xref: /linux/net/core/net-sysfs.c (revision f58817c852e9c9eb8116c24d8271a35159636605)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_rx_queue.h>
27 #include <net/rps.h>
28 
29 #include "dev.h"
30 #include "net-sysfs.h"
31 
32 #ifdef CONFIG_SYSFS
33 static const char fmt_hex[] = "%#x\n";
34 static const char fmt_dec[] = "%d\n";
35 static const char fmt_uint[] = "%u\n";
36 static const char fmt_ulong[] = "%lu\n";
37 static const char fmt_u64[] = "%llu\n";
38 
39 /* Caller holds RTNL or RCU */
40 static inline int dev_isalive(const struct net_device *dev)
41 {
42 	return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
43 }
44 
45 /* use same locking rules as GIF* ioctl's */
46 static ssize_t netdev_show(const struct device *dev,
47 			   struct device_attribute *attr, char *buf,
48 			   ssize_t (*format)(const struct net_device *, char *))
49 {
50 	struct net_device *ndev = to_net_dev(dev);
51 	ssize_t ret = -EINVAL;
52 
53 	rcu_read_lock();
54 	if (dev_isalive(ndev))
55 		ret = (*format)(ndev, buf);
56 	rcu_read_unlock();
57 
58 	return ret;
59 }
60 
61 /* generate a show function for simple field */
62 #define NETDEVICE_SHOW(field, format_string)				\
63 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
64 {									\
65 	return sysfs_emit(buf, format_string, READ_ONCE(dev->field));		\
66 }									\
67 static ssize_t field##_show(struct device *dev,				\
68 			    struct device_attribute *attr, char *buf)	\
69 {									\
70 	return netdev_show(dev, attr, buf, format_##field);		\
71 }									\
72 
73 #define NETDEVICE_SHOW_RO(field, format_string)				\
74 NETDEVICE_SHOW(field, format_string);					\
75 static DEVICE_ATTR_RO(field)
76 
77 #define NETDEVICE_SHOW_RW(field, format_string)				\
78 NETDEVICE_SHOW(field, format_string);					\
79 static DEVICE_ATTR_RW(field)
80 
81 /* use same locking and permission rules as SIF* ioctl's */
82 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
83 			    const char *buf, size_t len,
84 			    int (*set)(struct net_device *, unsigned long))
85 {
86 	struct net_device *netdev = to_net_dev(dev);
87 	struct net *net = dev_net(netdev);
88 	unsigned long new;
89 	int ret;
90 
91 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
92 		return -EPERM;
93 
94 	ret = kstrtoul(buf, 0, &new);
95 	if (ret)
96 		goto err;
97 
98 	if (!rtnl_trylock())
99 		return restart_syscall();
100 
101 	if (dev_isalive(netdev)) {
102 		ret = (*set)(netdev, new);
103 		if (ret == 0)
104 			ret = len;
105 	}
106 	rtnl_unlock();
107  err:
108 	return ret;
109 }
110 
111 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
112 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
113 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
114 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
115 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
116 NETDEVICE_SHOW_RO(type, fmt_dec);
117 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
118 
119 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
120 			   char *buf)
121 {
122 	struct net_device *ndev = to_net_dev(dev);
123 
124 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
125 }
126 static DEVICE_ATTR_RO(iflink);
127 
128 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
129 {
130 	return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
131 }
132 
133 static ssize_t name_assign_type_show(struct device *dev,
134 				     struct device_attribute *attr,
135 				     char *buf)
136 {
137 	struct net_device *ndev = to_net_dev(dev);
138 	ssize_t ret = -EINVAL;
139 
140 	if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
141 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
142 
143 	return ret;
144 }
145 static DEVICE_ATTR_RO(name_assign_type);
146 
147 /* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */
148 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
149 			    char *buf)
150 {
151 	struct net_device *ndev = to_net_dev(dev);
152 	ssize_t ret = -EINVAL;
153 
154 	down_read(&dev_addr_sem);
155 
156 	rcu_read_lock();
157 	if (dev_isalive(ndev))
158 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
159 	rcu_read_unlock();
160 
161 	up_read(&dev_addr_sem);
162 	return ret;
163 }
164 static DEVICE_ATTR_RO(address);
165 
166 static ssize_t broadcast_show(struct device *dev,
167 			      struct device_attribute *attr, char *buf)
168 {
169 	struct net_device *ndev = to_net_dev(dev);
170 	int ret = -EINVAL;
171 
172 	rcu_read_lock();
173 	if (dev_isalive(ndev))
174 		ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
175 	rcu_read_unlock();
176 	return ret;
177 }
178 static DEVICE_ATTR_RO(broadcast);
179 
180 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
181 {
182 	if (!netif_running(dev))
183 		return -EINVAL;
184 	return dev_change_carrier(dev, (bool)new_carrier);
185 }
186 
187 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
188 			     const char *buf, size_t len)
189 {
190 	struct net_device *netdev = to_net_dev(dev);
191 
192 	/* The check is also done in change_carrier; this helps returning early
193 	 * without hitting the trylock/restart in netdev_store.
194 	 */
195 	if (!netdev->netdev_ops->ndo_change_carrier)
196 		return -EOPNOTSUPP;
197 
198 	return netdev_store(dev, attr, buf, len, change_carrier);
199 }
200 
201 static ssize_t carrier_show(struct device *dev,
202 			    struct device_attribute *attr, char *buf)
203 {
204 	struct net_device *netdev = to_net_dev(dev);
205 	int ret = -EINVAL;
206 
207 	if (!rtnl_trylock())
208 		return restart_syscall();
209 
210 	if (netif_running(netdev)) {
211 		/* Synchronize carrier state with link watch,
212 		 * see also rtnl_getlink().
213 		 */
214 		linkwatch_sync_dev(netdev);
215 
216 		ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
217 	}
218 	rtnl_unlock();
219 
220 	return ret;
221 }
222 static DEVICE_ATTR_RW(carrier);
223 
224 static ssize_t speed_show(struct device *dev,
225 			  struct device_attribute *attr, char *buf)
226 {
227 	struct net_device *netdev = to_net_dev(dev);
228 	int ret = -EINVAL;
229 
230 	/* The check is also done in __ethtool_get_link_ksettings; this helps
231 	 * returning early without hitting the trylock/restart below.
232 	 */
233 	if (!netdev->ethtool_ops->get_link_ksettings)
234 		return ret;
235 
236 	if (!rtnl_trylock())
237 		return restart_syscall();
238 
239 	if (netif_running(netdev)) {
240 		struct ethtool_link_ksettings cmd;
241 
242 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
243 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
244 	}
245 	rtnl_unlock();
246 	return ret;
247 }
248 static DEVICE_ATTR_RO(speed);
249 
250 static ssize_t duplex_show(struct device *dev,
251 			   struct device_attribute *attr, char *buf)
252 {
253 	struct net_device *netdev = to_net_dev(dev);
254 	int ret = -EINVAL;
255 
256 	/* The check is also done in __ethtool_get_link_ksettings; this helps
257 	 * returning early without hitting the trylock/restart below.
258 	 */
259 	if (!netdev->ethtool_ops->get_link_ksettings)
260 		return ret;
261 
262 	if (!rtnl_trylock())
263 		return restart_syscall();
264 
265 	if (netif_running(netdev)) {
266 		struct ethtool_link_ksettings cmd;
267 
268 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
269 			const char *duplex;
270 
271 			switch (cmd.base.duplex) {
272 			case DUPLEX_HALF:
273 				duplex = "half";
274 				break;
275 			case DUPLEX_FULL:
276 				duplex = "full";
277 				break;
278 			default:
279 				duplex = "unknown";
280 				break;
281 			}
282 			ret = sysfs_emit(buf, "%s\n", duplex);
283 		}
284 	}
285 	rtnl_unlock();
286 	return ret;
287 }
288 static DEVICE_ATTR_RO(duplex);
289 
290 static ssize_t testing_show(struct device *dev,
291 			    struct device_attribute *attr, char *buf)
292 {
293 	struct net_device *netdev = to_net_dev(dev);
294 
295 	if (netif_running(netdev))
296 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
297 
298 	return -EINVAL;
299 }
300 static DEVICE_ATTR_RO(testing);
301 
302 static ssize_t dormant_show(struct device *dev,
303 			    struct device_attribute *attr, char *buf)
304 {
305 	struct net_device *netdev = to_net_dev(dev);
306 
307 	if (netif_running(netdev))
308 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
309 
310 	return -EINVAL;
311 }
312 static DEVICE_ATTR_RO(dormant);
313 
314 static const char *const operstates[] = {
315 	"unknown",
316 	"notpresent", /* currently unused */
317 	"down",
318 	"lowerlayerdown",
319 	"testing",
320 	"dormant",
321 	"up"
322 };
323 
324 static ssize_t operstate_show(struct device *dev,
325 			      struct device_attribute *attr, char *buf)
326 {
327 	const struct net_device *netdev = to_net_dev(dev);
328 	unsigned char operstate;
329 
330 	operstate = READ_ONCE(netdev->operstate);
331 	if (!netif_running(netdev))
332 		operstate = IF_OPER_DOWN;
333 
334 	if (operstate >= ARRAY_SIZE(operstates))
335 		return -EINVAL; /* should not happen */
336 
337 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
338 }
339 static DEVICE_ATTR_RO(operstate);
340 
341 static ssize_t carrier_changes_show(struct device *dev,
342 				    struct device_attribute *attr,
343 				    char *buf)
344 {
345 	struct net_device *netdev = to_net_dev(dev);
346 
347 	return sysfs_emit(buf, fmt_dec,
348 			  atomic_read(&netdev->carrier_up_count) +
349 			  atomic_read(&netdev->carrier_down_count));
350 }
351 static DEVICE_ATTR_RO(carrier_changes);
352 
353 static ssize_t carrier_up_count_show(struct device *dev,
354 				     struct device_attribute *attr,
355 				     char *buf)
356 {
357 	struct net_device *netdev = to_net_dev(dev);
358 
359 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
360 }
361 static DEVICE_ATTR_RO(carrier_up_count);
362 
363 static ssize_t carrier_down_count_show(struct device *dev,
364 				       struct device_attribute *attr,
365 				       char *buf)
366 {
367 	struct net_device *netdev = to_net_dev(dev);
368 
369 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
370 }
371 static DEVICE_ATTR_RO(carrier_down_count);
372 
373 /* read-write attributes */
374 
375 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
376 {
377 	return dev_set_mtu(dev, (int)new_mtu);
378 }
379 
380 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
381 			 const char *buf, size_t len)
382 {
383 	return netdev_store(dev, attr, buf, len, change_mtu);
384 }
385 NETDEVICE_SHOW_RW(mtu, fmt_dec);
386 
387 static int change_flags(struct net_device *dev, unsigned long new_flags)
388 {
389 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
390 }
391 
392 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
393 			   const char *buf, size_t len)
394 {
395 	return netdev_store(dev, attr, buf, len, change_flags);
396 }
397 NETDEVICE_SHOW_RW(flags, fmt_hex);
398 
399 static ssize_t tx_queue_len_store(struct device *dev,
400 				  struct device_attribute *attr,
401 				  const char *buf, size_t len)
402 {
403 	if (!capable(CAP_NET_ADMIN))
404 		return -EPERM;
405 
406 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
407 }
408 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
409 
410 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
411 {
412 	WRITE_ONCE(dev->gro_flush_timeout, val);
413 	return 0;
414 }
415 
416 static ssize_t gro_flush_timeout_store(struct device *dev,
417 				       struct device_attribute *attr,
418 				       const char *buf, size_t len)
419 {
420 	if (!capable(CAP_NET_ADMIN))
421 		return -EPERM;
422 
423 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
424 }
425 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
426 
427 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
428 {
429 	if (val > S32_MAX)
430 		return -ERANGE;
431 
432 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
433 	return 0;
434 }
435 
436 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
437 					  struct device_attribute *attr,
438 					  const char *buf, size_t len)
439 {
440 	if (!capable(CAP_NET_ADMIN))
441 		return -EPERM;
442 
443 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
444 }
445 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
446 
447 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
448 			     const char *buf, size_t len)
449 {
450 	struct net_device *netdev = to_net_dev(dev);
451 	struct net *net = dev_net(netdev);
452 	size_t count = len;
453 	ssize_t ret = 0;
454 
455 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
456 		return -EPERM;
457 
458 	/* ignore trailing newline */
459 	if (len >  0 && buf[len - 1] == '\n')
460 		--count;
461 
462 	if (!rtnl_trylock())
463 		return restart_syscall();
464 
465 	if (dev_isalive(netdev)) {
466 		ret = dev_set_alias(netdev, buf, count);
467 		if (ret < 0)
468 			goto err;
469 		ret = len;
470 		netdev_state_change(netdev);
471 	}
472 err:
473 	rtnl_unlock();
474 
475 	return ret;
476 }
477 
478 static ssize_t ifalias_show(struct device *dev,
479 			    struct device_attribute *attr, char *buf)
480 {
481 	const struct net_device *netdev = to_net_dev(dev);
482 	char tmp[IFALIASZ];
483 	ssize_t ret = 0;
484 
485 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
486 	if (ret > 0)
487 		ret = sysfs_emit(buf, "%s\n", tmp);
488 	return ret;
489 }
490 static DEVICE_ATTR_RW(ifalias);
491 
492 static int change_group(struct net_device *dev, unsigned long new_group)
493 {
494 	dev_set_group(dev, (int)new_group);
495 	return 0;
496 }
497 
498 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
499 			   const char *buf, size_t len)
500 {
501 	return netdev_store(dev, attr, buf, len, change_group);
502 }
503 NETDEVICE_SHOW(group, fmt_dec);
504 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
505 
506 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
507 {
508 	return dev_change_proto_down(dev, (bool)proto_down);
509 }
510 
511 static ssize_t proto_down_store(struct device *dev,
512 				struct device_attribute *attr,
513 				const char *buf, size_t len)
514 {
515 	return netdev_store(dev, attr, buf, len, change_proto_down);
516 }
517 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
518 
519 static ssize_t phys_port_id_show(struct device *dev,
520 				 struct device_attribute *attr, char *buf)
521 {
522 	struct net_device *netdev = to_net_dev(dev);
523 	ssize_t ret = -EINVAL;
524 
525 	/* The check is also done in dev_get_phys_port_id; this helps returning
526 	 * early without hitting the trylock/restart below.
527 	 */
528 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
529 		return -EOPNOTSUPP;
530 
531 	if (!rtnl_trylock())
532 		return restart_syscall();
533 
534 	if (dev_isalive(netdev)) {
535 		struct netdev_phys_item_id ppid;
536 
537 		ret = dev_get_phys_port_id(netdev, &ppid);
538 		if (!ret)
539 			ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
540 	}
541 	rtnl_unlock();
542 
543 	return ret;
544 }
545 static DEVICE_ATTR_RO(phys_port_id);
546 
547 static ssize_t phys_port_name_show(struct device *dev,
548 				   struct device_attribute *attr, char *buf)
549 {
550 	struct net_device *netdev = to_net_dev(dev);
551 	ssize_t ret = -EINVAL;
552 
553 	/* The checks are also done in dev_get_phys_port_name; this helps
554 	 * returning early without hitting the trylock/restart below.
555 	 */
556 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
557 	    !netdev->devlink_port)
558 		return -EOPNOTSUPP;
559 
560 	if (!rtnl_trylock())
561 		return restart_syscall();
562 
563 	if (dev_isalive(netdev)) {
564 		char name[IFNAMSIZ];
565 
566 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
567 		if (!ret)
568 			ret = sysfs_emit(buf, "%s\n", name);
569 	}
570 	rtnl_unlock();
571 
572 	return ret;
573 }
574 static DEVICE_ATTR_RO(phys_port_name);
575 
576 static ssize_t phys_switch_id_show(struct device *dev,
577 				   struct device_attribute *attr, char *buf)
578 {
579 	struct net_device *netdev = to_net_dev(dev);
580 	ssize_t ret = -EINVAL;
581 
582 	/* The checks are also done in dev_get_phys_port_name; this helps
583 	 * returning early without hitting the trylock/restart below. This works
584 	 * because recurse is false when calling dev_get_port_parent_id.
585 	 */
586 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
587 	    !netdev->devlink_port)
588 		return -EOPNOTSUPP;
589 
590 	if (!rtnl_trylock())
591 		return restart_syscall();
592 
593 	if (dev_isalive(netdev)) {
594 		struct netdev_phys_item_id ppid = { };
595 
596 		ret = dev_get_port_parent_id(netdev, &ppid, false);
597 		if (!ret)
598 			ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
599 	}
600 	rtnl_unlock();
601 
602 	return ret;
603 }
604 static DEVICE_ATTR_RO(phys_switch_id);
605 
606 static ssize_t threaded_show(struct device *dev,
607 			     struct device_attribute *attr, char *buf)
608 {
609 	struct net_device *netdev = to_net_dev(dev);
610 	ssize_t ret = -EINVAL;
611 
612 	rcu_read_lock();
613 
614 	if (dev_isalive(netdev))
615 		ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
616 
617 	rcu_read_unlock();
618 
619 	return ret;
620 }
621 
622 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
623 {
624 	int ret;
625 
626 	if (list_empty(&dev->napi_list))
627 		return -EOPNOTSUPP;
628 
629 	if (val != 0 && val != 1)
630 		return -EOPNOTSUPP;
631 
632 	ret = dev_set_threaded(dev, val);
633 
634 	return ret;
635 }
636 
637 static ssize_t threaded_store(struct device *dev,
638 			      struct device_attribute *attr,
639 			      const char *buf, size_t len)
640 {
641 	return netdev_store(dev, attr, buf, len, modify_napi_threaded);
642 }
643 static DEVICE_ATTR_RW(threaded);
644 
645 static struct attribute *net_class_attrs[] __ro_after_init = {
646 	&dev_attr_netdev_group.attr,
647 	&dev_attr_type.attr,
648 	&dev_attr_dev_id.attr,
649 	&dev_attr_dev_port.attr,
650 	&dev_attr_iflink.attr,
651 	&dev_attr_ifindex.attr,
652 	&dev_attr_name_assign_type.attr,
653 	&dev_attr_addr_assign_type.attr,
654 	&dev_attr_addr_len.attr,
655 	&dev_attr_link_mode.attr,
656 	&dev_attr_address.attr,
657 	&dev_attr_broadcast.attr,
658 	&dev_attr_speed.attr,
659 	&dev_attr_duplex.attr,
660 	&dev_attr_dormant.attr,
661 	&dev_attr_testing.attr,
662 	&dev_attr_operstate.attr,
663 	&dev_attr_carrier_changes.attr,
664 	&dev_attr_ifalias.attr,
665 	&dev_attr_carrier.attr,
666 	&dev_attr_mtu.attr,
667 	&dev_attr_flags.attr,
668 	&dev_attr_tx_queue_len.attr,
669 	&dev_attr_gro_flush_timeout.attr,
670 	&dev_attr_napi_defer_hard_irqs.attr,
671 	&dev_attr_phys_port_id.attr,
672 	&dev_attr_phys_port_name.attr,
673 	&dev_attr_phys_switch_id.attr,
674 	&dev_attr_proto_down.attr,
675 	&dev_attr_carrier_up_count.attr,
676 	&dev_attr_carrier_down_count.attr,
677 	&dev_attr_threaded.attr,
678 	NULL,
679 };
680 ATTRIBUTE_GROUPS(net_class);
681 
682 /* Show a given an attribute in the statistics group */
683 static ssize_t netstat_show(const struct device *d,
684 			    struct device_attribute *attr, char *buf,
685 			    unsigned long offset)
686 {
687 	struct net_device *dev = to_net_dev(d);
688 	ssize_t ret = -EINVAL;
689 
690 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
691 		offset % sizeof(u64) != 0);
692 
693 	rcu_read_lock();
694 	if (dev_isalive(dev)) {
695 		struct rtnl_link_stats64 temp;
696 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
697 
698 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
699 	}
700 	rcu_read_unlock();
701 	return ret;
702 }
703 
704 /* generate a read-only statistics attribute */
705 #define NETSTAT_ENTRY(name)						\
706 static ssize_t name##_show(struct device *d,				\
707 			   struct device_attribute *attr, char *buf)	\
708 {									\
709 	return netstat_show(d, attr, buf,				\
710 			    offsetof(struct rtnl_link_stats64, name));	\
711 }									\
712 static DEVICE_ATTR_RO(name)
713 
714 NETSTAT_ENTRY(rx_packets);
715 NETSTAT_ENTRY(tx_packets);
716 NETSTAT_ENTRY(rx_bytes);
717 NETSTAT_ENTRY(tx_bytes);
718 NETSTAT_ENTRY(rx_errors);
719 NETSTAT_ENTRY(tx_errors);
720 NETSTAT_ENTRY(rx_dropped);
721 NETSTAT_ENTRY(tx_dropped);
722 NETSTAT_ENTRY(multicast);
723 NETSTAT_ENTRY(collisions);
724 NETSTAT_ENTRY(rx_length_errors);
725 NETSTAT_ENTRY(rx_over_errors);
726 NETSTAT_ENTRY(rx_crc_errors);
727 NETSTAT_ENTRY(rx_frame_errors);
728 NETSTAT_ENTRY(rx_fifo_errors);
729 NETSTAT_ENTRY(rx_missed_errors);
730 NETSTAT_ENTRY(tx_aborted_errors);
731 NETSTAT_ENTRY(tx_carrier_errors);
732 NETSTAT_ENTRY(tx_fifo_errors);
733 NETSTAT_ENTRY(tx_heartbeat_errors);
734 NETSTAT_ENTRY(tx_window_errors);
735 NETSTAT_ENTRY(rx_compressed);
736 NETSTAT_ENTRY(tx_compressed);
737 NETSTAT_ENTRY(rx_nohandler);
738 
739 static struct attribute *netstat_attrs[] __ro_after_init = {
740 	&dev_attr_rx_packets.attr,
741 	&dev_attr_tx_packets.attr,
742 	&dev_attr_rx_bytes.attr,
743 	&dev_attr_tx_bytes.attr,
744 	&dev_attr_rx_errors.attr,
745 	&dev_attr_tx_errors.attr,
746 	&dev_attr_rx_dropped.attr,
747 	&dev_attr_tx_dropped.attr,
748 	&dev_attr_multicast.attr,
749 	&dev_attr_collisions.attr,
750 	&dev_attr_rx_length_errors.attr,
751 	&dev_attr_rx_over_errors.attr,
752 	&dev_attr_rx_crc_errors.attr,
753 	&dev_attr_rx_frame_errors.attr,
754 	&dev_attr_rx_fifo_errors.attr,
755 	&dev_attr_rx_missed_errors.attr,
756 	&dev_attr_tx_aborted_errors.attr,
757 	&dev_attr_tx_carrier_errors.attr,
758 	&dev_attr_tx_fifo_errors.attr,
759 	&dev_attr_tx_heartbeat_errors.attr,
760 	&dev_attr_tx_window_errors.attr,
761 	&dev_attr_rx_compressed.attr,
762 	&dev_attr_tx_compressed.attr,
763 	&dev_attr_rx_nohandler.attr,
764 	NULL
765 };
766 
767 static const struct attribute_group netstat_group = {
768 	.name  = "statistics",
769 	.attrs  = netstat_attrs,
770 };
771 
772 static struct attribute *wireless_attrs[] = {
773 	NULL
774 };
775 
776 static const struct attribute_group wireless_group = {
777 	.name = "wireless",
778 	.attrs = wireless_attrs,
779 };
780 
781 static bool wireless_group_needed(struct net_device *ndev)
782 {
783 #if IS_ENABLED(CONFIG_CFG80211)
784 	if (ndev->ieee80211_ptr)
785 		return true;
786 #endif
787 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
788 	if (ndev->wireless_handlers)
789 		return true;
790 #endif
791 	return false;
792 }
793 
794 #else /* CONFIG_SYSFS */
795 #define net_class_groups	NULL
796 #endif /* CONFIG_SYSFS */
797 
798 #ifdef CONFIG_SYSFS
799 #define to_rx_queue_attr(_attr) \
800 	container_of(_attr, struct rx_queue_attribute, attr)
801 
802 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
803 
804 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
805 				  char *buf)
806 {
807 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
808 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
809 
810 	if (!attribute->show)
811 		return -EIO;
812 
813 	return attribute->show(queue, buf);
814 }
815 
816 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
817 				   const char *buf, size_t count)
818 {
819 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
820 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
821 
822 	if (!attribute->store)
823 		return -EIO;
824 
825 	return attribute->store(queue, buf, count);
826 }
827 
828 static const struct sysfs_ops rx_queue_sysfs_ops = {
829 	.show = rx_queue_attr_show,
830 	.store = rx_queue_attr_store,
831 };
832 
833 #ifdef CONFIG_RPS
834 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
835 {
836 	struct rps_map *map;
837 	cpumask_var_t mask;
838 	int i, len;
839 
840 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
841 		return -ENOMEM;
842 
843 	rcu_read_lock();
844 	map = rcu_dereference(queue->rps_map);
845 	if (map)
846 		for (i = 0; i < map->len; i++)
847 			cpumask_set_cpu(map->cpus[i], mask);
848 
849 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
850 	rcu_read_unlock();
851 	free_cpumask_var(mask);
852 
853 	return len < PAGE_SIZE ? len : -EINVAL;
854 }
855 
856 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
857 					cpumask_var_t mask)
858 {
859 	static DEFINE_MUTEX(rps_map_mutex);
860 	struct rps_map *old_map, *map;
861 	int cpu, i;
862 
863 	map = kzalloc(max_t(unsigned int,
864 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
865 		      GFP_KERNEL);
866 	if (!map)
867 		return -ENOMEM;
868 
869 	i = 0;
870 	for_each_cpu_and(cpu, mask, cpu_online_mask)
871 		map->cpus[i++] = cpu;
872 
873 	if (i) {
874 		map->len = i;
875 	} else {
876 		kfree(map);
877 		map = NULL;
878 	}
879 
880 	mutex_lock(&rps_map_mutex);
881 	old_map = rcu_dereference_protected(queue->rps_map,
882 					    mutex_is_locked(&rps_map_mutex));
883 	rcu_assign_pointer(queue->rps_map, map);
884 
885 	if (map)
886 		static_branch_inc(&rps_needed);
887 	if (old_map)
888 		static_branch_dec(&rps_needed);
889 
890 	mutex_unlock(&rps_map_mutex);
891 
892 	if (old_map)
893 		kfree_rcu(old_map, rcu);
894 	return 0;
895 }
896 
897 int rps_cpumask_housekeeping(struct cpumask *mask)
898 {
899 	if (!cpumask_empty(mask)) {
900 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
901 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
902 		if (cpumask_empty(mask))
903 			return -EINVAL;
904 	}
905 	return 0;
906 }
907 
908 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
909 			     const char *buf, size_t len)
910 {
911 	cpumask_var_t mask;
912 	int err;
913 
914 	if (!capable(CAP_NET_ADMIN))
915 		return -EPERM;
916 
917 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
918 		return -ENOMEM;
919 
920 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
921 	if (err)
922 		goto out;
923 
924 	err = rps_cpumask_housekeeping(mask);
925 	if (err)
926 		goto out;
927 
928 	err = netdev_rx_queue_set_rps_mask(queue, mask);
929 
930 out:
931 	free_cpumask_var(mask);
932 	return err ? : len;
933 }
934 
935 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
936 					   char *buf)
937 {
938 	struct rps_dev_flow_table *flow_table;
939 	unsigned long val = 0;
940 
941 	rcu_read_lock();
942 	flow_table = rcu_dereference(queue->rps_flow_table);
943 	if (flow_table)
944 		val = (unsigned long)flow_table->mask + 1;
945 	rcu_read_unlock();
946 
947 	return sysfs_emit(buf, "%lu\n", val);
948 }
949 
950 static void rps_dev_flow_table_release(struct rcu_head *rcu)
951 {
952 	struct rps_dev_flow_table *table = container_of(rcu,
953 	    struct rps_dev_flow_table, rcu);
954 	vfree(table);
955 }
956 
957 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
958 					    const char *buf, size_t len)
959 {
960 	unsigned long mask, count;
961 	struct rps_dev_flow_table *table, *old_table;
962 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
963 	int rc;
964 
965 	if (!capable(CAP_NET_ADMIN))
966 		return -EPERM;
967 
968 	rc = kstrtoul(buf, 0, &count);
969 	if (rc < 0)
970 		return rc;
971 
972 	if (count) {
973 		mask = count - 1;
974 		/* mask = roundup_pow_of_two(count) - 1;
975 		 * without overflows...
976 		 */
977 		while ((mask | (mask >> 1)) != mask)
978 			mask |= (mask >> 1);
979 		/* On 64 bit arches, must check mask fits in table->mask (u32),
980 		 * and on 32bit arches, must check
981 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
982 		 */
983 #if BITS_PER_LONG > 32
984 		if (mask > (unsigned long)(u32)mask)
985 			return -EINVAL;
986 #else
987 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
988 				/ sizeof(struct rps_dev_flow)) {
989 			/* Enforce a limit to prevent overflow */
990 			return -EINVAL;
991 		}
992 #endif
993 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
994 		if (!table)
995 			return -ENOMEM;
996 
997 		table->mask = mask;
998 		for (count = 0; count <= mask; count++)
999 			table->flows[count].cpu = RPS_NO_CPU;
1000 	} else {
1001 		table = NULL;
1002 	}
1003 
1004 	spin_lock(&rps_dev_flow_lock);
1005 	old_table = rcu_dereference_protected(queue->rps_flow_table,
1006 					      lockdep_is_held(&rps_dev_flow_lock));
1007 	rcu_assign_pointer(queue->rps_flow_table, table);
1008 	spin_unlock(&rps_dev_flow_lock);
1009 
1010 	if (old_table)
1011 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1012 
1013 	return len;
1014 }
1015 
1016 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1017 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1018 
1019 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1020 	= __ATTR(rps_flow_cnt, 0644,
1021 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1022 #endif /* CONFIG_RPS */
1023 
1024 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1025 #ifdef CONFIG_RPS
1026 	&rps_cpus_attribute.attr,
1027 	&rps_dev_flow_table_cnt_attribute.attr,
1028 #endif
1029 	NULL
1030 };
1031 ATTRIBUTE_GROUPS(rx_queue_default);
1032 
1033 static void rx_queue_release(struct kobject *kobj)
1034 {
1035 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1036 #ifdef CONFIG_RPS
1037 	struct rps_map *map;
1038 	struct rps_dev_flow_table *flow_table;
1039 
1040 	map = rcu_dereference_protected(queue->rps_map, 1);
1041 	if (map) {
1042 		RCU_INIT_POINTER(queue->rps_map, NULL);
1043 		kfree_rcu(map, rcu);
1044 	}
1045 
1046 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1047 	if (flow_table) {
1048 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1049 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1050 	}
1051 #endif
1052 
1053 	memset(kobj, 0, sizeof(*kobj));
1054 	netdev_put(queue->dev, &queue->dev_tracker);
1055 }
1056 
1057 static const void *rx_queue_namespace(const struct kobject *kobj)
1058 {
1059 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1060 	struct device *dev = &queue->dev->dev;
1061 	const void *ns = NULL;
1062 
1063 	if (dev->class && dev->class->namespace)
1064 		ns = dev->class->namespace(dev);
1065 
1066 	return ns;
1067 }
1068 
1069 static void rx_queue_get_ownership(const struct kobject *kobj,
1070 				   kuid_t *uid, kgid_t *gid)
1071 {
1072 	const struct net *net = rx_queue_namespace(kobj);
1073 
1074 	net_ns_get_ownership(net, uid, gid);
1075 }
1076 
1077 static const struct kobj_type rx_queue_ktype = {
1078 	.sysfs_ops = &rx_queue_sysfs_ops,
1079 	.release = rx_queue_release,
1080 	.default_groups = rx_queue_default_groups,
1081 	.namespace = rx_queue_namespace,
1082 	.get_ownership = rx_queue_get_ownership,
1083 };
1084 
1085 static int rx_queue_default_mask(struct net_device *dev,
1086 				 struct netdev_rx_queue *queue)
1087 {
1088 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1089 	struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1090 
1091 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1092 		return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1093 #endif
1094 	return 0;
1095 }
1096 
1097 static int rx_queue_add_kobject(struct net_device *dev, int index)
1098 {
1099 	struct netdev_rx_queue *queue = dev->_rx + index;
1100 	struct kobject *kobj = &queue->kobj;
1101 	int error = 0;
1102 
1103 	/* Kobject_put later will trigger rx_queue_release call which
1104 	 * decreases dev refcount: Take that reference here
1105 	 */
1106 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1107 
1108 	kobj->kset = dev->queues_kset;
1109 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1110 				     "rx-%u", index);
1111 	if (error)
1112 		goto err;
1113 
1114 	if (dev->sysfs_rx_queue_group) {
1115 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1116 		if (error)
1117 			goto err;
1118 	}
1119 
1120 	error = rx_queue_default_mask(dev, queue);
1121 	if (error)
1122 		goto err;
1123 
1124 	kobject_uevent(kobj, KOBJ_ADD);
1125 
1126 	return error;
1127 
1128 err:
1129 	kobject_put(kobj);
1130 	return error;
1131 }
1132 
1133 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1134 				 kgid_t kgid)
1135 {
1136 	struct netdev_rx_queue *queue = dev->_rx + index;
1137 	struct kobject *kobj = &queue->kobj;
1138 	int error;
1139 
1140 	error = sysfs_change_owner(kobj, kuid, kgid);
1141 	if (error)
1142 		return error;
1143 
1144 	if (dev->sysfs_rx_queue_group)
1145 		error = sysfs_group_change_owner(
1146 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1147 
1148 	return error;
1149 }
1150 #endif /* CONFIG_SYSFS */
1151 
1152 int
1153 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1154 {
1155 #ifdef CONFIG_SYSFS
1156 	int i;
1157 	int error = 0;
1158 
1159 #ifndef CONFIG_RPS
1160 	if (!dev->sysfs_rx_queue_group)
1161 		return 0;
1162 #endif
1163 	for (i = old_num; i < new_num; i++) {
1164 		error = rx_queue_add_kobject(dev, i);
1165 		if (error) {
1166 			new_num = old_num;
1167 			break;
1168 		}
1169 	}
1170 
1171 	while (--i >= new_num) {
1172 		struct kobject *kobj = &dev->_rx[i].kobj;
1173 
1174 		if (!refcount_read(&dev_net(dev)->ns.count))
1175 			kobj->uevent_suppress = 1;
1176 		if (dev->sysfs_rx_queue_group)
1177 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1178 		kobject_put(kobj);
1179 	}
1180 
1181 	return error;
1182 #else
1183 	return 0;
1184 #endif
1185 }
1186 
1187 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1188 				     kuid_t kuid, kgid_t kgid)
1189 {
1190 #ifdef CONFIG_SYSFS
1191 	int error = 0;
1192 	int i;
1193 
1194 #ifndef CONFIG_RPS
1195 	if (!dev->sysfs_rx_queue_group)
1196 		return 0;
1197 #endif
1198 	for (i = 0; i < num; i++) {
1199 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1200 		if (error)
1201 			break;
1202 	}
1203 
1204 	return error;
1205 #else
1206 	return 0;
1207 #endif
1208 }
1209 
1210 #ifdef CONFIG_SYSFS
1211 /*
1212  * netdev_queue sysfs structures and functions.
1213  */
1214 struct netdev_queue_attribute {
1215 	struct attribute attr;
1216 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1217 	ssize_t (*store)(struct netdev_queue *queue,
1218 			 const char *buf, size_t len);
1219 };
1220 #define to_netdev_queue_attr(_attr) \
1221 	container_of(_attr, struct netdev_queue_attribute, attr)
1222 
1223 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1224 
1225 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1226 				      struct attribute *attr, char *buf)
1227 {
1228 	const struct netdev_queue_attribute *attribute
1229 		= to_netdev_queue_attr(attr);
1230 	struct netdev_queue *queue = to_netdev_queue(kobj);
1231 
1232 	if (!attribute->show)
1233 		return -EIO;
1234 
1235 	return attribute->show(queue, buf);
1236 }
1237 
1238 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1239 				       struct attribute *attr,
1240 				       const char *buf, size_t count)
1241 {
1242 	const struct netdev_queue_attribute *attribute
1243 		= to_netdev_queue_attr(attr);
1244 	struct netdev_queue *queue = to_netdev_queue(kobj);
1245 
1246 	if (!attribute->store)
1247 		return -EIO;
1248 
1249 	return attribute->store(queue, buf, count);
1250 }
1251 
1252 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1253 	.show = netdev_queue_attr_show,
1254 	.store = netdev_queue_attr_store,
1255 };
1256 
1257 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1258 {
1259 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1260 
1261 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1262 }
1263 
1264 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1265 {
1266 	struct net_device *dev = queue->dev;
1267 	unsigned int i;
1268 
1269 	i = queue - dev->_tx;
1270 	BUG_ON(i >= dev->num_tx_queues);
1271 
1272 	return i;
1273 }
1274 
1275 static ssize_t traffic_class_show(struct netdev_queue *queue,
1276 				  char *buf)
1277 {
1278 	struct net_device *dev = queue->dev;
1279 	int num_tc, tc;
1280 	int index;
1281 
1282 	if (!netif_is_multiqueue(dev))
1283 		return -ENOENT;
1284 
1285 	if (!rtnl_trylock())
1286 		return restart_syscall();
1287 
1288 	index = get_netdev_queue_index(queue);
1289 
1290 	/* If queue belongs to subordinate dev use its TC mapping */
1291 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1292 
1293 	num_tc = dev->num_tc;
1294 	tc = netdev_txq_to_tc(dev, index);
1295 
1296 	rtnl_unlock();
1297 
1298 	if (tc < 0)
1299 		return -EINVAL;
1300 
1301 	/* We can report the traffic class one of two ways:
1302 	 * Subordinate device traffic classes are reported with the traffic
1303 	 * class first, and then the subordinate class so for example TC0 on
1304 	 * subordinate device 2 will be reported as "0-2". If the queue
1305 	 * belongs to the root device it will be reported with just the
1306 	 * traffic class, so just "0" for TC 0 for example.
1307 	 */
1308 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1309 			    sysfs_emit(buf, "%d\n", tc);
1310 }
1311 
1312 #ifdef CONFIG_XPS
1313 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1314 			       char *buf)
1315 {
1316 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1317 }
1318 
1319 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1320 				const char *buf, size_t len)
1321 {
1322 	struct net_device *dev = queue->dev;
1323 	int err, index = get_netdev_queue_index(queue);
1324 	u32 rate = 0;
1325 
1326 	if (!capable(CAP_NET_ADMIN))
1327 		return -EPERM;
1328 
1329 	/* The check is also done later; this helps returning early without
1330 	 * hitting the trylock/restart below.
1331 	 */
1332 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1333 		return -EOPNOTSUPP;
1334 
1335 	err = kstrtou32(buf, 10, &rate);
1336 	if (err < 0)
1337 		return err;
1338 
1339 	if (!rtnl_trylock())
1340 		return restart_syscall();
1341 
1342 	err = -EOPNOTSUPP;
1343 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1344 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1345 
1346 	rtnl_unlock();
1347 	if (!err) {
1348 		queue->tx_maxrate = rate;
1349 		return len;
1350 	}
1351 	return err;
1352 }
1353 
1354 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1355 	= __ATTR_RW(tx_maxrate);
1356 #endif
1357 
1358 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1359 	= __ATTR_RO(tx_timeout);
1360 
1361 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1362 	= __ATTR_RO(traffic_class);
1363 
1364 #ifdef CONFIG_BQL
1365 /*
1366  * Byte queue limits sysfs structures and functions.
1367  */
1368 static ssize_t bql_show(char *buf, unsigned int value)
1369 {
1370 	return sysfs_emit(buf, "%u\n", value);
1371 }
1372 
1373 static ssize_t bql_set(const char *buf, const size_t count,
1374 		       unsigned int *pvalue)
1375 {
1376 	unsigned int value;
1377 	int err;
1378 
1379 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1380 		value = DQL_MAX_LIMIT;
1381 	} else {
1382 		err = kstrtouint(buf, 10, &value);
1383 		if (err < 0)
1384 			return err;
1385 		if (value > DQL_MAX_LIMIT)
1386 			return -EINVAL;
1387 	}
1388 
1389 	*pvalue = value;
1390 
1391 	return count;
1392 }
1393 
1394 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1395 				  char *buf)
1396 {
1397 	struct dql *dql = &queue->dql;
1398 
1399 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1400 }
1401 
1402 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1403 				 const char *buf, size_t len)
1404 {
1405 	struct dql *dql = &queue->dql;
1406 	unsigned int value;
1407 	int err;
1408 
1409 	err = kstrtouint(buf, 10, &value);
1410 	if (err < 0)
1411 		return err;
1412 
1413 	dql->slack_hold_time = msecs_to_jiffies(value);
1414 
1415 	return len;
1416 }
1417 
1418 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1419 	= __ATTR(hold_time, 0644,
1420 		 bql_show_hold_time, bql_set_hold_time);
1421 
1422 static ssize_t bql_show_stall_thrs(struct netdev_queue *queue, char *buf)
1423 {
1424 	struct dql *dql = &queue->dql;
1425 
1426 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1427 }
1428 
1429 static ssize_t bql_set_stall_thrs(struct netdev_queue *queue,
1430 				  const char *buf, size_t len)
1431 {
1432 	struct dql *dql = &queue->dql;
1433 	unsigned int value;
1434 	int err;
1435 
1436 	err = kstrtouint(buf, 10, &value);
1437 	if (err < 0)
1438 		return err;
1439 
1440 	value = msecs_to_jiffies(value);
1441 	if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1442 		return -ERANGE;
1443 
1444 	if (!dql->stall_thrs && value)
1445 		dql->last_reap = jiffies;
1446 	/* Force last_reap to be live */
1447 	smp_wmb();
1448 	dql->stall_thrs = value;
1449 
1450 	return len;
1451 }
1452 
1453 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1454 	__ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1455 
1456 static ssize_t bql_show_stall_max(struct netdev_queue *queue, char *buf)
1457 {
1458 	return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1459 }
1460 
1461 static ssize_t bql_set_stall_max(struct netdev_queue *queue,
1462 				 const char *buf, size_t len)
1463 {
1464 	WRITE_ONCE(queue->dql.stall_max, 0);
1465 	return len;
1466 }
1467 
1468 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1469 	__ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1470 
1471 static ssize_t bql_show_stall_cnt(struct netdev_queue *queue, char *buf)
1472 {
1473 	struct dql *dql = &queue->dql;
1474 
1475 	return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1476 }
1477 
1478 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1479 	__ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1480 
1481 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1482 				 char *buf)
1483 {
1484 	struct dql *dql = &queue->dql;
1485 
1486 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1487 }
1488 
1489 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1490 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1491 
1492 #define BQL_ATTR(NAME, FIELD)						\
1493 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1494 				 char *buf)				\
1495 {									\
1496 	return bql_show(buf, queue->dql.FIELD);				\
1497 }									\
1498 									\
1499 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1500 				const char *buf, size_t len)		\
1501 {									\
1502 	return bql_set(buf, len, &queue->dql.FIELD);			\
1503 }									\
1504 									\
1505 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1506 	= __ATTR(NAME, 0644,				\
1507 		 bql_show_ ## NAME, bql_set_ ## NAME)
1508 
1509 BQL_ATTR(limit, limit);
1510 BQL_ATTR(limit_max, max_limit);
1511 BQL_ATTR(limit_min, min_limit);
1512 
1513 static struct attribute *dql_attrs[] __ro_after_init = {
1514 	&bql_limit_attribute.attr,
1515 	&bql_limit_max_attribute.attr,
1516 	&bql_limit_min_attribute.attr,
1517 	&bql_hold_time_attribute.attr,
1518 	&bql_inflight_attribute.attr,
1519 	&bql_stall_thrs_attribute.attr,
1520 	&bql_stall_cnt_attribute.attr,
1521 	&bql_stall_max_attribute.attr,
1522 	NULL
1523 };
1524 
1525 static const struct attribute_group dql_group = {
1526 	.name  = "byte_queue_limits",
1527 	.attrs  = dql_attrs,
1528 };
1529 #else
1530 /* Fake declaration, all the code using it should be dead */
1531 static const struct attribute_group dql_group = {};
1532 #endif /* CONFIG_BQL */
1533 
1534 #ifdef CONFIG_XPS
1535 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1536 			      int tc, char *buf, enum xps_map_type type)
1537 {
1538 	struct xps_dev_maps *dev_maps;
1539 	unsigned long *mask;
1540 	unsigned int nr_ids;
1541 	int j, len;
1542 
1543 	rcu_read_lock();
1544 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1545 
1546 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1547 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1548 	 */
1549 	nr_ids = dev_maps ? dev_maps->nr_ids :
1550 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1551 
1552 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1553 	if (!mask) {
1554 		rcu_read_unlock();
1555 		return -ENOMEM;
1556 	}
1557 
1558 	if (!dev_maps || tc >= dev_maps->num_tc)
1559 		goto out_no_maps;
1560 
1561 	for (j = 0; j < nr_ids; j++) {
1562 		int i, tci = j * dev_maps->num_tc + tc;
1563 		struct xps_map *map;
1564 
1565 		map = rcu_dereference(dev_maps->attr_map[tci]);
1566 		if (!map)
1567 			continue;
1568 
1569 		for (i = map->len; i--;) {
1570 			if (map->queues[i] == index) {
1571 				__set_bit(j, mask);
1572 				break;
1573 			}
1574 		}
1575 	}
1576 out_no_maps:
1577 	rcu_read_unlock();
1578 
1579 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1580 	bitmap_free(mask);
1581 
1582 	return len < PAGE_SIZE ? len : -EINVAL;
1583 }
1584 
1585 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1586 {
1587 	struct net_device *dev = queue->dev;
1588 	unsigned int index;
1589 	int len, tc;
1590 
1591 	if (!netif_is_multiqueue(dev))
1592 		return -ENOENT;
1593 
1594 	index = get_netdev_queue_index(queue);
1595 
1596 	if (!rtnl_trylock())
1597 		return restart_syscall();
1598 
1599 	/* If queue belongs to subordinate dev use its map */
1600 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1601 
1602 	tc = netdev_txq_to_tc(dev, index);
1603 	if (tc < 0) {
1604 		rtnl_unlock();
1605 		return -EINVAL;
1606 	}
1607 
1608 	/* Make sure the subordinate device can't be freed */
1609 	get_device(&dev->dev);
1610 	rtnl_unlock();
1611 
1612 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1613 
1614 	put_device(&dev->dev);
1615 	return len;
1616 }
1617 
1618 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1619 			      const char *buf, size_t len)
1620 {
1621 	struct net_device *dev = queue->dev;
1622 	unsigned int index;
1623 	cpumask_var_t mask;
1624 	int err;
1625 
1626 	if (!netif_is_multiqueue(dev))
1627 		return -ENOENT;
1628 
1629 	if (!capable(CAP_NET_ADMIN))
1630 		return -EPERM;
1631 
1632 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1633 		return -ENOMEM;
1634 
1635 	index = get_netdev_queue_index(queue);
1636 
1637 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1638 	if (err) {
1639 		free_cpumask_var(mask);
1640 		return err;
1641 	}
1642 
1643 	if (!rtnl_trylock()) {
1644 		free_cpumask_var(mask);
1645 		return restart_syscall();
1646 	}
1647 
1648 	err = netif_set_xps_queue(dev, mask, index);
1649 	rtnl_unlock();
1650 
1651 	free_cpumask_var(mask);
1652 
1653 	return err ? : len;
1654 }
1655 
1656 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1657 	= __ATTR_RW(xps_cpus);
1658 
1659 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1660 {
1661 	struct net_device *dev = queue->dev;
1662 	unsigned int index;
1663 	int tc;
1664 
1665 	index = get_netdev_queue_index(queue);
1666 
1667 	if (!rtnl_trylock())
1668 		return restart_syscall();
1669 
1670 	tc = netdev_txq_to_tc(dev, index);
1671 	rtnl_unlock();
1672 	if (tc < 0)
1673 		return -EINVAL;
1674 
1675 	return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1676 }
1677 
1678 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1679 			      size_t len)
1680 {
1681 	struct net_device *dev = queue->dev;
1682 	struct net *net = dev_net(dev);
1683 	unsigned long *mask;
1684 	unsigned int index;
1685 	int err;
1686 
1687 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1688 		return -EPERM;
1689 
1690 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1691 	if (!mask)
1692 		return -ENOMEM;
1693 
1694 	index = get_netdev_queue_index(queue);
1695 
1696 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1697 	if (err) {
1698 		bitmap_free(mask);
1699 		return err;
1700 	}
1701 
1702 	if (!rtnl_trylock()) {
1703 		bitmap_free(mask);
1704 		return restart_syscall();
1705 	}
1706 
1707 	cpus_read_lock();
1708 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1709 	cpus_read_unlock();
1710 
1711 	rtnl_unlock();
1712 
1713 	bitmap_free(mask);
1714 	return err ? : len;
1715 }
1716 
1717 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1718 	= __ATTR_RW(xps_rxqs);
1719 #endif /* CONFIG_XPS */
1720 
1721 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1722 	&queue_trans_timeout.attr,
1723 	&queue_traffic_class.attr,
1724 #ifdef CONFIG_XPS
1725 	&xps_cpus_attribute.attr,
1726 	&xps_rxqs_attribute.attr,
1727 	&queue_tx_maxrate.attr,
1728 #endif
1729 	NULL
1730 };
1731 ATTRIBUTE_GROUPS(netdev_queue_default);
1732 
1733 static void netdev_queue_release(struct kobject *kobj)
1734 {
1735 	struct netdev_queue *queue = to_netdev_queue(kobj);
1736 
1737 	memset(kobj, 0, sizeof(*kobj));
1738 	netdev_put(queue->dev, &queue->dev_tracker);
1739 }
1740 
1741 static const void *netdev_queue_namespace(const struct kobject *kobj)
1742 {
1743 	struct netdev_queue *queue = to_netdev_queue(kobj);
1744 	struct device *dev = &queue->dev->dev;
1745 	const void *ns = NULL;
1746 
1747 	if (dev->class && dev->class->namespace)
1748 		ns = dev->class->namespace(dev);
1749 
1750 	return ns;
1751 }
1752 
1753 static void netdev_queue_get_ownership(const struct kobject *kobj,
1754 				       kuid_t *uid, kgid_t *gid)
1755 {
1756 	const struct net *net = netdev_queue_namespace(kobj);
1757 
1758 	net_ns_get_ownership(net, uid, gid);
1759 }
1760 
1761 static const struct kobj_type netdev_queue_ktype = {
1762 	.sysfs_ops = &netdev_queue_sysfs_ops,
1763 	.release = netdev_queue_release,
1764 	.default_groups = netdev_queue_default_groups,
1765 	.namespace = netdev_queue_namespace,
1766 	.get_ownership = netdev_queue_get_ownership,
1767 };
1768 
1769 static bool netdev_uses_bql(const struct net_device *dev)
1770 {
1771 	if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
1772 		return false;
1773 
1774 	return IS_ENABLED(CONFIG_BQL);
1775 }
1776 
1777 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1778 {
1779 	struct netdev_queue *queue = dev->_tx + index;
1780 	struct kobject *kobj = &queue->kobj;
1781 	int error = 0;
1782 
1783 	/* Kobject_put later will trigger netdev_queue_release call
1784 	 * which decreases dev refcount: Take that reference here
1785 	 */
1786 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1787 
1788 	kobj->kset = dev->queues_kset;
1789 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1790 				     "tx-%u", index);
1791 	if (error)
1792 		goto err;
1793 
1794 	if (netdev_uses_bql(dev)) {
1795 		error = sysfs_create_group(kobj, &dql_group);
1796 		if (error)
1797 			goto err;
1798 	}
1799 
1800 	kobject_uevent(kobj, KOBJ_ADD);
1801 	return 0;
1802 
1803 err:
1804 	kobject_put(kobj);
1805 	return error;
1806 }
1807 
1808 static int tx_queue_change_owner(struct net_device *ndev, int index,
1809 				 kuid_t kuid, kgid_t kgid)
1810 {
1811 	struct netdev_queue *queue = ndev->_tx + index;
1812 	struct kobject *kobj = &queue->kobj;
1813 	int error;
1814 
1815 	error = sysfs_change_owner(kobj, kuid, kgid);
1816 	if (error)
1817 		return error;
1818 
1819 	if (netdev_uses_bql(ndev))
1820 		error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1821 
1822 	return error;
1823 }
1824 #endif /* CONFIG_SYSFS */
1825 
1826 int
1827 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1828 {
1829 #ifdef CONFIG_SYSFS
1830 	int i;
1831 	int error = 0;
1832 
1833 	/* Tx queue kobjects are allowed to be updated when a device is being
1834 	 * unregistered, but solely to remove queues from qdiscs. Any path
1835 	 * adding queues should be fixed.
1836 	 */
1837 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
1838 	     "New queues can't be registered after device unregistration.");
1839 
1840 	for (i = old_num; i < new_num; i++) {
1841 		error = netdev_queue_add_kobject(dev, i);
1842 		if (error) {
1843 			new_num = old_num;
1844 			break;
1845 		}
1846 	}
1847 
1848 	while (--i >= new_num) {
1849 		struct netdev_queue *queue = dev->_tx + i;
1850 
1851 		if (!refcount_read(&dev_net(dev)->ns.count))
1852 			queue->kobj.uevent_suppress = 1;
1853 
1854 		if (netdev_uses_bql(dev))
1855 			sysfs_remove_group(&queue->kobj, &dql_group);
1856 
1857 		kobject_put(&queue->kobj);
1858 	}
1859 
1860 	return error;
1861 #else
1862 	return 0;
1863 #endif /* CONFIG_SYSFS */
1864 }
1865 
1866 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1867 				     kuid_t kuid, kgid_t kgid)
1868 {
1869 #ifdef CONFIG_SYSFS
1870 	int error = 0;
1871 	int i;
1872 
1873 	for (i = 0; i < num; i++) {
1874 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1875 		if (error)
1876 			break;
1877 	}
1878 
1879 	return error;
1880 #else
1881 	return 0;
1882 #endif /* CONFIG_SYSFS */
1883 }
1884 
1885 static int register_queue_kobjects(struct net_device *dev)
1886 {
1887 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1888 
1889 #ifdef CONFIG_SYSFS
1890 	dev->queues_kset = kset_create_and_add("queues",
1891 					       NULL, &dev->dev.kobj);
1892 	if (!dev->queues_kset)
1893 		return -ENOMEM;
1894 	real_rx = dev->real_num_rx_queues;
1895 #endif
1896 	real_tx = dev->real_num_tx_queues;
1897 
1898 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1899 	if (error)
1900 		goto error;
1901 	rxq = real_rx;
1902 
1903 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1904 	if (error)
1905 		goto error;
1906 	txq = real_tx;
1907 
1908 	return 0;
1909 
1910 error:
1911 	netdev_queue_update_kobjects(dev, txq, 0);
1912 	net_rx_queue_update_kobjects(dev, rxq, 0);
1913 #ifdef CONFIG_SYSFS
1914 	kset_unregister(dev->queues_kset);
1915 #endif
1916 	return error;
1917 }
1918 
1919 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1920 {
1921 	int error = 0, real_rx = 0, real_tx = 0;
1922 
1923 #ifdef CONFIG_SYSFS
1924 	if (ndev->queues_kset) {
1925 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1926 		if (error)
1927 			return error;
1928 	}
1929 	real_rx = ndev->real_num_rx_queues;
1930 #endif
1931 	real_tx = ndev->real_num_tx_queues;
1932 
1933 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1934 	if (error)
1935 		return error;
1936 
1937 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1938 	if (error)
1939 		return error;
1940 
1941 	return 0;
1942 }
1943 
1944 static void remove_queue_kobjects(struct net_device *dev)
1945 {
1946 	int real_rx = 0, real_tx = 0;
1947 
1948 #ifdef CONFIG_SYSFS
1949 	real_rx = dev->real_num_rx_queues;
1950 #endif
1951 	real_tx = dev->real_num_tx_queues;
1952 
1953 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1954 	netdev_queue_update_kobjects(dev, real_tx, 0);
1955 
1956 	dev->real_num_rx_queues = 0;
1957 	dev->real_num_tx_queues = 0;
1958 #ifdef CONFIG_SYSFS
1959 	kset_unregister(dev->queues_kset);
1960 #endif
1961 }
1962 
1963 static bool net_current_may_mount(void)
1964 {
1965 	struct net *net = current->nsproxy->net_ns;
1966 
1967 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1968 }
1969 
1970 static void *net_grab_current_ns(void)
1971 {
1972 	struct net *ns = current->nsproxy->net_ns;
1973 #ifdef CONFIG_NET_NS
1974 	if (ns)
1975 		refcount_inc(&ns->passive);
1976 #endif
1977 	return ns;
1978 }
1979 
1980 static const void *net_initial_ns(void)
1981 {
1982 	return &init_net;
1983 }
1984 
1985 static const void *net_netlink_ns(struct sock *sk)
1986 {
1987 	return sock_net(sk);
1988 }
1989 
1990 const struct kobj_ns_type_operations net_ns_type_operations = {
1991 	.type = KOBJ_NS_TYPE_NET,
1992 	.current_may_mount = net_current_may_mount,
1993 	.grab_current_ns = net_grab_current_ns,
1994 	.netlink_ns = net_netlink_ns,
1995 	.initial_ns = net_initial_ns,
1996 	.drop_ns = net_drop_ns,
1997 };
1998 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1999 
2000 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
2001 {
2002 	const struct net_device *dev = to_net_dev(d);
2003 	int retval;
2004 
2005 	/* pass interface to uevent. */
2006 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2007 	if (retval)
2008 		goto exit;
2009 
2010 	/* pass ifindex to uevent.
2011 	 * ifindex is useful as it won't change (interface name may change)
2012 	 * and is what RtNetlink uses natively.
2013 	 */
2014 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2015 
2016 exit:
2017 	return retval;
2018 }
2019 
2020 /*
2021  *	netdev_release -- destroy and free a dead device.
2022  *	Called when last reference to device kobject is gone.
2023  */
2024 static void netdev_release(struct device *d)
2025 {
2026 	struct net_device *dev = to_net_dev(d);
2027 
2028 	BUG_ON(dev->reg_state != NETREG_RELEASED);
2029 
2030 	/* no need to wait for rcu grace period:
2031 	 * device is dead and about to be freed.
2032 	 */
2033 	kfree(rcu_access_pointer(dev->ifalias));
2034 	kvfree(dev);
2035 }
2036 
2037 static const void *net_namespace(const struct device *d)
2038 {
2039 	const struct net_device *dev = to_net_dev(d);
2040 
2041 	return dev_net(dev);
2042 }
2043 
2044 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2045 {
2046 	const struct net_device *dev = to_net_dev(d);
2047 	const struct net *net = dev_net(dev);
2048 
2049 	net_ns_get_ownership(net, uid, gid);
2050 }
2051 
2052 static const struct class net_class = {
2053 	.name = "net",
2054 	.dev_release = netdev_release,
2055 	.dev_groups = net_class_groups,
2056 	.dev_uevent = netdev_uevent,
2057 	.ns_type = &net_ns_type_operations,
2058 	.namespace = net_namespace,
2059 	.get_ownership = net_get_ownership,
2060 };
2061 
2062 #ifdef CONFIG_OF
2063 static int of_dev_node_match(struct device *dev, const void *data)
2064 {
2065 	for (; dev; dev = dev->parent) {
2066 		if (dev->of_node == data)
2067 			return 1;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /*
2074  * of_find_net_device_by_node - lookup the net device for the device node
2075  * @np: OF device node
2076  *
2077  * Looks up the net_device structure corresponding with the device node.
2078  * If successful, returns a pointer to the net_device with the embedded
2079  * struct device refcount incremented by one, or NULL on failure. The
2080  * refcount must be dropped when done with the net_device.
2081  */
2082 struct net_device *of_find_net_device_by_node(struct device_node *np)
2083 {
2084 	struct device *dev;
2085 
2086 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2087 	if (!dev)
2088 		return NULL;
2089 
2090 	return to_net_dev(dev);
2091 }
2092 EXPORT_SYMBOL(of_find_net_device_by_node);
2093 #endif
2094 
2095 /* Delete sysfs entries but hold kobject reference until after all
2096  * netdev references are gone.
2097  */
2098 void netdev_unregister_kobject(struct net_device *ndev)
2099 {
2100 	struct device *dev = &ndev->dev;
2101 
2102 	if (!refcount_read(&dev_net(ndev)->ns.count))
2103 		dev_set_uevent_suppress(dev, 1);
2104 
2105 	kobject_get(&dev->kobj);
2106 
2107 	remove_queue_kobjects(ndev);
2108 
2109 	pm_runtime_set_memalloc_noio(dev, false);
2110 
2111 	device_del(dev);
2112 }
2113 
2114 /* Create sysfs entries for network device. */
2115 int netdev_register_kobject(struct net_device *ndev)
2116 {
2117 	struct device *dev = &ndev->dev;
2118 	const struct attribute_group **groups = ndev->sysfs_groups;
2119 	int error = 0;
2120 
2121 	device_initialize(dev);
2122 	dev->class = &net_class;
2123 	dev->platform_data = ndev;
2124 	dev->groups = groups;
2125 
2126 	dev_set_name(dev, "%s", ndev->name);
2127 
2128 #ifdef CONFIG_SYSFS
2129 	/* Allow for a device specific group */
2130 	if (*groups)
2131 		groups++;
2132 
2133 	*groups++ = &netstat_group;
2134 
2135 	if (wireless_group_needed(ndev))
2136 		*groups++ = &wireless_group;
2137 #endif /* CONFIG_SYSFS */
2138 
2139 	error = device_add(dev);
2140 	if (error)
2141 		return error;
2142 
2143 	error = register_queue_kobjects(ndev);
2144 	if (error) {
2145 		device_del(dev);
2146 		return error;
2147 	}
2148 
2149 	pm_runtime_set_memalloc_noio(dev, true);
2150 
2151 	return error;
2152 }
2153 
2154 /* Change owner for sysfs entries when moving network devices across network
2155  * namespaces owned by different user namespaces.
2156  */
2157 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2158 			const struct net *net_new)
2159 {
2160 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2161 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2162 	struct device *dev = &ndev->dev;
2163 	int error;
2164 
2165 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2166 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2167 
2168 	/* The network namespace was changed but the owning user namespace is
2169 	 * identical so there's no need to change the owner of sysfs entries.
2170 	 */
2171 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2172 		return 0;
2173 
2174 	error = device_change_owner(dev, new_uid, new_gid);
2175 	if (error)
2176 		return error;
2177 
2178 	error = queue_change_owner(ndev, new_uid, new_gid);
2179 	if (error)
2180 		return error;
2181 
2182 	return 0;
2183 }
2184 
2185 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2186 				const void *ns)
2187 {
2188 	return class_create_file_ns(&net_class, class_attr, ns);
2189 }
2190 EXPORT_SYMBOL(netdev_class_create_file_ns);
2191 
2192 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2193 				 const void *ns)
2194 {
2195 	class_remove_file_ns(&net_class, class_attr, ns);
2196 }
2197 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2198 
2199 int __init netdev_kobject_init(void)
2200 {
2201 	kobj_ns_type_register(&net_ns_type_operations);
2202 	return class_register(&net_class);
2203 }
2204