1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 #include <net/netdev_rx_queue.h> 27 #include <net/rps.h> 28 29 #include "dev.h" 30 #include "net-sysfs.h" 31 32 #ifdef CONFIG_SYSFS 33 static const char fmt_hex[] = "%#x\n"; 34 static const char fmt_dec[] = "%d\n"; 35 static const char fmt_ulong[] = "%lu\n"; 36 static const char fmt_u64[] = "%llu\n"; 37 38 /* Caller holds RTNL or RCU */ 39 static inline int dev_isalive(const struct net_device *dev) 40 { 41 return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED; 42 } 43 44 /* use same locking rules as GIF* ioctl's */ 45 static ssize_t netdev_show(const struct device *dev, 46 struct device_attribute *attr, char *buf, 47 ssize_t (*format)(const struct net_device *, char *)) 48 { 49 struct net_device *ndev = to_net_dev(dev); 50 ssize_t ret = -EINVAL; 51 52 rcu_read_lock(); 53 if (dev_isalive(ndev)) 54 ret = (*format)(ndev, buf); 55 rcu_read_unlock(); 56 57 return ret; 58 } 59 60 /* generate a show function for simple field */ 61 #define NETDEVICE_SHOW(field, format_string) \ 62 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 63 { \ 64 return sysfs_emit(buf, format_string, READ_ONCE(dev->field)); \ 65 } \ 66 static ssize_t field##_show(struct device *dev, \ 67 struct device_attribute *attr, char *buf) \ 68 { \ 69 return netdev_show(dev, attr, buf, format_##field); \ 70 } \ 71 72 #define NETDEVICE_SHOW_RO(field, format_string) \ 73 NETDEVICE_SHOW(field, format_string); \ 74 static DEVICE_ATTR_RO(field) 75 76 #define NETDEVICE_SHOW_RW(field, format_string) \ 77 NETDEVICE_SHOW(field, format_string); \ 78 static DEVICE_ATTR_RW(field) 79 80 /* use same locking and permission rules as SIF* ioctl's */ 81 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 82 const char *buf, size_t len, 83 int (*set)(struct net_device *, unsigned long)) 84 { 85 struct net_device *netdev = to_net_dev(dev); 86 struct net *net = dev_net(netdev); 87 unsigned long new; 88 int ret; 89 90 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 91 return -EPERM; 92 93 ret = kstrtoul(buf, 0, &new); 94 if (ret) 95 goto err; 96 97 if (!rtnl_trylock()) 98 return restart_syscall(); 99 100 if (dev_isalive(netdev)) { 101 ret = (*set)(netdev, new); 102 if (ret == 0) 103 ret = len; 104 } 105 rtnl_unlock(); 106 err: 107 return ret; 108 } 109 110 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 111 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 112 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 113 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 114 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 115 NETDEVICE_SHOW_RO(type, fmt_dec); 116 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 117 118 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 119 char *buf) 120 { 121 struct net_device *ndev = to_net_dev(dev); 122 123 return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev)); 124 } 125 static DEVICE_ATTR_RO(iflink); 126 127 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 128 { 129 return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type)); 130 } 131 132 static ssize_t name_assign_type_show(struct device *dev, 133 struct device_attribute *attr, 134 char *buf) 135 { 136 struct net_device *ndev = to_net_dev(dev); 137 ssize_t ret = -EINVAL; 138 139 if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN) 140 ret = netdev_show(dev, attr, buf, format_name_assign_type); 141 142 return ret; 143 } 144 static DEVICE_ATTR_RO(name_assign_type); 145 146 /* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */ 147 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 148 char *buf) 149 { 150 struct net_device *ndev = to_net_dev(dev); 151 ssize_t ret = -EINVAL; 152 153 down_read(&dev_addr_sem); 154 155 rcu_read_lock(); 156 if (dev_isalive(ndev)) 157 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 158 rcu_read_unlock(); 159 160 up_read(&dev_addr_sem); 161 return ret; 162 } 163 static DEVICE_ATTR_RO(address); 164 165 static ssize_t broadcast_show(struct device *dev, 166 struct device_attribute *attr, char *buf) 167 { 168 struct net_device *ndev = to_net_dev(dev); 169 int ret = -EINVAL; 170 171 rcu_read_lock(); 172 if (dev_isalive(ndev)) 173 ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 174 rcu_read_unlock(); 175 return ret; 176 } 177 static DEVICE_ATTR_RO(broadcast); 178 179 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 180 { 181 if (!netif_running(dev)) 182 return -EINVAL; 183 return dev_change_carrier(dev, (bool)new_carrier); 184 } 185 186 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 187 const char *buf, size_t len) 188 { 189 struct net_device *netdev = to_net_dev(dev); 190 191 /* The check is also done in change_carrier; this helps returning early 192 * without hitting the trylock/restart in netdev_store. 193 */ 194 if (!netdev->netdev_ops->ndo_change_carrier) 195 return -EOPNOTSUPP; 196 197 return netdev_store(dev, attr, buf, len, change_carrier); 198 } 199 200 static ssize_t carrier_show(struct device *dev, 201 struct device_attribute *attr, char *buf) 202 { 203 struct net_device *netdev = to_net_dev(dev); 204 int ret = -EINVAL; 205 206 if (!rtnl_trylock()) 207 return restart_syscall(); 208 209 if (netif_running(netdev)) { 210 /* Synchronize carrier state with link watch, 211 * see also rtnl_getlink(). 212 */ 213 linkwatch_sync_dev(netdev); 214 215 ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev)); 216 } 217 rtnl_unlock(); 218 219 return ret; 220 } 221 static DEVICE_ATTR_RW(carrier); 222 223 static ssize_t speed_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 struct net_device *netdev = to_net_dev(dev); 227 int ret = -EINVAL; 228 229 /* The check is also done in __ethtool_get_link_ksettings; this helps 230 * returning early without hitting the trylock/restart below. 231 */ 232 if (!netdev->ethtool_ops->get_link_ksettings) 233 return ret; 234 235 if (!rtnl_trylock()) 236 return restart_syscall(); 237 238 if (netif_running(netdev) && netif_device_present(netdev)) { 239 struct ethtool_link_ksettings cmd; 240 241 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 242 ret = sysfs_emit(buf, fmt_dec, cmd.base.speed); 243 } 244 rtnl_unlock(); 245 return ret; 246 } 247 static DEVICE_ATTR_RO(speed); 248 249 static ssize_t duplex_show(struct device *dev, 250 struct device_attribute *attr, char *buf) 251 { 252 struct net_device *netdev = to_net_dev(dev); 253 int ret = -EINVAL; 254 255 /* The check is also done in __ethtool_get_link_ksettings; this helps 256 * returning early without hitting the trylock/restart below. 257 */ 258 if (!netdev->ethtool_ops->get_link_ksettings) 259 return ret; 260 261 if (!rtnl_trylock()) 262 return restart_syscall(); 263 264 if (netif_running(netdev)) { 265 struct ethtool_link_ksettings cmd; 266 267 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 268 const char *duplex; 269 270 switch (cmd.base.duplex) { 271 case DUPLEX_HALF: 272 duplex = "half"; 273 break; 274 case DUPLEX_FULL: 275 duplex = "full"; 276 break; 277 default: 278 duplex = "unknown"; 279 break; 280 } 281 ret = sysfs_emit(buf, "%s\n", duplex); 282 } 283 } 284 rtnl_unlock(); 285 return ret; 286 } 287 static DEVICE_ATTR_RO(duplex); 288 289 static ssize_t testing_show(struct device *dev, 290 struct device_attribute *attr, char *buf) 291 { 292 struct net_device *netdev = to_net_dev(dev); 293 294 if (netif_running(netdev)) 295 return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev)); 296 297 return -EINVAL; 298 } 299 static DEVICE_ATTR_RO(testing); 300 301 static ssize_t dormant_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 struct net_device *netdev = to_net_dev(dev); 305 306 if (netif_running(netdev)) 307 return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev)); 308 309 return -EINVAL; 310 } 311 static DEVICE_ATTR_RO(dormant); 312 313 static const char *const operstates[] = { 314 "unknown", 315 "notpresent", /* currently unused */ 316 "down", 317 "lowerlayerdown", 318 "testing", 319 "dormant", 320 "up" 321 }; 322 323 static ssize_t operstate_show(struct device *dev, 324 struct device_attribute *attr, char *buf) 325 { 326 const struct net_device *netdev = to_net_dev(dev); 327 unsigned char operstate; 328 329 operstate = READ_ONCE(netdev->operstate); 330 if (!netif_running(netdev)) 331 operstate = IF_OPER_DOWN; 332 333 if (operstate >= ARRAY_SIZE(operstates)) 334 return -EINVAL; /* should not happen */ 335 336 return sysfs_emit(buf, "%s\n", operstates[operstate]); 337 } 338 static DEVICE_ATTR_RO(operstate); 339 340 static ssize_t carrier_changes_show(struct device *dev, 341 struct device_attribute *attr, 342 char *buf) 343 { 344 struct net_device *netdev = to_net_dev(dev); 345 346 return sysfs_emit(buf, fmt_dec, 347 atomic_read(&netdev->carrier_up_count) + 348 atomic_read(&netdev->carrier_down_count)); 349 } 350 static DEVICE_ATTR_RO(carrier_changes); 351 352 static ssize_t carrier_up_count_show(struct device *dev, 353 struct device_attribute *attr, 354 char *buf) 355 { 356 struct net_device *netdev = to_net_dev(dev); 357 358 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 359 } 360 static DEVICE_ATTR_RO(carrier_up_count); 361 362 static ssize_t carrier_down_count_show(struct device *dev, 363 struct device_attribute *attr, 364 char *buf) 365 { 366 struct net_device *netdev = to_net_dev(dev); 367 368 return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 369 } 370 static DEVICE_ATTR_RO(carrier_down_count); 371 372 /* read-write attributes */ 373 374 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 375 { 376 return dev_set_mtu(dev, (int)new_mtu); 377 } 378 379 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 380 const char *buf, size_t len) 381 { 382 return netdev_store(dev, attr, buf, len, change_mtu); 383 } 384 NETDEVICE_SHOW_RW(mtu, fmt_dec); 385 386 static int change_flags(struct net_device *dev, unsigned long new_flags) 387 { 388 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 389 } 390 391 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 392 const char *buf, size_t len) 393 { 394 return netdev_store(dev, attr, buf, len, change_flags); 395 } 396 NETDEVICE_SHOW_RW(flags, fmt_hex); 397 398 static ssize_t tx_queue_len_store(struct device *dev, 399 struct device_attribute *attr, 400 const char *buf, size_t len) 401 { 402 if (!capable(CAP_NET_ADMIN)) 403 return -EPERM; 404 405 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 406 } 407 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 408 409 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 410 { 411 WRITE_ONCE(dev->gro_flush_timeout, val); 412 return 0; 413 } 414 415 static ssize_t gro_flush_timeout_store(struct device *dev, 416 struct device_attribute *attr, 417 const char *buf, size_t len) 418 { 419 if (!capable(CAP_NET_ADMIN)) 420 return -EPERM; 421 422 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 423 } 424 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 425 426 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 427 { 428 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 429 return 0; 430 } 431 432 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 433 struct device_attribute *attr, 434 const char *buf, size_t len) 435 { 436 if (!capable(CAP_NET_ADMIN)) 437 return -EPERM; 438 439 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 440 } 441 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 442 443 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 444 const char *buf, size_t len) 445 { 446 struct net_device *netdev = to_net_dev(dev); 447 struct net *net = dev_net(netdev); 448 size_t count = len; 449 ssize_t ret = 0; 450 451 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 452 return -EPERM; 453 454 /* ignore trailing newline */ 455 if (len > 0 && buf[len - 1] == '\n') 456 --count; 457 458 if (!rtnl_trylock()) 459 return restart_syscall(); 460 461 if (dev_isalive(netdev)) { 462 ret = dev_set_alias(netdev, buf, count); 463 if (ret < 0) 464 goto err; 465 ret = len; 466 netdev_state_change(netdev); 467 } 468 err: 469 rtnl_unlock(); 470 471 return ret; 472 } 473 474 static ssize_t ifalias_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 const struct net_device *netdev = to_net_dev(dev); 478 char tmp[IFALIASZ]; 479 ssize_t ret = 0; 480 481 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 482 if (ret > 0) 483 ret = sysfs_emit(buf, "%s\n", tmp); 484 return ret; 485 } 486 static DEVICE_ATTR_RW(ifalias); 487 488 static int change_group(struct net_device *dev, unsigned long new_group) 489 { 490 dev_set_group(dev, (int)new_group); 491 return 0; 492 } 493 494 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 495 const char *buf, size_t len) 496 { 497 return netdev_store(dev, attr, buf, len, change_group); 498 } 499 NETDEVICE_SHOW(group, fmt_dec); 500 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 501 502 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 503 { 504 return dev_change_proto_down(dev, (bool)proto_down); 505 } 506 507 static ssize_t proto_down_store(struct device *dev, 508 struct device_attribute *attr, 509 const char *buf, size_t len) 510 { 511 return netdev_store(dev, attr, buf, len, change_proto_down); 512 } 513 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 514 515 static ssize_t phys_port_id_show(struct device *dev, 516 struct device_attribute *attr, char *buf) 517 { 518 struct net_device *netdev = to_net_dev(dev); 519 ssize_t ret = -EINVAL; 520 521 /* The check is also done in dev_get_phys_port_id; this helps returning 522 * early without hitting the trylock/restart below. 523 */ 524 if (!netdev->netdev_ops->ndo_get_phys_port_id) 525 return -EOPNOTSUPP; 526 527 if (!rtnl_trylock()) 528 return restart_syscall(); 529 530 if (dev_isalive(netdev)) { 531 struct netdev_phys_item_id ppid; 532 533 ret = dev_get_phys_port_id(netdev, &ppid); 534 if (!ret) 535 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 536 } 537 rtnl_unlock(); 538 539 return ret; 540 } 541 static DEVICE_ATTR_RO(phys_port_id); 542 543 static ssize_t phys_port_name_show(struct device *dev, 544 struct device_attribute *attr, char *buf) 545 { 546 struct net_device *netdev = to_net_dev(dev); 547 ssize_t ret = -EINVAL; 548 549 /* The checks are also done in dev_get_phys_port_name; this helps 550 * returning early without hitting the trylock/restart below. 551 */ 552 if (!netdev->netdev_ops->ndo_get_phys_port_name && 553 !netdev->devlink_port) 554 return -EOPNOTSUPP; 555 556 if (!rtnl_trylock()) 557 return restart_syscall(); 558 559 if (dev_isalive(netdev)) { 560 char name[IFNAMSIZ]; 561 562 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 563 if (!ret) 564 ret = sysfs_emit(buf, "%s\n", name); 565 } 566 rtnl_unlock(); 567 568 return ret; 569 } 570 static DEVICE_ATTR_RO(phys_port_name); 571 572 static ssize_t phys_switch_id_show(struct device *dev, 573 struct device_attribute *attr, char *buf) 574 { 575 struct net_device *netdev = to_net_dev(dev); 576 ssize_t ret = -EINVAL; 577 578 /* The checks are also done in dev_get_phys_port_name; this helps 579 * returning early without hitting the trylock/restart below. This works 580 * because recurse is false when calling dev_get_port_parent_id. 581 */ 582 if (!netdev->netdev_ops->ndo_get_port_parent_id && 583 !netdev->devlink_port) 584 return -EOPNOTSUPP; 585 586 if (!rtnl_trylock()) 587 return restart_syscall(); 588 589 if (dev_isalive(netdev)) { 590 struct netdev_phys_item_id ppid = { }; 591 592 ret = dev_get_port_parent_id(netdev, &ppid, false); 593 if (!ret) 594 ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id); 595 } 596 rtnl_unlock(); 597 598 return ret; 599 } 600 static DEVICE_ATTR_RO(phys_switch_id); 601 602 static ssize_t threaded_show(struct device *dev, 603 struct device_attribute *attr, char *buf) 604 { 605 struct net_device *netdev = to_net_dev(dev); 606 ssize_t ret = -EINVAL; 607 608 if (!rtnl_trylock()) 609 return restart_syscall(); 610 611 if (dev_isalive(netdev)) 612 ret = sysfs_emit(buf, fmt_dec, netdev->threaded); 613 614 rtnl_unlock(); 615 return ret; 616 } 617 618 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 619 { 620 int ret; 621 622 if (list_empty(&dev->napi_list)) 623 return -EOPNOTSUPP; 624 625 if (val != 0 && val != 1) 626 return -EOPNOTSUPP; 627 628 ret = dev_set_threaded(dev, val); 629 630 return ret; 631 } 632 633 static ssize_t threaded_store(struct device *dev, 634 struct device_attribute *attr, 635 const char *buf, size_t len) 636 { 637 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 638 } 639 static DEVICE_ATTR_RW(threaded); 640 641 static struct attribute *net_class_attrs[] __ro_after_init = { 642 &dev_attr_netdev_group.attr, 643 &dev_attr_type.attr, 644 &dev_attr_dev_id.attr, 645 &dev_attr_dev_port.attr, 646 &dev_attr_iflink.attr, 647 &dev_attr_ifindex.attr, 648 &dev_attr_name_assign_type.attr, 649 &dev_attr_addr_assign_type.attr, 650 &dev_attr_addr_len.attr, 651 &dev_attr_link_mode.attr, 652 &dev_attr_address.attr, 653 &dev_attr_broadcast.attr, 654 &dev_attr_speed.attr, 655 &dev_attr_duplex.attr, 656 &dev_attr_dormant.attr, 657 &dev_attr_testing.attr, 658 &dev_attr_operstate.attr, 659 &dev_attr_carrier_changes.attr, 660 &dev_attr_ifalias.attr, 661 &dev_attr_carrier.attr, 662 &dev_attr_mtu.attr, 663 &dev_attr_flags.attr, 664 &dev_attr_tx_queue_len.attr, 665 &dev_attr_gro_flush_timeout.attr, 666 &dev_attr_napi_defer_hard_irqs.attr, 667 &dev_attr_phys_port_id.attr, 668 &dev_attr_phys_port_name.attr, 669 &dev_attr_phys_switch_id.attr, 670 &dev_attr_proto_down.attr, 671 &dev_attr_carrier_up_count.attr, 672 &dev_attr_carrier_down_count.attr, 673 &dev_attr_threaded.attr, 674 NULL, 675 }; 676 ATTRIBUTE_GROUPS(net_class); 677 678 /* Show a given an attribute in the statistics group */ 679 static ssize_t netstat_show(const struct device *d, 680 struct device_attribute *attr, char *buf, 681 unsigned long offset) 682 { 683 struct net_device *dev = to_net_dev(d); 684 ssize_t ret = -EINVAL; 685 686 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 687 offset % sizeof(u64) != 0); 688 689 rcu_read_lock(); 690 if (dev_isalive(dev)) { 691 struct rtnl_link_stats64 temp; 692 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 693 694 ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 695 } 696 rcu_read_unlock(); 697 return ret; 698 } 699 700 /* generate a read-only statistics attribute */ 701 #define NETSTAT_ENTRY(name) \ 702 static ssize_t name##_show(struct device *d, \ 703 struct device_attribute *attr, char *buf) \ 704 { \ 705 return netstat_show(d, attr, buf, \ 706 offsetof(struct rtnl_link_stats64, name)); \ 707 } \ 708 static DEVICE_ATTR_RO(name) 709 710 NETSTAT_ENTRY(rx_packets); 711 NETSTAT_ENTRY(tx_packets); 712 NETSTAT_ENTRY(rx_bytes); 713 NETSTAT_ENTRY(tx_bytes); 714 NETSTAT_ENTRY(rx_errors); 715 NETSTAT_ENTRY(tx_errors); 716 NETSTAT_ENTRY(rx_dropped); 717 NETSTAT_ENTRY(tx_dropped); 718 NETSTAT_ENTRY(multicast); 719 NETSTAT_ENTRY(collisions); 720 NETSTAT_ENTRY(rx_length_errors); 721 NETSTAT_ENTRY(rx_over_errors); 722 NETSTAT_ENTRY(rx_crc_errors); 723 NETSTAT_ENTRY(rx_frame_errors); 724 NETSTAT_ENTRY(rx_fifo_errors); 725 NETSTAT_ENTRY(rx_missed_errors); 726 NETSTAT_ENTRY(tx_aborted_errors); 727 NETSTAT_ENTRY(tx_carrier_errors); 728 NETSTAT_ENTRY(tx_fifo_errors); 729 NETSTAT_ENTRY(tx_heartbeat_errors); 730 NETSTAT_ENTRY(tx_window_errors); 731 NETSTAT_ENTRY(rx_compressed); 732 NETSTAT_ENTRY(tx_compressed); 733 NETSTAT_ENTRY(rx_nohandler); 734 735 static struct attribute *netstat_attrs[] __ro_after_init = { 736 &dev_attr_rx_packets.attr, 737 &dev_attr_tx_packets.attr, 738 &dev_attr_rx_bytes.attr, 739 &dev_attr_tx_bytes.attr, 740 &dev_attr_rx_errors.attr, 741 &dev_attr_tx_errors.attr, 742 &dev_attr_rx_dropped.attr, 743 &dev_attr_tx_dropped.attr, 744 &dev_attr_multicast.attr, 745 &dev_attr_collisions.attr, 746 &dev_attr_rx_length_errors.attr, 747 &dev_attr_rx_over_errors.attr, 748 &dev_attr_rx_crc_errors.attr, 749 &dev_attr_rx_frame_errors.attr, 750 &dev_attr_rx_fifo_errors.attr, 751 &dev_attr_rx_missed_errors.attr, 752 &dev_attr_tx_aborted_errors.attr, 753 &dev_attr_tx_carrier_errors.attr, 754 &dev_attr_tx_fifo_errors.attr, 755 &dev_attr_tx_heartbeat_errors.attr, 756 &dev_attr_tx_window_errors.attr, 757 &dev_attr_rx_compressed.attr, 758 &dev_attr_tx_compressed.attr, 759 &dev_attr_rx_nohandler.attr, 760 NULL 761 }; 762 763 static const struct attribute_group netstat_group = { 764 .name = "statistics", 765 .attrs = netstat_attrs, 766 }; 767 768 static struct attribute *wireless_attrs[] = { 769 NULL 770 }; 771 772 static const struct attribute_group wireless_group = { 773 .name = "wireless", 774 .attrs = wireless_attrs, 775 }; 776 777 static bool wireless_group_needed(struct net_device *ndev) 778 { 779 #if IS_ENABLED(CONFIG_CFG80211) 780 if (ndev->ieee80211_ptr) 781 return true; 782 #endif 783 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 784 if (ndev->wireless_handlers) 785 return true; 786 #endif 787 return false; 788 } 789 790 #else /* CONFIG_SYSFS */ 791 #define net_class_groups NULL 792 #endif /* CONFIG_SYSFS */ 793 794 #ifdef CONFIG_SYSFS 795 #define to_rx_queue_attr(_attr) \ 796 container_of(_attr, struct rx_queue_attribute, attr) 797 798 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 799 800 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 801 char *buf) 802 { 803 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 804 struct netdev_rx_queue *queue = to_rx_queue(kobj); 805 806 if (!attribute->show) 807 return -EIO; 808 809 return attribute->show(queue, buf); 810 } 811 812 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 813 const char *buf, size_t count) 814 { 815 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 816 struct netdev_rx_queue *queue = to_rx_queue(kobj); 817 818 if (!attribute->store) 819 return -EIO; 820 821 return attribute->store(queue, buf, count); 822 } 823 824 static const struct sysfs_ops rx_queue_sysfs_ops = { 825 .show = rx_queue_attr_show, 826 .store = rx_queue_attr_store, 827 }; 828 829 #ifdef CONFIG_RPS 830 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 831 { 832 struct rps_map *map; 833 cpumask_var_t mask; 834 int i, len; 835 836 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 837 return -ENOMEM; 838 839 rcu_read_lock(); 840 map = rcu_dereference(queue->rps_map); 841 if (map) 842 for (i = 0; i < map->len; i++) 843 cpumask_set_cpu(map->cpus[i], mask); 844 845 len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask)); 846 rcu_read_unlock(); 847 free_cpumask_var(mask); 848 849 return len < PAGE_SIZE ? len : -EINVAL; 850 } 851 852 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue, 853 cpumask_var_t mask) 854 { 855 static DEFINE_MUTEX(rps_map_mutex); 856 struct rps_map *old_map, *map; 857 int cpu, i; 858 859 map = kzalloc(max_t(unsigned int, 860 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 861 GFP_KERNEL); 862 if (!map) 863 return -ENOMEM; 864 865 i = 0; 866 for_each_cpu_and(cpu, mask, cpu_online_mask) 867 map->cpus[i++] = cpu; 868 869 if (i) { 870 map->len = i; 871 } else { 872 kfree(map); 873 map = NULL; 874 } 875 876 mutex_lock(&rps_map_mutex); 877 old_map = rcu_dereference_protected(queue->rps_map, 878 mutex_is_locked(&rps_map_mutex)); 879 rcu_assign_pointer(queue->rps_map, map); 880 881 if (map) 882 static_branch_inc(&rps_needed); 883 if (old_map) 884 static_branch_dec(&rps_needed); 885 886 mutex_unlock(&rps_map_mutex); 887 888 if (old_map) 889 kfree_rcu(old_map, rcu); 890 return 0; 891 } 892 893 int rps_cpumask_housekeeping(struct cpumask *mask) 894 { 895 if (!cpumask_empty(mask)) { 896 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 897 cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ)); 898 if (cpumask_empty(mask)) 899 return -EINVAL; 900 } 901 return 0; 902 } 903 904 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 905 const char *buf, size_t len) 906 { 907 cpumask_var_t mask; 908 int err; 909 910 if (!capable(CAP_NET_ADMIN)) 911 return -EPERM; 912 913 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 914 return -ENOMEM; 915 916 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 917 if (err) 918 goto out; 919 920 err = rps_cpumask_housekeeping(mask); 921 if (err) 922 goto out; 923 924 err = netdev_rx_queue_set_rps_mask(queue, mask); 925 926 out: 927 free_cpumask_var(mask); 928 return err ? : len; 929 } 930 931 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 932 char *buf) 933 { 934 struct rps_dev_flow_table *flow_table; 935 unsigned long val = 0; 936 937 rcu_read_lock(); 938 flow_table = rcu_dereference(queue->rps_flow_table); 939 if (flow_table) 940 val = (unsigned long)flow_table->mask + 1; 941 rcu_read_unlock(); 942 943 return sysfs_emit(buf, "%lu\n", val); 944 } 945 946 static void rps_dev_flow_table_release(struct rcu_head *rcu) 947 { 948 struct rps_dev_flow_table *table = container_of(rcu, 949 struct rps_dev_flow_table, rcu); 950 vfree(table); 951 } 952 953 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 954 const char *buf, size_t len) 955 { 956 unsigned long mask, count; 957 struct rps_dev_flow_table *table, *old_table; 958 static DEFINE_SPINLOCK(rps_dev_flow_lock); 959 int rc; 960 961 if (!capable(CAP_NET_ADMIN)) 962 return -EPERM; 963 964 rc = kstrtoul(buf, 0, &count); 965 if (rc < 0) 966 return rc; 967 968 if (count) { 969 mask = count - 1; 970 /* mask = roundup_pow_of_two(count) - 1; 971 * without overflows... 972 */ 973 while ((mask | (mask >> 1)) != mask) 974 mask |= (mask >> 1); 975 /* On 64 bit arches, must check mask fits in table->mask (u32), 976 * and on 32bit arches, must check 977 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 978 */ 979 #if BITS_PER_LONG > 32 980 if (mask > (unsigned long)(u32)mask) 981 return -EINVAL; 982 #else 983 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 984 / sizeof(struct rps_dev_flow)) { 985 /* Enforce a limit to prevent overflow */ 986 return -EINVAL; 987 } 988 #endif 989 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 990 if (!table) 991 return -ENOMEM; 992 993 table->mask = mask; 994 for (count = 0; count <= mask; count++) 995 table->flows[count].cpu = RPS_NO_CPU; 996 } else { 997 table = NULL; 998 } 999 1000 spin_lock(&rps_dev_flow_lock); 1001 old_table = rcu_dereference_protected(queue->rps_flow_table, 1002 lockdep_is_held(&rps_dev_flow_lock)); 1003 rcu_assign_pointer(queue->rps_flow_table, table); 1004 spin_unlock(&rps_dev_flow_lock); 1005 1006 if (old_table) 1007 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 1008 1009 return len; 1010 } 1011 1012 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 1013 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 1014 1015 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 1016 = __ATTR(rps_flow_cnt, 0644, 1017 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 1018 #endif /* CONFIG_RPS */ 1019 1020 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 1021 #ifdef CONFIG_RPS 1022 &rps_cpus_attribute.attr, 1023 &rps_dev_flow_table_cnt_attribute.attr, 1024 #endif 1025 NULL 1026 }; 1027 ATTRIBUTE_GROUPS(rx_queue_default); 1028 1029 static void rx_queue_release(struct kobject *kobj) 1030 { 1031 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1032 #ifdef CONFIG_RPS 1033 struct rps_map *map; 1034 struct rps_dev_flow_table *flow_table; 1035 1036 map = rcu_dereference_protected(queue->rps_map, 1); 1037 if (map) { 1038 RCU_INIT_POINTER(queue->rps_map, NULL); 1039 kfree_rcu(map, rcu); 1040 } 1041 1042 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1043 if (flow_table) { 1044 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1045 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1046 } 1047 #endif 1048 1049 memset(kobj, 0, sizeof(*kobj)); 1050 netdev_put(queue->dev, &queue->dev_tracker); 1051 } 1052 1053 static const void *rx_queue_namespace(const struct kobject *kobj) 1054 { 1055 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1056 struct device *dev = &queue->dev->dev; 1057 const void *ns = NULL; 1058 1059 if (dev->class && dev->class->ns_type) 1060 ns = dev->class->namespace(dev); 1061 1062 return ns; 1063 } 1064 1065 static void rx_queue_get_ownership(const struct kobject *kobj, 1066 kuid_t *uid, kgid_t *gid) 1067 { 1068 const struct net *net = rx_queue_namespace(kobj); 1069 1070 net_ns_get_ownership(net, uid, gid); 1071 } 1072 1073 static const struct kobj_type rx_queue_ktype = { 1074 .sysfs_ops = &rx_queue_sysfs_ops, 1075 .release = rx_queue_release, 1076 .default_groups = rx_queue_default_groups, 1077 .namespace = rx_queue_namespace, 1078 .get_ownership = rx_queue_get_ownership, 1079 }; 1080 1081 static int rx_queue_default_mask(struct net_device *dev, 1082 struct netdev_rx_queue *queue) 1083 { 1084 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL) 1085 struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask); 1086 1087 if (rps_default_mask && !cpumask_empty(rps_default_mask)) 1088 return netdev_rx_queue_set_rps_mask(queue, rps_default_mask); 1089 #endif 1090 return 0; 1091 } 1092 1093 static int rx_queue_add_kobject(struct net_device *dev, int index) 1094 { 1095 struct netdev_rx_queue *queue = dev->_rx + index; 1096 struct kobject *kobj = &queue->kobj; 1097 int error = 0; 1098 1099 /* Kobject_put later will trigger rx_queue_release call which 1100 * decreases dev refcount: Take that reference here 1101 */ 1102 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1103 1104 kobj->kset = dev->queues_kset; 1105 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1106 "rx-%u", index); 1107 if (error) 1108 goto err; 1109 1110 if (dev->sysfs_rx_queue_group) { 1111 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1112 if (error) 1113 goto err; 1114 } 1115 1116 error = rx_queue_default_mask(dev, queue); 1117 if (error) 1118 goto err; 1119 1120 kobject_uevent(kobj, KOBJ_ADD); 1121 1122 return error; 1123 1124 err: 1125 kobject_put(kobj); 1126 return error; 1127 } 1128 1129 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1130 kgid_t kgid) 1131 { 1132 struct netdev_rx_queue *queue = dev->_rx + index; 1133 struct kobject *kobj = &queue->kobj; 1134 int error; 1135 1136 error = sysfs_change_owner(kobj, kuid, kgid); 1137 if (error) 1138 return error; 1139 1140 if (dev->sysfs_rx_queue_group) 1141 error = sysfs_group_change_owner( 1142 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1143 1144 return error; 1145 } 1146 #endif /* CONFIG_SYSFS */ 1147 1148 int 1149 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1150 { 1151 #ifdef CONFIG_SYSFS 1152 int i; 1153 int error = 0; 1154 1155 #ifndef CONFIG_RPS 1156 if (!dev->sysfs_rx_queue_group) 1157 return 0; 1158 #endif 1159 for (i = old_num; i < new_num; i++) { 1160 error = rx_queue_add_kobject(dev, i); 1161 if (error) { 1162 new_num = old_num; 1163 break; 1164 } 1165 } 1166 1167 while (--i >= new_num) { 1168 struct kobject *kobj = &dev->_rx[i].kobj; 1169 1170 if (!refcount_read(&dev_net(dev)->ns.count)) 1171 kobj->uevent_suppress = 1; 1172 if (dev->sysfs_rx_queue_group) 1173 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1174 kobject_put(kobj); 1175 } 1176 1177 return error; 1178 #else 1179 return 0; 1180 #endif 1181 } 1182 1183 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1184 kuid_t kuid, kgid_t kgid) 1185 { 1186 #ifdef CONFIG_SYSFS 1187 int error = 0; 1188 int i; 1189 1190 #ifndef CONFIG_RPS 1191 if (!dev->sysfs_rx_queue_group) 1192 return 0; 1193 #endif 1194 for (i = 0; i < num; i++) { 1195 error = rx_queue_change_owner(dev, i, kuid, kgid); 1196 if (error) 1197 break; 1198 } 1199 1200 return error; 1201 #else 1202 return 0; 1203 #endif 1204 } 1205 1206 #ifdef CONFIG_SYSFS 1207 /* 1208 * netdev_queue sysfs structures and functions. 1209 */ 1210 struct netdev_queue_attribute { 1211 struct attribute attr; 1212 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1213 ssize_t (*store)(struct netdev_queue *queue, 1214 const char *buf, size_t len); 1215 }; 1216 #define to_netdev_queue_attr(_attr) \ 1217 container_of(_attr, struct netdev_queue_attribute, attr) 1218 1219 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1220 1221 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1222 struct attribute *attr, char *buf) 1223 { 1224 const struct netdev_queue_attribute *attribute 1225 = to_netdev_queue_attr(attr); 1226 struct netdev_queue *queue = to_netdev_queue(kobj); 1227 1228 if (!attribute->show) 1229 return -EIO; 1230 1231 return attribute->show(queue, buf); 1232 } 1233 1234 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1235 struct attribute *attr, 1236 const char *buf, size_t count) 1237 { 1238 const struct netdev_queue_attribute *attribute 1239 = to_netdev_queue_attr(attr); 1240 struct netdev_queue *queue = to_netdev_queue(kobj); 1241 1242 if (!attribute->store) 1243 return -EIO; 1244 1245 return attribute->store(queue, buf, count); 1246 } 1247 1248 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1249 .show = netdev_queue_attr_show, 1250 .store = netdev_queue_attr_store, 1251 }; 1252 1253 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1254 { 1255 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1256 1257 return sysfs_emit(buf, fmt_ulong, trans_timeout); 1258 } 1259 1260 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1261 { 1262 struct net_device *dev = queue->dev; 1263 unsigned int i; 1264 1265 i = queue - dev->_tx; 1266 BUG_ON(i >= dev->num_tx_queues); 1267 1268 return i; 1269 } 1270 1271 static ssize_t traffic_class_show(struct netdev_queue *queue, 1272 char *buf) 1273 { 1274 struct net_device *dev = queue->dev; 1275 int num_tc, tc; 1276 int index; 1277 1278 if (!netif_is_multiqueue(dev)) 1279 return -ENOENT; 1280 1281 if (!rtnl_trylock()) 1282 return restart_syscall(); 1283 1284 index = get_netdev_queue_index(queue); 1285 1286 /* If queue belongs to subordinate dev use its TC mapping */ 1287 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1288 1289 num_tc = dev->num_tc; 1290 tc = netdev_txq_to_tc(dev, index); 1291 1292 rtnl_unlock(); 1293 1294 if (tc < 0) 1295 return -EINVAL; 1296 1297 /* We can report the traffic class one of two ways: 1298 * Subordinate device traffic classes are reported with the traffic 1299 * class first, and then the subordinate class so for example TC0 on 1300 * subordinate device 2 will be reported as "0-2". If the queue 1301 * belongs to the root device it will be reported with just the 1302 * traffic class, so just "0" for TC 0 for example. 1303 */ 1304 return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) : 1305 sysfs_emit(buf, "%d\n", tc); 1306 } 1307 1308 #ifdef CONFIG_XPS 1309 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1310 char *buf) 1311 { 1312 return sysfs_emit(buf, "%lu\n", queue->tx_maxrate); 1313 } 1314 1315 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1316 const char *buf, size_t len) 1317 { 1318 struct net_device *dev = queue->dev; 1319 int err, index = get_netdev_queue_index(queue); 1320 u32 rate = 0; 1321 1322 if (!capable(CAP_NET_ADMIN)) 1323 return -EPERM; 1324 1325 /* The check is also done later; this helps returning early without 1326 * hitting the trylock/restart below. 1327 */ 1328 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1329 return -EOPNOTSUPP; 1330 1331 err = kstrtou32(buf, 10, &rate); 1332 if (err < 0) 1333 return err; 1334 1335 if (!rtnl_trylock()) 1336 return restart_syscall(); 1337 1338 err = -EOPNOTSUPP; 1339 if (dev->netdev_ops->ndo_set_tx_maxrate) 1340 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1341 1342 rtnl_unlock(); 1343 if (!err) { 1344 queue->tx_maxrate = rate; 1345 return len; 1346 } 1347 return err; 1348 } 1349 1350 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1351 = __ATTR_RW(tx_maxrate); 1352 #endif 1353 1354 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1355 = __ATTR_RO(tx_timeout); 1356 1357 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1358 = __ATTR_RO(traffic_class); 1359 1360 #ifdef CONFIG_BQL 1361 /* 1362 * Byte queue limits sysfs structures and functions. 1363 */ 1364 static ssize_t bql_show(char *buf, unsigned int value) 1365 { 1366 return sysfs_emit(buf, "%u\n", value); 1367 } 1368 1369 static ssize_t bql_set(const char *buf, const size_t count, 1370 unsigned int *pvalue) 1371 { 1372 unsigned int value; 1373 int err; 1374 1375 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1376 value = DQL_MAX_LIMIT; 1377 } else { 1378 err = kstrtouint(buf, 10, &value); 1379 if (err < 0) 1380 return err; 1381 if (value > DQL_MAX_LIMIT) 1382 return -EINVAL; 1383 } 1384 1385 *pvalue = value; 1386 1387 return count; 1388 } 1389 1390 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1391 char *buf) 1392 { 1393 struct dql *dql = &queue->dql; 1394 1395 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1396 } 1397 1398 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1399 const char *buf, size_t len) 1400 { 1401 struct dql *dql = &queue->dql; 1402 unsigned int value; 1403 int err; 1404 1405 err = kstrtouint(buf, 10, &value); 1406 if (err < 0) 1407 return err; 1408 1409 dql->slack_hold_time = msecs_to_jiffies(value); 1410 1411 return len; 1412 } 1413 1414 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1415 = __ATTR(hold_time, 0644, 1416 bql_show_hold_time, bql_set_hold_time); 1417 1418 static ssize_t bql_show_stall_thrs(struct netdev_queue *queue, char *buf) 1419 { 1420 struct dql *dql = &queue->dql; 1421 1422 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs)); 1423 } 1424 1425 static ssize_t bql_set_stall_thrs(struct netdev_queue *queue, 1426 const char *buf, size_t len) 1427 { 1428 struct dql *dql = &queue->dql; 1429 unsigned int value; 1430 int err; 1431 1432 err = kstrtouint(buf, 10, &value); 1433 if (err < 0) 1434 return err; 1435 1436 value = msecs_to_jiffies(value); 1437 if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG)) 1438 return -ERANGE; 1439 1440 if (!dql->stall_thrs && value) 1441 dql->last_reap = jiffies; 1442 /* Force last_reap to be live */ 1443 smp_wmb(); 1444 dql->stall_thrs = value; 1445 1446 return len; 1447 } 1448 1449 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init = 1450 __ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs); 1451 1452 static ssize_t bql_show_stall_max(struct netdev_queue *queue, char *buf) 1453 { 1454 return sprintf(buf, "%u\n", READ_ONCE(queue->dql.stall_max)); 1455 } 1456 1457 static ssize_t bql_set_stall_max(struct netdev_queue *queue, 1458 const char *buf, size_t len) 1459 { 1460 WRITE_ONCE(queue->dql.stall_max, 0); 1461 return len; 1462 } 1463 1464 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init = 1465 __ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max); 1466 1467 static ssize_t bql_show_stall_cnt(struct netdev_queue *queue, char *buf) 1468 { 1469 struct dql *dql = &queue->dql; 1470 1471 return sprintf(buf, "%lu\n", dql->stall_cnt); 1472 } 1473 1474 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init = 1475 __ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL); 1476 1477 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1478 char *buf) 1479 { 1480 struct dql *dql = &queue->dql; 1481 1482 return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed); 1483 } 1484 1485 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1486 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1487 1488 #define BQL_ATTR(NAME, FIELD) \ 1489 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1490 char *buf) \ 1491 { \ 1492 return bql_show(buf, queue->dql.FIELD); \ 1493 } \ 1494 \ 1495 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1496 const char *buf, size_t len) \ 1497 { \ 1498 return bql_set(buf, len, &queue->dql.FIELD); \ 1499 } \ 1500 \ 1501 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1502 = __ATTR(NAME, 0644, \ 1503 bql_show_ ## NAME, bql_set_ ## NAME) 1504 1505 BQL_ATTR(limit, limit); 1506 BQL_ATTR(limit_max, max_limit); 1507 BQL_ATTR(limit_min, min_limit); 1508 1509 static struct attribute *dql_attrs[] __ro_after_init = { 1510 &bql_limit_attribute.attr, 1511 &bql_limit_max_attribute.attr, 1512 &bql_limit_min_attribute.attr, 1513 &bql_hold_time_attribute.attr, 1514 &bql_inflight_attribute.attr, 1515 &bql_stall_thrs_attribute.attr, 1516 &bql_stall_cnt_attribute.attr, 1517 &bql_stall_max_attribute.attr, 1518 NULL 1519 }; 1520 1521 static const struct attribute_group dql_group = { 1522 .name = "byte_queue_limits", 1523 .attrs = dql_attrs, 1524 }; 1525 #else 1526 /* Fake declaration, all the code using it should be dead */ 1527 extern const struct attribute_group dql_group; 1528 #endif /* CONFIG_BQL */ 1529 1530 #ifdef CONFIG_XPS 1531 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1532 int tc, char *buf, enum xps_map_type type) 1533 { 1534 struct xps_dev_maps *dev_maps; 1535 unsigned long *mask; 1536 unsigned int nr_ids; 1537 int j, len; 1538 1539 rcu_read_lock(); 1540 dev_maps = rcu_dereference(dev->xps_maps[type]); 1541 1542 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1543 * when dev_maps hasn't been allocated yet, to be backward compatible. 1544 */ 1545 nr_ids = dev_maps ? dev_maps->nr_ids : 1546 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1547 1548 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1549 if (!mask) { 1550 rcu_read_unlock(); 1551 return -ENOMEM; 1552 } 1553 1554 if (!dev_maps || tc >= dev_maps->num_tc) 1555 goto out_no_maps; 1556 1557 for (j = 0; j < nr_ids; j++) { 1558 int i, tci = j * dev_maps->num_tc + tc; 1559 struct xps_map *map; 1560 1561 map = rcu_dereference(dev_maps->attr_map[tci]); 1562 if (!map) 1563 continue; 1564 1565 for (i = map->len; i--;) { 1566 if (map->queues[i] == index) { 1567 __set_bit(j, mask); 1568 break; 1569 } 1570 } 1571 } 1572 out_no_maps: 1573 rcu_read_unlock(); 1574 1575 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1576 bitmap_free(mask); 1577 1578 return len < PAGE_SIZE ? len : -EINVAL; 1579 } 1580 1581 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1582 { 1583 struct net_device *dev = queue->dev; 1584 unsigned int index; 1585 int len, tc; 1586 1587 if (!netif_is_multiqueue(dev)) 1588 return -ENOENT; 1589 1590 index = get_netdev_queue_index(queue); 1591 1592 if (!rtnl_trylock()) 1593 return restart_syscall(); 1594 1595 /* If queue belongs to subordinate dev use its map */ 1596 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1597 1598 tc = netdev_txq_to_tc(dev, index); 1599 if (tc < 0) { 1600 rtnl_unlock(); 1601 return -EINVAL; 1602 } 1603 1604 /* Make sure the subordinate device can't be freed */ 1605 get_device(&dev->dev); 1606 rtnl_unlock(); 1607 1608 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1609 1610 put_device(&dev->dev); 1611 return len; 1612 } 1613 1614 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1615 const char *buf, size_t len) 1616 { 1617 struct net_device *dev = queue->dev; 1618 unsigned int index; 1619 cpumask_var_t mask; 1620 int err; 1621 1622 if (!netif_is_multiqueue(dev)) 1623 return -ENOENT; 1624 1625 if (!capable(CAP_NET_ADMIN)) 1626 return -EPERM; 1627 1628 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1629 return -ENOMEM; 1630 1631 index = get_netdev_queue_index(queue); 1632 1633 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1634 if (err) { 1635 free_cpumask_var(mask); 1636 return err; 1637 } 1638 1639 if (!rtnl_trylock()) { 1640 free_cpumask_var(mask); 1641 return restart_syscall(); 1642 } 1643 1644 err = netif_set_xps_queue(dev, mask, index); 1645 rtnl_unlock(); 1646 1647 free_cpumask_var(mask); 1648 1649 return err ? : len; 1650 } 1651 1652 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1653 = __ATTR_RW(xps_cpus); 1654 1655 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1656 { 1657 struct net_device *dev = queue->dev; 1658 unsigned int index; 1659 int tc; 1660 1661 index = get_netdev_queue_index(queue); 1662 1663 if (!rtnl_trylock()) 1664 return restart_syscall(); 1665 1666 tc = netdev_txq_to_tc(dev, index); 1667 rtnl_unlock(); 1668 if (tc < 0) 1669 return -EINVAL; 1670 1671 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1672 } 1673 1674 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1675 size_t len) 1676 { 1677 struct net_device *dev = queue->dev; 1678 struct net *net = dev_net(dev); 1679 unsigned long *mask; 1680 unsigned int index; 1681 int err; 1682 1683 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1684 return -EPERM; 1685 1686 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1687 if (!mask) 1688 return -ENOMEM; 1689 1690 index = get_netdev_queue_index(queue); 1691 1692 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1693 if (err) { 1694 bitmap_free(mask); 1695 return err; 1696 } 1697 1698 if (!rtnl_trylock()) { 1699 bitmap_free(mask); 1700 return restart_syscall(); 1701 } 1702 1703 cpus_read_lock(); 1704 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1705 cpus_read_unlock(); 1706 1707 rtnl_unlock(); 1708 1709 bitmap_free(mask); 1710 return err ? : len; 1711 } 1712 1713 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1714 = __ATTR_RW(xps_rxqs); 1715 #endif /* CONFIG_XPS */ 1716 1717 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1718 &queue_trans_timeout.attr, 1719 &queue_traffic_class.attr, 1720 #ifdef CONFIG_XPS 1721 &xps_cpus_attribute.attr, 1722 &xps_rxqs_attribute.attr, 1723 &queue_tx_maxrate.attr, 1724 #endif 1725 NULL 1726 }; 1727 ATTRIBUTE_GROUPS(netdev_queue_default); 1728 1729 static void netdev_queue_release(struct kobject *kobj) 1730 { 1731 struct netdev_queue *queue = to_netdev_queue(kobj); 1732 1733 memset(kobj, 0, sizeof(*kobj)); 1734 netdev_put(queue->dev, &queue->dev_tracker); 1735 } 1736 1737 static const void *netdev_queue_namespace(const struct kobject *kobj) 1738 { 1739 struct netdev_queue *queue = to_netdev_queue(kobj); 1740 struct device *dev = &queue->dev->dev; 1741 const void *ns = NULL; 1742 1743 if (dev->class && dev->class->ns_type) 1744 ns = dev->class->namespace(dev); 1745 1746 return ns; 1747 } 1748 1749 static void netdev_queue_get_ownership(const struct kobject *kobj, 1750 kuid_t *uid, kgid_t *gid) 1751 { 1752 const struct net *net = netdev_queue_namespace(kobj); 1753 1754 net_ns_get_ownership(net, uid, gid); 1755 } 1756 1757 static const struct kobj_type netdev_queue_ktype = { 1758 .sysfs_ops = &netdev_queue_sysfs_ops, 1759 .release = netdev_queue_release, 1760 .default_groups = netdev_queue_default_groups, 1761 .namespace = netdev_queue_namespace, 1762 .get_ownership = netdev_queue_get_ownership, 1763 }; 1764 1765 static bool netdev_uses_bql(const struct net_device *dev) 1766 { 1767 if (dev->features & NETIF_F_LLTX || 1768 dev->priv_flags & IFF_NO_QUEUE) 1769 return false; 1770 1771 return IS_ENABLED(CONFIG_BQL); 1772 } 1773 1774 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1775 { 1776 struct netdev_queue *queue = dev->_tx + index; 1777 struct kobject *kobj = &queue->kobj; 1778 int error = 0; 1779 1780 /* Kobject_put later will trigger netdev_queue_release call 1781 * which decreases dev refcount: Take that reference here 1782 */ 1783 netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL); 1784 1785 kobj->kset = dev->queues_kset; 1786 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1787 "tx-%u", index); 1788 if (error) 1789 goto err; 1790 1791 if (netdev_uses_bql(dev)) { 1792 error = sysfs_create_group(kobj, &dql_group); 1793 if (error) 1794 goto err; 1795 } 1796 1797 kobject_uevent(kobj, KOBJ_ADD); 1798 return 0; 1799 1800 err: 1801 kobject_put(kobj); 1802 return error; 1803 } 1804 1805 static int tx_queue_change_owner(struct net_device *ndev, int index, 1806 kuid_t kuid, kgid_t kgid) 1807 { 1808 struct netdev_queue *queue = ndev->_tx + index; 1809 struct kobject *kobj = &queue->kobj; 1810 int error; 1811 1812 error = sysfs_change_owner(kobj, kuid, kgid); 1813 if (error) 1814 return error; 1815 1816 if (netdev_uses_bql(ndev)) 1817 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1818 1819 return error; 1820 } 1821 #endif /* CONFIG_SYSFS */ 1822 1823 int 1824 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1825 { 1826 #ifdef CONFIG_SYSFS 1827 int i; 1828 int error = 0; 1829 1830 /* Tx queue kobjects are allowed to be updated when a device is being 1831 * unregistered, but solely to remove queues from qdiscs. Any path 1832 * adding queues should be fixed. 1833 */ 1834 WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num, 1835 "New queues can't be registered after device unregistration."); 1836 1837 for (i = old_num; i < new_num; i++) { 1838 error = netdev_queue_add_kobject(dev, i); 1839 if (error) { 1840 new_num = old_num; 1841 break; 1842 } 1843 } 1844 1845 while (--i >= new_num) { 1846 struct netdev_queue *queue = dev->_tx + i; 1847 1848 if (!refcount_read(&dev_net(dev)->ns.count)) 1849 queue->kobj.uevent_suppress = 1; 1850 1851 if (netdev_uses_bql(dev)) 1852 sysfs_remove_group(&queue->kobj, &dql_group); 1853 1854 kobject_put(&queue->kobj); 1855 } 1856 1857 return error; 1858 #else 1859 return 0; 1860 #endif /* CONFIG_SYSFS */ 1861 } 1862 1863 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1864 kuid_t kuid, kgid_t kgid) 1865 { 1866 #ifdef CONFIG_SYSFS 1867 int error = 0; 1868 int i; 1869 1870 for (i = 0; i < num; i++) { 1871 error = tx_queue_change_owner(dev, i, kuid, kgid); 1872 if (error) 1873 break; 1874 } 1875 1876 return error; 1877 #else 1878 return 0; 1879 #endif /* CONFIG_SYSFS */ 1880 } 1881 1882 static int register_queue_kobjects(struct net_device *dev) 1883 { 1884 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1885 1886 #ifdef CONFIG_SYSFS 1887 dev->queues_kset = kset_create_and_add("queues", 1888 NULL, &dev->dev.kobj); 1889 if (!dev->queues_kset) 1890 return -ENOMEM; 1891 real_rx = dev->real_num_rx_queues; 1892 #endif 1893 real_tx = dev->real_num_tx_queues; 1894 1895 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1896 if (error) 1897 goto error; 1898 rxq = real_rx; 1899 1900 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1901 if (error) 1902 goto error; 1903 txq = real_tx; 1904 1905 return 0; 1906 1907 error: 1908 netdev_queue_update_kobjects(dev, txq, 0); 1909 net_rx_queue_update_kobjects(dev, rxq, 0); 1910 #ifdef CONFIG_SYSFS 1911 kset_unregister(dev->queues_kset); 1912 #endif 1913 return error; 1914 } 1915 1916 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1917 { 1918 int error = 0, real_rx = 0, real_tx = 0; 1919 1920 #ifdef CONFIG_SYSFS 1921 if (ndev->queues_kset) { 1922 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1923 if (error) 1924 return error; 1925 } 1926 real_rx = ndev->real_num_rx_queues; 1927 #endif 1928 real_tx = ndev->real_num_tx_queues; 1929 1930 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1931 if (error) 1932 return error; 1933 1934 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1935 if (error) 1936 return error; 1937 1938 return 0; 1939 } 1940 1941 static void remove_queue_kobjects(struct net_device *dev) 1942 { 1943 int real_rx = 0, real_tx = 0; 1944 1945 #ifdef CONFIG_SYSFS 1946 real_rx = dev->real_num_rx_queues; 1947 #endif 1948 real_tx = dev->real_num_tx_queues; 1949 1950 net_rx_queue_update_kobjects(dev, real_rx, 0); 1951 netdev_queue_update_kobjects(dev, real_tx, 0); 1952 1953 dev->real_num_rx_queues = 0; 1954 dev->real_num_tx_queues = 0; 1955 #ifdef CONFIG_SYSFS 1956 kset_unregister(dev->queues_kset); 1957 #endif 1958 } 1959 1960 static bool net_current_may_mount(void) 1961 { 1962 struct net *net = current->nsproxy->net_ns; 1963 1964 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1965 } 1966 1967 static void *net_grab_current_ns(void) 1968 { 1969 struct net *ns = current->nsproxy->net_ns; 1970 #ifdef CONFIG_NET_NS 1971 if (ns) 1972 refcount_inc(&ns->passive); 1973 #endif 1974 return ns; 1975 } 1976 1977 static const void *net_initial_ns(void) 1978 { 1979 return &init_net; 1980 } 1981 1982 static const void *net_netlink_ns(struct sock *sk) 1983 { 1984 return sock_net(sk); 1985 } 1986 1987 const struct kobj_ns_type_operations net_ns_type_operations = { 1988 .type = KOBJ_NS_TYPE_NET, 1989 .current_may_mount = net_current_may_mount, 1990 .grab_current_ns = net_grab_current_ns, 1991 .netlink_ns = net_netlink_ns, 1992 .initial_ns = net_initial_ns, 1993 .drop_ns = net_drop_ns, 1994 }; 1995 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1996 1997 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env) 1998 { 1999 const struct net_device *dev = to_net_dev(d); 2000 int retval; 2001 2002 /* pass interface to uevent. */ 2003 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 2004 if (retval) 2005 goto exit; 2006 2007 /* pass ifindex to uevent. 2008 * ifindex is useful as it won't change (interface name may change) 2009 * and is what RtNetlink uses natively. 2010 */ 2011 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 2012 2013 exit: 2014 return retval; 2015 } 2016 2017 /* 2018 * netdev_release -- destroy and free a dead device. 2019 * Called when last reference to device kobject is gone. 2020 */ 2021 static void netdev_release(struct device *d) 2022 { 2023 struct net_device *dev = to_net_dev(d); 2024 2025 BUG_ON(dev->reg_state != NETREG_RELEASED); 2026 2027 /* no need to wait for rcu grace period: 2028 * device is dead and about to be freed. 2029 */ 2030 kfree(rcu_access_pointer(dev->ifalias)); 2031 netdev_freemem(dev); 2032 } 2033 2034 static const void *net_namespace(const struct device *d) 2035 { 2036 const struct net_device *dev = to_net_dev(d); 2037 2038 return dev_net(dev); 2039 } 2040 2041 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid) 2042 { 2043 const struct net_device *dev = to_net_dev(d); 2044 const struct net *net = dev_net(dev); 2045 2046 net_ns_get_ownership(net, uid, gid); 2047 } 2048 2049 static struct class net_class __ro_after_init = { 2050 .name = "net", 2051 .dev_release = netdev_release, 2052 .dev_groups = net_class_groups, 2053 .dev_uevent = netdev_uevent, 2054 .ns_type = &net_ns_type_operations, 2055 .namespace = net_namespace, 2056 .get_ownership = net_get_ownership, 2057 }; 2058 2059 #ifdef CONFIG_OF 2060 static int of_dev_node_match(struct device *dev, const void *data) 2061 { 2062 for (; dev; dev = dev->parent) { 2063 if (dev->of_node == data) 2064 return 1; 2065 } 2066 2067 return 0; 2068 } 2069 2070 /* 2071 * of_find_net_device_by_node - lookup the net device for the device node 2072 * @np: OF device node 2073 * 2074 * Looks up the net_device structure corresponding with the device node. 2075 * If successful, returns a pointer to the net_device with the embedded 2076 * struct device refcount incremented by one, or NULL on failure. The 2077 * refcount must be dropped when done with the net_device. 2078 */ 2079 struct net_device *of_find_net_device_by_node(struct device_node *np) 2080 { 2081 struct device *dev; 2082 2083 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 2084 if (!dev) 2085 return NULL; 2086 2087 return to_net_dev(dev); 2088 } 2089 EXPORT_SYMBOL(of_find_net_device_by_node); 2090 #endif 2091 2092 /* Delete sysfs entries but hold kobject reference until after all 2093 * netdev references are gone. 2094 */ 2095 void netdev_unregister_kobject(struct net_device *ndev) 2096 { 2097 struct device *dev = &ndev->dev; 2098 2099 if (!refcount_read(&dev_net(ndev)->ns.count)) 2100 dev_set_uevent_suppress(dev, 1); 2101 2102 kobject_get(&dev->kobj); 2103 2104 remove_queue_kobjects(ndev); 2105 2106 pm_runtime_set_memalloc_noio(dev, false); 2107 2108 device_del(dev); 2109 } 2110 2111 /* Create sysfs entries for network device. */ 2112 int netdev_register_kobject(struct net_device *ndev) 2113 { 2114 struct device *dev = &ndev->dev; 2115 const struct attribute_group **groups = ndev->sysfs_groups; 2116 int error = 0; 2117 2118 device_initialize(dev); 2119 dev->class = &net_class; 2120 dev->platform_data = ndev; 2121 dev->groups = groups; 2122 2123 dev_set_name(dev, "%s", ndev->name); 2124 2125 #ifdef CONFIG_SYSFS 2126 /* Allow for a device specific group */ 2127 if (*groups) 2128 groups++; 2129 2130 *groups++ = &netstat_group; 2131 2132 if (wireless_group_needed(ndev)) 2133 *groups++ = &wireless_group; 2134 #endif /* CONFIG_SYSFS */ 2135 2136 error = device_add(dev); 2137 if (error) 2138 return error; 2139 2140 error = register_queue_kobjects(ndev); 2141 if (error) { 2142 device_del(dev); 2143 return error; 2144 } 2145 2146 pm_runtime_set_memalloc_noio(dev, true); 2147 2148 return error; 2149 } 2150 2151 /* Change owner for sysfs entries when moving network devices across network 2152 * namespaces owned by different user namespaces. 2153 */ 2154 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2155 const struct net *net_new) 2156 { 2157 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2158 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2159 struct device *dev = &ndev->dev; 2160 int error; 2161 2162 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2163 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2164 2165 /* The network namespace was changed but the owning user namespace is 2166 * identical so there's no need to change the owner of sysfs entries. 2167 */ 2168 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2169 return 0; 2170 2171 error = device_change_owner(dev, new_uid, new_gid); 2172 if (error) 2173 return error; 2174 2175 error = queue_change_owner(ndev, new_uid, new_gid); 2176 if (error) 2177 return error; 2178 2179 return 0; 2180 } 2181 2182 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2183 const void *ns) 2184 { 2185 return class_create_file_ns(&net_class, class_attr, ns); 2186 } 2187 EXPORT_SYMBOL(netdev_class_create_file_ns); 2188 2189 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2190 const void *ns) 2191 { 2192 class_remove_file_ns(&net_class, class_attr, ns); 2193 } 2194 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2195 2196 int __init netdev_kobject_init(void) 2197 { 2198 kobj_ns_type_register(&net_ns_type_operations); 2199 return class_register(&net_class); 2200 } 2201