1 // SPDX-License-Identifier: GPL-2.0-only 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/workqueue.h> 5 #include <linux/rtnetlink.h> 6 #include <linux/cache.h> 7 #include <linux/slab.h> 8 #include <linux/list.h> 9 #include <linux/delay.h> 10 #include <linux/sched.h> 11 #include <linux/idr.h> 12 #include <linux/rculist.h> 13 #include <linux/nsproxy.h> 14 #include <linux/fs.h> 15 #include <linux/proc_ns.h> 16 #include <linux/file.h> 17 #include <linux/export.h> 18 #include <linux/user_namespace.h> 19 #include <linux/net_namespace.h> 20 #include <linux/sched/task.h> 21 #include <linux/uidgid.h> 22 #include <linux/cookie.h> 23 #include <linux/proc_fs.h> 24 25 #include <net/sock.h> 26 #include <net/netlink.h> 27 #include <net/net_namespace.h> 28 #include <net/netns/generic.h> 29 30 /* 31 * Our network namespace constructor/destructor lists 32 */ 33 34 static LIST_HEAD(pernet_list); 35 static struct list_head *first_device = &pernet_list; 36 37 LIST_HEAD(net_namespace_list); 38 EXPORT_SYMBOL_GPL(net_namespace_list); 39 40 /* Protects net_namespace_list. Nests iside rtnl_lock() */ 41 DECLARE_RWSEM(net_rwsem); 42 EXPORT_SYMBOL_GPL(net_rwsem); 43 44 #ifdef CONFIG_KEYS 45 static struct key_tag init_net_key_domain = { .usage = REFCOUNT_INIT(1) }; 46 #endif 47 48 struct net init_net; 49 EXPORT_SYMBOL(init_net); 50 51 static bool init_net_initialized; 52 /* 53 * pernet_ops_rwsem: protects: pernet_list, net_generic_ids, 54 * init_net_initialized and first_device pointer. 55 * This is internal net namespace object. Please, don't use it 56 * outside. 57 */ 58 DECLARE_RWSEM(pernet_ops_rwsem); 59 60 #define MIN_PERNET_OPS_ID \ 61 ((sizeof(struct net_generic) + sizeof(void *) - 1) / sizeof(void *)) 62 63 #define INITIAL_NET_GEN_PTRS 13 /* +1 for len +2 for rcu_head */ 64 65 static unsigned int max_gen_ptrs = INITIAL_NET_GEN_PTRS; 66 67 DEFINE_COOKIE(net_cookie); 68 69 static struct net_generic *net_alloc_generic(void) 70 { 71 unsigned int gen_ptrs = READ_ONCE(max_gen_ptrs); 72 unsigned int generic_size; 73 struct net_generic *ng; 74 75 generic_size = offsetof(struct net_generic, ptr[gen_ptrs]); 76 77 ng = kzalloc(generic_size, GFP_KERNEL); 78 if (ng) 79 ng->s.len = gen_ptrs; 80 81 return ng; 82 } 83 84 static int net_assign_generic(struct net *net, unsigned int id, void *data) 85 { 86 struct net_generic *ng, *old_ng; 87 88 BUG_ON(id < MIN_PERNET_OPS_ID); 89 90 old_ng = rcu_dereference_protected(net->gen, 91 lockdep_is_held(&pernet_ops_rwsem)); 92 if (old_ng->s.len > id) { 93 old_ng->ptr[id] = data; 94 return 0; 95 } 96 97 ng = net_alloc_generic(); 98 if (!ng) 99 return -ENOMEM; 100 101 /* 102 * Some synchronisation notes: 103 * 104 * The net_generic explores the net->gen array inside rcu 105 * read section. Besides once set the net->gen->ptr[x] 106 * pointer never changes (see rules in netns/generic.h). 107 * 108 * That said, we simply duplicate this array and schedule 109 * the old copy for kfree after a grace period. 110 */ 111 112 memcpy(&ng->ptr[MIN_PERNET_OPS_ID], &old_ng->ptr[MIN_PERNET_OPS_ID], 113 (old_ng->s.len - MIN_PERNET_OPS_ID) * sizeof(void *)); 114 ng->ptr[id] = data; 115 116 rcu_assign_pointer(net->gen, ng); 117 kfree_rcu(old_ng, s.rcu); 118 return 0; 119 } 120 121 static int ops_init(const struct pernet_operations *ops, struct net *net) 122 { 123 struct net_generic *ng; 124 int err = -ENOMEM; 125 void *data = NULL; 126 127 if (ops->id) { 128 data = kzalloc(ops->size, GFP_KERNEL); 129 if (!data) 130 goto out; 131 132 err = net_assign_generic(net, *ops->id, data); 133 if (err) 134 goto cleanup; 135 } 136 err = 0; 137 if (ops->init) 138 err = ops->init(net); 139 if (!err) 140 return 0; 141 142 if (ops->id) { 143 ng = rcu_dereference_protected(net->gen, 144 lockdep_is_held(&pernet_ops_rwsem)); 145 ng->ptr[*ops->id] = NULL; 146 } 147 148 cleanup: 149 kfree(data); 150 151 out: 152 return err; 153 } 154 155 static void ops_pre_exit_list(const struct pernet_operations *ops, 156 struct list_head *net_exit_list) 157 { 158 struct net *net; 159 160 if (ops->pre_exit) { 161 list_for_each_entry(net, net_exit_list, exit_list) 162 ops->pre_exit(net); 163 } 164 } 165 166 static void ops_exit_rtnl_list(const struct list_head *ops_list, 167 const struct pernet_operations *ops, 168 struct list_head *net_exit_list) 169 { 170 const struct pernet_operations *saved_ops = ops; 171 LIST_HEAD(dev_kill_list); 172 struct net *net; 173 174 rtnl_lock(); 175 176 list_for_each_entry(net, net_exit_list, exit_list) { 177 __rtnl_net_lock(net); 178 179 ops = saved_ops; 180 list_for_each_entry_continue_reverse(ops, ops_list, list) { 181 if (ops->exit_rtnl) 182 ops->exit_rtnl(net, &dev_kill_list); 183 } 184 185 __rtnl_net_unlock(net); 186 } 187 188 unregister_netdevice_many(&dev_kill_list); 189 190 rtnl_unlock(); 191 } 192 193 static void ops_exit_list(const struct pernet_operations *ops, 194 struct list_head *net_exit_list) 195 { 196 if (ops->exit) { 197 struct net *net; 198 199 list_for_each_entry(net, net_exit_list, exit_list) { 200 ops->exit(net); 201 cond_resched(); 202 } 203 } 204 205 if (ops->exit_batch) 206 ops->exit_batch(net_exit_list); 207 } 208 209 static void ops_free_list(const struct pernet_operations *ops, 210 struct list_head *net_exit_list) 211 { 212 struct net *net; 213 214 if (ops->id) { 215 list_for_each_entry(net, net_exit_list, exit_list) 216 kfree(net_generic(net, *ops->id)); 217 } 218 } 219 220 static void ops_undo_list(const struct list_head *ops_list, 221 const struct pernet_operations *ops, 222 struct list_head *net_exit_list, 223 bool expedite_rcu) 224 { 225 const struct pernet_operations *saved_ops; 226 bool hold_rtnl = false; 227 228 if (!ops) 229 ops = list_entry(ops_list, typeof(*ops), list); 230 231 saved_ops = ops; 232 233 list_for_each_entry_continue_reverse(ops, ops_list, list) { 234 hold_rtnl |= !!ops->exit_rtnl; 235 ops_pre_exit_list(ops, net_exit_list); 236 } 237 238 /* Another CPU might be rcu-iterating the list, wait for it. 239 * This needs to be before calling the exit() notifiers, so the 240 * rcu_barrier() after ops_undo_list() isn't sufficient alone. 241 * Also the pre_exit() and exit() methods need this barrier. 242 */ 243 if (expedite_rcu) 244 synchronize_rcu_expedited(); 245 else 246 synchronize_rcu(); 247 248 if (hold_rtnl) 249 ops_exit_rtnl_list(ops_list, saved_ops, net_exit_list); 250 251 ops = saved_ops; 252 list_for_each_entry_continue_reverse(ops, ops_list, list) 253 ops_exit_list(ops, net_exit_list); 254 255 ops = saved_ops; 256 list_for_each_entry_continue_reverse(ops, ops_list, list) 257 ops_free_list(ops, net_exit_list); 258 } 259 260 static void ops_undo_single(struct pernet_operations *ops, 261 struct list_head *net_exit_list) 262 { 263 LIST_HEAD(ops_list); 264 265 list_add(&ops->list, &ops_list); 266 ops_undo_list(&ops_list, NULL, net_exit_list, false); 267 list_del(&ops->list); 268 } 269 270 /* should be called with nsid_lock held */ 271 static int alloc_netid(struct net *net, struct net *peer, int reqid) 272 { 273 int min = 0, max = 0; 274 275 if (reqid >= 0) { 276 min = reqid; 277 max = reqid + 1; 278 } 279 280 return idr_alloc(&net->netns_ids, peer, min, max, GFP_ATOMIC); 281 } 282 283 /* This function is used by idr_for_each(). If net is equal to peer, the 284 * function returns the id so that idr_for_each() stops. Because we cannot 285 * returns the id 0 (idr_for_each() will not stop), we return the magic value 286 * NET_ID_ZERO (-1) for it. 287 */ 288 #define NET_ID_ZERO -1 289 static int net_eq_idr(int id, void *net, void *peer) 290 { 291 if (net_eq(net, peer)) 292 return id ? : NET_ID_ZERO; 293 return 0; 294 } 295 296 /* Must be called from RCU-critical section or with nsid_lock held */ 297 static int __peernet2id(const struct net *net, struct net *peer) 298 { 299 int id = idr_for_each(&net->netns_ids, net_eq_idr, peer); 300 301 /* Magic value for id 0. */ 302 if (id == NET_ID_ZERO) 303 return 0; 304 if (id > 0) 305 return id; 306 307 return NETNSA_NSID_NOT_ASSIGNED; 308 } 309 310 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 311 struct nlmsghdr *nlh, gfp_t gfp); 312 /* This function returns the id of a peer netns. If no id is assigned, one will 313 * be allocated and returned. 314 */ 315 int peernet2id_alloc(struct net *net, struct net *peer, gfp_t gfp) 316 { 317 int id; 318 319 if (refcount_read(&net->ns.count) == 0) 320 return NETNSA_NSID_NOT_ASSIGNED; 321 322 spin_lock_bh(&net->nsid_lock); 323 id = __peernet2id(net, peer); 324 if (id >= 0) { 325 spin_unlock_bh(&net->nsid_lock); 326 return id; 327 } 328 329 /* When peer is obtained from RCU lists, we may race with 330 * its cleanup. Check whether it's alive, and this guarantees 331 * we never hash a peer back to net->netns_ids, after it has 332 * just been idr_remove()'d from there in cleanup_net(). 333 */ 334 if (!maybe_get_net(peer)) { 335 spin_unlock_bh(&net->nsid_lock); 336 return NETNSA_NSID_NOT_ASSIGNED; 337 } 338 339 id = alloc_netid(net, peer, -1); 340 spin_unlock_bh(&net->nsid_lock); 341 342 put_net(peer); 343 if (id < 0) 344 return NETNSA_NSID_NOT_ASSIGNED; 345 346 rtnl_net_notifyid(net, RTM_NEWNSID, id, 0, NULL, gfp); 347 348 return id; 349 } 350 EXPORT_SYMBOL_GPL(peernet2id_alloc); 351 352 /* This function returns, if assigned, the id of a peer netns. */ 353 int peernet2id(const struct net *net, struct net *peer) 354 { 355 int id; 356 357 rcu_read_lock(); 358 id = __peernet2id(net, peer); 359 rcu_read_unlock(); 360 361 return id; 362 } 363 EXPORT_SYMBOL(peernet2id); 364 365 /* This function returns true is the peer netns has an id assigned into the 366 * current netns. 367 */ 368 bool peernet_has_id(const struct net *net, struct net *peer) 369 { 370 return peernet2id(net, peer) >= 0; 371 } 372 373 struct net *get_net_ns_by_id(const struct net *net, int id) 374 { 375 struct net *peer; 376 377 if (id < 0) 378 return NULL; 379 380 rcu_read_lock(); 381 peer = idr_find(&net->netns_ids, id); 382 if (peer) 383 peer = maybe_get_net(peer); 384 rcu_read_unlock(); 385 386 return peer; 387 } 388 EXPORT_SYMBOL_GPL(get_net_ns_by_id); 389 390 static __net_init void preinit_net_sysctl(struct net *net) 391 { 392 net->core.sysctl_somaxconn = SOMAXCONN; 393 /* Limits per socket sk_omem_alloc usage. 394 * TCP zerocopy regular usage needs 128 KB. 395 */ 396 net->core.sysctl_optmem_max = 128 * 1024; 397 net->core.sysctl_txrehash = SOCK_TXREHASH_ENABLED; 398 net->core.sysctl_tstamp_allow_data = 1; 399 } 400 401 /* init code that must occur even if setup_net() is not called. */ 402 static __net_init void preinit_net(struct net *net, struct user_namespace *user_ns) 403 { 404 refcount_set(&net->passive, 1); 405 refcount_set(&net->ns.count, 1); 406 ref_tracker_dir_init(&net->refcnt_tracker, 128, "net refcnt"); 407 ref_tracker_dir_init(&net->notrefcnt_tracker, 128, "net notrefcnt"); 408 409 get_random_bytes(&net->hash_mix, sizeof(u32)); 410 net->dev_base_seq = 1; 411 net->user_ns = user_ns; 412 413 idr_init(&net->netns_ids); 414 spin_lock_init(&net->nsid_lock); 415 mutex_init(&net->ipv4.ra_mutex); 416 417 #ifdef CONFIG_DEBUG_NET_SMALL_RTNL 418 mutex_init(&net->rtnl_mutex); 419 lock_set_cmp_fn(&net->rtnl_mutex, rtnl_net_lock_cmp_fn, NULL); 420 #endif 421 422 INIT_LIST_HEAD(&net->ptype_all); 423 INIT_LIST_HEAD(&net->ptype_specific); 424 preinit_net_sysctl(net); 425 } 426 427 /* 428 * setup_net runs the initializers for the network namespace object. 429 */ 430 static __net_init int setup_net(struct net *net) 431 { 432 /* Must be called with pernet_ops_rwsem held */ 433 const struct pernet_operations *ops; 434 LIST_HEAD(net_exit_list); 435 int error = 0; 436 437 preempt_disable(); 438 net->net_cookie = gen_cookie_next(&net_cookie); 439 preempt_enable(); 440 441 list_for_each_entry(ops, &pernet_list, list) { 442 error = ops_init(ops, net); 443 if (error < 0) 444 goto out_undo; 445 } 446 down_write(&net_rwsem); 447 list_add_tail_rcu(&net->list, &net_namespace_list); 448 up_write(&net_rwsem); 449 out: 450 return error; 451 452 out_undo: 453 /* Walk through the list backwards calling the exit functions 454 * for the pernet modules whose init functions did not fail. 455 */ 456 list_add(&net->exit_list, &net_exit_list); 457 ops_undo_list(&pernet_list, ops, &net_exit_list, false); 458 rcu_barrier(); 459 goto out; 460 } 461 462 #ifdef CONFIG_NET_NS 463 static struct ucounts *inc_net_namespaces(struct user_namespace *ns) 464 { 465 return inc_ucount(ns, current_euid(), UCOUNT_NET_NAMESPACES); 466 } 467 468 static void dec_net_namespaces(struct ucounts *ucounts) 469 { 470 dec_ucount(ucounts, UCOUNT_NET_NAMESPACES); 471 } 472 473 static struct kmem_cache *net_cachep __ro_after_init; 474 static struct workqueue_struct *netns_wq; 475 476 static struct net *net_alloc(void) 477 { 478 struct net *net = NULL; 479 struct net_generic *ng; 480 481 ng = net_alloc_generic(); 482 if (!ng) 483 goto out; 484 485 net = kmem_cache_zalloc(net_cachep, GFP_KERNEL); 486 if (!net) 487 goto out_free; 488 489 #ifdef CONFIG_KEYS 490 net->key_domain = kzalloc(sizeof(struct key_tag), GFP_KERNEL); 491 if (!net->key_domain) 492 goto out_free_2; 493 refcount_set(&net->key_domain->usage, 1); 494 #endif 495 496 rcu_assign_pointer(net->gen, ng); 497 out: 498 return net; 499 500 #ifdef CONFIG_KEYS 501 out_free_2: 502 kmem_cache_free(net_cachep, net); 503 net = NULL; 504 #endif 505 out_free: 506 kfree(ng); 507 goto out; 508 } 509 510 static LLIST_HEAD(defer_free_list); 511 512 static void net_complete_free(void) 513 { 514 struct llist_node *kill_list; 515 struct net *net, *next; 516 517 /* Get the list of namespaces to free from last round. */ 518 kill_list = llist_del_all(&defer_free_list); 519 520 llist_for_each_entry_safe(net, next, kill_list, defer_free_list) 521 kmem_cache_free(net_cachep, net); 522 523 } 524 525 void net_passive_dec(struct net *net) 526 { 527 if (refcount_dec_and_test(&net->passive)) { 528 kfree(rcu_access_pointer(net->gen)); 529 530 /* There should not be any trackers left there. */ 531 ref_tracker_dir_exit(&net->notrefcnt_tracker); 532 533 /* Wait for an extra rcu_barrier() before final free. */ 534 llist_add(&net->defer_free_list, &defer_free_list); 535 } 536 } 537 538 void net_drop_ns(void *p) 539 { 540 struct net *net = (struct net *)p; 541 542 if (net) 543 net_passive_dec(net); 544 } 545 546 struct net *copy_net_ns(unsigned long flags, 547 struct user_namespace *user_ns, struct net *old_net) 548 { 549 struct ucounts *ucounts; 550 struct net *net; 551 int rv; 552 553 if (!(flags & CLONE_NEWNET)) 554 return get_net(old_net); 555 556 ucounts = inc_net_namespaces(user_ns); 557 if (!ucounts) 558 return ERR_PTR(-ENOSPC); 559 560 net = net_alloc(); 561 if (!net) { 562 rv = -ENOMEM; 563 goto dec_ucounts; 564 } 565 566 preinit_net(net, user_ns); 567 net->ucounts = ucounts; 568 get_user_ns(user_ns); 569 570 rv = down_read_killable(&pernet_ops_rwsem); 571 if (rv < 0) 572 goto put_userns; 573 574 rv = setup_net(net); 575 576 up_read(&pernet_ops_rwsem); 577 578 if (rv < 0) { 579 put_userns: 580 #ifdef CONFIG_KEYS 581 key_remove_domain(net->key_domain); 582 #endif 583 put_user_ns(user_ns); 584 net_passive_dec(net); 585 dec_ucounts: 586 dec_net_namespaces(ucounts); 587 return ERR_PTR(rv); 588 } 589 return net; 590 } 591 592 /** 593 * net_ns_get_ownership - get sysfs ownership data for @net 594 * @net: network namespace in question (can be NULL) 595 * @uid: kernel user ID for sysfs objects 596 * @gid: kernel group ID for sysfs objects 597 * 598 * Returns the uid/gid pair of root in the user namespace associated with the 599 * given network namespace. 600 */ 601 void net_ns_get_ownership(const struct net *net, kuid_t *uid, kgid_t *gid) 602 { 603 if (net) { 604 kuid_t ns_root_uid = make_kuid(net->user_ns, 0); 605 kgid_t ns_root_gid = make_kgid(net->user_ns, 0); 606 607 if (uid_valid(ns_root_uid)) 608 *uid = ns_root_uid; 609 610 if (gid_valid(ns_root_gid)) 611 *gid = ns_root_gid; 612 } else { 613 *uid = GLOBAL_ROOT_UID; 614 *gid = GLOBAL_ROOT_GID; 615 } 616 } 617 EXPORT_SYMBOL_GPL(net_ns_get_ownership); 618 619 static void unhash_nsid(struct net *net, struct net *last) 620 { 621 struct net *tmp; 622 /* This function is only called from cleanup_net() work, 623 * and this work is the only process, that may delete 624 * a net from net_namespace_list. So, when the below 625 * is executing, the list may only grow. Thus, we do not 626 * use for_each_net_rcu() or net_rwsem. 627 */ 628 for_each_net(tmp) { 629 int id; 630 631 spin_lock_bh(&tmp->nsid_lock); 632 id = __peernet2id(tmp, net); 633 if (id >= 0) 634 idr_remove(&tmp->netns_ids, id); 635 spin_unlock_bh(&tmp->nsid_lock); 636 if (id >= 0) 637 rtnl_net_notifyid(tmp, RTM_DELNSID, id, 0, NULL, 638 GFP_KERNEL); 639 if (tmp == last) 640 break; 641 } 642 spin_lock_bh(&net->nsid_lock); 643 idr_destroy(&net->netns_ids); 644 spin_unlock_bh(&net->nsid_lock); 645 } 646 647 static LLIST_HEAD(cleanup_list); 648 649 struct task_struct *cleanup_net_task; 650 651 static void cleanup_net(struct work_struct *work) 652 { 653 struct llist_node *net_kill_list; 654 struct net *net, *tmp, *last; 655 LIST_HEAD(net_exit_list); 656 657 WRITE_ONCE(cleanup_net_task, current); 658 659 /* Atomically snapshot the list of namespaces to cleanup */ 660 net_kill_list = llist_del_all(&cleanup_list); 661 662 down_read(&pernet_ops_rwsem); 663 664 /* Don't let anyone else find us. */ 665 down_write(&net_rwsem); 666 llist_for_each_entry(net, net_kill_list, cleanup_list) 667 list_del_rcu(&net->list); 668 /* Cache last net. After we unlock rtnl, no one new net 669 * added to net_namespace_list can assign nsid pointer 670 * to a net from net_kill_list (see peernet2id_alloc()). 671 * So, we skip them in unhash_nsid(). 672 * 673 * Note, that unhash_nsid() does not delete nsid links 674 * between net_kill_list's nets, as they've already 675 * deleted from net_namespace_list. But, this would be 676 * useless anyway, as netns_ids are destroyed there. 677 */ 678 last = list_last_entry(&net_namespace_list, struct net, list); 679 up_write(&net_rwsem); 680 681 llist_for_each_entry(net, net_kill_list, cleanup_list) { 682 unhash_nsid(net, last); 683 list_add_tail(&net->exit_list, &net_exit_list); 684 } 685 686 ops_undo_list(&pernet_list, NULL, &net_exit_list, true); 687 688 up_read(&pernet_ops_rwsem); 689 690 /* Ensure there are no outstanding rcu callbacks using this 691 * network namespace. 692 */ 693 rcu_barrier(); 694 695 net_complete_free(); 696 697 /* Finally it is safe to free my network namespace structure */ 698 list_for_each_entry_safe(net, tmp, &net_exit_list, exit_list) { 699 list_del_init(&net->exit_list); 700 dec_net_namespaces(net->ucounts); 701 #ifdef CONFIG_KEYS 702 key_remove_domain(net->key_domain); 703 #endif 704 put_user_ns(net->user_ns); 705 net_passive_dec(net); 706 } 707 WRITE_ONCE(cleanup_net_task, NULL); 708 } 709 710 /** 711 * net_ns_barrier - wait until concurrent net_cleanup_work is done 712 * 713 * cleanup_net runs from work queue and will first remove namespaces 714 * from the global list, then run net exit functions. 715 * 716 * Call this in module exit path to make sure that all netns 717 * ->exit ops have been invoked before the function is removed. 718 */ 719 void net_ns_barrier(void) 720 { 721 down_write(&pernet_ops_rwsem); 722 up_write(&pernet_ops_rwsem); 723 } 724 EXPORT_SYMBOL(net_ns_barrier); 725 726 static DECLARE_WORK(net_cleanup_work, cleanup_net); 727 728 void __put_net(struct net *net) 729 { 730 ref_tracker_dir_exit(&net->refcnt_tracker); 731 /* Cleanup the network namespace in process context */ 732 if (llist_add(&net->cleanup_list, &cleanup_list)) 733 queue_work(netns_wq, &net_cleanup_work); 734 } 735 EXPORT_SYMBOL_GPL(__put_net); 736 737 /** 738 * get_net_ns - increment the refcount of the network namespace 739 * @ns: common namespace (net) 740 * 741 * Returns the net's common namespace or ERR_PTR() if ref is zero. 742 */ 743 struct ns_common *get_net_ns(struct ns_common *ns) 744 { 745 struct net *net; 746 747 net = maybe_get_net(container_of(ns, struct net, ns)); 748 if (net) 749 return &net->ns; 750 return ERR_PTR(-EINVAL); 751 } 752 EXPORT_SYMBOL_GPL(get_net_ns); 753 754 struct net *get_net_ns_by_fd(int fd) 755 { 756 CLASS(fd, f)(fd); 757 758 if (fd_empty(f)) 759 return ERR_PTR(-EBADF); 760 761 if (proc_ns_file(fd_file(f))) { 762 struct ns_common *ns = get_proc_ns(file_inode(fd_file(f))); 763 if (ns->ops == &netns_operations) 764 return get_net(container_of(ns, struct net, ns)); 765 } 766 767 return ERR_PTR(-EINVAL); 768 } 769 EXPORT_SYMBOL_GPL(get_net_ns_by_fd); 770 #endif 771 772 struct net *get_net_ns_by_pid(pid_t pid) 773 { 774 struct task_struct *tsk; 775 struct net *net; 776 777 /* Lookup the network namespace */ 778 net = ERR_PTR(-ESRCH); 779 rcu_read_lock(); 780 tsk = find_task_by_vpid(pid); 781 if (tsk) { 782 struct nsproxy *nsproxy; 783 task_lock(tsk); 784 nsproxy = tsk->nsproxy; 785 if (nsproxy) 786 net = get_net(nsproxy->net_ns); 787 task_unlock(tsk); 788 } 789 rcu_read_unlock(); 790 return net; 791 } 792 EXPORT_SYMBOL_GPL(get_net_ns_by_pid); 793 794 static __net_init int net_ns_net_init(struct net *net) 795 { 796 #ifdef CONFIG_NET_NS 797 net->ns.ops = &netns_operations; 798 #endif 799 if (net == &init_net) { 800 net->ns.inum = PROC_NET_INIT_INO; 801 return 0; 802 } 803 return ns_alloc_inum(&net->ns); 804 } 805 806 static __net_exit void net_ns_net_exit(struct net *net) 807 { 808 /* 809 * Initial network namespace doesn't exit so we don't need any 810 * special checks here. 811 */ 812 ns_free_inum(&net->ns); 813 } 814 815 static struct pernet_operations __net_initdata net_ns_ops = { 816 .init = net_ns_net_init, 817 .exit = net_ns_net_exit, 818 }; 819 820 static const struct nla_policy rtnl_net_policy[NETNSA_MAX + 1] = { 821 [NETNSA_NONE] = { .type = NLA_UNSPEC }, 822 [NETNSA_NSID] = { .type = NLA_S32 }, 823 [NETNSA_PID] = { .type = NLA_U32 }, 824 [NETNSA_FD] = { .type = NLA_U32 }, 825 [NETNSA_TARGET_NSID] = { .type = NLA_S32 }, 826 }; 827 828 static int rtnl_net_newid(struct sk_buff *skb, struct nlmsghdr *nlh, 829 struct netlink_ext_ack *extack) 830 { 831 struct net *net = sock_net(skb->sk); 832 struct nlattr *tb[NETNSA_MAX + 1]; 833 struct nlattr *nla; 834 struct net *peer; 835 int nsid, err; 836 837 err = nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), tb, 838 NETNSA_MAX, rtnl_net_policy, extack); 839 if (err < 0) 840 return err; 841 if (!tb[NETNSA_NSID]) { 842 NL_SET_ERR_MSG(extack, "nsid is missing"); 843 return -EINVAL; 844 } 845 nsid = nla_get_s32(tb[NETNSA_NSID]); 846 847 if (tb[NETNSA_PID]) { 848 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 849 nla = tb[NETNSA_PID]; 850 } else if (tb[NETNSA_FD]) { 851 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 852 nla = tb[NETNSA_FD]; 853 } else { 854 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 855 return -EINVAL; 856 } 857 if (IS_ERR(peer)) { 858 NL_SET_BAD_ATTR(extack, nla); 859 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 860 return PTR_ERR(peer); 861 } 862 863 spin_lock_bh(&net->nsid_lock); 864 if (__peernet2id(net, peer) >= 0) { 865 spin_unlock_bh(&net->nsid_lock); 866 err = -EEXIST; 867 NL_SET_BAD_ATTR(extack, nla); 868 NL_SET_ERR_MSG(extack, 869 "Peer netns already has a nsid assigned"); 870 goto out; 871 } 872 873 err = alloc_netid(net, peer, nsid); 874 spin_unlock_bh(&net->nsid_lock); 875 if (err >= 0) { 876 rtnl_net_notifyid(net, RTM_NEWNSID, err, NETLINK_CB(skb).portid, 877 nlh, GFP_KERNEL); 878 err = 0; 879 } else if (err == -ENOSPC && nsid >= 0) { 880 err = -EEXIST; 881 NL_SET_BAD_ATTR(extack, tb[NETNSA_NSID]); 882 NL_SET_ERR_MSG(extack, "The specified nsid is already used"); 883 } 884 out: 885 put_net(peer); 886 return err; 887 } 888 889 static int rtnl_net_get_size(void) 890 { 891 return NLMSG_ALIGN(sizeof(struct rtgenmsg)) 892 + nla_total_size(sizeof(s32)) /* NETNSA_NSID */ 893 + nla_total_size(sizeof(s32)) /* NETNSA_CURRENT_NSID */ 894 ; 895 } 896 897 struct net_fill_args { 898 u32 portid; 899 u32 seq; 900 int flags; 901 int cmd; 902 int nsid; 903 bool add_ref; 904 int ref_nsid; 905 }; 906 907 static int rtnl_net_fill(struct sk_buff *skb, struct net_fill_args *args) 908 { 909 struct nlmsghdr *nlh; 910 struct rtgenmsg *rth; 911 912 nlh = nlmsg_put(skb, args->portid, args->seq, args->cmd, sizeof(*rth), 913 args->flags); 914 if (!nlh) 915 return -EMSGSIZE; 916 917 rth = nlmsg_data(nlh); 918 rth->rtgen_family = AF_UNSPEC; 919 920 if (nla_put_s32(skb, NETNSA_NSID, args->nsid)) 921 goto nla_put_failure; 922 923 if (args->add_ref && 924 nla_put_s32(skb, NETNSA_CURRENT_NSID, args->ref_nsid)) 925 goto nla_put_failure; 926 927 nlmsg_end(skb, nlh); 928 return 0; 929 930 nla_put_failure: 931 nlmsg_cancel(skb, nlh); 932 return -EMSGSIZE; 933 } 934 935 static int rtnl_net_valid_getid_req(struct sk_buff *skb, 936 const struct nlmsghdr *nlh, 937 struct nlattr **tb, 938 struct netlink_ext_ack *extack) 939 { 940 int i, err; 941 942 if (!netlink_strict_get_check(skb)) 943 return nlmsg_parse_deprecated(nlh, sizeof(struct rtgenmsg), 944 tb, NETNSA_MAX, rtnl_net_policy, 945 extack); 946 947 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 948 NETNSA_MAX, rtnl_net_policy, 949 extack); 950 if (err) 951 return err; 952 953 for (i = 0; i <= NETNSA_MAX; i++) { 954 if (!tb[i]) 955 continue; 956 957 switch (i) { 958 case NETNSA_PID: 959 case NETNSA_FD: 960 case NETNSA_NSID: 961 case NETNSA_TARGET_NSID: 962 break; 963 default: 964 NL_SET_ERR_MSG(extack, "Unsupported attribute in peer netns getid request"); 965 return -EINVAL; 966 } 967 } 968 969 return 0; 970 } 971 972 static int rtnl_net_getid(struct sk_buff *skb, struct nlmsghdr *nlh, 973 struct netlink_ext_ack *extack) 974 { 975 struct net *net = sock_net(skb->sk); 976 struct nlattr *tb[NETNSA_MAX + 1]; 977 struct net_fill_args fillargs = { 978 .portid = NETLINK_CB(skb).portid, 979 .seq = nlh->nlmsg_seq, 980 .cmd = RTM_NEWNSID, 981 }; 982 struct net *peer, *target = net; 983 struct nlattr *nla; 984 struct sk_buff *msg; 985 int err; 986 987 err = rtnl_net_valid_getid_req(skb, nlh, tb, extack); 988 if (err < 0) 989 return err; 990 if (tb[NETNSA_PID]) { 991 peer = get_net_ns_by_pid(nla_get_u32(tb[NETNSA_PID])); 992 nla = tb[NETNSA_PID]; 993 } else if (tb[NETNSA_FD]) { 994 peer = get_net_ns_by_fd(nla_get_u32(tb[NETNSA_FD])); 995 nla = tb[NETNSA_FD]; 996 } else if (tb[NETNSA_NSID]) { 997 peer = get_net_ns_by_id(net, nla_get_s32(tb[NETNSA_NSID])); 998 if (!peer) 999 peer = ERR_PTR(-ENOENT); 1000 nla = tb[NETNSA_NSID]; 1001 } else { 1002 NL_SET_ERR_MSG(extack, "Peer netns reference is missing"); 1003 return -EINVAL; 1004 } 1005 1006 if (IS_ERR(peer)) { 1007 NL_SET_BAD_ATTR(extack, nla); 1008 NL_SET_ERR_MSG(extack, "Peer netns reference is invalid"); 1009 return PTR_ERR(peer); 1010 } 1011 1012 if (tb[NETNSA_TARGET_NSID]) { 1013 int id = nla_get_s32(tb[NETNSA_TARGET_NSID]); 1014 1015 target = rtnl_get_net_ns_capable(NETLINK_CB(skb).sk, id); 1016 if (IS_ERR(target)) { 1017 NL_SET_BAD_ATTR(extack, tb[NETNSA_TARGET_NSID]); 1018 NL_SET_ERR_MSG(extack, 1019 "Target netns reference is invalid"); 1020 err = PTR_ERR(target); 1021 goto out; 1022 } 1023 fillargs.add_ref = true; 1024 fillargs.ref_nsid = peernet2id(net, peer); 1025 } 1026 1027 msg = nlmsg_new(rtnl_net_get_size(), GFP_KERNEL); 1028 if (!msg) { 1029 err = -ENOMEM; 1030 goto out; 1031 } 1032 1033 fillargs.nsid = peernet2id(target, peer); 1034 err = rtnl_net_fill(msg, &fillargs); 1035 if (err < 0) 1036 goto err_out; 1037 1038 err = rtnl_unicast(msg, net, NETLINK_CB(skb).portid); 1039 goto out; 1040 1041 err_out: 1042 nlmsg_free(msg); 1043 out: 1044 if (fillargs.add_ref) 1045 put_net(target); 1046 put_net(peer); 1047 return err; 1048 } 1049 1050 struct rtnl_net_dump_cb { 1051 struct net *tgt_net; 1052 struct net *ref_net; 1053 struct sk_buff *skb; 1054 struct net_fill_args fillargs; 1055 int idx; 1056 int s_idx; 1057 }; 1058 1059 /* Runs in RCU-critical section. */ 1060 static int rtnl_net_dumpid_one(int id, void *peer, void *data) 1061 { 1062 struct rtnl_net_dump_cb *net_cb = (struct rtnl_net_dump_cb *)data; 1063 int ret; 1064 1065 if (net_cb->idx < net_cb->s_idx) 1066 goto cont; 1067 1068 net_cb->fillargs.nsid = id; 1069 if (net_cb->fillargs.add_ref) 1070 net_cb->fillargs.ref_nsid = __peernet2id(net_cb->ref_net, peer); 1071 ret = rtnl_net_fill(net_cb->skb, &net_cb->fillargs); 1072 if (ret < 0) 1073 return ret; 1074 1075 cont: 1076 net_cb->idx++; 1077 return 0; 1078 } 1079 1080 static int rtnl_valid_dump_net_req(const struct nlmsghdr *nlh, struct sock *sk, 1081 struct rtnl_net_dump_cb *net_cb, 1082 struct netlink_callback *cb) 1083 { 1084 struct netlink_ext_ack *extack = cb->extack; 1085 struct nlattr *tb[NETNSA_MAX + 1]; 1086 int err, i; 1087 1088 err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct rtgenmsg), tb, 1089 NETNSA_MAX, rtnl_net_policy, 1090 extack); 1091 if (err < 0) 1092 return err; 1093 1094 for (i = 0; i <= NETNSA_MAX; i++) { 1095 if (!tb[i]) 1096 continue; 1097 1098 if (i == NETNSA_TARGET_NSID) { 1099 struct net *net; 1100 1101 net = rtnl_get_net_ns_capable(sk, nla_get_s32(tb[i])); 1102 if (IS_ERR(net)) { 1103 NL_SET_BAD_ATTR(extack, tb[i]); 1104 NL_SET_ERR_MSG(extack, 1105 "Invalid target network namespace id"); 1106 return PTR_ERR(net); 1107 } 1108 net_cb->fillargs.add_ref = true; 1109 net_cb->ref_net = net_cb->tgt_net; 1110 net_cb->tgt_net = net; 1111 } else { 1112 NL_SET_BAD_ATTR(extack, tb[i]); 1113 NL_SET_ERR_MSG(extack, 1114 "Unsupported attribute in dump request"); 1115 return -EINVAL; 1116 } 1117 } 1118 1119 return 0; 1120 } 1121 1122 static int rtnl_net_dumpid(struct sk_buff *skb, struct netlink_callback *cb) 1123 { 1124 struct rtnl_net_dump_cb net_cb = { 1125 .tgt_net = sock_net(skb->sk), 1126 .skb = skb, 1127 .fillargs = { 1128 .portid = NETLINK_CB(cb->skb).portid, 1129 .seq = cb->nlh->nlmsg_seq, 1130 .flags = NLM_F_MULTI, 1131 .cmd = RTM_NEWNSID, 1132 }, 1133 .idx = 0, 1134 .s_idx = cb->args[0], 1135 }; 1136 int err = 0; 1137 1138 if (cb->strict_check) { 1139 err = rtnl_valid_dump_net_req(cb->nlh, skb->sk, &net_cb, cb); 1140 if (err < 0) 1141 goto end; 1142 } 1143 1144 rcu_read_lock(); 1145 idr_for_each(&net_cb.tgt_net->netns_ids, rtnl_net_dumpid_one, &net_cb); 1146 rcu_read_unlock(); 1147 1148 cb->args[0] = net_cb.idx; 1149 end: 1150 if (net_cb.fillargs.add_ref) 1151 put_net(net_cb.tgt_net); 1152 return err; 1153 } 1154 1155 static void rtnl_net_notifyid(struct net *net, int cmd, int id, u32 portid, 1156 struct nlmsghdr *nlh, gfp_t gfp) 1157 { 1158 struct net_fill_args fillargs = { 1159 .portid = portid, 1160 .seq = nlh ? nlh->nlmsg_seq : 0, 1161 .cmd = cmd, 1162 .nsid = id, 1163 }; 1164 struct sk_buff *msg; 1165 int err = -ENOMEM; 1166 1167 msg = nlmsg_new(rtnl_net_get_size(), gfp); 1168 if (!msg) 1169 goto out; 1170 1171 err = rtnl_net_fill(msg, &fillargs); 1172 if (err < 0) 1173 goto err_out; 1174 1175 rtnl_notify(msg, net, portid, RTNLGRP_NSID, nlh, gfp); 1176 return; 1177 1178 err_out: 1179 nlmsg_free(msg); 1180 out: 1181 rtnl_set_sk_err(net, RTNLGRP_NSID, err); 1182 } 1183 1184 #ifdef CONFIG_NET_NS 1185 static void __init netns_ipv4_struct_check(void) 1186 { 1187 /* TX readonly hotpath cache lines */ 1188 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1189 sysctl_tcp_early_retrans); 1190 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1191 sysctl_tcp_tso_win_divisor); 1192 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1193 sysctl_tcp_tso_rtt_log); 1194 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1195 sysctl_tcp_autocorking); 1196 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1197 sysctl_tcp_min_snd_mss); 1198 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1199 sysctl_tcp_notsent_lowat); 1200 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1201 sysctl_tcp_limit_output_bytes); 1202 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1203 sysctl_tcp_min_rtt_wlen); 1204 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1205 sysctl_tcp_wmem); 1206 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_tx, 1207 sysctl_ip_fwd_use_pmtu); 1208 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_tx, 33); 1209 1210 /* TXRX readonly hotpath cache lines */ 1211 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_txrx, 1212 sysctl_tcp_moderate_rcvbuf); 1213 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_txrx, 1); 1214 1215 /* RX readonly hotpath cache line */ 1216 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1217 sysctl_ip_early_demux); 1218 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1219 sysctl_tcp_early_demux); 1220 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1221 sysctl_tcp_l3mdev_accept); 1222 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1223 sysctl_tcp_reordering); 1224 CACHELINE_ASSERT_GROUP_MEMBER(struct netns_ipv4, netns_ipv4_read_rx, 1225 sysctl_tcp_rmem); 1226 CACHELINE_ASSERT_GROUP_SIZE(struct netns_ipv4, netns_ipv4_read_rx, 22); 1227 } 1228 #endif 1229 1230 static const struct rtnl_msg_handler net_ns_rtnl_msg_handlers[] __initconst = { 1231 {.msgtype = RTM_NEWNSID, .doit = rtnl_net_newid, 1232 .flags = RTNL_FLAG_DOIT_UNLOCKED}, 1233 {.msgtype = RTM_GETNSID, .doit = rtnl_net_getid, 1234 .dumpit = rtnl_net_dumpid, 1235 .flags = RTNL_FLAG_DOIT_UNLOCKED | RTNL_FLAG_DUMP_UNLOCKED}, 1236 }; 1237 1238 void __init net_ns_init(void) 1239 { 1240 struct net_generic *ng; 1241 1242 #ifdef CONFIG_NET_NS 1243 netns_ipv4_struct_check(); 1244 net_cachep = kmem_cache_create("net_namespace", sizeof(struct net), 1245 SMP_CACHE_BYTES, 1246 SLAB_PANIC|SLAB_ACCOUNT, NULL); 1247 1248 /* Create workqueue for cleanup */ 1249 netns_wq = create_singlethread_workqueue("netns"); 1250 if (!netns_wq) 1251 panic("Could not create netns workq"); 1252 #endif 1253 1254 ng = net_alloc_generic(); 1255 if (!ng) 1256 panic("Could not allocate generic netns"); 1257 1258 rcu_assign_pointer(init_net.gen, ng); 1259 1260 #ifdef CONFIG_KEYS 1261 init_net.key_domain = &init_net_key_domain; 1262 #endif 1263 preinit_net(&init_net, &init_user_ns); 1264 1265 down_write(&pernet_ops_rwsem); 1266 if (setup_net(&init_net)) 1267 panic("Could not setup the initial network namespace"); 1268 1269 init_net_initialized = true; 1270 up_write(&pernet_ops_rwsem); 1271 1272 if (register_pernet_subsys(&net_ns_ops)) 1273 panic("Could not register network namespace subsystems"); 1274 1275 rtnl_register_many(net_ns_rtnl_msg_handlers); 1276 } 1277 1278 #ifdef CONFIG_NET_NS 1279 static int __register_pernet_operations(struct list_head *list, 1280 struct pernet_operations *ops) 1281 { 1282 LIST_HEAD(net_exit_list); 1283 struct net *net; 1284 int error; 1285 1286 list_add_tail(&ops->list, list); 1287 if (ops->init || ops->id) { 1288 /* We held write locked pernet_ops_rwsem, and parallel 1289 * setup_net() and cleanup_net() are not possible. 1290 */ 1291 for_each_net(net) { 1292 error = ops_init(ops, net); 1293 if (error) 1294 goto out_undo; 1295 list_add_tail(&net->exit_list, &net_exit_list); 1296 } 1297 } 1298 return 0; 1299 1300 out_undo: 1301 /* If I have an error cleanup all namespaces I initialized */ 1302 list_del(&ops->list); 1303 ops_undo_single(ops, &net_exit_list); 1304 return error; 1305 } 1306 1307 static void __unregister_pernet_operations(struct pernet_operations *ops) 1308 { 1309 LIST_HEAD(net_exit_list); 1310 struct net *net; 1311 1312 /* See comment in __register_pernet_operations() */ 1313 for_each_net(net) 1314 list_add_tail(&net->exit_list, &net_exit_list); 1315 1316 list_del(&ops->list); 1317 ops_undo_single(ops, &net_exit_list); 1318 } 1319 1320 #else 1321 1322 static int __register_pernet_operations(struct list_head *list, 1323 struct pernet_operations *ops) 1324 { 1325 if (!init_net_initialized) { 1326 list_add_tail(&ops->list, list); 1327 return 0; 1328 } 1329 1330 return ops_init(ops, &init_net); 1331 } 1332 1333 static void __unregister_pernet_operations(struct pernet_operations *ops) 1334 { 1335 if (!init_net_initialized) { 1336 list_del(&ops->list); 1337 } else { 1338 LIST_HEAD(net_exit_list); 1339 1340 list_add(&init_net.exit_list, &net_exit_list); 1341 ops_undo_single(ops, &net_exit_list); 1342 } 1343 } 1344 1345 #endif /* CONFIG_NET_NS */ 1346 1347 static DEFINE_IDA(net_generic_ids); 1348 1349 static int register_pernet_operations(struct list_head *list, 1350 struct pernet_operations *ops) 1351 { 1352 int error; 1353 1354 if (WARN_ON(!!ops->id ^ !!ops->size)) 1355 return -EINVAL; 1356 1357 if (ops->id) { 1358 error = ida_alloc_min(&net_generic_ids, MIN_PERNET_OPS_ID, 1359 GFP_KERNEL); 1360 if (error < 0) 1361 return error; 1362 *ops->id = error; 1363 /* This does not require READ_ONCE as writers already hold 1364 * pernet_ops_rwsem. But WRITE_ONCE is needed to protect 1365 * net_alloc_generic. 1366 */ 1367 WRITE_ONCE(max_gen_ptrs, max(max_gen_ptrs, *ops->id + 1)); 1368 } 1369 error = __register_pernet_operations(list, ops); 1370 if (error) { 1371 rcu_barrier(); 1372 if (ops->id) 1373 ida_free(&net_generic_ids, *ops->id); 1374 } 1375 1376 return error; 1377 } 1378 1379 static void unregister_pernet_operations(struct pernet_operations *ops) 1380 { 1381 __unregister_pernet_operations(ops); 1382 rcu_barrier(); 1383 if (ops->id) 1384 ida_free(&net_generic_ids, *ops->id); 1385 } 1386 1387 /** 1388 * register_pernet_subsys - register a network namespace subsystem 1389 * @ops: pernet operations structure for the subsystem 1390 * 1391 * Register a subsystem which has init and exit functions 1392 * that are called when network namespaces are created and 1393 * destroyed respectively. 1394 * 1395 * When registered all network namespace init functions are 1396 * called for every existing network namespace. Allowing kernel 1397 * modules to have a race free view of the set of network namespaces. 1398 * 1399 * When a new network namespace is created all of the init 1400 * methods are called in the order in which they were registered. 1401 * 1402 * When a network namespace is destroyed all of the exit methods 1403 * are called in the reverse of the order with which they were 1404 * registered. 1405 */ 1406 int register_pernet_subsys(struct pernet_operations *ops) 1407 { 1408 int error; 1409 down_write(&pernet_ops_rwsem); 1410 error = register_pernet_operations(first_device, ops); 1411 up_write(&pernet_ops_rwsem); 1412 return error; 1413 } 1414 EXPORT_SYMBOL_GPL(register_pernet_subsys); 1415 1416 /** 1417 * unregister_pernet_subsys - unregister a network namespace subsystem 1418 * @ops: pernet operations structure to manipulate 1419 * 1420 * Remove the pernet operations structure from the list to be 1421 * used when network namespaces are created or destroyed. In 1422 * addition run the exit method for all existing network 1423 * namespaces. 1424 */ 1425 void unregister_pernet_subsys(struct pernet_operations *ops) 1426 { 1427 down_write(&pernet_ops_rwsem); 1428 unregister_pernet_operations(ops); 1429 up_write(&pernet_ops_rwsem); 1430 } 1431 EXPORT_SYMBOL_GPL(unregister_pernet_subsys); 1432 1433 /** 1434 * register_pernet_device - register a network namespace device 1435 * @ops: pernet operations structure for the subsystem 1436 * 1437 * Register a device which has init and exit functions 1438 * that are called when network namespaces are created and 1439 * destroyed respectively. 1440 * 1441 * When registered all network namespace init functions are 1442 * called for every existing network namespace. Allowing kernel 1443 * modules to have a race free view of the set of network namespaces. 1444 * 1445 * When a new network namespace is created all of the init 1446 * methods are called in the order in which they were registered. 1447 * 1448 * When a network namespace is destroyed all of the exit methods 1449 * are called in the reverse of the order with which they were 1450 * registered. 1451 */ 1452 int register_pernet_device(struct pernet_operations *ops) 1453 { 1454 int error; 1455 down_write(&pernet_ops_rwsem); 1456 error = register_pernet_operations(&pernet_list, ops); 1457 if (!error && (first_device == &pernet_list)) 1458 first_device = &ops->list; 1459 up_write(&pernet_ops_rwsem); 1460 return error; 1461 } 1462 EXPORT_SYMBOL_GPL(register_pernet_device); 1463 1464 /** 1465 * unregister_pernet_device - unregister a network namespace netdevice 1466 * @ops: pernet operations structure to manipulate 1467 * 1468 * Remove the pernet operations structure from the list to be 1469 * used when network namespaces are created or destroyed. In 1470 * addition run the exit method for all existing network 1471 * namespaces. 1472 */ 1473 void unregister_pernet_device(struct pernet_operations *ops) 1474 { 1475 down_write(&pernet_ops_rwsem); 1476 if (&ops->list == first_device) 1477 first_device = first_device->next; 1478 unregister_pernet_operations(ops); 1479 up_write(&pernet_ops_rwsem); 1480 } 1481 EXPORT_SYMBOL_GPL(unregister_pernet_device); 1482 1483 #ifdef CONFIG_NET_NS 1484 static struct ns_common *netns_get(struct task_struct *task) 1485 { 1486 struct net *net = NULL; 1487 struct nsproxy *nsproxy; 1488 1489 task_lock(task); 1490 nsproxy = task->nsproxy; 1491 if (nsproxy) 1492 net = get_net(nsproxy->net_ns); 1493 task_unlock(task); 1494 1495 return net ? &net->ns : NULL; 1496 } 1497 1498 static inline struct net *to_net_ns(struct ns_common *ns) 1499 { 1500 return container_of(ns, struct net, ns); 1501 } 1502 1503 static void netns_put(struct ns_common *ns) 1504 { 1505 put_net(to_net_ns(ns)); 1506 } 1507 1508 static int netns_install(struct nsset *nsset, struct ns_common *ns) 1509 { 1510 struct nsproxy *nsproxy = nsset->nsproxy; 1511 struct net *net = to_net_ns(ns); 1512 1513 if (!ns_capable(net->user_ns, CAP_SYS_ADMIN) || 1514 !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN)) 1515 return -EPERM; 1516 1517 put_net(nsproxy->net_ns); 1518 nsproxy->net_ns = get_net(net); 1519 return 0; 1520 } 1521 1522 static struct user_namespace *netns_owner(struct ns_common *ns) 1523 { 1524 return to_net_ns(ns)->user_ns; 1525 } 1526 1527 const struct proc_ns_operations netns_operations = { 1528 .name = "net", 1529 .type = CLONE_NEWNET, 1530 .get = netns_get, 1531 .put = netns_put, 1532 .install = netns_install, 1533 .owner = netns_owner, 1534 }; 1535 #endif 1536