xref: /linux/net/core/net_namespace.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/workqueue.h>
5 #include <linux/rtnetlink.h>
6 #include <linux/cache.h>
7 #include <linux/slab.h>
8 #include <linux/list.h>
9 #include <linux/delay.h>
10 #include <linux/sched.h>
11 #include <linux/idr.h>
12 #include <linux/rculist.h>
13 #include <linux/nsproxy.h>
14 #include <linux/fs.h>
15 #include <linux/proc_ns.h>
16 #include <linux/file.h>
17 #include <linux/export.h>
18 #include <linux/user_namespace.h>
19 #include <linux/net_namespace.h>
20 #include <linux/sched/task.h>
21 #include <linux/uidgid.h>
22 
23 #include <net/sock.h>
24 #include <net/netlink.h>
25 #include <net/net_namespace.h>
26 #include <net/netns/generic.h>
27 
28 /*
29  *	Our network namespace constructor/destructor lists
30  */
31 
32 static LIST_HEAD(pernet_list);
33 static struct list_head *first_device = &pernet_list;
34 
35 LIST_HEAD(net_namespace_list);
36 EXPORT_SYMBOL_GPL(net_namespace_list);
37 
38 /* Protects net_namespace_list. Nests iside rtnl_lock() */
39 DECLARE_RWSEM(net_rwsem);
40 EXPORT_SYMBOL_GPL(net_rwsem);
41 
42 #ifdef CONFIG_KEYS
43 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) };
44 #endif
45 
46 struct net init_net = {
47 	.count		= REFCOUNT_INIT(1),
48 	.dev_base_head	= LIST_HEAD_INIT(init_net.dev_base_head),
49 #ifdef CONFIG_KEYS
50 	.key_domain	= &init_net_key_domain,
51 #endif
52 };
53 EXPORT_SYMBOL(init_net);
54 
55 static bool init_net_initialized;
56 /*
57  * pernet_ops_rwsem: protects: pernet_list, net_generic_ids,
58  * init_net_initialized and first_device pointer.
59  * This is internal net namespace object. Please, don't use it
60  * outside.
61  */
62 DECLARE_RWSEM(pernet_ops_rwsem);
63 EXPORT_SYMBOL_GPL(pernet_ops_rwsem);
64 
65 #define MIN_PERNET_OPS_ID	\
66 	((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *))
67 
68 #define INITIAL_NET_GEN_PTRS	13 /* +1 for len +2 for rcu_head */
69 
70 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS;
71 
72 static struct net_generic *net_alloc_generic(void)
73 {
74 	struct net_generic *ng;
75 	unsigned int generic_size = offsetof(struct net_generic, ptr[max_gen_ptrs]);
76 
77 	ng = kzalloc(generic_size, GFP_KERNEL);
78 	if (ng)
79 		ng->s.len = max_gen_ptrs;
80 
81 	return ng;
82 }
83 
84 static int net_assign_generic(struct net *net, unsigned int id, void *data)
85 {
86 	struct net_generic *ng, *old_ng;
87 
88 	BUG_ON(id < MIN_PERNET_OPS_ID);
89 
90 	old_ng = rcu_dereference_protected(net->gen,
91 					   lockdep_is_held(&pernet_ops_rwsem));
92 	if (old_ng->s.len > id) {
93 		old_ng->ptr[id] = data;
94 		return 0;
95 	}
96 
97 	ng = net_alloc_generic();
98 	if (ng == NULL)
99 		return -ENOMEM;
100 
101 	/*
102 	 * Some synchronisation notes:
103 	 *
104 	 * The net_generic explores the net->gen array inside rcu
105 	 * read section. Besides once set the net->gen->ptr[x]
106 	 * pointer never changes (see rules in netns/generic.h).
107 	 *
108 	 * That said, we simply duplicate this array and schedule
109 	 * the old copy for kfree after a grace period.
110 	 */
111 
112 	memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID],
113 	       (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *));
114 	ng->ptr[id] = data;
115 
116 	rcu_assign_pointer(net->gen, ng);
117 	kfree_rcu(old_ng, s.rcu);
118 	return 0;
119 }
120 
121 static int ops_init(const struct pernet_operations *ops, struct net *net)
122 {
123 	int err = -ENOMEM;
124 	void *data = NULL;
125 
126 	if (ops->id && ops->size) {
127 		data = kzalloc(ops->size, GFP_KERNEL);
128 		if (!data)
129 			goto out;
130 
131 		err = net_assign_generic(net, *ops->id, data);
132 		if (err)
133 			goto cleanup;
134 	}
135 	err = 0;
136 	if (ops->init)
137 		err = ops->init(net);
138 	if (!err)
139 		return 0;
140 
141 cleanup:
142 	kfree(data);
143 
144 out:
145 	return err;
146 }
147 
148 static void ops_free(const struct pernet_operations *ops, struct net *net)
149 {
150 	if (ops->id && ops->size) {
151 		kfree(net_generic(net, *ops->id));
152 	}
153 }
154 
155 static void ops_pre_exit_list(const struct pernet_operations *ops,
156 			      struct list_head *net_exit_list)
157 {
158 	struct net *net;
159 
160 	if (ops->pre_exit) {
161 		list_for_each_entry(net, net_exit_list, exit_list)
162 			ops->pre_exit(net);
163 	}
164 }
165 
166 static void ops_exit_list(const struct pernet_operations *ops,
167 			  struct list_head *net_exit_list)
168 {
169 	struct net *net;
170 	if (ops->exit) {
171 		list_for_each_entry(net, net_exit_list, exit_list)
172 			ops->exit(net);
173 	}
174 	if (ops->exit_batch)
175 		ops->exit_batch(net_exit_list);
176 }
177 
178 static void ops_free_list(const struct pernet_operations *ops,
179 			  struct list_head *net_exit_list)
180 {
181 	struct net *net;
182 	if (ops->size && ops->id) {
183 		list_for_each_entry(net, net_exit_list, exit_list)
184 			ops_free(ops, net);
185 	}
186 }
187 
188 /* should be called with nsid_lock held */
189 static int alloc_netid(struct net *net, struct net *peer, int reqid)
190 {
191 	int min = 0, max = 0;
192 
193 	if (reqid >= 0) {
194 		min = reqid;
195 		max = reqid + 1;
196 	}
197 
198 	return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC);
199 }
200 
201 /* This function is used by idr_for_each(). If net is equal to peer, the
202  * function returns the id so that idr_for_each() stops. Because we cannot
203  * returns the id 0 (idr_for_each() will not stop), we return the magic value
204  * NET_ID_ZERO (-1) for it.
205  */
206 #define NET_ID_ZERO -1
207 static int net_eq_idr(int id, void *net, void *peer)
208 {
209 	if (net_eq(net, peer))
210 		return id ? : NET_ID_ZERO;
211 	return 0;
212 }
213 
214 /* Must be called from RCU-critical section or with nsid_lock held */
215 static int __peernet2id(const struct net *net, struct net *peer)
216 {
217 	int id = idr_for_each(&net->netns_ids, net_eq_idr, peer);
218 
219 	/* Magic value for id 0. */
220 	if (id == NET_ID_ZERO)
221 		return 0;
222 	if (id > 0)
223 		return id;
224 
225 	return NETNSA_NSID_NOT_ASSIGNED;
226 }
227 
228 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
229 			      struct nlmsghdr *nlh, gfp_t gfp);
230 /* This function returns the id of a peer netns. If no id is assigned, one will
231  * be allocated and returned.
232  */
233 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp)
234 {
235 	int id;
236 
237 	if (refcount_read(&net->count) == 0)
238 		return NETNSA_NSID_NOT_ASSIGNED;
239 
240 	spin_lock(&net->nsid_lock);
241 	id = __peernet2id(net, peer);
242 	if (id >= 0) {
243 		spin_unlock(&net->nsid_lock);
244 		return id;
245 	}
246 
247 	/* When peer is obtained from RCU lists, we may race with
248 	 * its cleanup. Check whether it's alive, and this guarantees
249 	 * we never hash a peer back to net->netns_ids, after it has
250 	 * just been idr_remove()'d from there in cleanup_net().
251 	 */
252 	if (!maybe_get_net(peer)) {
253 		spin_unlock(&net->nsid_lock);
254 		return NETNSA_NSID_NOT_ASSIGNED;
255 	}
256 
257 	id = alloc_netid(net, peer, -1);
258 	spin_unlock(&net->nsid_lock);
259 
260 	put_net(peer);
261 	if (id < 0)
262 		return NETNSA_NSID_NOT_ASSIGNED;
263 
264 	rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp);
265 
266 	return id;
267 }
268 EXPORT_SYMBOL_GPL(peernet2id_alloc);
269 
270 /* This function returns, if assigned, the id of a peer netns. */
271 int peernet2id(const struct net *net, struct net *peer)
272 {
273 	int id;
274 
275 	rcu_read_lock();
276 	id = __peernet2id(net, peer);
277 	rcu_read_unlock();
278 
279 	return id;
280 }
281 EXPORT_SYMBOL(peernet2id);
282 
283 /* This function returns true is the peer netns has an id assigned into the
284  * current netns.
285  */
286 bool peernet_has_id(const struct net *net, struct net *peer)
287 {
288 	return peernet2id(net, peer) >= 0;
289 }
290 
291 struct net *get_net_ns_by_id(const struct net *net, int id)
292 {
293 	struct net *peer;
294 
295 	if (id < 0)
296 		return NULL;
297 
298 	rcu_read_lock();
299 	peer = idr_find(&net->netns_ids, id);
300 	if (peer)
301 		peer = maybe_get_net(peer);
302 	rcu_read_unlock();
303 
304 	return peer;
305 }
306 
307 /*
308  * setup_net runs the initializers for the network namespace object.
309  */
310 static __net_init int setup_net(struct net *net, struct user_namespace *user_ns)
311 {
312 	/* Must be called with pernet_ops_rwsem held */
313 	const struct pernet_operations *ops, *saved_ops;
314 	int error = 0;
315 	LIST_HEAD(net_exit_list);
316 
317 	refcount_set(&net->count, 1);
318 	refcount_set(&net->passive, 1);
319 	get_random_bytes(&net->hash_mix, sizeof(u32));
320 	net->dev_base_seq = 1;
321 	net->user_ns = user_ns;
322 	idr_init(&net->netns_ids);
323 	spin_lock_init(&net->nsid_lock);
324 	mutex_init(&net->ipv4.ra_mutex);
325 
326 	list_for_each_entry(ops, &pernet_list, list) {
327 		error = ops_init(ops, net);
328 		if (error < 0)
329 			goto out_undo;
330 	}
331 	down_write(&net_rwsem);
332 	list_add_tail_rcu(&net->list, &net_namespace_list);
333 	up_write(&net_rwsem);
334 out:
335 	return error;
336 
337 out_undo:
338 	/* Walk through the list backwards calling the exit functions
339 	 * for the pernet modules whose init functions did not fail.
340 	 */
341 	list_add(&net->exit_list, &net_exit_list);
342 	saved_ops = ops;
343 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
344 		ops_pre_exit_list(ops, &net_exit_list);
345 
346 	synchronize_rcu();
347 
348 	ops = saved_ops;
349 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
350 		ops_exit_list(ops, &net_exit_list);
351 
352 	ops = saved_ops;
353 	list_for_each_entry_continue_reverse(ops, &pernet_list, list)
354 		ops_free_list(ops, &net_exit_list);
355 
356 	rcu_barrier();
357 	goto out;
358 }
359 
360 static int __net_init net_defaults_init_net(struct net *net)
361 {
362 	net->core.sysctl_somaxconn = SOMAXCONN;
363 	return 0;
364 }
365 
366 static struct pernet_operations net_defaults_ops = {
367 	.init = net_defaults_init_net,
368 };
369 
370 static __init int net_defaults_init(void)
371 {
372 	if (register_pernet_subsys(&net_defaults_ops))
373 		panic("Cannot initialize net default settings");
374 
375 	return 0;
376 }
377 
378 core_initcall(net_defaults_init);
379 
380 #ifdef CONFIG_NET_NS
381 static struct ucounts *inc_net_namespaces(struct user_namespace *ns)
382 {
383 	return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES);
384 }
385 
386 static void dec_net_namespaces(struct ucounts *ucounts)
387 {
388 	dec_ucount(ucounts, UCOUNT_NET_NAMESPACES);
389 }
390 
391 static struct kmem_cache *net_cachep __ro_after_init;
392 static struct workqueue_struct *netns_wq;
393 
394 static struct net *net_alloc(void)
395 {
396 	struct net *net = NULL;
397 	struct net_generic *ng;
398 
399 	ng = net_alloc_generic();
400 	if (!ng)
401 		goto out;
402 
403 	net = kmem_cache_zalloc(net_cachep, GFP_KERNEL);
404 	if (!net)
405 		goto out_free;
406 
407 #ifdef CONFIG_KEYS
408 	net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL);
409 	if (!net->key_domain)
410 		goto out_free_2;
411 	refcount_set(&net->key_domain->usage, 1);
412 #endif
413 
414 	rcu_assign_pointer(net->gen, ng);
415 out:
416 	return net;
417 
418 #ifdef CONFIG_KEYS
419 out_free_2:
420 	kmem_cache_free(net_cachep, net);
421 	net = NULL;
422 #endif
423 out_free:
424 	kfree(ng);
425 	goto out;
426 }
427 
428 static void net_free(struct net *net)
429 {
430 	kfree(rcu_access_pointer(net->gen));
431 	kmem_cache_free(net_cachep, net);
432 }
433 
434 void net_drop_ns(void *p)
435 {
436 	struct net *ns = p;
437 	if (ns && refcount_dec_and_test(&ns->passive))
438 		net_free(ns);
439 }
440 
441 struct net *copy_net_ns(unsigned long flags,
442 			struct user_namespace *user_ns, struct net *old_net)
443 {
444 	struct ucounts *ucounts;
445 	struct net *net;
446 	int rv;
447 
448 	if (!(flags & CLONE_NEWNET))
449 		return get_net(old_net);
450 
451 	ucounts = inc_net_namespaces(user_ns);
452 	if (!ucounts)
453 		return ERR_PTR(-ENOSPC);
454 
455 	net = net_alloc();
456 	if (!net) {
457 		rv = -ENOMEM;
458 		goto dec_ucounts;
459 	}
460 	refcount_set(&net->passive, 1);
461 	net->ucounts = ucounts;
462 	get_user_ns(user_ns);
463 
464 	rv = down_read_killable(&pernet_ops_rwsem);
465 	if (rv < 0)
466 		goto put_userns;
467 
468 	rv = setup_net(net, user_ns);
469 
470 	up_read(&pernet_ops_rwsem);
471 
472 	if (rv < 0) {
473 put_userns:
474 		key_remove_domain(net->key_domain);
475 		put_user_ns(user_ns);
476 		net_drop_ns(net);
477 dec_ucounts:
478 		dec_net_namespaces(ucounts);
479 		return ERR_PTR(rv);
480 	}
481 	return net;
482 }
483 
484 /**
485  * net_ns_get_ownership - get sysfs ownership data for @net
486  * @net: network namespace in question (can be NULL)
487  * @uid: kernel user ID for sysfs objects
488  * @gid: kernel group ID for sysfs objects
489  *
490  * Returns the uid/gid pair of root in the user namespace associated with the
491  * given network namespace.
492  */
493 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid)
494 {
495 	if (net) {
496 		kuid_t ns_root_uid = make_kuid(net->user_ns, 0);
497 		kgid_t ns_root_gid = make_kgid(net->user_ns, 0);
498 
499 		if (uid_valid(ns_root_uid))
500 			*uid = ns_root_uid;
501 
502 		if (gid_valid(ns_root_gid))
503 			*gid = ns_root_gid;
504 	} else {
505 		*uid = GLOBAL_ROOT_UID;
506 		*gid = GLOBAL_ROOT_GID;
507 	}
508 }
509 EXPORT_SYMBOL_GPL(net_ns_get_ownership);
510 
511 static void unhash_nsid(struct net *net, struct net *last)
512 {
513 	struct net *tmp;
514 	/* This function is only called from cleanup_net() work,
515 	 * and this work is the only process, that may delete
516 	 * a net from net_namespace_list. So, when the below
517 	 * is executing, the list may only grow. Thus, we do not
518 	 * use for_each_net_rcu() or net_rwsem.
519 	 */
520 	for_each_net(tmp) {
521 		int id;
522 
523 		spin_lock(&tmp->nsid_lock);
524 		id = __peernet2id(tmp, net);
525 		if (id >= 0)
526 			idr_remove(&tmp->netns_ids, id);
527 		spin_unlock(&tmp->nsid_lock);
528 		if (id >= 0)
529 			rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL,
530 					  GFP_KERNEL);
531 		if (tmp == last)
532 			break;
533 	}
534 	spin_lock(&net->nsid_lock);
535 	idr_destroy(&net->netns_ids);
536 	spin_unlock(&net->nsid_lock);
537 }
538 
539 static LLIST_HEAD(cleanup_list);
540 
541 static void cleanup_net(struct work_struct *work)
542 {
543 	const struct pernet_operations *ops;
544 	struct net *net, *tmp, *last;
545 	struct llist_node *net_kill_list;
546 	LIST_HEAD(net_exit_list);
547 
548 	/* Atomically snapshot the list of namespaces to cleanup */
549 	net_kill_list = llist_del_all(&cleanup_list);
550 
551 	down_read(&pernet_ops_rwsem);
552 
553 	/* Don't let anyone else find us. */
554 	down_write(&net_rwsem);
555 	llist_for_each_entry(net, net_kill_list, cleanup_list)
556 		list_del_rcu(&net->list);
557 	/* Cache last net. After we unlock rtnl, no one new net
558 	 * added to net_namespace_list can assign nsid pointer
559 	 * to a net from net_kill_list (see peernet2id_alloc()).
560 	 * So, we skip them in unhash_nsid().
561 	 *
562 	 * Note, that unhash_nsid() does not delete nsid links
563 	 * between net_kill_list's nets, as they've already
564 	 * deleted from net_namespace_list. But, this would be
565 	 * useless anyway, as netns_ids are destroyed there.
566 	 */
567 	last = list_last_entry(&net_namespace_list, struct net, list);
568 	up_write(&net_rwsem);
569 
570 	llist_for_each_entry(net, net_kill_list, cleanup_list) {
571 		unhash_nsid(net, last);
572 		list_add_tail(&net->exit_list, &net_exit_list);
573 	}
574 
575 	/* Run all of the network namespace pre_exit methods */
576 	list_for_each_entry_reverse(ops, &pernet_list, list)
577 		ops_pre_exit_list(ops, &net_exit_list);
578 
579 	/*
580 	 * Another CPU might be rcu-iterating the list, wait for it.
581 	 * This needs to be before calling the exit() notifiers, so
582 	 * the rcu_barrier() below isn't sufficient alone.
583 	 * Also the pre_exit() and exit() methods need this barrier.
584 	 */
585 	synchronize_rcu();
586 
587 	/* Run all of the network namespace exit methods */
588 	list_for_each_entry_reverse(ops, &pernet_list, list)
589 		ops_exit_list(ops, &net_exit_list);
590 
591 	/* Free the net generic variables */
592 	list_for_each_entry_reverse(ops, &pernet_list, list)
593 		ops_free_list(ops, &net_exit_list);
594 
595 	up_read(&pernet_ops_rwsem);
596 
597 	/* Ensure there are no outstanding rcu callbacks using this
598 	 * network namespace.
599 	 */
600 	rcu_barrier();
601 
602 	/* Finally it is safe to free my network namespace structure */
603 	list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) {
604 		list_del_init(&net->exit_list);
605 		dec_net_namespaces(net->ucounts);
606 		key_remove_domain(net->key_domain);
607 		put_user_ns(net->user_ns);
608 		net_drop_ns(net);
609 	}
610 }
611 
612 /**
613  * net_ns_barrier - wait until concurrent net_cleanup_work is done
614  *
615  * cleanup_net runs from work queue and will first remove namespaces
616  * from the global list, then run net exit functions.
617  *
618  * Call this in module exit path to make sure that all netns
619  * ->exit ops have been invoked before the function is removed.
620  */
621 void net_ns_barrier(void)
622 {
623 	down_write(&pernet_ops_rwsem);
624 	up_write(&pernet_ops_rwsem);
625 }
626 EXPORT_SYMBOL(net_ns_barrier);
627 
628 static DECLARE_WORK(net_cleanup_work, cleanup_net);
629 
630 void __put_net(struct net *net)
631 {
632 	/* Cleanup the network namespace in process context */
633 	if (llist_add(&net->cleanup_list, &cleanup_list))
634 		queue_work(netns_wq, &net_cleanup_work);
635 }
636 EXPORT_SYMBOL_GPL(__put_net);
637 
638 struct net *get_net_ns_by_fd(int fd)
639 {
640 	struct file *file;
641 	struct ns_common *ns;
642 	struct net *net;
643 
644 	file = proc_ns_fget(fd);
645 	if (IS_ERR(file))
646 		return ERR_CAST(file);
647 
648 	ns = get_proc_ns(file_inode(file));
649 	if (ns->ops == &netns_operations)
650 		net = get_net(container_of(ns, struct net, ns));
651 	else
652 		net = ERR_PTR(-EINVAL);
653 
654 	fput(file);
655 	return net;
656 }
657 
658 #else
659 struct net *get_net_ns_by_fd(int fd)
660 {
661 	return ERR_PTR(-EINVAL);
662 }
663 #endif
664 EXPORT_SYMBOL_GPL(get_net_ns_by_fd);
665 
666 struct net *get_net_ns_by_pid(pid_t pid)
667 {
668 	struct task_struct *tsk;
669 	struct net *net;
670 
671 	/* Lookup the network namespace */
672 	net = ERR_PTR(-ESRCH);
673 	rcu_read_lock();
674 	tsk = find_task_by_vpid(pid);
675 	if (tsk) {
676 		struct nsproxy *nsproxy;
677 		task_lock(tsk);
678 		nsproxy = tsk->nsproxy;
679 		if (nsproxy)
680 			net = get_net(nsproxy->net_ns);
681 		task_unlock(tsk);
682 	}
683 	rcu_read_unlock();
684 	return net;
685 }
686 EXPORT_SYMBOL_GPL(get_net_ns_by_pid);
687 
688 static __net_init int net_ns_net_init(struct net *net)
689 {
690 #ifdef CONFIG_NET_NS
691 	net->ns.ops = &netns_operations;
692 #endif
693 	return ns_alloc_inum(&net->ns);
694 }
695 
696 static __net_exit void net_ns_net_exit(struct net *net)
697 {
698 	ns_free_inum(&net->ns);
699 }
700 
701 static struct pernet_operations __net_initdata net_ns_ops = {
702 	.init = net_ns_net_init,
703 	.exit = net_ns_net_exit,
704 };
705 
706 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = {
707 	[NETNSA_NONE]		= { .type = NLA_UNSPEC },
708 	[NETNSA_NSID]		= { .type = NLA_S32 },
709 	[NETNSA_PID]		= { .type = NLA_U32 },
710 	[NETNSA_FD]		= { .type = NLA_U32 },
711 	[NETNSA_TARGET_NSID]	= { .type = NLA_S32 },
712 };
713 
714 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh,
715 			  struct netlink_ext_ack *extack)
716 {
717 	struct net *net = sock_net(skb->sk);
718 	struct nlattr *tb[NETNSA_MAX + 1];
719 	struct nlattr *nla;
720 	struct net *peer;
721 	int nsid, err;
722 
723 	err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb,
724 				     NETNSA_MAX, rtnl_net_policy, extack);
725 	if (err < 0)
726 		return err;
727 	if (!tb[NETNSA_NSID]) {
728 		NL_SET_ERR_MSG(extack, "nsid is missing");
729 		return -EINVAL;
730 	}
731 	nsid = nla_get_s32(tb[NETNSA_NSID]);
732 
733 	if (tb[NETNSA_PID]) {
734 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
735 		nla = tb[NETNSA_PID];
736 	} else if (tb[NETNSA_FD]) {
737 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
738 		nla = tb[NETNSA_FD];
739 	} else {
740 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
741 		return -EINVAL;
742 	}
743 	if (IS_ERR(peer)) {
744 		NL_SET_BAD_ATTR(extack, nla);
745 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
746 		return PTR_ERR(peer);
747 	}
748 
749 	spin_lock(&net->nsid_lock);
750 	if (__peernet2id(net, peer) >= 0) {
751 		spin_unlock(&net->nsid_lock);
752 		err = -EEXIST;
753 		NL_SET_BAD_ATTR(extack, nla);
754 		NL_SET_ERR_MSG(extack,
755 			       "Peer netns already has a nsid assigned");
756 		goto out;
757 	}
758 
759 	err = alloc_netid(net, peer, nsid);
760 	spin_unlock(&net->nsid_lock);
761 	if (err >= 0) {
762 		rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid,
763 				  nlh, GFP_KERNEL);
764 		err = 0;
765 	} else if (err == -ENOSPC && nsid >= 0) {
766 		err = -EEXIST;
767 		NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]);
768 		NL_SET_ERR_MSG(extack, "The specified nsid is already used");
769 	}
770 out:
771 	put_net(peer);
772 	return err;
773 }
774 
775 static int rtnl_net_get_size(void)
776 {
777 	return NLMSG_ALIGN(sizeof(struct rtgenmsg))
778 	       + nla_total_size(sizeof(s32)) /* NETNSA_NSID */
779 	       + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */
780 	       ;
781 }
782 
783 struct net_fill_args {
784 	u32 portid;
785 	u32 seq;
786 	int flags;
787 	int cmd;
788 	int nsid;
789 	bool add_ref;
790 	int ref_nsid;
791 };
792 
793 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args)
794 {
795 	struct nlmsghdr *nlh;
796 	struct rtgenmsg *rth;
797 
798 	nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth),
799 			args->flags);
800 	if (!nlh)
801 		return -EMSGSIZE;
802 
803 	rth = nlmsg_data(nlh);
804 	rth->rtgen_family = AF_UNSPEC;
805 
806 	if (nla_put_s32(skb, NETNSA_NSID, args->nsid))
807 		goto nla_put_failure;
808 
809 	if (args->add_ref &&
810 	    nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid))
811 		goto nla_put_failure;
812 
813 	nlmsg_end(skb, nlh);
814 	return 0;
815 
816 nla_put_failure:
817 	nlmsg_cancel(skb, nlh);
818 	return -EMSGSIZE;
819 }
820 
821 static int rtnl_net_valid_getid_req(struct sk_buff *skb,
822 				    const struct nlmsghdr *nlh,
823 				    struct nlattr **tb,
824 				    struct netlink_ext_ack *extack)
825 {
826 	int i, err;
827 
828 	if (!netlink_strict_get_check(skb))
829 		return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg),
830 					      tb, NETNSA_MAX, rtnl_net_policy,
831 					      extack);
832 
833 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
834 					    NETNSA_MAX, rtnl_net_policy,
835 					    extack);
836 	if (err)
837 		return err;
838 
839 	for (i = 0; i <= NETNSA_MAX; i++) {
840 		if (!tb[i])
841 			continue;
842 
843 		switch (i) {
844 		case NETNSA_PID:
845 		case NETNSA_FD:
846 		case NETNSA_NSID:
847 		case NETNSA_TARGET_NSID:
848 			break;
849 		default:
850 			NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request");
851 			return -EINVAL;
852 		}
853 	}
854 
855 	return 0;
856 }
857 
858 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh,
859 			  struct netlink_ext_ack *extack)
860 {
861 	struct net *net = sock_net(skb->sk);
862 	struct nlattr *tb[NETNSA_MAX + 1];
863 	struct net_fill_args fillargs = {
864 		.portid = NETLINK_CB(skb).portid,
865 		.seq = nlh->nlmsg_seq,
866 		.cmd = RTM_NEWNSID,
867 	};
868 	struct net *peer, *target = net;
869 	struct nlattr *nla;
870 	struct sk_buff *msg;
871 	int err;
872 
873 	err = rtnl_net_valid_getid_req(skb, nlh, tb, extack);
874 	if (err < 0)
875 		return err;
876 	if (tb[NETNSA_PID]) {
877 		peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID]));
878 		nla = tb[NETNSA_PID];
879 	} else if (tb[NETNSA_FD]) {
880 		peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD]));
881 		nla = tb[NETNSA_FD];
882 	} else if (tb[NETNSA_NSID]) {
883 		peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID]));
884 		if (!peer)
885 			peer = ERR_PTR(-ENOENT);
886 		nla = tb[NETNSA_NSID];
887 	} else {
888 		NL_SET_ERR_MSG(extack, "Peer netns reference is missing");
889 		return -EINVAL;
890 	}
891 
892 	if (IS_ERR(peer)) {
893 		NL_SET_BAD_ATTR(extack, nla);
894 		NL_SET_ERR_MSG(extack, "Peer netns reference is invalid");
895 		return PTR_ERR(peer);
896 	}
897 
898 	if (tb[NETNSA_TARGET_NSID]) {
899 		int id = nla_get_s32(tb[NETNSA_TARGET_NSID]);
900 
901 		target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id);
902 		if (IS_ERR(target)) {
903 			NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]);
904 			NL_SET_ERR_MSG(extack,
905 				       "Target netns reference is invalid");
906 			err = PTR_ERR(target);
907 			goto out;
908 		}
909 		fillargs.add_ref = true;
910 		fillargs.ref_nsid = peernet2id(net, peer);
911 	}
912 
913 	msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL);
914 	if (!msg) {
915 		err = -ENOMEM;
916 		goto out;
917 	}
918 
919 	fillargs.nsid = peernet2id(target, peer);
920 	err = rtnl_net_fill(msg, &fillargs);
921 	if (err < 0)
922 		goto err_out;
923 
924 	err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid);
925 	goto out;
926 
927 err_out:
928 	nlmsg_free(msg);
929 out:
930 	if (fillargs.add_ref)
931 		put_net(target);
932 	put_net(peer);
933 	return err;
934 }
935 
936 struct rtnl_net_dump_cb {
937 	struct net *tgt_net;
938 	struct net *ref_net;
939 	struct sk_buff *skb;
940 	struct net_fill_args fillargs;
941 	int idx;
942 	int s_idx;
943 };
944 
945 /* Runs in RCU-critical section. */
946 static int rtnl_net_dumpid_one(int id, void *peer, void *data)
947 {
948 	struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data;
949 	int ret;
950 
951 	if (net_cb->idx < net_cb->s_idx)
952 		goto cont;
953 
954 	net_cb->fillargs.nsid = id;
955 	if (net_cb->fillargs.add_ref)
956 		net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer);
957 	ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs);
958 	if (ret < 0)
959 		return ret;
960 
961 cont:
962 	net_cb->idx++;
963 	return 0;
964 }
965 
966 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk,
967 				   struct rtnl_net_dump_cb *net_cb,
968 				   struct netlink_callback *cb)
969 {
970 	struct netlink_ext_ack *extack = cb->extack;
971 	struct nlattr *tb[NETNSA_MAX + 1];
972 	int err, i;
973 
974 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb,
975 					    NETNSA_MAX, rtnl_net_policy,
976 					    extack);
977 	if (err < 0)
978 		return err;
979 
980 	for (i = 0; i <= NETNSA_MAX; i++) {
981 		if (!tb[i])
982 			continue;
983 
984 		if (i == NETNSA_TARGET_NSID) {
985 			struct net *net;
986 
987 			net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i]));
988 			if (IS_ERR(net)) {
989 				NL_SET_BAD_ATTR(extack, tb[i]);
990 				NL_SET_ERR_MSG(extack,
991 					       "Invalid target network namespace id");
992 				return PTR_ERR(net);
993 			}
994 			net_cb->fillargs.add_ref = true;
995 			net_cb->ref_net = net_cb->tgt_net;
996 			net_cb->tgt_net = net;
997 		} else {
998 			NL_SET_BAD_ATTR(extack, tb[i]);
999 			NL_SET_ERR_MSG(extack,
1000 				       "Unsupported attribute in dump request");
1001 			return -EINVAL;
1002 		}
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb)
1009 {
1010 	struct rtnl_net_dump_cb net_cb = {
1011 		.tgt_net = sock_net(skb->sk),
1012 		.skb = skb,
1013 		.fillargs = {
1014 			.portid = NETLINK_CB(cb->skb).portid,
1015 			.seq = cb->nlh->nlmsg_seq,
1016 			.flags = NLM_F_MULTI,
1017 			.cmd = RTM_NEWNSID,
1018 		},
1019 		.idx = 0,
1020 		.s_idx = cb->args[0],
1021 	};
1022 	int err = 0;
1023 
1024 	if (cb->strict_check) {
1025 		err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb);
1026 		if (err < 0)
1027 			goto end;
1028 	}
1029 
1030 	rcu_read_lock();
1031 	idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb);
1032 	rcu_read_unlock();
1033 
1034 	cb->args[0] = net_cb.idx;
1035 end:
1036 	if (net_cb.fillargs.add_ref)
1037 		put_net(net_cb.tgt_net);
1038 	return err < 0 ? err : skb->len;
1039 }
1040 
1041 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid,
1042 			      struct nlmsghdr *nlh, gfp_t gfp)
1043 {
1044 	struct net_fill_args fillargs = {
1045 		.portid = portid,
1046 		.seq = nlh ? nlh->nlmsg_seq : 0,
1047 		.cmd = cmd,
1048 		.nsid = id,
1049 	};
1050 	struct sk_buff *msg;
1051 	int err = -ENOMEM;
1052 
1053 	msg = nlmsg_new(rtnl_net_get_size(), gfp);
1054 	if (!msg)
1055 		goto out;
1056 
1057 	err = rtnl_net_fill(msg, &fillargs);
1058 	if (err < 0)
1059 		goto err_out;
1060 
1061 	rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp);
1062 	return;
1063 
1064 err_out:
1065 	nlmsg_free(msg);
1066 out:
1067 	rtnl_set_sk_err(net, RTNLGRP_NSID, err);
1068 }
1069 
1070 static int __init net_ns_init(void)
1071 {
1072 	struct net_generic *ng;
1073 
1074 #ifdef CONFIG_NET_NS
1075 	net_cachep = kmem_cache_create("net_namespace", sizeof(struct net),
1076 					SMP_CACHE_BYTES,
1077 					SLAB_PANIC|SLAB_ACCOUNT, NULL);
1078 
1079 	/* Create workqueue for cleanup */
1080 	netns_wq = create_singlethread_workqueue("netns");
1081 	if (!netns_wq)
1082 		panic("Could not create netns workq");
1083 #endif
1084 
1085 	ng = net_alloc_generic();
1086 	if (!ng)
1087 		panic("Could not allocate generic netns");
1088 
1089 	rcu_assign_pointer(init_net.gen, ng);
1090 
1091 	down_write(&pernet_ops_rwsem);
1092 	if (setup_net(&init_net, &init_user_ns))
1093 		panic("Could not setup the initial network namespace");
1094 
1095 	init_net_initialized = true;
1096 	up_write(&pernet_ops_rwsem);
1097 
1098 	if (register_pernet_subsys(&net_ns_ops))
1099 		panic("Could not register network namespace subsystems");
1100 
1101 	rtnl_register(PF_UNSPEC, RTM_NEWNSID, rtnl_net_newid, NULL,
1102 		      RTNL_FLAG_DOIT_UNLOCKED);
1103 	rtnl_register(PF_UNSPEC, RTM_GETNSID, rtnl_net_getid, rtnl_net_dumpid,
1104 		      RTNL_FLAG_DOIT_UNLOCKED);
1105 
1106 	return 0;
1107 }
1108 
1109 pure_initcall(net_ns_init);
1110 
1111 #ifdef CONFIG_NET_NS
1112 static int __register_pernet_operations(struct list_head *list,
1113 					struct pernet_operations *ops)
1114 {
1115 	struct net *net;
1116 	int error;
1117 	LIST_HEAD(net_exit_list);
1118 
1119 	list_add_tail(&ops->list, list);
1120 	if (ops->init || (ops->id && ops->size)) {
1121 		/* We held write locked pernet_ops_rwsem, and parallel
1122 		 * setup_net() and cleanup_net() are not possible.
1123 		 */
1124 		for_each_net(net) {
1125 			error = ops_init(ops, net);
1126 			if (error)
1127 				goto out_undo;
1128 			list_add_tail(&net->exit_list, &net_exit_list);
1129 		}
1130 	}
1131 	return 0;
1132 
1133 out_undo:
1134 	/* If I have an error cleanup all namespaces I initialized */
1135 	list_del(&ops->list);
1136 	ops_pre_exit_list(ops, &net_exit_list);
1137 	synchronize_rcu();
1138 	ops_exit_list(ops, &net_exit_list);
1139 	ops_free_list(ops, &net_exit_list);
1140 	return error;
1141 }
1142 
1143 static void __unregister_pernet_operations(struct pernet_operations *ops)
1144 {
1145 	struct net *net;
1146 	LIST_HEAD(net_exit_list);
1147 
1148 	list_del(&ops->list);
1149 	/* See comment in __register_pernet_operations() */
1150 	for_each_net(net)
1151 		list_add_tail(&net->exit_list, &net_exit_list);
1152 	ops_pre_exit_list(ops, &net_exit_list);
1153 	synchronize_rcu();
1154 	ops_exit_list(ops, &net_exit_list);
1155 	ops_free_list(ops, &net_exit_list);
1156 }
1157 
1158 #else
1159 
1160 static int __register_pernet_operations(struct list_head *list,
1161 					struct pernet_operations *ops)
1162 {
1163 	if (!init_net_initialized) {
1164 		list_add_tail(&ops->list, list);
1165 		return 0;
1166 	}
1167 
1168 	return ops_init(ops, &init_net);
1169 }
1170 
1171 static void __unregister_pernet_operations(struct pernet_operations *ops)
1172 {
1173 	if (!init_net_initialized) {
1174 		list_del(&ops->list);
1175 	} else {
1176 		LIST_HEAD(net_exit_list);
1177 		list_add(&init_net.exit_list, &net_exit_list);
1178 		ops_pre_exit_list(ops, &net_exit_list);
1179 		synchronize_rcu();
1180 		ops_exit_list(ops, &net_exit_list);
1181 		ops_free_list(ops, &net_exit_list);
1182 	}
1183 }
1184 
1185 #endif /* CONFIG_NET_NS */
1186 
1187 static DEFINE_IDA(net_generic_ids);
1188 
1189 static int register_pernet_operations(struct list_head *list,
1190 				      struct pernet_operations *ops)
1191 {
1192 	int error;
1193 
1194 	if (ops->id) {
1195 		error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID,
1196 				GFP_KERNEL);
1197 		if (error < 0)
1198 			return error;
1199 		*ops->id = error;
1200 		max_gen_ptrs = max(max_gen_ptrs, *ops->id + 1);
1201 	}
1202 	error = __register_pernet_operations(list, ops);
1203 	if (error) {
1204 		rcu_barrier();
1205 		if (ops->id)
1206 			ida_free(&net_generic_ids, *ops->id);
1207 	}
1208 
1209 	return error;
1210 }
1211 
1212 static void unregister_pernet_operations(struct pernet_operations *ops)
1213 {
1214 	__unregister_pernet_operations(ops);
1215 	rcu_barrier();
1216 	if (ops->id)
1217 		ida_free(&net_generic_ids, *ops->id);
1218 }
1219 
1220 /**
1221  *      register_pernet_subsys - register a network namespace subsystem
1222  *	@ops:  pernet operations structure for the subsystem
1223  *
1224  *	Register a subsystem which has init and exit functions
1225  *	that are called when network namespaces are created and
1226  *	destroyed respectively.
1227  *
1228  *	When registered all network namespace init functions are
1229  *	called for every existing network namespace.  Allowing kernel
1230  *	modules to have a race free view of the set of network namespaces.
1231  *
1232  *	When a new network namespace is created all of the init
1233  *	methods are called in the order in which they were registered.
1234  *
1235  *	When a network namespace is destroyed all of the exit methods
1236  *	are called in the reverse of the order with which they were
1237  *	registered.
1238  */
1239 int register_pernet_subsys(struct pernet_operations *ops)
1240 {
1241 	int error;
1242 	down_write(&pernet_ops_rwsem);
1243 	error =  register_pernet_operations(first_device, ops);
1244 	up_write(&pernet_ops_rwsem);
1245 	return error;
1246 }
1247 EXPORT_SYMBOL_GPL(register_pernet_subsys);
1248 
1249 /**
1250  *      unregister_pernet_subsys - unregister a network namespace subsystem
1251  *	@ops: pernet operations structure to manipulate
1252  *
1253  *	Remove the pernet operations structure from the list to be
1254  *	used when network namespaces are created or destroyed.  In
1255  *	addition run the exit method for all existing network
1256  *	namespaces.
1257  */
1258 void unregister_pernet_subsys(struct pernet_operations *ops)
1259 {
1260 	down_write(&pernet_ops_rwsem);
1261 	unregister_pernet_operations(ops);
1262 	up_write(&pernet_ops_rwsem);
1263 }
1264 EXPORT_SYMBOL_GPL(unregister_pernet_subsys);
1265 
1266 /**
1267  *      register_pernet_device - register a network namespace device
1268  *	@ops:  pernet operations structure for the subsystem
1269  *
1270  *	Register a device which has init and exit functions
1271  *	that are called when network namespaces are created and
1272  *	destroyed respectively.
1273  *
1274  *	When registered all network namespace init functions are
1275  *	called for every existing network namespace.  Allowing kernel
1276  *	modules to have a race free view of the set of network namespaces.
1277  *
1278  *	When a new network namespace is created all of the init
1279  *	methods are called in the order in which they were registered.
1280  *
1281  *	When a network namespace is destroyed all of the exit methods
1282  *	are called in the reverse of the order with which they were
1283  *	registered.
1284  */
1285 int register_pernet_device(struct pernet_operations *ops)
1286 {
1287 	int error;
1288 	down_write(&pernet_ops_rwsem);
1289 	error = register_pernet_operations(&pernet_list, ops);
1290 	if (!error && (first_device == &pernet_list))
1291 		first_device = &ops->list;
1292 	up_write(&pernet_ops_rwsem);
1293 	return error;
1294 }
1295 EXPORT_SYMBOL_GPL(register_pernet_device);
1296 
1297 /**
1298  *      unregister_pernet_device - unregister a network namespace netdevice
1299  *	@ops: pernet operations structure to manipulate
1300  *
1301  *	Remove the pernet operations structure from the list to be
1302  *	used when network namespaces are created or destroyed.  In
1303  *	addition run the exit method for all existing network
1304  *	namespaces.
1305  */
1306 void unregister_pernet_device(struct pernet_operations *ops)
1307 {
1308 	down_write(&pernet_ops_rwsem);
1309 	if (&ops->list == first_device)
1310 		first_device = first_device->next;
1311 	unregister_pernet_operations(ops);
1312 	up_write(&pernet_ops_rwsem);
1313 }
1314 EXPORT_SYMBOL_GPL(unregister_pernet_device);
1315 
1316 #ifdef CONFIG_NET_NS
1317 static struct ns_common *netns_get(struct task_struct *task)
1318 {
1319 	struct net *net = NULL;
1320 	struct nsproxy *nsproxy;
1321 
1322 	task_lock(task);
1323 	nsproxy = task->nsproxy;
1324 	if (nsproxy)
1325 		net = get_net(nsproxy->net_ns);
1326 	task_unlock(task);
1327 
1328 	return net ? &net->ns : NULL;
1329 }
1330 
1331 static inline struct net *to_net_ns(struct ns_common *ns)
1332 {
1333 	return container_of(ns, struct net, ns);
1334 }
1335 
1336 static void netns_put(struct ns_common *ns)
1337 {
1338 	put_net(to_net_ns(ns));
1339 }
1340 
1341 static int netns_install(struct nsproxy *nsproxy, struct ns_common *ns)
1342 {
1343 	struct net *net = to_net_ns(ns);
1344 
1345 	if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) ||
1346 	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1347 		return -EPERM;
1348 
1349 	put_net(nsproxy->net_ns);
1350 	nsproxy->net_ns = get_net(net);
1351 	return 0;
1352 }
1353 
1354 static struct user_namespace *netns_owner(struct ns_common *ns)
1355 {
1356 	return to_net_ns(ns)->user_ns;
1357 }
1358 
1359 const struct proc_ns_operations netns_operations = {
1360 	.name		= "net",
1361 	.type		= CLONE_NEWNET,
1362 	.get		= netns_get,
1363 	.put		= netns_put,
1364 	.install	= netns_install,
1365 	.owner		= netns_owner,
1366 };
1367 #endif
1368