO (-1) for it. 287 */ 288 #define NET_ID_ZERO -1 289 static int net_eq_idr(int id, void *net, void *peer) 290 { 291 if (net_eq(net, peer)) 292 return id ? : NET_ID_ZERO; 293 return 0; 294 } 295 296 /* Must be called from RCU-critical section or with nsid_lock held */ 297 static int __peernet2id(const struct net *net, struct net *peer) 298 { 299 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 300 301 /* Magic value for id 0. */ 302 if (id == NET_ID_ZERO) 303 return 0; 304 if (id > 0) 305 return id; 306 307 return NETNSA_NSID_NOT_ASSIGNED; 308 } 309 310 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 311 struct nlmsghdr *nlh, gfp_t gfp); 312 /* This function returns the id of a peer netns. If no id is assigned, one will 313 * be allocated and returned. 314 */ 315 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 316 { 317 int id; 318 319 if (refcount_read(&net->ns.count) == 0) 320 return NETNSA_NSID_NOT_ASSIGNED; 321 322 spin_lock(&net->nsid_lock); 323 id = __peernet2id(net, peer); 324 if (id >= 0) { 325 spin_unlock(&net->nsid_lock); 326 return id; 327 } 328 329 /* When peer is obtained from RCU lists, we may race with 330 * its cleanup. Check whether it's alive, and this guarantees 331 * we never hash a peer back to net->netns_ids, after it has 332 * just been idr_remove()'d from there in cleanup_net(). 333 */ 334 if (!maybe_get_net(peer)) { 335 spin_unlock(&net->nsid_lock); 336 return NETNSA_NSID_NOT_ASSIGNED; 337 } 338 339 id = alloc_netid(net, peer, -1); 340 spin_unlock(&net->nsid_lock); 341 342 put_net(peer); 343 if (id < 0) 344 return NETNSA_NSID_NOT_ASSIGNED; 345 346 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 347 348 return id; 349 } 350 EXPORT_SYMBOL_GPL(peernet2id_alloc); 351 352 /* This function returns, if assigned, the id of a peer netns. */ 353 int peernet2id(const struct net *net, struct net *peer) 354 { 355 int id; 356 357 rcu_read_lock(); 358 id = __peernet2id(net, peer); 359 rcu_read_unlock(); 360 361 return id; 362 } 363 EXPORT_SYMBOL(peernet2id); 364 365 /* This function returns true is the peer netns has an id assigned into the 366 * current netns. 367 */ 368 bool peernet_has_id(const struct net *net, struct net *peer) 369 { 370 return peernet2id(net, peer) >= 0; 371 } 372 373 struct net *get_net_ns_by_id(const struct net *net, int id) 374 { 375 struct net *peer; 376 377 if (id < 0) 378 return NULL; 379 380 rcu_read_lock(); 381 peer = idr_find(&net->netns_ids, id); 382 if (peer) 383 peer = maybe_get_net(peer); 384 rcu_read_unlock(); 385 386 return peer; 387 } 388 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 389 390 static __net_init void preinit_net_sysctl(struct net *net) 391 { 392 net->core.sysctl_somaxconn = SOMAXCONN; 393 /* Limits per socket sk_omem_alloc usage. 394 * TCP zerocopy regular usage needs 128 KB. 395 */ 396 net->core.sysctl_optmem_max = 128 * 1024; 397 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 398 net->core.sysctl_tstamp_allow_data = 1; 399 } 400 401 /* init code that must occur even if setup_net() is not called. */ 402 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 403 { 404 refcount_set(&net->passive, 1); 405 refcount_set(&net->ns.count, 1); 406 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net_refcnt"); 407 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net_notrefcnt"); 408 409 get_random_bytes(&net->hash_mix, sizeof(u32)); 410 net->dev_base_seq = 1; 411 net->user_ns = user_ns; 412 413 idr_init(&net->netns_ids); 414 spin_lock_init(&net->nsid_lock); 415 mutex_init(&net->ipv4.ra_mutex); 416 417 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 418 mutex_init(&net->rtnl_mutex); 419 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 420 #endif 421 422 INIT_LIST_HEAD(&net->ptype_all); 423 INIT_LIST_HEAD(&net->ptype_specific); 424 preinit_net_sysctl(net); 425 } 426 427 /* 428 * setup_net runs the initializers for the network namespace object. 429 */ 430 static __net_init int setup_net(struct net *net) 431 { 432 /* Must be called with pernet_ops_rwsem held */ 433 const struct pernet_operations *ops; 434 LIST_HEAD(net_exit_list); 435 int error = 0; 436 437 preempt_disable(); 438 net->net_cookie = gen_cookie_next(&net_cookie); 439 preempt_enable(); 440 441 list_for_each_entry(ops, &pernet_list, list) { 442 error = ops_init(ops, net); 443 if (error < 0) 444 goto out_undo; 445 } 446 down_write(&net_rwsem); 447 list_add_tail_rcu(&net->list, &net_namespace_list); 448 up_write(&net_rwsem); 449 out: 450 return error; 451 452 out_undo: 453 /* Walk through the list backwards calling the exit functions 454 * for the pernet modules whose init functions did not fail. 455 */ 456 list_add(&net->exit_list, &net_exit_list); 457 ops_undo_list(&pernet_list, ops, &net_exit_list, false); 458 rcu_barrier(); 459 goto out; 460 } 461 462 #ifdef CONFIG_NET_NS 463 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 464 { 465 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 466 } 467 468 static void dec_net_namespaces(struct ucounts *ucounts) 469 { 470 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 471 } 472 473 static struct kmem_cache *net_cachep __ro_after_init; 474 static struct workqueue_struct *netns_wq; 475 476 static struct net *net_alloc(void) 477 { 478 struct net *net = NULL; 479 struct net_generic *ng; 480 481 ng = net_alloc_generic(); 482 if (!ng) 483 goto out; 484 485 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 486 if (!net) 487 goto out_free; 488 489 #ifdef CONFIG_KEYS 490 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 491 if (!net->key_domain) 492 goto out_free_2; 493 refcount_set(&net->key_domain->usage, 1); 494 #endif 495 496 rcu_assign_pointer(net->gen, ng); 497 out: 498 return net; 499 500 #ifdef CONFIG_KEYS 501 out_free_2: 502 kmem_cache_free(net_cachep, net); 503 net = NULL; 504 #endif 505 out_free: 506 kfree(ng); 507 goto out; 508 } 509 510 static LLIST_HEAD(defer_free_list); 511 512 static void net_complete_free(void) 513 { 514 struct llist_node *kill_list; 515 struct net *net, *next; 516 517 /* Get the list of namespaces to free from last round. */ 518 kill_list = llist_del_all(&defer_free_list); 519 520 llist_for_each_entry_safe(net, next, kill_list, defer_free_list) 521 kmem_cache_free(net_cachep, net); 522 523 } 524 525 void net_passive_dec(struct net *net) 526 { 527 if (refcount_dec_and_test(&net->passive)) { 528 kfree(rcu_access_pointer(net->gen)); 529 530 /* There should not be any trackers left there. */ 531 ref_tracker_dir_exit(&net->notrefcnt_tracker); 532 533 /* Wait for an extra rcu_barrier() before final free. */ 534 llist_add(&net->defer_free_list, &defer_free_list); 535 } 536 } 537 538 void net_drop_ns(void *p) 539 { 540 struct net *net = (struct net *)p; 541 542 if (net) 543 net_passive_dec(net); 544 } 545 546 struct net *copy_net_ns(unsigned long flags, 547 struct user_namespace *user_ns, struct net *old_net) 548 { 549 struct ucounts *ucounts; 550 struct net *net; 551 int rv; 552 553 if (!(flags & CLONE_NEWNET)) 554 return get_net(old_net); 555 556 ucounts = inc_net_namespaces(user_ns); 557 if (!ucounts) 558 return ERR_PTR(-ENOSPC); 559 560 net = net_alloc(); 561 if (!net) { 562 rv = -ENOMEM; 563 goto dec_ucounts; 564 } 565 566 preinit_net(net, user_ns); 567 net->ucounts = ucounts; 568 get_user_ns(user_ns); 569 570 rv = down_read_killable(&pernet_ops_rwsem); 571 if (rv < 0) 572 goto put_userns; 573 574 rv = setup_net(net); 575 576 up_read(&pernet_ops_rwsem); 577 578 if (rv < 0) { 579 put_userns: 580 #ifdef CONFIG_KEYS 581 key_remove_domain(net->key_domain); 582 #endif 583 put_user_ns(user_ns); 584 net_passive_dec(net); 585 dec_ucounts: 586 dec_net_namespaces(ucounts); 587 return ERR_PTR(rv); 588 } 589 return net; 590 } 591 592 /** 593 * net_ns_get_ownership - get sysfs ownership data for @net 594 * @net: network namespace in question (can be NULL) 595 * @uid: kernel user ID for sysfs objects 596 * @gid: kernel group ID for sysfs objects 597 * 598 * Returns the uid/gid pair of root in the user namespace associated with the 599 * given network namespace. 600 */ 601 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 602 { 603 if (net) { 604 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 605 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 606 607 if (uid_valid(ns_root_uid)) 608 *uid = ns_root_uid; 609 610 if (gid_valid(ns_root_gid)) 611 *gid = ns_root_gid; 612 } else { 613 *uid = GLOBAL_ROOT_UID; 614 *gid = GLOBAL_ROOT_GID; 615 } 616 } 617 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 618 619 static void unhash_nsid(struct net *net, struct net *last) 620 { 621 struct net *tmp; 622 /* This function is only called from cleanup_net() work, 623 * and this work is the only process, that may delete 624 * a net from net_namespace_list. So, when the below 625 * is executing, the list may only grow. Thus, we do not 626 * use for_each_net_rcu() or net_rwsem. 627 */ 628 for_each_net(tmp) { 629 int id; 630 631 spin_lock(&tmp->nsid_lock); 632 id = __peernet2id(tmp, net); 633 if (id >= 0) 634 idr_remove(&tmp->netns_ids, id); 635 spin_unlock(&tmp->nsid_lock); 636 if (id >= 0) 637 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 638 GFP_KERNEL); 639 if (tmp == last) 640 break; 641 } 642 spin_lock(&net->nsid_lock); 643 idr_destroy(&net->netns_ids); 644 spin_unlock(&net->nsid_lock); 645 } 646 647 static LLIST_HEAD(cleanup_list); 648 649 struct task_struct *cleanup_net_task; 650 651 static void cleanup_net(struct work_struct *work) 652 { 653 struct llist_node *net_kill_list; 654 struct net *net, *tmp, *last; 655 LIST_HEAD(net_exit_list); 656 657 WRITE_ONCE(cleanup_net_task, current); 658 659 /* Atomically snapshot the list of namespaces to cleanup */ 660 net_kill_list = llist_del_all(&cleanup_list); 661 662 down_read(&pernet_ops_rwsem); 663 664 /* Don't let anyone else find us. */ 665 down_write(&net_rwsem); 666 llist_for_each_entry(net, net_kill_list, cleanup_list) 667 list_del_rcu(&net->list); 668 /* Cache last net. After we unlock rtnl, no one new net 669 * added to net_namespace_list can assign nsid pointer 670 * to a net from net_kill_list (see peernet2id_alloc()). 671 * So, we skip them in unhash_nsid(). 672 * 673 * Note, that unhash_nsid() does not delete nsid links 674 * between net_kill_list's nets, as they've already 675 * deleted from net_namespace_list. But, this would be 676 * useless anyway, as netns_ids are destroyed there. 677 */ 678 last = list_last_entry(&net_namespace_list, struct net, list); 679 up_write(&net_rwsem); 680 681 llist_for_each_entry(net, net_kill_list, cleanup_list) { 682 unhash_nsid(net, last); 683 list_add_tail(&net->exit_list, &net_exit_list); 684 } 685 686 ops_undo_list(&pernet_list, NULL, &net_exit_list, true); 687 688 up_read(&pernet_ops_rwsem); 689 690 /* Ensure there are no outstanding rcu callbacks using this 691 * network namespace. 692 */ 693 rcu_barrier(); 694 695 net_complete_free(); 696 697 /* Finally it is safe to free my network namespace structure */ 698 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 699 list_del_init(&net->exit_list); 700 dec_net_namespaces(net->ucounts); 701 #ifdef CONFIG_KEYS 702 key_remove_domain(net->key_domain); 703 #endif 704 put_user_ns(net->user_ns); 705 net_passive_dec(net); 706 } 707 WRITE_ONCE(cleanup_net_task, NULL); 708 } 709 710 /** 711 * net_ns_barrier - wait until concurrent net_cleanup_work is done 712 * 713 * cleanup_net runs from work queue and will first remove namespaces 714 * from the global list, then run net exit functions. 715 * 716 * Call this in module exit path to make sure that all netns 717 * ->exit ops have been invoked before the function is removed. 718 */ 719 void net_ns_barrier(void) 720 { 721 down_write(&pernet_ops_rwsem); 722 up_write(&pernet_ops_rwsem); 723 } 724 EXPORT_SYMBOL(net_ns_barrier); 725 726 static DECLARE_WORK(net_cleanup_work, cleanup_net); 727 728 void __put_net(struct net *net) 729 { 730 ref_tracker_dir_exit(&net->refcnt_tracker); 731 /* Cleanup the network namespace in process context */ 732 if (llist_add(&net->cleanup_list, &cleanup_list)) 733 queue_work(netns_wq, &net_cleanup_work); 734 } 735 EXPORT_SYMBOL_GPL(__put_net); 736 737 /** 738 * get_net_ns - increment the refcount of the network namespace 739 * @ns: common namespace (net) 740 * 741 * Returns the net's common namespace or ERR_PTR() if ref is zero. 742 */ 743 struct ns_common *get_net_ns(struct ns_common *ns) 744 { 745 struct net *net; 746 747 net = maybe_get_net(container_of(ns, struct net, ns)); 748 if (net) 749 return &net->ns; 750 return ERR_PTR(-EINVAL); 751 } 752 EXPORT_SYMBOL_GPL(get_net_ns); 753 754 struct net *get_net_ns_by_fd(int fd) 755 { 756 CLASS(fd, f)(fd); 757 758 if (fd_empty(f)) 759 return ERR_PTR(-EBADF); 760 761 if (proc_ns_file(fd_file(f))) { 762 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 763 if (ns->ops == &netns_operations) 764 return get_net(container_of(ns, struct net, ns)); 765 } 766 767 return ERR_PTR(-EINVAL); 768 } 769 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 770 #endif 771 772 struct net *get_net_ns_by_pid(pid_t pid) 773 { 774 struct task_struct *tsk; 775 struct net *net; 776 777 /* Lookup the network namespace */ 778 net = ERR_PTR(-ESRCH); 779 rcu_read_lock(); 780 tsk = find_task_by_vpid(pid); 781 if (tsk) { 782 struct nsproxy *nsproxy; 783 task_lock(tsk); 784 nsproxy = tsk->nsproxy; 785 if (nsproxy) 786 net = get_net(nsproxy->net_ns); 787 task_unlock(tsk); 788 } 789 rcu_read_unlock(); 790 return net; 791 } 792 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 793 794 #ifdef CONFIG_NET_NS_REFCNT_TRACKER 795 static void net_ns_net_debugfs(struct net *net) 796 { 797 ref_tracker_dir_symlink(&net->refcnt_tracker, "netns-%llx-%u-refcnt", 798 net->net_cookie, net->ns.inum); 799 ref_tracker_dir_symlink(&net->notrefcnt_tracker, "netns-%llx-%u-notrefcnt", 800 net->net_cookie, net->ns.inum); 801 } 802 803 static int __init init_net_debugfs(void) 804 { 805 ref_tracker_dir_debugfs(&init_net.refcnt_tracker); 806 ref_tracker_dir_debugfs(&init_net.notrefcnt_tracker); 807 net_ns_net_debugfs(&init_net); 808 return 0; 809 } 810 late_initcall(init_net_debugfs); 811 #else 812 static void net_ns_net_debugfs(struct net *net) 813 { 814 } 815 #endif 816 817 static __net_init int net_ns_net_init(struct net *net) 818 { 819 int ret; 820 821 #ifdef CONFIG_NET_NS 822 net->ns.ops = &netns_operations; 823 #endif 824 ret = ns_alloc_inum(&net->ns); 825 if (!ret) 826 net_ns_net_debugfs(net); 827 return ret; 828 } 829 830 static __net_exit void net_ns_net_exit(struct net *net) 831 { 832 ns_free_inum(&net->ns); 833 } 834 835 static struct pernet_operations __net_initdata net_ns_ops = { 836 .init = net_ns_net_init, 837 .exit = net_ns_net_exit, 838 }; 839 840 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 841 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 842 [NETNSA_NSID] = { .type = NLA_S32 }, 843 [NETNSA_PID] = { .type = NLA_U32 }, 844 [NETNSA_FD] = { .type = NLA_U32 }, 845 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 846 }; 847 848 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 849 struct netlink_ext_ack *extack) 850 { 851 struct net *net = sock_net(skb->sk); 852 struct nlattr *tb[NETNSA_MAX + 1]; 853 struct nlattr *nla; 854 struct net *peer; 855 int nsid, err; 856 857 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 858 NETNSA_MAX, rtnl_net_policy, extack); 859 if (err < 0) 860 return err; 861 if (!tb[NETNSA_NSID]) { 862 NL_SET_ERR_MSG(extack, "nsid is missing"); 863 return -EINVAL; 864 } 865 nsid = nla_get_s32(tb[NETNSA_NSID]); 866 867 if (tb[NETNSA_PID]) { 868 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 869 nla = tb[NETNSA_PID]; 870 } else if (tb[NETNSA_FD]) { 871 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 872 nla = tb[NETNSA_FD]; 873 } else { 874 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 875 return -EINVAL; 876 } 877 if (IS_ERR(peer)) { 878 NL_SET_BAD_ATTR(extack, nla); 879 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 880 return PTR_ERR(peer); 881 } 882 883 spin_lock(&net->nsid_lock); 884 if (__peernet2id(net, peer) >= 0) { 885 spin_unlock(&net->nsid_lock); 886 err = -EEXIST; 887 NL_SET_BAD_ATTR(extack, nla); 888 NL_SET_ERR_MSG(extack, 889 "Peer netns already has a nsid assigned"); 890 goto out; 891 } 892 893 err = alloc_netid(net, peer, nsid); 894 spin_unlock(&net->nsid_lock); 895 if (err >= 0) { 896 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 897 nlh, GFP_KERNEL); 898 err = 0; 899 } else if (err == -ENOSPC && nsid >= 0) { 900 err = -EEXIST; 901 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 902 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 903 } 904 out: 905 put_net(peer); 906 return err; 907 } 908 909 static int rtnl_net_get_size(void) 910 { 911 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 912 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 913 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 914 ; 915 } 916 917 struct net_fill_args { 918 u32 portid; 919 u32 seq; 920 int flags; 921 int cmd; 922 int nsid; 923 bool add_ref; 924 int ref_nsid; 925 }; 926 927 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 928 { 929 struct nlmsghdr *nlh; 930 struct rtgenmsg *rth; 931 932 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 933 args->flags); 934 if (!nlh) 935 return -EMSGSIZE; 936 937 rth = nlmsg_data(nlh); 938 rth->rtgen_family = AF_UNSPEC; 939 940 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 941 goto nla_put_failure; 942 943 if (args->add_ref && 944 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 945 goto nla_put_failure; 946 947 nlmsg_end(skb, nlh); 948 return 0; 949 950 nla_put_failure: 951 nlmsg_cancel(skb, nlh); 952 return -EMSGSIZE; 953 } 954 955 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 956 const struct nlmsghdr *nlh, 957 struct nlattr **tb, 958 struct netlink_ext_ack *extack) 959 { 960 int i, err; 961 962 if (!netlink_strict_get_check(skb)) 963 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 964 tb, NETNSA_MAX, rtnl_net_policy, 965 extack); 966 967 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 968 NETNSA_MAX, rtnl_net_policy, 969 extack); 970 if (err) 971 return err; 972 973 for (i = 0; i <= NETNSA_MAX; i++) { 974 if (!tb[i]) 975 continue; 976 977 switch (i) { 978 case NETNSA_PID: 979 case NETNSA_FD: 980 case NETNSA_NSID: 981 case NETNSA_TARGET_NSID: 982 break; 983 default: 984 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 985 return -EINVAL; 986 } 987 } 988 989 return 0; 990 } 991 992 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 993 struct netlink_ext_ack *extack) 994 { 995 struct net *net = sock_net(skb->sk); 996 struct nlattr *tb[NETNSA_MAX + 1]; 997 struct net_fill_args fillargs = { 998 .portid = NETLINK_CB(skb).portid, 999 .seq = nlh->nlmsg_seq, 1000 .cmd = RTM_NEWNSID, 1001 }; 1002 struct net *peer, *target = net; 1003 struct nlattr *nla; 1004 struct sk_buff *msg; 1005 int err; 1006 1007 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 1008 if (err < 0) 1009 return err; 1010 if (tb[NETNSA_PID]) { 1011 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 1012 nla = tb[NETNSA_PID]; 1013 } else if (tb[NETNSA_FD]) { 1014 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 1015 nla = tb[NETNSA_FD]; 1016 } else if (tb[NETNSA_NSID]) { 1017 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 1018 if (!peer) 1019 peer = ERR_PTR(-ENOENT); 1020 nla = tb[NETNSA_NSID]; 1021 } else { 1022 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 1023 return -EINVAL; 1024 } 1025 1026 if (IS_ERR(peer)) { 1027 NL_SET_BAD_ATTR(extack, nla); 1028 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 1029 return PTR_ERR(peer); 1030 } 1031 1032 if (tb[NETNSA_TARGET_NSID]) { 1033 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 1034 1035 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 1036 if (IS_ERR(target)) { 1037 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 1038 NL_SET_ERR_MSG(extack, 1039 "Target netns reference is invalid"); 1040 err = PTR_ERR(target); 1041 goto out; 1042 } 1043 fillargs.add_ref = true; 1044 fillargs.ref_nsid = peernet2id(net, peer); 1045 } 1046 1047 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1048 if (!msg) { 1049 err = -ENOMEM; 1050 goto out; 1051 } 1052 1053 fillargs.nsid = peernet2id(target, peer); 1054 err = rtnl_net_fill(msg, &fillargs); 1055 if (err < 0) 1056 goto err_out; 1057 1058 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 1059 goto out; 1060 1061 err_out: 1062 nlmsg_free(msg); 1063 out: 1064 if (fillargs.add_ref) 1065 put_net(target); 1066 put_net(peer); 1067 return err; 1068 } 1069 1070 struct rtnl_net_dump_cb { 1071 struct net *tgt_net; 1072 struct net *ref_net; 1073 struct sk_buff *skb; 1074 struct net_fill_args fillargs; 1075 int idx; 1076 int s_idx; 1077 }; 1078 1079 /* Runs in RCU-critical section. */ 1080 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1081 { 1082 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1083 int ret; 1084 1085 if (net_cb->idx < net_cb->s_idx) 1086 goto cont; 1087 1088 net_cb->fillargs.nsid = id; 1089 if (net_cb->fillargs.add_ref) 1090 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1091 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1092 if (ret < 0) 1093 return ret; 1094 1095 cont: 1096 net_cb->idx++; 1097 return 0; 1098 } 1099 1100 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1101 struct rtnl_net_dump_cb *net_cb, 1102 struct netlink_callback *cb) 1103 { 1104 struct netlink_ext_ack *extack = cb->extack; 1105 struct nlattr *tb[NETNSA_MAX + 1]; 1106 int err, i; 1107 1108 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1109 NETNSA_MAX, rtnl_net_policy, 1110 extack); 1111 if (err < 0) 1112 return err; 1113 1114 for (i = 0; i <= NETNSA_MAX; i++) { 1115 if (!tb[i]) 1116 continue; 1117 1118 if (i == NETNSA_TARGET_NSID) { 1119 struct net *net; 1120 1121 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1122 if (IS_ERR(net)) { 1123 NL_SET_BAD_ATTR(extack, tb[i]); 1124 NL_SET_ERR_MSG(extack, 1125 "Invalid target network namespace id"); 1126 return PTR_ERR(net); 1127 } 1128 net_cb->fillargs.add_ref = true; 1129 net_cb->ref_net = net_cb->tgt_net; 1130 net_cb->tgt_net = net; 1131 } else { 1132 NL_SET_BAD_ATTR(extack, tb[i]); 1133 NL_SET_ERR_MSG(extack, 1134 "Unsupported attribute in dump request"); 1135 return -EINVAL; 1136 } 1137 } 1138 1139 return 0; 1140 } 1141 1142 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1143 { 1144 struct rtnl_net_dump_cb net_cb = { 1145 .tgt_net = sock_net(skb->sk), 1146 .skb = skb, 1147 .fillargs = { 1148 .portid = NETLINK_CB(cb->skb).portid, 1149 .seq = cb->nlh->nlmsg_seq, 1150 .flags = NLM_F_MULTI, 1151 .cmd = RTM_NEWNSID, 1152 }, 1153 .idx = 0, 1154 .s_idx = cb->args[0], 1155 }; 1156 int err = 0; 1157 1158 if (cb->strict_check) { 1159 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1160 if (err < 0) 1161 goto end; 1162 } 1163 1164 rcu_read_lock(); 1165 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1166 rcu_read_unlock(); 1167 1168 cb->args[0] = net_cb.idx; 1169 end: 1170 if (net_cb.fillargs.add_ref) 1171 put_net(net_cb.tgt_net); 1172 return err; 1173 } 1174 1175 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1176 struct nlmsghdr *nlh, gfp_t gfp) 1177 { 1178 struct net_fill_args fillargs = { 1179 .portid = portid, 1180 .seq = nlh ? nlh->nlmsg_seq : 0, 1181 .cmd = cmd, 1182 .nsid = id, 1183 }; 1184 struct sk_buff *msg; 1185 int err = -ENOMEM; 1186 1187 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1188 if (!msg) 1189 goto out; 1190 1191 err = rtnl_net_fill(msg, &fillargs); 1192 if (err < 0) 1193 goto err_out; 1194 1195 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1196 return; 1197 1198 err_out: 1199 nlmsg_free(msg); 1200 out: 1201 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1202 } 1203 1204 #ifdef CONFIG_NET_NS 1205 static void __init netns_ipv4_struct_check(void) 1206 { 1207 /* TX readonly hotpath cache lines */ 1208 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1209 sysctl_tcp_early_retrans); 1210 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1211 sysctl_tcp_tso_win_divisor); 1212 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1213 sysctl_tcp_tso_rtt_log); 1214 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1215 sysctl_tcp_autocorking); 1216 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1217 sysctl_tcp_min_snd_mss); 1218 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1219 sysctl_tcp_notsent_lowat); 1220 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1221 sysctl_tcp_limit_output_bytes); 1222 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1223 sysctl_tcp_min_rtt_wlen); 1224 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1225 sysctl_tcp_wmem); 1226 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1227 sysctl_ip_fwd_use_pmtu); 1228 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1229 1230 /* TXRX readonly hotpath cache lines */ 1231 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1232 sysctl_tcp_moderate_rcvbuf); 1233 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1234 1235 /* RX readonly hotpath cache line */ 1236 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1237 sysctl_ip_early_demux); 1238 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1239 sysctl_tcp_early_demux); 1240 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1241 sysctl_tcp_l3mdev_accept); 1242 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1243 sysctl_tcp_reordering); 1244 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1245 sysctl_tcp_rmem); 1246 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1247 } 1248 #endif 1249 1250 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1251 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1252 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1253 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1254 .dumpit = rtnl_net_dumpid, 1255 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1256 }; 1257 1258 void __init net_ns_init(void) 1259 { 1260 struct net_generic *ng; 1261 1262 #ifdef CONFIG_NET_NS 1263 netns_ipv4_struct_check(); 1264 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1265 SMP_CACHE_BYTES, 1266 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1267 1268 /* Create workqueue for cleanup */ 1269 netns_wq = create_singlethread_workqueue("netns"); 1270 if (!netns_wq) 1271 panic("Could not create netns workq"); 1272 #endif 1273 1274 ng = net_alloc_generic(); 1275 if (!ng) 1276 panic("Could not allocate generic netns"); 1277 1278 rcu_assign_pointer(init_net.gen, ng); 1279 1280 #ifdef CONFIG_KEYS 1281 init_net.key_domain = &init_net_key_domain; 1282 #endif 1283 preinit_net(&init_net, &init_user_ns); 1284 1285 down_write(&pernet_ops_rwsem); 1286 if (setup_net(&init_net)) 1287 panic("Could not setup the initial network namespace"); 1288 1289 init_net_initialized = true; 1290 up_write(&pernet_ops_rwsem); 1291 1292 if (register_pernet_subsys(&net_ns_ops)) 1293 panic("Could not register network namespace subsystems"); 1294 1295 rtnl_register_many(net_ns_rtnl_msg_handlers); 1296 } 1297 1298 #ifdef CONFIG_NET_NS 1299 static int __register_pernet_operations(struct list_head *list, 1300 struct pernet_operations *ops) 1301 { 1302 LIST_HEAD(net_exit_list); 1303 struct net *net; 1304 int error; 1305 1306 list_add_tail(&ops->list, list); 1307 if (ops->init || ops->id) { 1308 /* We held write locked pernet_ops_rwsem, and parallel 1309 * setup_net() and cleanup_net() are not possible. 1310 */ 1311 for_each_net(net) { 1312 error = ops_init(ops, net); 1313 if (error) 1314 goto out_undo; 1315 list_add_tail(&net->exit_list, &net_exit_list); 1316 } 1317 } 1318 return 0; 1319 1320 out_undo: 1321 /* If I have an error cleanup all namespaces I initialized */ 1322 list_del(&ops->list); 1323 ops_undo_single(ops, &net_exit_list); 1324 return error; 1325 } 1326 1327 static void __unregister_pernet_operations(struct pernet_operations *ops) 1328 { 1329 LIST_HEAD(net_exit_list); 1330 struct net *net; 1331 1332 /* See comment in __register_pernet_operations() */ 1333 for_each_net(net) 1334 list_add_tail(&net->exit_list, &net_exit_list); 1335 1336 list_del(&ops->list); 1337 ops_undo_single(ops, &net_exit_list); 1338 } 1339 1340 #else 1341 1342 static int __register_pernet_operations(struct list_head *list, 1343 struct pernet_operations *ops) 1344 { 1345 if (!init_net_initialized) { 1346 list_add_tail(&ops->list, list); 1347 return 0; 1348 } 1349 1350 return ops_init(ops, &init_net); 1351 } 1352 1353 static void __unregister_pernet_operations(struct pernet_operations *ops) 1354 { 1355 if (!init_net_initialized) { 1356 list_del(&ops->list); 1357 } else { 1358 LIST_HEAD(net_exit_list); 1359 1360 list_add(&init_net.exit_list, &net_exit_list); 1361 ops_undo_single(ops, &net_exit_list); 1362 } 1363 } 1364 1365 #endif /* CONFIG_NET_NS */ 1366 1367 static DEFINE_IDA(net_generic_ids); 1368 1369 static int register_pernet_operations(struct list_head *list, 1370 struct pernet_operations *ops) 1371 { 1372 int error; 1373 1374 if (WARN_ON(!!ops->id ^ !!ops->size)) 1375 return -EINVAL; 1376 1377 if (ops->id) { 1378 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1379 GFP_KERNEL); 1380 if (error < 0) 1381 return error; 1382 *ops->id = error; 1383 /* This does not require READ_ONCE as writers already hold 1384 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1385 * net_alloc_generic. 1386 */ 1387 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1388 } 1389 error = __register_pernet_operations(list, ops); 1390 if (error) { 1391 rcu_barrier(); 1392 if (ops->id) 1393 ida_free(&net_generic_ids, *ops->id); 1394 } 1395 1396 return error; 1397 } 1398 1399 static void unregister_pernet_operations(struct pernet_operations *ops) 1400 { 1401 __unregister_pernet_operations(ops); 1402 rcu_barrier(); 1403 if (ops->id) 1404 ida_free(&net_generic_ids, *ops->id); 1405 } 1406 1407 /** 1408 * register_pernet_subsys - register a network namespace subsystem 1409 * @ops: pernet operations structure for the subsystem 1410 * 1411 * Register a subsystem which has init and exit functions 1412 * that are called when network namespaces are created and 1413 * destroyed respectively. 1414 * 1415 * When registered all network namespace init functions are 1416 * called for every existing network namespace. Allowing kernel 1417 * modules to have a race free view of the set of network namespaces. 1418 * 1419 * When a new network namespace is created all of the init 1420 * methods are called in the order in which they were registered. 1421 * 1422 * When a network namespace is destroyed all of the exit methods 1423 * are called in the reverse of the order with which they were 1424 * registered. 1425 */ 1426 int register_pernet_subsys(struct pernet_operations *ops) 1427 { 1428 int error; 1429 down_write(&pernet_ops_rwsem); 1430 error = register_pernet_operations(first_device, ops); 1431 up_write(&pernet_ops_rwsem); 1432 return error; 1433 } 1434 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1435 1436 /** 1437 * unregister_pernet_subsys - unregister a network namespace subsystem 1438 * @ops: pernet operations structure to manipulate 1439 * 1440 * Remove the pernet operations structure from the list to be 1441 * used when network namespaces are created or destroyed. In 1442 * addition run the exit method for all existing network 1443 * namespaces. 1444 */ 1445 void unregister_pernet_subsys(struct pernet_operations *ops) 1446 { 1447 down_write(&pernet_ops_rwsem); 1448 unregister_pernet_operations(ops); 1449 up_write(&pernet_ops_rwsem); 1450 } 1451 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1452 1453 /** 1454 * register_pernet_device - register a network namespace device 1455 * @ops: pernet operations structure for the subsystem 1456 * 1457 * Register a device which has init and exit functions 1458 * that are called when network namespaces are created and 1459 * destroyed respectively. 1460 * 1461 * When registered all network namespace init functions are 1462 * called for every existing network namespace. Allowing kernel 1463 * modules to have a race free view of the set of network namespaces. 1464 * 1465 * When a new network namespace is created all of the init 1466 * methods are called in the order in which they were registered. 1467 * 1468 * When a network namespace is destroyed all of the exit methods 1469 * are called in the reverse of the order with which they were 1470 * registered. 1471 */ 1472 int register_pernet_device(struct pernet_operations *ops) 1473 { 1474 int error; 1475 down_write(&pernet_ops_rwsem); 1476 error = register_pernet_operations(&pernet_list, ops); 1477 if (!error && (first_device == &pernet_list)) 1478 first_device = &ops->list; 1479 up_write(&pernet_ops_rwsem); 1480 return error; 1481 } 1482 EXPORT_SYMBOL_GPL(register_pernet_device); 1483 1484 /** 1485 * unregister_pernet_device - unregister a network namespace netdevice 1486 * @ops: pernet operations structure to manipulate 1487 * 1488 * Remove the pernet operations structure from the list to be 1489 * used when network namespaces are created or destroyed. In 1490 * addition run the exit method for all existing network 1491 * namespaces. 1492 */ 1493 void unregister_pernet_device(struct pernet_operations *ops) 1494 { 1495 down_write(&pernet_ops_rwsem); 1496 if (&ops->list == first_device) 1497 first_device = first_device->next; 1498 unregister_pernet_operations(ops); 1499 up_write(&pernet_ops_rwsem); 1500 } 1501 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1502 1503 #ifdef CONFIG_NET_NS 1504 static struct ns_common *netns_get(struct task_struct *task) 1505 { 1506 struct net *net = NULL; 1507 struct nsproxy *nsproxy; 1508 1509 task_lock(task); 1510 nsproxy = task->nsproxy; 1511 if (nsproxy) 1512 net = get_net(nsproxy->net_ns); 1513 task_unlock(task); 1514 1515 return net ? &net->ns : NULL; 1516 } 1517 1518 static inline struct net *to_net_ns(struct ns_common *ns) 1519 { 1520 return container_of(ns, struct net, ns); 1521 } 1522 1523 static void netns_put(struct ns_common *ns) 1524 { 1525 put_net(to_net_ns(ns)); 1526 } 1527 1528 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1529 { 1530 struct nsproxy *nsproxy = nsset->nsproxy; 1531 struct net *net = to_net_ns(ns); 1532 1533 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1534 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1535 return -EPERM; 1536 1537 put_net(nsproxy->net_ns); 1538 nsproxy->net_ns = get_net(net); 1539 return 0; 1540 } 1541 1542 static struct user_namespace *netns_owner(struct ns_common *ns) 1543 { 1544 return to_net_ns(ns)->user_ns; 1545 } 1546 1547 const struct proc_ns_operations netns_operations = { 1548 .name = "net", 1549 .type = CLONE_NEWNET, 1550 .get = netns_get, 1551 .put = netns_put, 1552 .install = netns_install, 1553 .owner = netns_owner, 1554 }; 1555 #endif 1556