1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * net-sysfs.c - network device class and attributes 4 * 5 * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org> 6 */ 7 8 #include <linux/capability.h> 9 #include <linux/kernel.h> 10 #include <linux/netdevice.h> 11 #include <linux/if_arp.h> 12 #include <linux/slab.h> 13 #include <linux/sched/signal.h> 14 #include <linux/sched/isolation.h> 15 #include <linux/nsproxy.h> 16 #include <net/sock.h> 17 #include <net/net_namespace.h> 18 #include <linux/rtnetlink.h> 19 #include <linux/vmalloc.h> 20 #include <linux/export.h> 21 #include <linux/jiffies.h> 22 #include <linux/pm_runtime.h> 23 #include <linux/of.h> 24 #include <linux/of_net.h> 25 #include <linux/cpu.h> 26 27 #include "net-sysfs.h" 28 29 #ifdef CONFIG_SYSFS 30 static const char fmt_hex[] = "%#x\n"; 31 static const char fmt_dec[] = "%d\n"; 32 static const char fmt_ulong[] = "%lu\n"; 33 static const char fmt_u64[] = "%llu\n"; 34 35 static inline int dev_isalive(const struct net_device *dev) 36 { 37 return dev->reg_state <= NETREG_REGISTERED; 38 } 39 40 /* use same locking rules as GIF* ioctl's */ 41 static ssize_t netdev_show(const struct device *dev, 42 struct device_attribute *attr, char *buf, 43 ssize_t (*format)(const struct net_device *, char *)) 44 { 45 struct net_device *ndev = to_net_dev(dev); 46 ssize_t ret = -EINVAL; 47 48 read_lock(&dev_base_lock); 49 if (dev_isalive(ndev)) 50 ret = (*format)(ndev, buf); 51 read_unlock(&dev_base_lock); 52 53 return ret; 54 } 55 56 /* generate a show function for simple field */ 57 #define NETDEVICE_SHOW(field, format_string) \ 58 static ssize_t format_##field(const struct net_device *dev, char *buf) \ 59 { \ 60 return sprintf(buf, format_string, dev->field); \ 61 } \ 62 static ssize_t field##_show(struct device *dev, \ 63 struct device_attribute *attr, char *buf) \ 64 { \ 65 return netdev_show(dev, attr, buf, format_##field); \ 66 } \ 67 68 #define NETDEVICE_SHOW_RO(field, format_string) \ 69 NETDEVICE_SHOW(field, format_string); \ 70 static DEVICE_ATTR_RO(field) 71 72 #define NETDEVICE_SHOW_RW(field, format_string) \ 73 NETDEVICE_SHOW(field, format_string); \ 74 static DEVICE_ATTR_RW(field) 75 76 /* use same locking and permission rules as SIF* ioctl's */ 77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr, 78 const char *buf, size_t len, 79 int (*set)(struct net_device *, unsigned long)) 80 { 81 struct net_device *netdev = to_net_dev(dev); 82 struct net *net = dev_net(netdev); 83 unsigned long new; 84 int ret; 85 86 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 87 return -EPERM; 88 89 ret = kstrtoul(buf, 0, &new); 90 if (ret) 91 goto err; 92 93 if (!rtnl_trylock()) 94 return restart_syscall(); 95 96 if (dev_isalive(netdev)) { 97 ret = (*set)(netdev, new); 98 if (ret == 0) 99 ret = len; 100 } 101 rtnl_unlock(); 102 err: 103 return ret; 104 } 105 106 NETDEVICE_SHOW_RO(dev_id, fmt_hex); 107 NETDEVICE_SHOW_RO(dev_port, fmt_dec); 108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec); 109 NETDEVICE_SHOW_RO(addr_len, fmt_dec); 110 NETDEVICE_SHOW_RO(ifindex, fmt_dec); 111 NETDEVICE_SHOW_RO(type, fmt_dec); 112 NETDEVICE_SHOW_RO(link_mode, fmt_dec); 113 114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr, 115 char *buf) 116 { 117 struct net_device *ndev = to_net_dev(dev); 118 119 return sprintf(buf, fmt_dec, dev_get_iflink(ndev)); 120 } 121 static DEVICE_ATTR_RO(iflink); 122 123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf) 124 { 125 return sprintf(buf, fmt_dec, dev->name_assign_type); 126 } 127 128 static ssize_t name_assign_type_show(struct device *dev, 129 struct device_attribute *attr, 130 char *buf) 131 { 132 struct net_device *ndev = to_net_dev(dev); 133 ssize_t ret = -EINVAL; 134 135 if (ndev->name_assign_type != NET_NAME_UNKNOWN) 136 ret = netdev_show(dev, attr, buf, format_name_assign_type); 137 138 return ret; 139 } 140 static DEVICE_ATTR_RO(name_assign_type); 141 142 /* use same locking rules as GIFHWADDR ioctl's */ 143 static ssize_t address_show(struct device *dev, struct device_attribute *attr, 144 char *buf) 145 { 146 struct net_device *ndev = to_net_dev(dev); 147 ssize_t ret = -EINVAL; 148 149 read_lock(&dev_base_lock); 150 if (dev_isalive(ndev)) 151 ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len); 152 read_unlock(&dev_base_lock); 153 return ret; 154 } 155 static DEVICE_ATTR_RO(address); 156 157 static ssize_t broadcast_show(struct device *dev, 158 struct device_attribute *attr, char *buf) 159 { 160 struct net_device *ndev = to_net_dev(dev); 161 162 if (dev_isalive(ndev)) 163 return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len); 164 return -EINVAL; 165 } 166 static DEVICE_ATTR_RO(broadcast); 167 168 static int change_carrier(struct net_device *dev, unsigned long new_carrier) 169 { 170 if (!netif_running(dev)) 171 return -EINVAL; 172 return dev_change_carrier(dev, (bool)new_carrier); 173 } 174 175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr, 176 const char *buf, size_t len) 177 { 178 struct net_device *netdev = to_net_dev(dev); 179 180 /* The check is also done in change_carrier; this helps returning early 181 * without hitting the trylock/restart in netdev_store. 182 */ 183 if (!netdev->netdev_ops->ndo_change_carrier) 184 return -EOPNOTSUPP; 185 186 return netdev_store(dev, attr, buf, len, change_carrier); 187 } 188 189 static ssize_t carrier_show(struct device *dev, 190 struct device_attribute *attr, char *buf) 191 { 192 struct net_device *netdev = to_net_dev(dev); 193 194 if (netif_running(netdev)) 195 return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev)); 196 197 return -EINVAL; 198 } 199 static DEVICE_ATTR_RW(carrier); 200 201 static ssize_t speed_show(struct device *dev, 202 struct device_attribute *attr, char *buf) 203 { 204 struct net_device *netdev = to_net_dev(dev); 205 int ret = -EINVAL; 206 207 /* The check is also done in __ethtool_get_link_ksettings; this helps 208 * returning early without hitting the trylock/restart below. 209 */ 210 if (!netdev->ethtool_ops->get_link_ksettings) 211 return ret; 212 213 if (!rtnl_trylock()) 214 return restart_syscall(); 215 216 if (netif_running(netdev)) { 217 struct ethtool_link_ksettings cmd; 218 219 if (!__ethtool_get_link_ksettings(netdev, &cmd)) 220 ret = sprintf(buf, fmt_dec, cmd.base.speed); 221 } 222 rtnl_unlock(); 223 return ret; 224 } 225 static DEVICE_ATTR_RO(speed); 226 227 static ssize_t duplex_show(struct device *dev, 228 struct device_attribute *attr, char *buf) 229 { 230 struct net_device *netdev = to_net_dev(dev); 231 int ret = -EINVAL; 232 233 /* The check is also done in __ethtool_get_link_ksettings; this helps 234 * returning early without hitting the trylock/restart below. 235 */ 236 if (!netdev->ethtool_ops->get_link_ksettings) 237 return ret; 238 239 if (!rtnl_trylock()) 240 return restart_syscall(); 241 242 if (netif_running(netdev)) { 243 struct ethtool_link_ksettings cmd; 244 245 if (!__ethtool_get_link_ksettings(netdev, &cmd)) { 246 const char *duplex; 247 248 switch (cmd.base.duplex) { 249 case DUPLEX_HALF: 250 duplex = "half"; 251 break; 252 case DUPLEX_FULL: 253 duplex = "full"; 254 break; 255 default: 256 duplex = "unknown"; 257 break; 258 } 259 ret = sprintf(buf, "%s\n", duplex); 260 } 261 } 262 rtnl_unlock(); 263 return ret; 264 } 265 static DEVICE_ATTR_RO(duplex); 266 267 static ssize_t testing_show(struct device *dev, 268 struct device_attribute *attr, char *buf) 269 { 270 struct net_device *netdev = to_net_dev(dev); 271 272 if (netif_running(netdev)) 273 return sprintf(buf, fmt_dec, !!netif_testing(netdev)); 274 275 return -EINVAL; 276 } 277 static DEVICE_ATTR_RO(testing); 278 279 static ssize_t dormant_show(struct device *dev, 280 struct device_attribute *attr, char *buf) 281 { 282 struct net_device *netdev = to_net_dev(dev); 283 284 if (netif_running(netdev)) 285 return sprintf(buf, fmt_dec, !!netif_dormant(netdev)); 286 287 return -EINVAL; 288 } 289 static DEVICE_ATTR_RO(dormant); 290 291 static const char *const operstates[] = { 292 "unknown", 293 "notpresent", /* currently unused */ 294 "down", 295 "lowerlayerdown", 296 "testing", 297 "dormant", 298 "up" 299 }; 300 301 static ssize_t operstate_show(struct device *dev, 302 struct device_attribute *attr, char *buf) 303 { 304 const struct net_device *netdev = to_net_dev(dev); 305 unsigned char operstate; 306 307 read_lock(&dev_base_lock); 308 operstate = netdev->operstate; 309 if (!netif_running(netdev)) 310 operstate = IF_OPER_DOWN; 311 read_unlock(&dev_base_lock); 312 313 if (operstate >= ARRAY_SIZE(operstates)) 314 return -EINVAL; /* should not happen */ 315 316 return sprintf(buf, "%s\n", operstates[operstate]); 317 } 318 static DEVICE_ATTR_RO(operstate); 319 320 static ssize_t carrier_changes_show(struct device *dev, 321 struct device_attribute *attr, 322 char *buf) 323 { 324 struct net_device *netdev = to_net_dev(dev); 325 326 return sprintf(buf, fmt_dec, 327 atomic_read(&netdev->carrier_up_count) + 328 atomic_read(&netdev->carrier_down_count)); 329 } 330 static DEVICE_ATTR_RO(carrier_changes); 331 332 static ssize_t carrier_up_count_show(struct device *dev, 333 struct device_attribute *attr, 334 char *buf) 335 { 336 struct net_device *netdev = to_net_dev(dev); 337 338 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count)); 339 } 340 static DEVICE_ATTR_RO(carrier_up_count); 341 342 static ssize_t carrier_down_count_show(struct device *dev, 343 struct device_attribute *attr, 344 char *buf) 345 { 346 struct net_device *netdev = to_net_dev(dev); 347 348 return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count)); 349 } 350 static DEVICE_ATTR_RO(carrier_down_count); 351 352 /* read-write attributes */ 353 354 static int change_mtu(struct net_device *dev, unsigned long new_mtu) 355 { 356 return dev_set_mtu(dev, (int)new_mtu); 357 } 358 359 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr, 360 const char *buf, size_t len) 361 { 362 return netdev_store(dev, attr, buf, len, change_mtu); 363 } 364 NETDEVICE_SHOW_RW(mtu, fmt_dec); 365 366 static int change_flags(struct net_device *dev, unsigned long new_flags) 367 { 368 return dev_change_flags(dev, (unsigned int)new_flags, NULL); 369 } 370 371 static ssize_t flags_store(struct device *dev, struct device_attribute *attr, 372 const char *buf, size_t len) 373 { 374 return netdev_store(dev, attr, buf, len, change_flags); 375 } 376 NETDEVICE_SHOW_RW(flags, fmt_hex); 377 378 static ssize_t tx_queue_len_store(struct device *dev, 379 struct device_attribute *attr, 380 const char *buf, size_t len) 381 { 382 if (!capable(CAP_NET_ADMIN)) 383 return -EPERM; 384 385 return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len); 386 } 387 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec); 388 389 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val) 390 { 391 WRITE_ONCE(dev->gro_flush_timeout, val); 392 return 0; 393 } 394 395 static ssize_t gro_flush_timeout_store(struct device *dev, 396 struct device_attribute *attr, 397 const char *buf, size_t len) 398 { 399 if (!capable(CAP_NET_ADMIN)) 400 return -EPERM; 401 402 return netdev_store(dev, attr, buf, len, change_gro_flush_timeout); 403 } 404 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong); 405 406 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val) 407 { 408 WRITE_ONCE(dev->napi_defer_hard_irqs, val); 409 return 0; 410 } 411 412 static ssize_t napi_defer_hard_irqs_store(struct device *dev, 413 struct device_attribute *attr, 414 const char *buf, size_t len) 415 { 416 if (!capable(CAP_NET_ADMIN)) 417 return -EPERM; 418 419 return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs); 420 } 421 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec); 422 423 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr, 424 const char *buf, size_t len) 425 { 426 struct net_device *netdev = to_net_dev(dev); 427 struct net *net = dev_net(netdev); 428 size_t count = len; 429 ssize_t ret = 0; 430 431 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 432 return -EPERM; 433 434 /* ignore trailing newline */ 435 if (len > 0 && buf[len - 1] == '\n') 436 --count; 437 438 if (!rtnl_trylock()) 439 return restart_syscall(); 440 441 if (dev_isalive(netdev)) { 442 ret = dev_set_alias(netdev, buf, count); 443 if (ret < 0) 444 goto err; 445 ret = len; 446 netdev_state_change(netdev); 447 } 448 err: 449 rtnl_unlock(); 450 451 return ret; 452 } 453 454 static ssize_t ifalias_show(struct device *dev, 455 struct device_attribute *attr, char *buf) 456 { 457 const struct net_device *netdev = to_net_dev(dev); 458 char tmp[IFALIASZ]; 459 ssize_t ret = 0; 460 461 ret = dev_get_alias(netdev, tmp, sizeof(tmp)); 462 if (ret > 0) 463 ret = sprintf(buf, "%s\n", tmp); 464 return ret; 465 } 466 static DEVICE_ATTR_RW(ifalias); 467 468 static int change_group(struct net_device *dev, unsigned long new_group) 469 { 470 dev_set_group(dev, (int)new_group); 471 return 0; 472 } 473 474 static ssize_t group_store(struct device *dev, struct device_attribute *attr, 475 const char *buf, size_t len) 476 { 477 return netdev_store(dev, attr, buf, len, change_group); 478 } 479 NETDEVICE_SHOW(group, fmt_dec); 480 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store); 481 482 static int change_proto_down(struct net_device *dev, unsigned long proto_down) 483 { 484 return dev_change_proto_down(dev, (bool)proto_down); 485 } 486 487 static ssize_t proto_down_store(struct device *dev, 488 struct device_attribute *attr, 489 const char *buf, size_t len) 490 { 491 struct net_device *netdev = to_net_dev(dev); 492 493 /* The check is also done in change_proto_down; this helps returning 494 * early without hitting the trylock/restart in netdev_store. 495 */ 496 if (!netdev->netdev_ops->ndo_change_proto_down) 497 return -EOPNOTSUPP; 498 499 return netdev_store(dev, attr, buf, len, change_proto_down); 500 } 501 NETDEVICE_SHOW_RW(proto_down, fmt_dec); 502 503 static ssize_t phys_port_id_show(struct device *dev, 504 struct device_attribute *attr, char *buf) 505 { 506 struct net_device *netdev = to_net_dev(dev); 507 ssize_t ret = -EINVAL; 508 509 /* The check is also done in dev_get_phys_port_id; this helps returning 510 * early without hitting the trylock/restart below. 511 */ 512 if (!netdev->netdev_ops->ndo_get_phys_port_id) 513 return -EOPNOTSUPP; 514 515 if (!rtnl_trylock()) 516 return restart_syscall(); 517 518 if (dev_isalive(netdev)) { 519 struct netdev_phys_item_id ppid; 520 521 ret = dev_get_phys_port_id(netdev, &ppid); 522 if (!ret) 523 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 524 } 525 rtnl_unlock(); 526 527 return ret; 528 } 529 static DEVICE_ATTR_RO(phys_port_id); 530 531 static ssize_t phys_port_name_show(struct device *dev, 532 struct device_attribute *attr, char *buf) 533 { 534 struct net_device *netdev = to_net_dev(dev); 535 ssize_t ret = -EINVAL; 536 537 /* The checks are also done in dev_get_phys_port_name; this helps 538 * returning early without hitting the trylock/restart below. 539 */ 540 if (!netdev->netdev_ops->ndo_get_phys_port_name && 541 !netdev->netdev_ops->ndo_get_devlink_port) 542 return -EOPNOTSUPP; 543 544 if (!rtnl_trylock()) 545 return restart_syscall(); 546 547 if (dev_isalive(netdev)) { 548 char name[IFNAMSIZ]; 549 550 ret = dev_get_phys_port_name(netdev, name, sizeof(name)); 551 if (!ret) 552 ret = sprintf(buf, "%s\n", name); 553 } 554 rtnl_unlock(); 555 556 return ret; 557 } 558 static DEVICE_ATTR_RO(phys_port_name); 559 560 static ssize_t phys_switch_id_show(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct net_device *netdev = to_net_dev(dev); 564 ssize_t ret = -EINVAL; 565 566 /* The checks are also done in dev_get_phys_port_name; this helps 567 * returning early without hitting the trylock/restart below. This works 568 * because recurse is false when calling dev_get_port_parent_id. 569 */ 570 if (!netdev->netdev_ops->ndo_get_port_parent_id && 571 !netdev->netdev_ops->ndo_get_devlink_port) 572 return -EOPNOTSUPP; 573 574 if (!rtnl_trylock()) 575 return restart_syscall(); 576 577 if (dev_isalive(netdev)) { 578 struct netdev_phys_item_id ppid = { }; 579 580 ret = dev_get_port_parent_id(netdev, &ppid, false); 581 if (!ret) 582 ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id); 583 } 584 rtnl_unlock(); 585 586 return ret; 587 } 588 static DEVICE_ATTR_RO(phys_switch_id); 589 590 static ssize_t threaded_show(struct device *dev, 591 struct device_attribute *attr, char *buf) 592 { 593 struct net_device *netdev = to_net_dev(dev); 594 ssize_t ret = -EINVAL; 595 596 if (!rtnl_trylock()) 597 return restart_syscall(); 598 599 if (dev_isalive(netdev)) 600 ret = sprintf(buf, fmt_dec, netdev->threaded); 601 602 rtnl_unlock(); 603 return ret; 604 } 605 606 static int modify_napi_threaded(struct net_device *dev, unsigned long val) 607 { 608 int ret; 609 610 if (list_empty(&dev->napi_list)) 611 return -EOPNOTSUPP; 612 613 if (val != 0 && val != 1) 614 return -EOPNOTSUPP; 615 616 ret = dev_set_threaded(dev, val); 617 618 return ret; 619 } 620 621 static ssize_t threaded_store(struct device *dev, 622 struct device_attribute *attr, 623 const char *buf, size_t len) 624 { 625 return netdev_store(dev, attr, buf, len, modify_napi_threaded); 626 } 627 static DEVICE_ATTR_RW(threaded); 628 629 static struct attribute *net_class_attrs[] __ro_after_init = { 630 &dev_attr_netdev_group.attr, 631 &dev_attr_type.attr, 632 &dev_attr_dev_id.attr, 633 &dev_attr_dev_port.attr, 634 &dev_attr_iflink.attr, 635 &dev_attr_ifindex.attr, 636 &dev_attr_name_assign_type.attr, 637 &dev_attr_addr_assign_type.attr, 638 &dev_attr_addr_len.attr, 639 &dev_attr_link_mode.attr, 640 &dev_attr_address.attr, 641 &dev_attr_broadcast.attr, 642 &dev_attr_speed.attr, 643 &dev_attr_duplex.attr, 644 &dev_attr_dormant.attr, 645 &dev_attr_testing.attr, 646 &dev_attr_operstate.attr, 647 &dev_attr_carrier_changes.attr, 648 &dev_attr_ifalias.attr, 649 &dev_attr_carrier.attr, 650 &dev_attr_mtu.attr, 651 &dev_attr_flags.attr, 652 &dev_attr_tx_queue_len.attr, 653 &dev_attr_gro_flush_timeout.attr, 654 &dev_attr_napi_defer_hard_irqs.attr, 655 &dev_attr_phys_port_id.attr, 656 &dev_attr_phys_port_name.attr, 657 &dev_attr_phys_switch_id.attr, 658 &dev_attr_proto_down.attr, 659 &dev_attr_carrier_up_count.attr, 660 &dev_attr_carrier_down_count.attr, 661 &dev_attr_threaded.attr, 662 NULL, 663 }; 664 ATTRIBUTE_GROUPS(net_class); 665 666 /* Show a given an attribute in the statistics group */ 667 static ssize_t netstat_show(const struct device *d, 668 struct device_attribute *attr, char *buf, 669 unsigned long offset) 670 { 671 struct net_device *dev = to_net_dev(d); 672 ssize_t ret = -EINVAL; 673 674 WARN_ON(offset > sizeof(struct rtnl_link_stats64) || 675 offset % sizeof(u64) != 0); 676 677 read_lock(&dev_base_lock); 678 if (dev_isalive(dev)) { 679 struct rtnl_link_stats64 temp; 680 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 681 682 ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset)); 683 } 684 read_unlock(&dev_base_lock); 685 return ret; 686 } 687 688 /* generate a read-only statistics attribute */ 689 #define NETSTAT_ENTRY(name) \ 690 static ssize_t name##_show(struct device *d, \ 691 struct device_attribute *attr, char *buf) \ 692 { \ 693 return netstat_show(d, attr, buf, \ 694 offsetof(struct rtnl_link_stats64, name)); \ 695 } \ 696 static DEVICE_ATTR_RO(name) 697 698 NETSTAT_ENTRY(rx_packets); 699 NETSTAT_ENTRY(tx_packets); 700 NETSTAT_ENTRY(rx_bytes); 701 NETSTAT_ENTRY(tx_bytes); 702 NETSTAT_ENTRY(rx_errors); 703 NETSTAT_ENTRY(tx_errors); 704 NETSTAT_ENTRY(rx_dropped); 705 NETSTAT_ENTRY(tx_dropped); 706 NETSTAT_ENTRY(multicast); 707 NETSTAT_ENTRY(collisions); 708 NETSTAT_ENTRY(rx_length_errors); 709 NETSTAT_ENTRY(rx_over_errors); 710 NETSTAT_ENTRY(rx_crc_errors); 711 NETSTAT_ENTRY(rx_frame_errors); 712 NETSTAT_ENTRY(rx_fifo_errors); 713 NETSTAT_ENTRY(rx_missed_errors); 714 NETSTAT_ENTRY(tx_aborted_errors); 715 NETSTAT_ENTRY(tx_carrier_errors); 716 NETSTAT_ENTRY(tx_fifo_errors); 717 NETSTAT_ENTRY(tx_heartbeat_errors); 718 NETSTAT_ENTRY(tx_window_errors); 719 NETSTAT_ENTRY(rx_compressed); 720 NETSTAT_ENTRY(tx_compressed); 721 NETSTAT_ENTRY(rx_nohandler); 722 723 static struct attribute *netstat_attrs[] __ro_after_init = { 724 &dev_attr_rx_packets.attr, 725 &dev_attr_tx_packets.attr, 726 &dev_attr_rx_bytes.attr, 727 &dev_attr_tx_bytes.attr, 728 &dev_attr_rx_errors.attr, 729 &dev_attr_tx_errors.attr, 730 &dev_attr_rx_dropped.attr, 731 &dev_attr_tx_dropped.attr, 732 &dev_attr_multicast.attr, 733 &dev_attr_collisions.attr, 734 &dev_attr_rx_length_errors.attr, 735 &dev_attr_rx_over_errors.attr, 736 &dev_attr_rx_crc_errors.attr, 737 &dev_attr_rx_frame_errors.attr, 738 &dev_attr_rx_fifo_errors.attr, 739 &dev_attr_rx_missed_errors.attr, 740 &dev_attr_tx_aborted_errors.attr, 741 &dev_attr_tx_carrier_errors.attr, 742 &dev_attr_tx_fifo_errors.attr, 743 &dev_attr_tx_heartbeat_errors.attr, 744 &dev_attr_tx_window_errors.attr, 745 &dev_attr_rx_compressed.attr, 746 &dev_attr_tx_compressed.attr, 747 &dev_attr_rx_nohandler.attr, 748 NULL 749 }; 750 751 static const struct attribute_group netstat_group = { 752 .name = "statistics", 753 .attrs = netstat_attrs, 754 }; 755 756 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 757 static struct attribute *wireless_attrs[] = { 758 NULL 759 }; 760 761 static const struct attribute_group wireless_group = { 762 .name = "wireless", 763 .attrs = wireless_attrs, 764 }; 765 #endif 766 767 #else /* CONFIG_SYSFS */ 768 #define net_class_groups NULL 769 #endif /* CONFIG_SYSFS */ 770 771 #ifdef CONFIG_SYSFS 772 #define to_rx_queue_attr(_attr) \ 773 container_of(_attr, struct rx_queue_attribute, attr) 774 775 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj) 776 777 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr, 778 char *buf) 779 { 780 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 781 struct netdev_rx_queue *queue = to_rx_queue(kobj); 782 783 if (!attribute->show) 784 return -EIO; 785 786 return attribute->show(queue, buf); 787 } 788 789 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr, 790 const char *buf, size_t count) 791 { 792 const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr); 793 struct netdev_rx_queue *queue = to_rx_queue(kobj); 794 795 if (!attribute->store) 796 return -EIO; 797 798 return attribute->store(queue, buf, count); 799 } 800 801 static const struct sysfs_ops rx_queue_sysfs_ops = { 802 .show = rx_queue_attr_show, 803 .store = rx_queue_attr_store, 804 }; 805 806 #ifdef CONFIG_RPS 807 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf) 808 { 809 struct rps_map *map; 810 cpumask_var_t mask; 811 int i, len; 812 813 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) 814 return -ENOMEM; 815 816 rcu_read_lock(); 817 map = rcu_dereference(queue->rps_map); 818 if (map) 819 for (i = 0; i < map->len; i++) 820 cpumask_set_cpu(map->cpus[i], mask); 821 822 len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 823 rcu_read_unlock(); 824 free_cpumask_var(mask); 825 826 return len < PAGE_SIZE ? len : -EINVAL; 827 } 828 829 static ssize_t store_rps_map(struct netdev_rx_queue *queue, 830 const char *buf, size_t len) 831 { 832 struct rps_map *old_map, *map; 833 cpumask_var_t mask; 834 int err, cpu, i, hk_flags; 835 static DEFINE_MUTEX(rps_map_mutex); 836 837 if (!capable(CAP_NET_ADMIN)) 838 return -EPERM; 839 840 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 841 return -ENOMEM; 842 843 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 844 if (err) { 845 free_cpumask_var(mask); 846 return err; 847 } 848 849 if (!cpumask_empty(mask)) { 850 hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 851 cpumask_and(mask, mask, housekeeping_cpumask(hk_flags)); 852 if (cpumask_empty(mask)) { 853 free_cpumask_var(mask); 854 return -EINVAL; 855 } 856 } 857 858 map = kzalloc(max_t(unsigned int, 859 RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES), 860 GFP_KERNEL); 861 if (!map) { 862 free_cpumask_var(mask); 863 return -ENOMEM; 864 } 865 866 i = 0; 867 for_each_cpu_and(cpu, mask, cpu_online_mask) 868 map->cpus[i++] = cpu; 869 870 if (i) { 871 map->len = i; 872 } else { 873 kfree(map); 874 map = NULL; 875 } 876 877 mutex_lock(&rps_map_mutex); 878 old_map = rcu_dereference_protected(queue->rps_map, 879 mutex_is_locked(&rps_map_mutex)); 880 rcu_assign_pointer(queue->rps_map, map); 881 882 if (map) 883 static_branch_inc(&rps_needed); 884 if (old_map) 885 static_branch_dec(&rps_needed); 886 887 mutex_unlock(&rps_map_mutex); 888 889 if (old_map) 890 kfree_rcu(old_map, rcu); 891 892 free_cpumask_var(mask); 893 return len; 894 } 895 896 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 897 char *buf) 898 { 899 struct rps_dev_flow_table *flow_table; 900 unsigned long val = 0; 901 902 rcu_read_lock(); 903 flow_table = rcu_dereference(queue->rps_flow_table); 904 if (flow_table) 905 val = (unsigned long)flow_table->mask + 1; 906 rcu_read_unlock(); 907 908 return sprintf(buf, "%lu\n", val); 909 } 910 911 static void rps_dev_flow_table_release(struct rcu_head *rcu) 912 { 913 struct rps_dev_flow_table *table = container_of(rcu, 914 struct rps_dev_flow_table, rcu); 915 vfree(table); 916 } 917 918 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue, 919 const char *buf, size_t len) 920 { 921 unsigned long mask, count; 922 struct rps_dev_flow_table *table, *old_table; 923 static DEFINE_SPINLOCK(rps_dev_flow_lock); 924 int rc; 925 926 if (!capable(CAP_NET_ADMIN)) 927 return -EPERM; 928 929 rc = kstrtoul(buf, 0, &count); 930 if (rc < 0) 931 return rc; 932 933 if (count) { 934 mask = count - 1; 935 /* mask = roundup_pow_of_two(count) - 1; 936 * without overflows... 937 */ 938 while ((mask | (mask >> 1)) != mask) 939 mask |= (mask >> 1); 940 /* On 64 bit arches, must check mask fits in table->mask (u32), 941 * and on 32bit arches, must check 942 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow. 943 */ 944 #if BITS_PER_LONG > 32 945 if (mask > (unsigned long)(u32)mask) 946 return -EINVAL; 947 #else 948 if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1)) 949 / sizeof(struct rps_dev_flow)) { 950 /* Enforce a limit to prevent overflow */ 951 return -EINVAL; 952 } 953 #endif 954 table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1)); 955 if (!table) 956 return -ENOMEM; 957 958 table->mask = mask; 959 for (count = 0; count <= mask; count++) 960 table->flows[count].cpu = RPS_NO_CPU; 961 } else { 962 table = NULL; 963 } 964 965 spin_lock(&rps_dev_flow_lock); 966 old_table = rcu_dereference_protected(queue->rps_flow_table, 967 lockdep_is_held(&rps_dev_flow_lock)); 968 rcu_assign_pointer(queue->rps_flow_table, table); 969 spin_unlock(&rps_dev_flow_lock); 970 971 if (old_table) 972 call_rcu(&old_table->rcu, rps_dev_flow_table_release); 973 974 return len; 975 } 976 977 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init 978 = __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map); 979 980 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init 981 = __ATTR(rps_flow_cnt, 0644, 982 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt); 983 #endif /* CONFIG_RPS */ 984 985 static struct attribute *rx_queue_default_attrs[] __ro_after_init = { 986 #ifdef CONFIG_RPS 987 &rps_cpus_attribute.attr, 988 &rps_dev_flow_table_cnt_attribute.attr, 989 #endif 990 NULL 991 }; 992 ATTRIBUTE_GROUPS(rx_queue_default); 993 994 static void rx_queue_release(struct kobject *kobj) 995 { 996 struct netdev_rx_queue *queue = to_rx_queue(kobj); 997 #ifdef CONFIG_RPS 998 struct rps_map *map; 999 struct rps_dev_flow_table *flow_table; 1000 1001 map = rcu_dereference_protected(queue->rps_map, 1); 1002 if (map) { 1003 RCU_INIT_POINTER(queue->rps_map, NULL); 1004 kfree_rcu(map, rcu); 1005 } 1006 1007 flow_table = rcu_dereference_protected(queue->rps_flow_table, 1); 1008 if (flow_table) { 1009 RCU_INIT_POINTER(queue->rps_flow_table, NULL); 1010 call_rcu(&flow_table->rcu, rps_dev_flow_table_release); 1011 } 1012 #endif 1013 1014 memset(kobj, 0, sizeof(*kobj)); 1015 dev_put(queue->dev); 1016 } 1017 1018 static const void *rx_queue_namespace(struct kobject *kobj) 1019 { 1020 struct netdev_rx_queue *queue = to_rx_queue(kobj); 1021 struct device *dev = &queue->dev->dev; 1022 const void *ns = NULL; 1023 1024 if (dev->class && dev->class->ns_type) 1025 ns = dev->class->namespace(dev); 1026 1027 return ns; 1028 } 1029 1030 static void rx_queue_get_ownership(struct kobject *kobj, 1031 kuid_t *uid, kgid_t *gid) 1032 { 1033 const struct net *net = rx_queue_namespace(kobj); 1034 1035 net_ns_get_ownership(net, uid, gid); 1036 } 1037 1038 static struct kobj_type rx_queue_ktype __ro_after_init = { 1039 .sysfs_ops = &rx_queue_sysfs_ops, 1040 .release = rx_queue_release, 1041 .default_groups = rx_queue_default_groups, 1042 .namespace = rx_queue_namespace, 1043 .get_ownership = rx_queue_get_ownership, 1044 }; 1045 1046 static int rx_queue_add_kobject(struct net_device *dev, int index) 1047 { 1048 struct netdev_rx_queue *queue = dev->_rx + index; 1049 struct kobject *kobj = &queue->kobj; 1050 int error = 0; 1051 1052 /* Kobject_put later will trigger rx_queue_release call which 1053 * decreases dev refcount: Take that reference here 1054 */ 1055 dev_hold(queue->dev); 1056 1057 kobj->kset = dev->queues_kset; 1058 error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL, 1059 "rx-%u", index); 1060 if (error) 1061 goto err; 1062 1063 if (dev->sysfs_rx_queue_group) { 1064 error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group); 1065 if (error) 1066 goto err; 1067 } 1068 1069 kobject_uevent(kobj, KOBJ_ADD); 1070 1071 return error; 1072 1073 err: 1074 kobject_put(kobj); 1075 return error; 1076 } 1077 1078 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid, 1079 kgid_t kgid) 1080 { 1081 struct netdev_rx_queue *queue = dev->_rx + index; 1082 struct kobject *kobj = &queue->kobj; 1083 int error; 1084 1085 error = sysfs_change_owner(kobj, kuid, kgid); 1086 if (error) 1087 return error; 1088 1089 if (dev->sysfs_rx_queue_group) 1090 error = sysfs_group_change_owner( 1091 kobj, dev->sysfs_rx_queue_group, kuid, kgid); 1092 1093 return error; 1094 } 1095 #endif /* CONFIG_SYSFS */ 1096 1097 int 1098 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1099 { 1100 #ifdef CONFIG_SYSFS 1101 int i; 1102 int error = 0; 1103 1104 #ifndef CONFIG_RPS 1105 if (!dev->sysfs_rx_queue_group) 1106 return 0; 1107 #endif 1108 for (i = old_num; i < new_num; i++) { 1109 error = rx_queue_add_kobject(dev, i); 1110 if (error) { 1111 new_num = old_num; 1112 break; 1113 } 1114 } 1115 1116 while (--i >= new_num) { 1117 struct kobject *kobj = &dev->_rx[i].kobj; 1118 1119 if (!refcount_read(&dev_net(dev)->ns.count)) 1120 kobj->uevent_suppress = 1; 1121 if (dev->sysfs_rx_queue_group) 1122 sysfs_remove_group(kobj, dev->sysfs_rx_queue_group); 1123 kobject_put(kobj); 1124 } 1125 1126 return error; 1127 #else 1128 return 0; 1129 #endif 1130 } 1131 1132 static int net_rx_queue_change_owner(struct net_device *dev, int num, 1133 kuid_t kuid, kgid_t kgid) 1134 { 1135 #ifdef CONFIG_SYSFS 1136 int error = 0; 1137 int i; 1138 1139 #ifndef CONFIG_RPS 1140 if (!dev->sysfs_rx_queue_group) 1141 return 0; 1142 #endif 1143 for (i = 0; i < num; i++) { 1144 error = rx_queue_change_owner(dev, i, kuid, kgid); 1145 if (error) 1146 break; 1147 } 1148 1149 return error; 1150 #else 1151 return 0; 1152 #endif 1153 } 1154 1155 #ifdef CONFIG_SYSFS 1156 /* 1157 * netdev_queue sysfs structures and functions. 1158 */ 1159 struct netdev_queue_attribute { 1160 struct attribute attr; 1161 ssize_t (*show)(struct netdev_queue *queue, char *buf); 1162 ssize_t (*store)(struct netdev_queue *queue, 1163 const char *buf, size_t len); 1164 }; 1165 #define to_netdev_queue_attr(_attr) \ 1166 container_of(_attr, struct netdev_queue_attribute, attr) 1167 1168 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj) 1169 1170 static ssize_t netdev_queue_attr_show(struct kobject *kobj, 1171 struct attribute *attr, char *buf) 1172 { 1173 const struct netdev_queue_attribute *attribute 1174 = to_netdev_queue_attr(attr); 1175 struct netdev_queue *queue = to_netdev_queue(kobj); 1176 1177 if (!attribute->show) 1178 return -EIO; 1179 1180 return attribute->show(queue, buf); 1181 } 1182 1183 static ssize_t netdev_queue_attr_store(struct kobject *kobj, 1184 struct attribute *attr, 1185 const char *buf, size_t count) 1186 { 1187 const struct netdev_queue_attribute *attribute 1188 = to_netdev_queue_attr(attr); 1189 struct netdev_queue *queue = to_netdev_queue(kobj); 1190 1191 if (!attribute->store) 1192 return -EIO; 1193 1194 return attribute->store(queue, buf, count); 1195 } 1196 1197 static const struct sysfs_ops netdev_queue_sysfs_ops = { 1198 .show = netdev_queue_attr_show, 1199 .store = netdev_queue_attr_store, 1200 }; 1201 1202 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf) 1203 { 1204 unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout); 1205 1206 return sprintf(buf, fmt_ulong, trans_timeout); 1207 } 1208 1209 static unsigned int get_netdev_queue_index(struct netdev_queue *queue) 1210 { 1211 struct net_device *dev = queue->dev; 1212 unsigned int i; 1213 1214 i = queue - dev->_tx; 1215 BUG_ON(i >= dev->num_tx_queues); 1216 1217 return i; 1218 } 1219 1220 static ssize_t traffic_class_show(struct netdev_queue *queue, 1221 char *buf) 1222 { 1223 struct net_device *dev = queue->dev; 1224 int num_tc, tc; 1225 int index; 1226 1227 if (!netif_is_multiqueue(dev)) 1228 return -ENOENT; 1229 1230 if (!rtnl_trylock()) 1231 return restart_syscall(); 1232 1233 index = get_netdev_queue_index(queue); 1234 1235 /* If queue belongs to subordinate dev use its TC mapping */ 1236 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1237 1238 num_tc = dev->num_tc; 1239 tc = netdev_txq_to_tc(dev, index); 1240 1241 rtnl_unlock(); 1242 1243 if (tc < 0) 1244 return -EINVAL; 1245 1246 /* We can report the traffic class one of two ways: 1247 * Subordinate device traffic classes are reported with the traffic 1248 * class first, and then the subordinate class so for example TC0 on 1249 * subordinate device 2 will be reported as "0-2". If the queue 1250 * belongs to the root device it will be reported with just the 1251 * traffic class, so just "0" for TC 0 for example. 1252 */ 1253 return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) : 1254 sprintf(buf, "%d\n", tc); 1255 } 1256 1257 #ifdef CONFIG_XPS 1258 static ssize_t tx_maxrate_show(struct netdev_queue *queue, 1259 char *buf) 1260 { 1261 return sprintf(buf, "%lu\n", queue->tx_maxrate); 1262 } 1263 1264 static ssize_t tx_maxrate_store(struct netdev_queue *queue, 1265 const char *buf, size_t len) 1266 { 1267 struct net_device *dev = queue->dev; 1268 int err, index = get_netdev_queue_index(queue); 1269 u32 rate = 0; 1270 1271 if (!capable(CAP_NET_ADMIN)) 1272 return -EPERM; 1273 1274 /* The check is also done later; this helps returning early without 1275 * hitting the trylock/restart below. 1276 */ 1277 if (!dev->netdev_ops->ndo_set_tx_maxrate) 1278 return -EOPNOTSUPP; 1279 1280 err = kstrtou32(buf, 10, &rate); 1281 if (err < 0) 1282 return err; 1283 1284 if (!rtnl_trylock()) 1285 return restart_syscall(); 1286 1287 err = -EOPNOTSUPP; 1288 if (dev->netdev_ops->ndo_set_tx_maxrate) 1289 err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate); 1290 1291 rtnl_unlock(); 1292 if (!err) { 1293 queue->tx_maxrate = rate; 1294 return len; 1295 } 1296 return err; 1297 } 1298 1299 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init 1300 = __ATTR_RW(tx_maxrate); 1301 #endif 1302 1303 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init 1304 = __ATTR_RO(tx_timeout); 1305 1306 static struct netdev_queue_attribute queue_traffic_class __ro_after_init 1307 = __ATTR_RO(traffic_class); 1308 1309 #ifdef CONFIG_BQL 1310 /* 1311 * Byte queue limits sysfs structures and functions. 1312 */ 1313 static ssize_t bql_show(char *buf, unsigned int value) 1314 { 1315 return sprintf(buf, "%u\n", value); 1316 } 1317 1318 static ssize_t bql_set(const char *buf, const size_t count, 1319 unsigned int *pvalue) 1320 { 1321 unsigned int value; 1322 int err; 1323 1324 if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) { 1325 value = DQL_MAX_LIMIT; 1326 } else { 1327 err = kstrtouint(buf, 10, &value); 1328 if (err < 0) 1329 return err; 1330 if (value > DQL_MAX_LIMIT) 1331 return -EINVAL; 1332 } 1333 1334 *pvalue = value; 1335 1336 return count; 1337 } 1338 1339 static ssize_t bql_show_hold_time(struct netdev_queue *queue, 1340 char *buf) 1341 { 1342 struct dql *dql = &queue->dql; 1343 1344 return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time)); 1345 } 1346 1347 static ssize_t bql_set_hold_time(struct netdev_queue *queue, 1348 const char *buf, size_t len) 1349 { 1350 struct dql *dql = &queue->dql; 1351 unsigned int value; 1352 int err; 1353 1354 err = kstrtouint(buf, 10, &value); 1355 if (err < 0) 1356 return err; 1357 1358 dql->slack_hold_time = msecs_to_jiffies(value); 1359 1360 return len; 1361 } 1362 1363 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init 1364 = __ATTR(hold_time, 0644, 1365 bql_show_hold_time, bql_set_hold_time); 1366 1367 static ssize_t bql_show_inflight(struct netdev_queue *queue, 1368 char *buf) 1369 { 1370 struct dql *dql = &queue->dql; 1371 1372 return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed); 1373 } 1374 1375 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init = 1376 __ATTR(inflight, 0444, bql_show_inflight, NULL); 1377 1378 #define BQL_ATTR(NAME, FIELD) \ 1379 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue, \ 1380 char *buf) \ 1381 { \ 1382 return bql_show(buf, queue->dql.FIELD); \ 1383 } \ 1384 \ 1385 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue, \ 1386 const char *buf, size_t len) \ 1387 { \ 1388 return bql_set(buf, len, &queue->dql.FIELD); \ 1389 } \ 1390 \ 1391 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \ 1392 = __ATTR(NAME, 0644, \ 1393 bql_show_ ## NAME, bql_set_ ## NAME) 1394 1395 BQL_ATTR(limit, limit); 1396 BQL_ATTR(limit_max, max_limit); 1397 BQL_ATTR(limit_min, min_limit); 1398 1399 static struct attribute *dql_attrs[] __ro_after_init = { 1400 &bql_limit_attribute.attr, 1401 &bql_limit_max_attribute.attr, 1402 &bql_limit_min_attribute.attr, 1403 &bql_hold_time_attribute.attr, 1404 &bql_inflight_attribute.attr, 1405 NULL 1406 }; 1407 1408 static const struct attribute_group dql_group = { 1409 .name = "byte_queue_limits", 1410 .attrs = dql_attrs, 1411 }; 1412 #endif /* CONFIG_BQL */ 1413 1414 #ifdef CONFIG_XPS 1415 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index, 1416 int tc, char *buf, enum xps_map_type type) 1417 { 1418 struct xps_dev_maps *dev_maps; 1419 unsigned long *mask; 1420 unsigned int nr_ids; 1421 int j, len; 1422 1423 rcu_read_lock(); 1424 dev_maps = rcu_dereference(dev->xps_maps[type]); 1425 1426 /* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0 1427 * when dev_maps hasn't been allocated yet, to be backward compatible. 1428 */ 1429 nr_ids = dev_maps ? dev_maps->nr_ids : 1430 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues); 1431 1432 mask = bitmap_zalloc(nr_ids, GFP_NOWAIT); 1433 if (!mask) { 1434 rcu_read_unlock(); 1435 return -ENOMEM; 1436 } 1437 1438 if (!dev_maps || tc >= dev_maps->num_tc) 1439 goto out_no_maps; 1440 1441 for (j = 0; j < nr_ids; j++) { 1442 int i, tci = j * dev_maps->num_tc + tc; 1443 struct xps_map *map; 1444 1445 map = rcu_dereference(dev_maps->attr_map[tci]); 1446 if (!map) 1447 continue; 1448 1449 for (i = map->len; i--;) { 1450 if (map->queues[i] == index) { 1451 set_bit(j, mask); 1452 break; 1453 } 1454 } 1455 } 1456 out_no_maps: 1457 rcu_read_unlock(); 1458 1459 len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids); 1460 bitmap_free(mask); 1461 1462 return len < PAGE_SIZE ? len : -EINVAL; 1463 } 1464 1465 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf) 1466 { 1467 struct net_device *dev = queue->dev; 1468 unsigned int index; 1469 int len, tc; 1470 1471 if (!netif_is_multiqueue(dev)) 1472 return -ENOENT; 1473 1474 index = get_netdev_queue_index(queue); 1475 1476 if (!rtnl_trylock()) 1477 return restart_syscall(); 1478 1479 /* If queue belongs to subordinate dev use its map */ 1480 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 1481 1482 tc = netdev_txq_to_tc(dev, index); 1483 if (tc < 0) { 1484 rtnl_unlock(); 1485 return -EINVAL; 1486 } 1487 1488 /* Make sure the subordinate device can't be freed */ 1489 get_device(&dev->dev); 1490 rtnl_unlock(); 1491 1492 len = xps_queue_show(dev, index, tc, buf, XPS_CPUS); 1493 1494 put_device(&dev->dev); 1495 return len; 1496 } 1497 1498 static ssize_t xps_cpus_store(struct netdev_queue *queue, 1499 const char *buf, size_t len) 1500 { 1501 struct net_device *dev = queue->dev; 1502 unsigned int index; 1503 cpumask_var_t mask; 1504 int err; 1505 1506 if (!netif_is_multiqueue(dev)) 1507 return -ENOENT; 1508 1509 if (!capable(CAP_NET_ADMIN)) 1510 return -EPERM; 1511 1512 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1513 return -ENOMEM; 1514 1515 index = get_netdev_queue_index(queue); 1516 1517 err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits); 1518 if (err) { 1519 free_cpumask_var(mask); 1520 return err; 1521 } 1522 1523 if (!rtnl_trylock()) { 1524 free_cpumask_var(mask); 1525 return restart_syscall(); 1526 } 1527 1528 err = netif_set_xps_queue(dev, mask, index); 1529 rtnl_unlock(); 1530 1531 free_cpumask_var(mask); 1532 1533 return err ? : len; 1534 } 1535 1536 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init 1537 = __ATTR_RW(xps_cpus); 1538 1539 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf) 1540 { 1541 struct net_device *dev = queue->dev; 1542 unsigned int index; 1543 int tc; 1544 1545 index = get_netdev_queue_index(queue); 1546 1547 if (!rtnl_trylock()) 1548 return restart_syscall(); 1549 1550 tc = netdev_txq_to_tc(dev, index); 1551 rtnl_unlock(); 1552 if (tc < 0) 1553 return -EINVAL; 1554 1555 return xps_queue_show(dev, index, tc, buf, XPS_RXQS); 1556 } 1557 1558 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf, 1559 size_t len) 1560 { 1561 struct net_device *dev = queue->dev; 1562 struct net *net = dev_net(dev); 1563 unsigned long *mask; 1564 unsigned int index; 1565 int err; 1566 1567 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1568 return -EPERM; 1569 1570 mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL); 1571 if (!mask) 1572 return -ENOMEM; 1573 1574 index = get_netdev_queue_index(queue); 1575 1576 err = bitmap_parse(buf, len, mask, dev->num_rx_queues); 1577 if (err) { 1578 bitmap_free(mask); 1579 return err; 1580 } 1581 1582 if (!rtnl_trylock()) { 1583 bitmap_free(mask); 1584 return restart_syscall(); 1585 } 1586 1587 cpus_read_lock(); 1588 err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS); 1589 cpus_read_unlock(); 1590 1591 rtnl_unlock(); 1592 1593 bitmap_free(mask); 1594 return err ? : len; 1595 } 1596 1597 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init 1598 = __ATTR_RW(xps_rxqs); 1599 #endif /* CONFIG_XPS */ 1600 1601 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = { 1602 &queue_trans_timeout.attr, 1603 &queue_traffic_class.attr, 1604 #ifdef CONFIG_XPS 1605 &xps_cpus_attribute.attr, 1606 &xps_rxqs_attribute.attr, 1607 &queue_tx_maxrate.attr, 1608 #endif 1609 NULL 1610 }; 1611 ATTRIBUTE_GROUPS(netdev_queue_default); 1612 1613 static void netdev_queue_release(struct kobject *kobj) 1614 { 1615 struct netdev_queue *queue = to_netdev_queue(kobj); 1616 1617 memset(kobj, 0, sizeof(*kobj)); 1618 dev_put(queue->dev); 1619 } 1620 1621 static const void *netdev_queue_namespace(struct kobject *kobj) 1622 { 1623 struct netdev_queue *queue = to_netdev_queue(kobj); 1624 struct device *dev = &queue->dev->dev; 1625 const void *ns = NULL; 1626 1627 if (dev->class && dev->class->ns_type) 1628 ns = dev->class->namespace(dev); 1629 1630 return ns; 1631 } 1632 1633 static void netdev_queue_get_ownership(struct kobject *kobj, 1634 kuid_t *uid, kgid_t *gid) 1635 { 1636 const struct net *net = netdev_queue_namespace(kobj); 1637 1638 net_ns_get_ownership(net, uid, gid); 1639 } 1640 1641 static struct kobj_type netdev_queue_ktype __ro_after_init = { 1642 .sysfs_ops = &netdev_queue_sysfs_ops, 1643 .release = netdev_queue_release, 1644 .default_groups = netdev_queue_default_groups, 1645 .namespace = netdev_queue_namespace, 1646 .get_ownership = netdev_queue_get_ownership, 1647 }; 1648 1649 static int netdev_queue_add_kobject(struct net_device *dev, int index) 1650 { 1651 struct netdev_queue *queue = dev->_tx + index; 1652 struct kobject *kobj = &queue->kobj; 1653 int error = 0; 1654 1655 /* Kobject_put later will trigger netdev_queue_release call 1656 * which decreases dev refcount: Take that reference here 1657 */ 1658 dev_hold(queue->dev); 1659 1660 kobj->kset = dev->queues_kset; 1661 error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL, 1662 "tx-%u", index); 1663 if (error) 1664 goto err; 1665 1666 #ifdef CONFIG_BQL 1667 error = sysfs_create_group(kobj, &dql_group); 1668 if (error) 1669 goto err; 1670 #endif 1671 1672 kobject_uevent(kobj, KOBJ_ADD); 1673 return 0; 1674 1675 err: 1676 kobject_put(kobj); 1677 return error; 1678 } 1679 1680 static int tx_queue_change_owner(struct net_device *ndev, int index, 1681 kuid_t kuid, kgid_t kgid) 1682 { 1683 struct netdev_queue *queue = ndev->_tx + index; 1684 struct kobject *kobj = &queue->kobj; 1685 int error; 1686 1687 error = sysfs_change_owner(kobj, kuid, kgid); 1688 if (error) 1689 return error; 1690 1691 #ifdef CONFIG_BQL 1692 error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid); 1693 #endif 1694 return error; 1695 } 1696 #endif /* CONFIG_SYSFS */ 1697 1698 int 1699 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num) 1700 { 1701 #ifdef CONFIG_SYSFS 1702 int i; 1703 int error = 0; 1704 1705 for (i = old_num; i < new_num; i++) { 1706 error = netdev_queue_add_kobject(dev, i); 1707 if (error) { 1708 new_num = old_num; 1709 break; 1710 } 1711 } 1712 1713 while (--i >= new_num) { 1714 struct netdev_queue *queue = dev->_tx + i; 1715 1716 if (!refcount_read(&dev_net(dev)->ns.count)) 1717 queue->kobj.uevent_suppress = 1; 1718 #ifdef CONFIG_BQL 1719 sysfs_remove_group(&queue->kobj, &dql_group); 1720 #endif 1721 kobject_put(&queue->kobj); 1722 } 1723 1724 return error; 1725 #else 1726 return 0; 1727 #endif /* CONFIG_SYSFS */ 1728 } 1729 1730 static int net_tx_queue_change_owner(struct net_device *dev, int num, 1731 kuid_t kuid, kgid_t kgid) 1732 { 1733 #ifdef CONFIG_SYSFS 1734 int error = 0; 1735 int i; 1736 1737 for (i = 0; i < num; i++) { 1738 error = tx_queue_change_owner(dev, i, kuid, kgid); 1739 if (error) 1740 break; 1741 } 1742 1743 return error; 1744 #else 1745 return 0; 1746 #endif /* CONFIG_SYSFS */ 1747 } 1748 1749 static int register_queue_kobjects(struct net_device *dev) 1750 { 1751 int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0; 1752 1753 #ifdef CONFIG_SYSFS 1754 dev->queues_kset = kset_create_and_add("queues", 1755 NULL, &dev->dev.kobj); 1756 if (!dev->queues_kset) 1757 return -ENOMEM; 1758 real_rx = dev->real_num_rx_queues; 1759 #endif 1760 real_tx = dev->real_num_tx_queues; 1761 1762 error = net_rx_queue_update_kobjects(dev, 0, real_rx); 1763 if (error) 1764 goto error; 1765 rxq = real_rx; 1766 1767 error = netdev_queue_update_kobjects(dev, 0, real_tx); 1768 if (error) 1769 goto error; 1770 txq = real_tx; 1771 1772 return 0; 1773 1774 error: 1775 netdev_queue_update_kobjects(dev, txq, 0); 1776 net_rx_queue_update_kobjects(dev, rxq, 0); 1777 #ifdef CONFIG_SYSFS 1778 kset_unregister(dev->queues_kset); 1779 #endif 1780 return error; 1781 } 1782 1783 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid) 1784 { 1785 int error = 0, real_rx = 0, real_tx = 0; 1786 1787 #ifdef CONFIG_SYSFS 1788 if (ndev->queues_kset) { 1789 error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid); 1790 if (error) 1791 return error; 1792 } 1793 real_rx = ndev->real_num_rx_queues; 1794 #endif 1795 real_tx = ndev->real_num_tx_queues; 1796 1797 error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid); 1798 if (error) 1799 return error; 1800 1801 error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid); 1802 if (error) 1803 return error; 1804 1805 return 0; 1806 } 1807 1808 static void remove_queue_kobjects(struct net_device *dev) 1809 { 1810 int real_rx = 0, real_tx = 0; 1811 1812 #ifdef CONFIG_SYSFS 1813 real_rx = dev->real_num_rx_queues; 1814 #endif 1815 real_tx = dev->real_num_tx_queues; 1816 1817 net_rx_queue_update_kobjects(dev, real_rx, 0); 1818 netdev_queue_update_kobjects(dev, real_tx, 0); 1819 #ifdef CONFIG_SYSFS 1820 kset_unregister(dev->queues_kset); 1821 #endif 1822 } 1823 1824 static bool net_current_may_mount(void) 1825 { 1826 struct net *net = current->nsproxy->net_ns; 1827 1828 return ns_capable(net->user_ns, CAP_SYS_ADMIN); 1829 } 1830 1831 static void *net_grab_current_ns(void) 1832 { 1833 struct net *ns = current->nsproxy->net_ns; 1834 #ifdef CONFIG_NET_NS 1835 if (ns) 1836 refcount_inc(&ns->passive); 1837 #endif 1838 return ns; 1839 } 1840 1841 static const void *net_initial_ns(void) 1842 { 1843 return &init_net; 1844 } 1845 1846 static const void *net_netlink_ns(struct sock *sk) 1847 { 1848 return sock_net(sk); 1849 } 1850 1851 const struct kobj_ns_type_operations net_ns_type_operations = { 1852 .type = KOBJ_NS_TYPE_NET, 1853 .current_may_mount = net_current_may_mount, 1854 .grab_current_ns = net_grab_current_ns, 1855 .netlink_ns = net_netlink_ns, 1856 .initial_ns = net_initial_ns, 1857 .drop_ns = net_drop_ns, 1858 }; 1859 EXPORT_SYMBOL_GPL(net_ns_type_operations); 1860 1861 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env) 1862 { 1863 struct net_device *dev = to_net_dev(d); 1864 int retval; 1865 1866 /* pass interface to uevent. */ 1867 retval = add_uevent_var(env, "INTERFACE=%s", dev->name); 1868 if (retval) 1869 goto exit; 1870 1871 /* pass ifindex to uevent. 1872 * ifindex is useful as it won't change (interface name may change) 1873 * and is what RtNetlink uses natively. 1874 */ 1875 retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex); 1876 1877 exit: 1878 return retval; 1879 } 1880 1881 /* 1882 * netdev_release -- destroy and free a dead device. 1883 * Called when last reference to device kobject is gone. 1884 */ 1885 static void netdev_release(struct device *d) 1886 { 1887 struct net_device *dev = to_net_dev(d); 1888 1889 BUG_ON(dev->reg_state != NETREG_RELEASED); 1890 1891 /* no need to wait for rcu grace period: 1892 * device is dead and about to be freed. 1893 */ 1894 kfree(rcu_access_pointer(dev->ifalias)); 1895 netdev_freemem(dev); 1896 } 1897 1898 static const void *net_namespace(struct device *d) 1899 { 1900 struct net_device *dev = to_net_dev(d); 1901 1902 return dev_net(dev); 1903 } 1904 1905 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid) 1906 { 1907 struct net_device *dev = to_net_dev(d); 1908 const struct net *net = dev_net(dev); 1909 1910 net_ns_get_ownership(net, uid, gid); 1911 } 1912 1913 static struct class net_class __ro_after_init = { 1914 .name = "net", 1915 .dev_release = netdev_release, 1916 .dev_groups = net_class_groups, 1917 .dev_uevent = netdev_uevent, 1918 .ns_type = &net_ns_type_operations, 1919 .namespace = net_namespace, 1920 .get_ownership = net_get_ownership, 1921 }; 1922 1923 #ifdef CONFIG_OF 1924 static int of_dev_node_match(struct device *dev, const void *data) 1925 { 1926 for (; dev; dev = dev->parent) { 1927 if (dev->of_node == data) 1928 return 1; 1929 } 1930 1931 return 0; 1932 } 1933 1934 /* 1935 * of_find_net_device_by_node - lookup the net device for the device node 1936 * @np: OF device node 1937 * 1938 * Looks up the net_device structure corresponding with the device node. 1939 * If successful, returns a pointer to the net_device with the embedded 1940 * struct device refcount incremented by one, or NULL on failure. The 1941 * refcount must be dropped when done with the net_device. 1942 */ 1943 struct net_device *of_find_net_device_by_node(struct device_node *np) 1944 { 1945 struct device *dev; 1946 1947 dev = class_find_device(&net_class, NULL, np, of_dev_node_match); 1948 if (!dev) 1949 return NULL; 1950 1951 return to_net_dev(dev); 1952 } 1953 EXPORT_SYMBOL(of_find_net_device_by_node); 1954 #endif 1955 1956 /* Delete sysfs entries but hold kobject reference until after all 1957 * netdev references are gone. 1958 */ 1959 void netdev_unregister_kobject(struct net_device *ndev) 1960 { 1961 struct device *dev = &ndev->dev; 1962 1963 if (!refcount_read(&dev_net(ndev)->ns.count)) 1964 dev_set_uevent_suppress(dev, 1); 1965 1966 kobject_get(&dev->kobj); 1967 1968 remove_queue_kobjects(ndev); 1969 1970 pm_runtime_set_memalloc_noio(dev, false); 1971 1972 device_del(dev); 1973 } 1974 1975 /* Create sysfs entries for network device. */ 1976 int netdev_register_kobject(struct net_device *ndev) 1977 { 1978 struct device *dev = &ndev->dev; 1979 const struct attribute_group **groups = ndev->sysfs_groups; 1980 int error = 0; 1981 1982 device_initialize(dev); 1983 dev->class = &net_class; 1984 dev->platform_data = ndev; 1985 dev->groups = groups; 1986 1987 dev_set_name(dev, "%s", ndev->name); 1988 1989 #ifdef CONFIG_SYSFS 1990 /* Allow for a device specific group */ 1991 if (*groups) 1992 groups++; 1993 1994 *groups++ = &netstat_group; 1995 1996 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211) 1997 if (ndev->ieee80211_ptr) 1998 *groups++ = &wireless_group; 1999 #if IS_ENABLED(CONFIG_WIRELESS_EXT) 2000 else if (ndev->wireless_handlers) 2001 *groups++ = &wireless_group; 2002 #endif 2003 #endif 2004 #endif /* CONFIG_SYSFS */ 2005 2006 error = device_add(dev); 2007 if (error) 2008 return error; 2009 2010 error = register_queue_kobjects(ndev); 2011 if (error) { 2012 device_del(dev); 2013 return error; 2014 } 2015 2016 pm_runtime_set_memalloc_noio(dev, true); 2017 2018 return error; 2019 } 2020 2021 /* Change owner for sysfs entries when moving network devices across network 2022 * namespaces owned by different user namespaces. 2023 */ 2024 int netdev_change_owner(struct net_device *ndev, const struct net *net_old, 2025 const struct net *net_new) 2026 { 2027 kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID; 2028 kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID; 2029 struct device *dev = &ndev->dev; 2030 int error; 2031 2032 net_ns_get_ownership(net_old, &old_uid, &old_gid); 2033 net_ns_get_ownership(net_new, &new_uid, &new_gid); 2034 2035 /* The network namespace was changed but the owning user namespace is 2036 * identical so there's no need to change the owner of sysfs entries. 2037 */ 2038 if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid)) 2039 return 0; 2040 2041 error = device_change_owner(dev, new_uid, new_gid); 2042 if (error) 2043 return error; 2044 2045 error = queue_change_owner(ndev, new_uid, new_gid); 2046 if (error) 2047 return error; 2048 2049 return 0; 2050 } 2051 2052 int netdev_class_create_file_ns(const struct class_attribute *class_attr, 2053 const void *ns) 2054 { 2055 return class_create_file_ns(&net_class, class_attr, ns); 2056 } 2057 EXPORT_SYMBOL(netdev_class_create_file_ns); 2058 2059 void netdev_class_remove_file_ns(const struct class_attribute *class_attr, 2060 const void *ns) 2061 { 2062 class_remove_file_ns(&net_class, class_attr, ns); 2063 } 2064 EXPORT_SYMBOL(netdev_class_remove_file_ns); 2065 2066 int __init netdev_kobject_init(void) 2067 { 2068 kobj_ns_type_register(&net_ns_type_operations); 2069 return class_register(&net_class); 2070 } 2071