xref: /linux/net/core/net-sysfs.c (revision e3617433c3da3d0859a4bc67f3f975e87f650ebf)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 
27 #include "net-sysfs.h"
28 
29 #ifdef CONFIG_SYSFS
30 static const char fmt_hex[] = "%#x\n";
31 static const char fmt_dec[] = "%d\n";
32 static const char fmt_ulong[] = "%lu\n";
33 static const char fmt_u64[] = "%llu\n";
34 
35 static inline int dev_isalive(const struct net_device *dev)
36 {
37 	return dev->reg_state <= NETREG_REGISTERED;
38 }
39 
40 /* use same locking rules as GIF* ioctl's */
41 static ssize_t netdev_show(const struct device *dev,
42 			   struct device_attribute *attr, char *buf,
43 			   ssize_t (*format)(const struct net_device *, char *))
44 {
45 	struct net_device *ndev = to_net_dev(dev);
46 	ssize_t ret = -EINVAL;
47 
48 	read_lock(&dev_base_lock);
49 	if (dev_isalive(ndev))
50 		ret = (*format)(ndev, buf);
51 	read_unlock(&dev_base_lock);
52 
53 	return ret;
54 }
55 
56 /* generate a show function for simple field */
57 #define NETDEVICE_SHOW(field, format_string)				\
58 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
59 {									\
60 	return sprintf(buf, format_string, dev->field);			\
61 }									\
62 static ssize_t field##_show(struct device *dev,				\
63 			    struct device_attribute *attr, char *buf)	\
64 {									\
65 	return netdev_show(dev, attr, buf, format_##field);		\
66 }									\
67 
68 #define NETDEVICE_SHOW_RO(field, format_string)				\
69 NETDEVICE_SHOW(field, format_string);					\
70 static DEVICE_ATTR_RO(field)
71 
72 #define NETDEVICE_SHOW_RW(field, format_string)				\
73 NETDEVICE_SHOW(field, format_string);					\
74 static DEVICE_ATTR_RW(field)
75 
76 /* use same locking and permission rules as SIF* ioctl's */
77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
78 			    const char *buf, size_t len,
79 			    int (*set)(struct net_device *, unsigned long))
80 {
81 	struct net_device *netdev = to_net_dev(dev);
82 	struct net *net = dev_net(netdev);
83 	unsigned long new;
84 	int ret;
85 
86 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
87 		return -EPERM;
88 
89 	ret = kstrtoul(buf, 0, &new);
90 	if (ret)
91 		goto err;
92 
93 	if (!rtnl_trylock())
94 		return restart_syscall();
95 
96 	if (dev_isalive(netdev)) {
97 		ret = (*set)(netdev, new);
98 		if (ret == 0)
99 			ret = len;
100 	}
101 	rtnl_unlock();
102  err:
103 	return ret;
104 }
105 
106 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
107 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
109 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
110 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
111 NETDEVICE_SHOW_RO(type, fmt_dec);
112 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
113 
114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
115 			   char *buf)
116 {
117 	struct net_device *ndev = to_net_dev(dev);
118 
119 	return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
120 }
121 static DEVICE_ATTR_RO(iflink);
122 
123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
124 {
125 	return sprintf(buf, fmt_dec, dev->name_assign_type);
126 }
127 
128 static ssize_t name_assign_type_show(struct device *dev,
129 				     struct device_attribute *attr,
130 				     char *buf)
131 {
132 	struct net_device *ndev = to_net_dev(dev);
133 	ssize_t ret = -EINVAL;
134 
135 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
136 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
137 
138 	return ret;
139 }
140 static DEVICE_ATTR_RO(name_assign_type);
141 
142 /* use same locking rules as GIFHWADDR ioctl's */
143 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
144 			    char *buf)
145 {
146 	struct net_device *ndev = to_net_dev(dev);
147 	ssize_t ret = -EINVAL;
148 
149 	read_lock(&dev_base_lock);
150 	if (dev_isalive(ndev))
151 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
152 	read_unlock(&dev_base_lock);
153 	return ret;
154 }
155 static DEVICE_ATTR_RO(address);
156 
157 static ssize_t broadcast_show(struct device *dev,
158 			      struct device_attribute *attr, char *buf)
159 {
160 	struct net_device *ndev = to_net_dev(dev);
161 
162 	if (dev_isalive(ndev))
163 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
164 	return -EINVAL;
165 }
166 static DEVICE_ATTR_RO(broadcast);
167 
168 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
169 {
170 	if (!netif_running(dev))
171 		return -EINVAL;
172 	return dev_change_carrier(dev, (bool)new_carrier);
173 }
174 
175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
176 			     const char *buf, size_t len)
177 {
178 	struct net_device *netdev = to_net_dev(dev);
179 
180 	/* The check is also done in change_carrier; this helps returning early
181 	 * without hitting the trylock/restart in netdev_store.
182 	 */
183 	if (!netdev->netdev_ops->ndo_change_carrier)
184 		return -EOPNOTSUPP;
185 
186 	return netdev_store(dev, attr, buf, len, change_carrier);
187 }
188 
189 static ssize_t carrier_show(struct device *dev,
190 			    struct device_attribute *attr, char *buf)
191 {
192 	struct net_device *netdev = to_net_dev(dev);
193 
194 	if (netif_running(netdev))
195 		return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
196 
197 	return -EINVAL;
198 }
199 static DEVICE_ATTR_RW(carrier);
200 
201 static ssize_t speed_show(struct device *dev,
202 			  struct device_attribute *attr, char *buf)
203 {
204 	struct net_device *netdev = to_net_dev(dev);
205 	int ret = -EINVAL;
206 
207 	/* The check is also done in __ethtool_get_link_ksettings; this helps
208 	 * returning early without hitting the trylock/restart below.
209 	 */
210 	if (!netdev->ethtool_ops->get_link_ksettings)
211 		return ret;
212 
213 	if (!rtnl_trylock())
214 		return restart_syscall();
215 
216 	if (netif_running(netdev)) {
217 		struct ethtool_link_ksettings cmd;
218 
219 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
220 			ret = sprintf(buf, fmt_dec, cmd.base.speed);
221 	}
222 	rtnl_unlock();
223 	return ret;
224 }
225 static DEVICE_ATTR_RO(speed);
226 
227 static ssize_t duplex_show(struct device *dev,
228 			   struct device_attribute *attr, char *buf)
229 {
230 	struct net_device *netdev = to_net_dev(dev);
231 	int ret = -EINVAL;
232 
233 	/* The check is also done in __ethtool_get_link_ksettings; this helps
234 	 * returning early without hitting the trylock/restart below.
235 	 */
236 	if (!netdev->ethtool_ops->get_link_ksettings)
237 		return ret;
238 
239 	if (!rtnl_trylock())
240 		return restart_syscall();
241 
242 	if (netif_running(netdev)) {
243 		struct ethtool_link_ksettings cmd;
244 
245 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
246 			const char *duplex;
247 
248 			switch (cmd.base.duplex) {
249 			case DUPLEX_HALF:
250 				duplex = "half";
251 				break;
252 			case DUPLEX_FULL:
253 				duplex = "full";
254 				break;
255 			default:
256 				duplex = "unknown";
257 				break;
258 			}
259 			ret = sprintf(buf, "%s\n", duplex);
260 		}
261 	}
262 	rtnl_unlock();
263 	return ret;
264 }
265 static DEVICE_ATTR_RO(duplex);
266 
267 static ssize_t testing_show(struct device *dev,
268 			    struct device_attribute *attr, char *buf)
269 {
270 	struct net_device *netdev = to_net_dev(dev);
271 
272 	if (netif_running(netdev))
273 		return sprintf(buf, fmt_dec, !!netif_testing(netdev));
274 
275 	return -EINVAL;
276 }
277 static DEVICE_ATTR_RO(testing);
278 
279 static ssize_t dormant_show(struct device *dev,
280 			    struct device_attribute *attr, char *buf)
281 {
282 	struct net_device *netdev = to_net_dev(dev);
283 
284 	if (netif_running(netdev))
285 		return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
286 
287 	return -EINVAL;
288 }
289 static DEVICE_ATTR_RO(dormant);
290 
291 static const char *const operstates[] = {
292 	"unknown",
293 	"notpresent", /* currently unused */
294 	"down",
295 	"lowerlayerdown",
296 	"testing",
297 	"dormant",
298 	"up"
299 };
300 
301 static ssize_t operstate_show(struct device *dev,
302 			      struct device_attribute *attr, char *buf)
303 {
304 	const struct net_device *netdev = to_net_dev(dev);
305 	unsigned char operstate;
306 
307 	read_lock(&dev_base_lock);
308 	operstate = netdev->operstate;
309 	if (!netif_running(netdev))
310 		operstate = IF_OPER_DOWN;
311 	read_unlock(&dev_base_lock);
312 
313 	if (operstate >= ARRAY_SIZE(operstates))
314 		return -EINVAL; /* should not happen */
315 
316 	return sprintf(buf, "%s\n", operstates[operstate]);
317 }
318 static DEVICE_ATTR_RO(operstate);
319 
320 static ssize_t carrier_changes_show(struct device *dev,
321 				    struct device_attribute *attr,
322 				    char *buf)
323 {
324 	struct net_device *netdev = to_net_dev(dev);
325 
326 	return sprintf(buf, fmt_dec,
327 		       atomic_read(&netdev->carrier_up_count) +
328 		       atomic_read(&netdev->carrier_down_count));
329 }
330 static DEVICE_ATTR_RO(carrier_changes);
331 
332 static ssize_t carrier_up_count_show(struct device *dev,
333 				     struct device_attribute *attr,
334 				     char *buf)
335 {
336 	struct net_device *netdev = to_net_dev(dev);
337 
338 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
339 }
340 static DEVICE_ATTR_RO(carrier_up_count);
341 
342 static ssize_t carrier_down_count_show(struct device *dev,
343 				       struct device_attribute *attr,
344 				       char *buf)
345 {
346 	struct net_device *netdev = to_net_dev(dev);
347 
348 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
349 }
350 static DEVICE_ATTR_RO(carrier_down_count);
351 
352 /* read-write attributes */
353 
354 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
355 {
356 	return dev_set_mtu(dev, (int)new_mtu);
357 }
358 
359 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
360 			 const char *buf, size_t len)
361 {
362 	return netdev_store(dev, attr, buf, len, change_mtu);
363 }
364 NETDEVICE_SHOW_RW(mtu, fmt_dec);
365 
366 static int change_flags(struct net_device *dev, unsigned long new_flags)
367 {
368 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
369 }
370 
371 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
372 			   const char *buf, size_t len)
373 {
374 	return netdev_store(dev, attr, buf, len, change_flags);
375 }
376 NETDEVICE_SHOW_RW(flags, fmt_hex);
377 
378 static ssize_t tx_queue_len_store(struct device *dev,
379 				  struct device_attribute *attr,
380 				  const char *buf, size_t len)
381 {
382 	if (!capable(CAP_NET_ADMIN))
383 		return -EPERM;
384 
385 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
386 }
387 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
388 
389 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
390 {
391 	WRITE_ONCE(dev->gro_flush_timeout, val);
392 	return 0;
393 }
394 
395 static ssize_t gro_flush_timeout_store(struct device *dev,
396 				       struct device_attribute *attr,
397 				       const char *buf, size_t len)
398 {
399 	if (!capable(CAP_NET_ADMIN))
400 		return -EPERM;
401 
402 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
403 }
404 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
405 
406 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
407 {
408 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
409 	return 0;
410 }
411 
412 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
413 					  struct device_attribute *attr,
414 					  const char *buf, size_t len)
415 {
416 	if (!capable(CAP_NET_ADMIN))
417 		return -EPERM;
418 
419 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
420 }
421 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
422 
423 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
424 			     const char *buf, size_t len)
425 {
426 	struct net_device *netdev = to_net_dev(dev);
427 	struct net *net = dev_net(netdev);
428 	size_t count = len;
429 	ssize_t ret = 0;
430 
431 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
432 		return -EPERM;
433 
434 	/* ignore trailing newline */
435 	if (len >  0 && buf[len - 1] == '\n')
436 		--count;
437 
438 	if (!rtnl_trylock())
439 		return restart_syscall();
440 
441 	if (dev_isalive(netdev)) {
442 		ret = dev_set_alias(netdev, buf, count);
443 		if (ret < 0)
444 			goto err;
445 		ret = len;
446 		netdev_state_change(netdev);
447 	}
448 err:
449 	rtnl_unlock();
450 
451 	return ret;
452 }
453 
454 static ssize_t ifalias_show(struct device *dev,
455 			    struct device_attribute *attr, char *buf)
456 {
457 	const struct net_device *netdev = to_net_dev(dev);
458 	char tmp[IFALIASZ];
459 	ssize_t ret = 0;
460 
461 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
462 	if (ret > 0)
463 		ret = sprintf(buf, "%s\n", tmp);
464 	return ret;
465 }
466 static DEVICE_ATTR_RW(ifalias);
467 
468 static int change_group(struct net_device *dev, unsigned long new_group)
469 {
470 	dev_set_group(dev, (int)new_group);
471 	return 0;
472 }
473 
474 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
475 			   const char *buf, size_t len)
476 {
477 	return netdev_store(dev, attr, buf, len, change_group);
478 }
479 NETDEVICE_SHOW(group, fmt_dec);
480 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
481 
482 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
483 {
484 	return dev_change_proto_down(dev, (bool)proto_down);
485 }
486 
487 static ssize_t proto_down_store(struct device *dev,
488 				struct device_attribute *attr,
489 				const char *buf, size_t len)
490 {
491 	struct net_device *netdev = to_net_dev(dev);
492 
493 	/* The check is also done in change_proto_down; this helps returning
494 	 * early without hitting the trylock/restart in netdev_store.
495 	 */
496 	if (!netdev->netdev_ops->ndo_change_proto_down)
497 		return -EOPNOTSUPP;
498 
499 	return netdev_store(dev, attr, buf, len, change_proto_down);
500 }
501 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
502 
503 static ssize_t phys_port_id_show(struct device *dev,
504 				 struct device_attribute *attr, char *buf)
505 {
506 	struct net_device *netdev = to_net_dev(dev);
507 	ssize_t ret = -EINVAL;
508 
509 	/* The check is also done in dev_get_phys_port_id; this helps returning
510 	 * early without hitting the trylock/restart below.
511 	 */
512 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
513 		return -EOPNOTSUPP;
514 
515 	if (!rtnl_trylock())
516 		return restart_syscall();
517 
518 	if (dev_isalive(netdev)) {
519 		struct netdev_phys_item_id ppid;
520 
521 		ret = dev_get_phys_port_id(netdev, &ppid);
522 		if (!ret)
523 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
524 	}
525 	rtnl_unlock();
526 
527 	return ret;
528 }
529 static DEVICE_ATTR_RO(phys_port_id);
530 
531 static ssize_t phys_port_name_show(struct device *dev,
532 				   struct device_attribute *attr, char *buf)
533 {
534 	struct net_device *netdev = to_net_dev(dev);
535 	ssize_t ret = -EINVAL;
536 
537 	/* The checks are also done in dev_get_phys_port_name; this helps
538 	 * returning early without hitting the trylock/restart below.
539 	 */
540 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
541 	    !netdev->netdev_ops->ndo_get_devlink_port)
542 		return -EOPNOTSUPP;
543 
544 	if (!rtnl_trylock())
545 		return restart_syscall();
546 
547 	if (dev_isalive(netdev)) {
548 		char name[IFNAMSIZ];
549 
550 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
551 		if (!ret)
552 			ret = sprintf(buf, "%s\n", name);
553 	}
554 	rtnl_unlock();
555 
556 	return ret;
557 }
558 static DEVICE_ATTR_RO(phys_port_name);
559 
560 static ssize_t phys_switch_id_show(struct device *dev,
561 				   struct device_attribute *attr, char *buf)
562 {
563 	struct net_device *netdev = to_net_dev(dev);
564 	ssize_t ret = -EINVAL;
565 
566 	/* The checks are also done in dev_get_phys_port_name; this helps
567 	 * returning early without hitting the trylock/restart below. This works
568 	 * because recurse is false when calling dev_get_port_parent_id.
569 	 */
570 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
571 	    !netdev->netdev_ops->ndo_get_devlink_port)
572 		return -EOPNOTSUPP;
573 
574 	if (!rtnl_trylock())
575 		return restart_syscall();
576 
577 	if (dev_isalive(netdev)) {
578 		struct netdev_phys_item_id ppid = { };
579 
580 		ret = dev_get_port_parent_id(netdev, &ppid, false);
581 		if (!ret)
582 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
583 	}
584 	rtnl_unlock();
585 
586 	return ret;
587 }
588 static DEVICE_ATTR_RO(phys_switch_id);
589 
590 static ssize_t threaded_show(struct device *dev,
591 			     struct device_attribute *attr, char *buf)
592 {
593 	struct net_device *netdev = to_net_dev(dev);
594 	ssize_t ret = -EINVAL;
595 
596 	if (!rtnl_trylock())
597 		return restart_syscall();
598 
599 	if (dev_isalive(netdev))
600 		ret = sprintf(buf, fmt_dec, netdev->threaded);
601 
602 	rtnl_unlock();
603 	return ret;
604 }
605 
606 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
607 {
608 	int ret;
609 
610 	if (list_empty(&dev->napi_list))
611 		return -EOPNOTSUPP;
612 
613 	if (val != 0 && val != 1)
614 		return -EOPNOTSUPP;
615 
616 	ret = dev_set_threaded(dev, val);
617 
618 	return ret;
619 }
620 
621 static ssize_t threaded_store(struct device *dev,
622 			      struct device_attribute *attr,
623 			      const char *buf, size_t len)
624 {
625 	return netdev_store(dev, attr, buf, len, modify_napi_threaded);
626 }
627 static DEVICE_ATTR_RW(threaded);
628 
629 static struct attribute *net_class_attrs[] __ro_after_init = {
630 	&dev_attr_netdev_group.attr,
631 	&dev_attr_type.attr,
632 	&dev_attr_dev_id.attr,
633 	&dev_attr_dev_port.attr,
634 	&dev_attr_iflink.attr,
635 	&dev_attr_ifindex.attr,
636 	&dev_attr_name_assign_type.attr,
637 	&dev_attr_addr_assign_type.attr,
638 	&dev_attr_addr_len.attr,
639 	&dev_attr_link_mode.attr,
640 	&dev_attr_address.attr,
641 	&dev_attr_broadcast.attr,
642 	&dev_attr_speed.attr,
643 	&dev_attr_duplex.attr,
644 	&dev_attr_dormant.attr,
645 	&dev_attr_testing.attr,
646 	&dev_attr_operstate.attr,
647 	&dev_attr_carrier_changes.attr,
648 	&dev_attr_ifalias.attr,
649 	&dev_attr_carrier.attr,
650 	&dev_attr_mtu.attr,
651 	&dev_attr_flags.attr,
652 	&dev_attr_tx_queue_len.attr,
653 	&dev_attr_gro_flush_timeout.attr,
654 	&dev_attr_napi_defer_hard_irqs.attr,
655 	&dev_attr_phys_port_id.attr,
656 	&dev_attr_phys_port_name.attr,
657 	&dev_attr_phys_switch_id.attr,
658 	&dev_attr_proto_down.attr,
659 	&dev_attr_carrier_up_count.attr,
660 	&dev_attr_carrier_down_count.attr,
661 	&dev_attr_threaded.attr,
662 	NULL,
663 };
664 ATTRIBUTE_GROUPS(net_class);
665 
666 /* Show a given an attribute in the statistics group */
667 static ssize_t netstat_show(const struct device *d,
668 			    struct device_attribute *attr, char *buf,
669 			    unsigned long offset)
670 {
671 	struct net_device *dev = to_net_dev(d);
672 	ssize_t ret = -EINVAL;
673 
674 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
675 		offset % sizeof(u64) != 0);
676 
677 	read_lock(&dev_base_lock);
678 	if (dev_isalive(dev)) {
679 		struct rtnl_link_stats64 temp;
680 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
681 
682 		ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
683 	}
684 	read_unlock(&dev_base_lock);
685 	return ret;
686 }
687 
688 /* generate a read-only statistics attribute */
689 #define NETSTAT_ENTRY(name)						\
690 static ssize_t name##_show(struct device *d,				\
691 			   struct device_attribute *attr, char *buf)	\
692 {									\
693 	return netstat_show(d, attr, buf,				\
694 			    offsetof(struct rtnl_link_stats64, name));	\
695 }									\
696 static DEVICE_ATTR_RO(name)
697 
698 NETSTAT_ENTRY(rx_packets);
699 NETSTAT_ENTRY(tx_packets);
700 NETSTAT_ENTRY(rx_bytes);
701 NETSTAT_ENTRY(tx_bytes);
702 NETSTAT_ENTRY(rx_errors);
703 NETSTAT_ENTRY(tx_errors);
704 NETSTAT_ENTRY(rx_dropped);
705 NETSTAT_ENTRY(tx_dropped);
706 NETSTAT_ENTRY(multicast);
707 NETSTAT_ENTRY(collisions);
708 NETSTAT_ENTRY(rx_length_errors);
709 NETSTAT_ENTRY(rx_over_errors);
710 NETSTAT_ENTRY(rx_crc_errors);
711 NETSTAT_ENTRY(rx_frame_errors);
712 NETSTAT_ENTRY(rx_fifo_errors);
713 NETSTAT_ENTRY(rx_missed_errors);
714 NETSTAT_ENTRY(tx_aborted_errors);
715 NETSTAT_ENTRY(tx_carrier_errors);
716 NETSTAT_ENTRY(tx_fifo_errors);
717 NETSTAT_ENTRY(tx_heartbeat_errors);
718 NETSTAT_ENTRY(tx_window_errors);
719 NETSTAT_ENTRY(rx_compressed);
720 NETSTAT_ENTRY(tx_compressed);
721 NETSTAT_ENTRY(rx_nohandler);
722 
723 static struct attribute *netstat_attrs[] __ro_after_init = {
724 	&dev_attr_rx_packets.attr,
725 	&dev_attr_tx_packets.attr,
726 	&dev_attr_rx_bytes.attr,
727 	&dev_attr_tx_bytes.attr,
728 	&dev_attr_rx_errors.attr,
729 	&dev_attr_tx_errors.attr,
730 	&dev_attr_rx_dropped.attr,
731 	&dev_attr_tx_dropped.attr,
732 	&dev_attr_multicast.attr,
733 	&dev_attr_collisions.attr,
734 	&dev_attr_rx_length_errors.attr,
735 	&dev_attr_rx_over_errors.attr,
736 	&dev_attr_rx_crc_errors.attr,
737 	&dev_attr_rx_frame_errors.attr,
738 	&dev_attr_rx_fifo_errors.attr,
739 	&dev_attr_rx_missed_errors.attr,
740 	&dev_attr_tx_aborted_errors.attr,
741 	&dev_attr_tx_carrier_errors.attr,
742 	&dev_attr_tx_fifo_errors.attr,
743 	&dev_attr_tx_heartbeat_errors.attr,
744 	&dev_attr_tx_window_errors.attr,
745 	&dev_attr_rx_compressed.attr,
746 	&dev_attr_tx_compressed.attr,
747 	&dev_attr_rx_nohandler.attr,
748 	NULL
749 };
750 
751 static const struct attribute_group netstat_group = {
752 	.name  = "statistics",
753 	.attrs  = netstat_attrs,
754 };
755 
756 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
757 static struct attribute *wireless_attrs[] = {
758 	NULL
759 };
760 
761 static const struct attribute_group wireless_group = {
762 	.name = "wireless",
763 	.attrs = wireless_attrs,
764 };
765 #endif
766 
767 #else /* CONFIG_SYSFS */
768 #define net_class_groups	NULL
769 #endif /* CONFIG_SYSFS */
770 
771 #ifdef CONFIG_SYSFS
772 #define to_rx_queue_attr(_attr) \
773 	container_of(_attr, struct rx_queue_attribute, attr)
774 
775 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
776 
777 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
778 				  char *buf)
779 {
780 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
781 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
782 
783 	if (!attribute->show)
784 		return -EIO;
785 
786 	return attribute->show(queue, buf);
787 }
788 
789 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
790 				   const char *buf, size_t count)
791 {
792 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
793 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
794 
795 	if (!attribute->store)
796 		return -EIO;
797 
798 	return attribute->store(queue, buf, count);
799 }
800 
801 static const struct sysfs_ops rx_queue_sysfs_ops = {
802 	.show = rx_queue_attr_show,
803 	.store = rx_queue_attr_store,
804 };
805 
806 #ifdef CONFIG_RPS
807 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
808 {
809 	struct rps_map *map;
810 	cpumask_var_t mask;
811 	int i, len;
812 
813 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
814 		return -ENOMEM;
815 
816 	rcu_read_lock();
817 	map = rcu_dereference(queue->rps_map);
818 	if (map)
819 		for (i = 0; i < map->len; i++)
820 			cpumask_set_cpu(map->cpus[i], mask);
821 
822 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
823 	rcu_read_unlock();
824 	free_cpumask_var(mask);
825 
826 	return len < PAGE_SIZE ? len : -EINVAL;
827 }
828 
829 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
830 			     const char *buf, size_t len)
831 {
832 	struct rps_map *old_map, *map;
833 	cpumask_var_t mask;
834 	int err, cpu, i, hk_flags;
835 	static DEFINE_MUTEX(rps_map_mutex);
836 
837 	if (!capable(CAP_NET_ADMIN))
838 		return -EPERM;
839 
840 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
841 		return -ENOMEM;
842 
843 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
844 	if (err) {
845 		free_cpumask_var(mask);
846 		return err;
847 	}
848 
849 	if (!cpumask_empty(mask)) {
850 		hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
851 		cpumask_and(mask, mask, housekeeping_cpumask(hk_flags));
852 		if (cpumask_empty(mask)) {
853 			free_cpumask_var(mask);
854 			return -EINVAL;
855 		}
856 	}
857 
858 	map = kzalloc(max_t(unsigned int,
859 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
860 		      GFP_KERNEL);
861 	if (!map) {
862 		free_cpumask_var(mask);
863 		return -ENOMEM;
864 	}
865 
866 	i = 0;
867 	for_each_cpu_and(cpu, mask, cpu_online_mask)
868 		map->cpus[i++] = cpu;
869 
870 	if (i) {
871 		map->len = i;
872 	} else {
873 		kfree(map);
874 		map = NULL;
875 	}
876 
877 	mutex_lock(&rps_map_mutex);
878 	old_map = rcu_dereference_protected(queue->rps_map,
879 					    mutex_is_locked(&rps_map_mutex));
880 	rcu_assign_pointer(queue->rps_map, map);
881 
882 	if (map)
883 		static_branch_inc(&rps_needed);
884 	if (old_map)
885 		static_branch_dec(&rps_needed);
886 
887 	mutex_unlock(&rps_map_mutex);
888 
889 	if (old_map)
890 		kfree_rcu(old_map, rcu);
891 
892 	free_cpumask_var(mask);
893 	return len;
894 }
895 
896 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
897 					   char *buf)
898 {
899 	struct rps_dev_flow_table *flow_table;
900 	unsigned long val = 0;
901 
902 	rcu_read_lock();
903 	flow_table = rcu_dereference(queue->rps_flow_table);
904 	if (flow_table)
905 		val = (unsigned long)flow_table->mask + 1;
906 	rcu_read_unlock();
907 
908 	return sprintf(buf, "%lu\n", val);
909 }
910 
911 static void rps_dev_flow_table_release(struct rcu_head *rcu)
912 {
913 	struct rps_dev_flow_table *table = container_of(rcu,
914 	    struct rps_dev_flow_table, rcu);
915 	vfree(table);
916 }
917 
918 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
919 					    const char *buf, size_t len)
920 {
921 	unsigned long mask, count;
922 	struct rps_dev_flow_table *table, *old_table;
923 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
924 	int rc;
925 
926 	if (!capable(CAP_NET_ADMIN))
927 		return -EPERM;
928 
929 	rc = kstrtoul(buf, 0, &count);
930 	if (rc < 0)
931 		return rc;
932 
933 	if (count) {
934 		mask = count - 1;
935 		/* mask = roundup_pow_of_two(count) - 1;
936 		 * without overflows...
937 		 */
938 		while ((mask | (mask >> 1)) != mask)
939 			mask |= (mask >> 1);
940 		/* On 64 bit arches, must check mask fits in table->mask (u32),
941 		 * and on 32bit arches, must check
942 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
943 		 */
944 #if BITS_PER_LONG > 32
945 		if (mask > (unsigned long)(u32)mask)
946 			return -EINVAL;
947 #else
948 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
949 				/ sizeof(struct rps_dev_flow)) {
950 			/* Enforce a limit to prevent overflow */
951 			return -EINVAL;
952 		}
953 #endif
954 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
955 		if (!table)
956 			return -ENOMEM;
957 
958 		table->mask = mask;
959 		for (count = 0; count <= mask; count++)
960 			table->flows[count].cpu = RPS_NO_CPU;
961 	} else {
962 		table = NULL;
963 	}
964 
965 	spin_lock(&rps_dev_flow_lock);
966 	old_table = rcu_dereference_protected(queue->rps_flow_table,
967 					      lockdep_is_held(&rps_dev_flow_lock));
968 	rcu_assign_pointer(queue->rps_flow_table, table);
969 	spin_unlock(&rps_dev_flow_lock);
970 
971 	if (old_table)
972 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
973 
974 	return len;
975 }
976 
977 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
978 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
979 
980 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
981 	= __ATTR(rps_flow_cnt, 0644,
982 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
983 #endif /* CONFIG_RPS */
984 
985 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
986 #ifdef CONFIG_RPS
987 	&rps_cpus_attribute.attr,
988 	&rps_dev_flow_table_cnt_attribute.attr,
989 #endif
990 	NULL
991 };
992 ATTRIBUTE_GROUPS(rx_queue_default);
993 
994 static void rx_queue_release(struct kobject *kobj)
995 {
996 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
997 #ifdef CONFIG_RPS
998 	struct rps_map *map;
999 	struct rps_dev_flow_table *flow_table;
1000 
1001 	map = rcu_dereference_protected(queue->rps_map, 1);
1002 	if (map) {
1003 		RCU_INIT_POINTER(queue->rps_map, NULL);
1004 		kfree_rcu(map, rcu);
1005 	}
1006 
1007 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1008 	if (flow_table) {
1009 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1010 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1011 	}
1012 #endif
1013 
1014 	memset(kobj, 0, sizeof(*kobj));
1015 	dev_put(queue->dev);
1016 }
1017 
1018 static const void *rx_queue_namespace(struct kobject *kobj)
1019 {
1020 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1021 	struct device *dev = &queue->dev->dev;
1022 	const void *ns = NULL;
1023 
1024 	if (dev->class && dev->class->ns_type)
1025 		ns = dev->class->namespace(dev);
1026 
1027 	return ns;
1028 }
1029 
1030 static void rx_queue_get_ownership(struct kobject *kobj,
1031 				   kuid_t *uid, kgid_t *gid)
1032 {
1033 	const struct net *net = rx_queue_namespace(kobj);
1034 
1035 	net_ns_get_ownership(net, uid, gid);
1036 }
1037 
1038 static struct kobj_type rx_queue_ktype __ro_after_init = {
1039 	.sysfs_ops = &rx_queue_sysfs_ops,
1040 	.release = rx_queue_release,
1041 	.default_groups = rx_queue_default_groups,
1042 	.namespace = rx_queue_namespace,
1043 	.get_ownership = rx_queue_get_ownership,
1044 };
1045 
1046 static int rx_queue_add_kobject(struct net_device *dev, int index)
1047 {
1048 	struct netdev_rx_queue *queue = dev->_rx + index;
1049 	struct kobject *kobj = &queue->kobj;
1050 	int error = 0;
1051 
1052 	/* Kobject_put later will trigger rx_queue_release call which
1053 	 * decreases dev refcount: Take that reference here
1054 	 */
1055 	dev_hold(queue->dev);
1056 
1057 	kobj->kset = dev->queues_kset;
1058 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1059 				     "rx-%u", index);
1060 	if (error)
1061 		goto err;
1062 
1063 	if (dev->sysfs_rx_queue_group) {
1064 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1065 		if (error)
1066 			goto err;
1067 	}
1068 
1069 	kobject_uevent(kobj, KOBJ_ADD);
1070 
1071 	return error;
1072 
1073 err:
1074 	kobject_put(kobj);
1075 	return error;
1076 }
1077 
1078 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1079 				 kgid_t kgid)
1080 {
1081 	struct netdev_rx_queue *queue = dev->_rx + index;
1082 	struct kobject *kobj = &queue->kobj;
1083 	int error;
1084 
1085 	error = sysfs_change_owner(kobj, kuid, kgid);
1086 	if (error)
1087 		return error;
1088 
1089 	if (dev->sysfs_rx_queue_group)
1090 		error = sysfs_group_change_owner(
1091 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1092 
1093 	return error;
1094 }
1095 #endif /* CONFIG_SYSFS */
1096 
1097 int
1098 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1099 {
1100 #ifdef CONFIG_SYSFS
1101 	int i;
1102 	int error = 0;
1103 
1104 #ifndef CONFIG_RPS
1105 	if (!dev->sysfs_rx_queue_group)
1106 		return 0;
1107 #endif
1108 	for (i = old_num; i < new_num; i++) {
1109 		error = rx_queue_add_kobject(dev, i);
1110 		if (error) {
1111 			new_num = old_num;
1112 			break;
1113 		}
1114 	}
1115 
1116 	while (--i >= new_num) {
1117 		struct kobject *kobj = &dev->_rx[i].kobj;
1118 
1119 		if (!refcount_read(&dev_net(dev)->ns.count))
1120 			kobj->uevent_suppress = 1;
1121 		if (dev->sysfs_rx_queue_group)
1122 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1123 		kobject_put(kobj);
1124 	}
1125 
1126 	return error;
1127 #else
1128 	return 0;
1129 #endif
1130 }
1131 
1132 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1133 				     kuid_t kuid, kgid_t kgid)
1134 {
1135 #ifdef CONFIG_SYSFS
1136 	int error = 0;
1137 	int i;
1138 
1139 #ifndef CONFIG_RPS
1140 	if (!dev->sysfs_rx_queue_group)
1141 		return 0;
1142 #endif
1143 	for (i = 0; i < num; i++) {
1144 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1145 		if (error)
1146 			break;
1147 	}
1148 
1149 	return error;
1150 #else
1151 	return 0;
1152 #endif
1153 }
1154 
1155 #ifdef CONFIG_SYSFS
1156 /*
1157  * netdev_queue sysfs structures and functions.
1158  */
1159 struct netdev_queue_attribute {
1160 	struct attribute attr;
1161 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1162 	ssize_t (*store)(struct netdev_queue *queue,
1163 			 const char *buf, size_t len);
1164 };
1165 #define to_netdev_queue_attr(_attr) \
1166 	container_of(_attr, struct netdev_queue_attribute, attr)
1167 
1168 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1169 
1170 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1171 				      struct attribute *attr, char *buf)
1172 {
1173 	const struct netdev_queue_attribute *attribute
1174 		= to_netdev_queue_attr(attr);
1175 	struct netdev_queue *queue = to_netdev_queue(kobj);
1176 
1177 	if (!attribute->show)
1178 		return -EIO;
1179 
1180 	return attribute->show(queue, buf);
1181 }
1182 
1183 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1184 				       struct attribute *attr,
1185 				       const char *buf, size_t count)
1186 {
1187 	const struct netdev_queue_attribute *attribute
1188 		= to_netdev_queue_attr(attr);
1189 	struct netdev_queue *queue = to_netdev_queue(kobj);
1190 
1191 	if (!attribute->store)
1192 		return -EIO;
1193 
1194 	return attribute->store(queue, buf, count);
1195 }
1196 
1197 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1198 	.show = netdev_queue_attr_show,
1199 	.store = netdev_queue_attr_store,
1200 };
1201 
1202 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1203 {
1204 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1205 
1206 	return sprintf(buf, fmt_ulong, trans_timeout);
1207 }
1208 
1209 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1210 {
1211 	struct net_device *dev = queue->dev;
1212 	unsigned int i;
1213 
1214 	i = queue - dev->_tx;
1215 	BUG_ON(i >= dev->num_tx_queues);
1216 
1217 	return i;
1218 }
1219 
1220 static ssize_t traffic_class_show(struct netdev_queue *queue,
1221 				  char *buf)
1222 {
1223 	struct net_device *dev = queue->dev;
1224 	int num_tc, tc;
1225 	int index;
1226 
1227 	if (!netif_is_multiqueue(dev))
1228 		return -ENOENT;
1229 
1230 	if (!rtnl_trylock())
1231 		return restart_syscall();
1232 
1233 	index = get_netdev_queue_index(queue);
1234 
1235 	/* If queue belongs to subordinate dev use its TC mapping */
1236 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1237 
1238 	num_tc = dev->num_tc;
1239 	tc = netdev_txq_to_tc(dev, index);
1240 
1241 	rtnl_unlock();
1242 
1243 	if (tc < 0)
1244 		return -EINVAL;
1245 
1246 	/* We can report the traffic class one of two ways:
1247 	 * Subordinate device traffic classes are reported with the traffic
1248 	 * class first, and then the subordinate class so for example TC0 on
1249 	 * subordinate device 2 will be reported as "0-2". If the queue
1250 	 * belongs to the root device it will be reported with just the
1251 	 * traffic class, so just "0" for TC 0 for example.
1252 	 */
1253 	return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) :
1254 			    sprintf(buf, "%d\n", tc);
1255 }
1256 
1257 #ifdef CONFIG_XPS
1258 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1259 			       char *buf)
1260 {
1261 	return sprintf(buf, "%lu\n", queue->tx_maxrate);
1262 }
1263 
1264 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1265 				const char *buf, size_t len)
1266 {
1267 	struct net_device *dev = queue->dev;
1268 	int err, index = get_netdev_queue_index(queue);
1269 	u32 rate = 0;
1270 
1271 	if (!capable(CAP_NET_ADMIN))
1272 		return -EPERM;
1273 
1274 	/* The check is also done later; this helps returning early without
1275 	 * hitting the trylock/restart below.
1276 	 */
1277 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1278 		return -EOPNOTSUPP;
1279 
1280 	err = kstrtou32(buf, 10, &rate);
1281 	if (err < 0)
1282 		return err;
1283 
1284 	if (!rtnl_trylock())
1285 		return restart_syscall();
1286 
1287 	err = -EOPNOTSUPP;
1288 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1289 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1290 
1291 	rtnl_unlock();
1292 	if (!err) {
1293 		queue->tx_maxrate = rate;
1294 		return len;
1295 	}
1296 	return err;
1297 }
1298 
1299 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1300 	= __ATTR_RW(tx_maxrate);
1301 #endif
1302 
1303 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1304 	= __ATTR_RO(tx_timeout);
1305 
1306 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1307 	= __ATTR_RO(traffic_class);
1308 
1309 #ifdef CONFIG_BQL
1310 /*
1311  * Byte queue limits sysfs structures and functions.
1312  */
1313 static ssize_t bql_show(char *buf, unsigned int value)
1314 {
1315 	return sprintf(buf, "%u\n", value);
1316 }
1317 
1318 static ssize_t bql_set(const char *buf, const size_t count,
1319 		       unsigned int *pvalue)
1320 {
1321 	unsigned int value;
1322 	int err;
1323 
1324 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1325 		value = DQL_MAX_LIMIT;
1326 	} else {
1327 		err = kstrtouint(buf, 10, &value);
1328 		if (err < 0)
1329 			return err;
1330 		if (value > DQL_MAX_LIMIT)
1331 			return -EINVAL;
1332 	}
1333 
1334 	*pvalue = value;
1335 
1336 	return count;
1337 }
1338 
1339 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1340 				  char *buf)
1341 {
1342 	struct dql *dql = &queue->dql;
1343 
1344 	return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1345 }
1346 
1347 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1348 				 const char *buf, size_t len)
1349 {
1350 	struct dql *dql = &queue->dql;
1351 	unsigned int value;
1352 	int err;
1353 
1354 	err = kstrtouint(buf, 10, &value);
1355 	if (err < 0)
1356 		return err;
1357 
1358 	dql->slack_hold_time = msecs_to_jiffies(value);
1359 
1360 	return len;
1361 }
1362 
1363 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1364 	= __ATTR(hold_time, 0644,
1365 		 bql_show_hold_time, bql_set_hold_time);
1366 
1367 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1368 				 char *buf)
1369 {
1370 	struct dql *dql = &queue->dql;
1371 
1372 	return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1373 }
1374 
1375 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1376 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1377 
1378 #define BQL_ATTR(NAME, FIELD)						\
1379 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1380 				 char *buf)				\
1381 {									\
1382 	return bql_show(buf, queue->dql.FIELD);				\
1383 }									\
1384 									\
1385 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1386 				const char *buf, size_t len)		\
1387 {									\
1388 	return bql_set(buf, len, &queue->dql.FIELD);			\
1389 }									\
1390 									\
1391 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1392 	= __ATTR(NAME, 0644,				\
1393 		 bql_show_ ## NAME, bql_set_ ## NAME)
1394 
1395 BQL_ATTR(limit, limit);
1396 BQL_ATTR(limit_max, max_limit);
1397 BQL_ATTR(limit_min, min_limit);
1398 
1399 static struct attribute *dql_attrs[] __ro_after_init = {
1400 	&bql_limit_attribute.attr,
1401 	&bql_limit_max_attribute.attr,
1402 	&bql_limit_min_attribute.attr,
1403 	&bql_hold_time_attribute.attr,
1404 	&bql_inflight_attribute.attr,
1405 	NULL
1406 };
1407 
1408 static const struct attribute_group dql_group = {
1409 	.name  = "byte_queue_limits",
1410 	.attrs  = dql_attrs,
1411 };
1412 #endif /* CONFIG_BQL */
1413 
1414 #ifdef CONFIG_XPS
1415 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1416 			      int tc, char *buf, enum xps_map_type type)
1417 {
1418 	struct xps_dev_maps *dev_maps;
1419 	unsigned long *mask;
1420 	unsigned int nr_ids;
1421 	int j, len;
1422 
1423 	rcu_read_lock();
1424 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1425 
1426 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1427 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1428 	 */
1429 	nr_ids = dev_maps ? dev_maps->nr_ids :
1430 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1431 
1432 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1433 	if (!mask) {
1434 		rcu_read_unlock();
1435 		return -ENOMEM;
1436 	}
1437 
1438 	if (!dev_maps || tc >= dev_maps->num_tc)
1439 		goto out_no_maps;
1440 
1441 	for (j = 0; j < nr_ids; j++) {
1442 		int i, tci = j * dev_maps->num_tc + tc;
1443 		struct xps_map *map;
1444 
1445 		map = rcu_dereference(dev_maps->attr_map[tci]);
1446 		if (!map)
1447 			continue;
1448 
1449 		for (i = map->len; i--;) {
1450 			if (map->queues[i] == index) {
1451 				set_bit(j, mask);
1452 				break;
1453 			}
1454 		}
1455 	}
1456 out_no_maps:
1457 	rcu_read_unlock();
1458 
1459 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1460 	bitmap_free(mask);
1461 
1462 	return len < PAGE_SIZE ? len : -EINVAL;
1463 }
1464 
1465 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1466 {
1467 	struct net_device *dev = queue->dev;
1468 	unsigned int index;
1469 	int len, tc;
1470 
1471 	if (!netif_is_multiqueue(dev))
1472 		return -ENOENT;
1473 
1474 	index = get_netdev_queue_index(queue);
1475 
1476 	if (!rtnl_trylock())
1477 		return restart_syscall();
1478 
1479 	/* If queue belongs to subordinate dev use its map */
1480 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1481 
1482 	tc = netdev_txq_to_tc(dev, index);
1483 	if (tc < 0) {
1484 		rtnl_unlock();
1485 		return -EINVAL;
1486 	}
1487 
1488 	/* Make sure the subordinate device can't be freed */
1489 	get_device(&dev->dev);
1490 	rtnl_unlock();
1491 
1492 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1493 
1494 	put_device(&dev->dev);
1495 	return len;
1496 }
1497 
1498 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1499 			      const char *buf, size_t len)
1500 {
1501 	struct net_device *dev = queue->dev;
1502 	unsigned int index;
1503 	cpumask_var_t mask;
1504 	int err;
1505 
1506 	if (!netif_is_multiqueue(dev))
1507 		return -ENOENT;
1508 
1509 	if (!capable(CAP_NET_ADMIN))
1510 		return -EPERM;
1511 
1512 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1513 		return -ENOMEM;
1514 
1515 	index = get_netdev_queue_index(queue);
1516 
1517 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1518 	if (err) {
1519 		free_cpumask_var(mask);
1520 		return err;
1521 	}
1522 
1523 	if (!rtnl_trylock()) {
1524 		free_cpumask_var(mask);
1525 		return restart_syscall();
1526 	}
1527 
1528 	err = netif_set_xps_queue(dev, mask, index);
1529 	rtnl_unlock();
1530 
1531 	free_cpumask_var(mask);
1532 
1533 	return err ? : len;
1534 }
1535 
1536 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1537 	= __ATTR_RW(xps_cpus);
1538 
1539 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1540 {
1541 	struct net_device *dev = queue->dev;
1542 	unsigned int index;
1543 	int tc;
1544 
1545 	index = get_netdev_queue_index(queue);
1546 
1547 	if (!rtnl_trylock())
1548 		return restart_syscall();
1549 
1550 	tc = netdev_txq_to_tc(dev, index);
1551 	rtnl_unlock();
1552 	if (tc < 0)
1553 		return -EINVAL;
1554 
1555 	return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1556 }
1557 
1558 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1559 			      size_t len)
1560 {
1561 	struct net_device *dev = queue->dev;
1562 	struct net *net = dev_net(dev);
1563 	unsigned long *mask;
1564 	unsigned int index;
1565 	int err;
1566 
1567 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1568 		return -EPERM;
1569 
1570 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1571 	if (!mask)
1572 		return -ENOMEM;
1573 
1574 	index = get_netdev_queue_index(queue);
1575 
1576 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1577 	if (err) {
1578 		bitmap_free(mask);
1579 		return err;
1580 	}
1581 
1582 	if (!rtnl_trylock()) {
1583 		bitmap_free(mask);
1584 		return restart_syscall();
1585 	}
1586 
1587 	cpus_read_lock();
1588 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1589 	cpus_read_unlock();
1590 
1591 	rtnl_unlock();
1592 
1593 	bitmap_free(mask);
1594 	return err ? : len;
1595 }
1596 
1597 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1598 	= __ATTR_RW(xps_rxqs);
1599 #endif /* CONFIG_XPS */
1600 
1601 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1602 	&queue_trans_timeout.attr,
1603 	&queue_traffic_class.attr,
1604 #ifdef CONFIG_XPS
1605 	&xps_cpus_attribute.attr,
1606 	&xps_rxqs_attribute.attr,
1607 	&queue_tx_maxrate.attr,
1608 #endif
1609 	NULL
1610 };
1611 ATTRIBUTE_GROUPS(netdev_queue_default);
1612 
1613 static void netdev_queue_release(struct kobject *kobj)
1614 {
1615 	struct netdev_queue *queue = to_netdev_queue(kobj);
1616 
1617 	memset(kobj, 0, sizeof(*kobj));
1618 	dev_put(queue->dev);
1619 }
1620 
1621 static const void *netdev_queue_namespace(struct kobject *kobj)
1622 {
1623 	struct netdev_queue *queue = to_netdev_queue(kobj);
1624 	struct device *dev = &queue->dev->dev;
1625 	const void *ns = NULL;
1626 
1627 	if (dev->class && dev->class->ns_type)
1628 		ns = dev->class->namespace(dev);
1629 
1630 	return ns;
1631 }
1632 
1633 static void netdev_queue_get_ownership(struct kobject *kobj,
1634 				       kuid_t *uid, kgid_t *gid)
1635 {
1636 	const struct net *net = netdev_queue_namespace(kobj);
1637 
1638 	net_ns_get_ownership(net, uid, gid);
1639 }
1640 
1641 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1642 	.sysfs_ops = &netdev_queue_sysfs_ops,
1643 	.release = netdev_queue_release,
1644 	.default_groups = netdev_queue_default_groups,
1645 	.namespace = netdev_queue_namespace,
1646 	.get_ownership = netdev_queue_get_ownership,
1647 };
1648 
1649 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1650 {
1651 	struct netdev_queue *queue = dev->_tx + index;
1652 	struct kobject *kobj = &queue->kobj;
1653 	int error = 0;
1654 
1655 	/* Kobject_put later will trigger netdev_queue_release call
1656 	 * which decreases dev refcount: Take that reference here
1657 	 */
1658 	dev_hold(queue->dev);
1659 
1660 	kobj->kset = dev->queues_kset;
1661 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1662 				     "tx-%u", index);
1663 	if (error)
1664 		goto err;
1665 
1666 #ifdef CONFIG_BQL
1667 	error = sysfs_create_group(kobj, &dql_group);
1668 	if (error)
1669 		goto err;
1670 #endif
1671 
1672 	kobject_uevent(kobj, KOBJ_ADD);
1673 	return 0;
1674 
1675 err:
1676 	kobject_put(kobj);
1677 	return error;
1678 }
1679 
1680 static int tx_queue_change_owner(struct net_device *ndev, int index,
1681 				 kuid_t kuid, kgid_t kgid)
1682 {
1683 	struct netdev_queue *queue = ndev->_tx + index;
1684 	struct kobject *kobj = &queue->kobj;
1685 	int error;
1686 
1687 	error = sysfs_change_owner(kobj, kuid, kgid);
1688 	if (error)
1689 		return error;
1690 
1691 #ifdef CONFIG_BQL
1692 	error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1693 #endif
1694 	return error;
1695 }
1696 #endif /* CONFIG_SYSFS */
1697 
1698 int
1699 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1700 {
1701 #ifdef CONFIG_SYSFS
1702 	int i;
1703 	int error = 0;
1704 
1705 	for (i = old_num; i < new_num; i++) {
1706 		error = netdev_queue_add_kobject(dev, i);
1707 		if (error) {
1708 			new_num = old_num;
1709 			break;
1710 		}
1711 	}
1712 
1713 	while (--i >= new_num) {
1714 		struct netdev_queue *queue = dev->_tx + i;
1715 
1716 		if (!refcount_read(&dev_net(dev)->ns.count))
1717 			queue->kobj.uevent_suppress = 1;
1718 #ifdef CONFIG_BQL
1719 		sysfs_remove_group(&queue->kobj, &dql_group);
1720 #endif
1721 		kobject_put(&queue->kobj);
1722 	}
1723 
1724 	return error;
1725 #else
1726 	return 0;
1727 #endif /* CONFIG_SYSFS */
1728 }
1729 
1730 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1731 				     kuid_t kuid, kgid_t kgid)
1732 {
1733 #ifdef CONFIG_SYSFS
1734 	int error = 0;
1735 	int i;
1736 
1737 	for (i = 0; i < num; i++) {
1738 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1739 		if (error)
1740 			break;
1741 	}
1742 
1743 	return error;
1744 #else
1745 	return 0;
1746 #endif /* CONFIG_SYSFS */
1747 }
1748 
1749 static int register_queue_kobjects(struct net_device *dev)
1750 {
1751 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1752 
1753 #ifdef CONFIG_SYSFS
1754 	dev->queues_kset = kset_create_and_add("queues",
1755 					       NULL, &dev->dev.kobj);
1756 	if (!dev->queues_kset)
1757 		return -ENOMEM;
1758 	real_rx = dev->real_num_rx_queues;
1759 #endif
1760 	real_tx = dev->real_num_tx_queues;
1761 
1762 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1763 	if (error)
1764 		goto error;
1765 	rxq = real_rx;
1766 
1767 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1768 	if (error)
1769 		goto error;
1770 	txq = real_tx;
1771 
1772 	return 0;
1773 
1774 error:
1775 	netdev_queue_update_kobjects(dev, txq, 0);
1776 	net_rx_queue_update_kobjects(dev, rxq, 0);
1777 #ifdef CONFIG_SYSFS
1778 	kset_unregister(dev->queues_kset);
1779 #endif
1780 	return error;
1781 }
1782 
1783 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1784 {
1785 	int error = 0, real_rx = 0, real_tx = 0;
1786 
1787 #ifdef CONFIG_SYSFS
1788 	if (ndev->queues_kset) {
1789 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1790 		if (error)
1791 			return error;
1792 	}
1793 	real_rx = ndev->real_num_rx_queues;
1794 #endif
1795 	real_tx = ndev->real_num_tx_queues;
1796 
1797 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1798 	if (error)
1799 		return error;
1800 
1801 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1802 	if (error)
1803 		return error;
1804 
1805 	return 0;
1806 }
1807 
1808 static void remove_queue_kobjects(struct net_device *dev)
1809 {
1810 	int real_rx = 0, real_tx = 0;
1811 
1812 #ifdef CONFIG_SYSFS
1813 	real_rx = dev->real_num_rx_queues;
1814 #endif
1815 	real_tx = dev->real_num_tx_queues;
1816 
1817 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1818 	netdev_queue_update_kobjects(dev, real_tx, 0);
1819 #ifdef CONFIG_SYSFS
1820 	kset_unregister(dev->queues_kset);
1821 #endif
1822 }
1823 
1824 static bool net_current_may_mount(void)
1825 {
1826 	struct net *net = current->nsproxy->net_ns;
1827 
1828 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1829 }
1830 
1831 static void *net_grab_current_ns(void)
1832 {
1833 	struct net *ns = current->nsproxy->net_ns;
1834 #ifdef CONFIG_NET_NS
1835 	if (ns)
1836 		refcount_inc(&ns->passive);
1837 #endif
1838 	return ns;
1839 }
1840 
1841 static const void *net_initial_ns(void)
1842 {
1843 	return &init_net;
1844 }
1845 
1846 static const void *net_netlink_ns(struct sock *sk)
1847 {
1848 	return sock_net(sk);
1849 }
1850 
1851 const struct kobj_ns_type_operations net_ns_type_operations = {
1852 	.type = KOBJ_NS_TYPE_NET,
1853 	.current_may_mount = net_current_may_mount,
1854 	.grab_current_ns = net_grab_current_ns,
1855 	.netlink_ns = net_netlink_ns,
1856 	.initial_ns = net_initial_ns,
1857 	.drop_ns = net_drop_ns,
1858 };
1859 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1860 
1861 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1862 {
1863 	struct net_device *dev = to_net_dev(d);
1864 	int retval;
1865 
1866 	/* pass interface to uevent. */
1867 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1868 	if (retval)
1869 		goto exit;
1870 
1871 	/* pass ifindex to uevent.
1872 	 * ifindex is useful as it won't change (interface name may change)
1873 	 * and is what RtNetlink uses natively.
1874 	 */
1875 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1876 
1877 exit:
1878 	return retval;
1879 }
1880 
1881 /*
1882  *	netdev_release -- destroy and free a dead device.
1883  *	Called when last reference to device kobject is gone.
1884  */
1885 static void netdev_release(struct device *d)
1886 {
1887 	struct net_device *dev = to_net_dev(d);
1888 
1889 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1890 
1891 	/* no need to wait for rcu grace period:
1892 	 * device is dead and about to be freed.
1893 	 */
1894 	kfree(rcu_access_pointer(dev->ifalias));
1895 	netdev_freemem(dev);
1896 }
1897 
1898 static const void *net_namespace(struct device *d)
1899 {
1900 	struct net_device *dev = to_net_dev(d);
1901 
1902 	return dev_net(dev);
1903 }
1904 
1905 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1906 {
1907 	struct net_device *dev = to_net_dev(d);
1908 	const struct net *net = dev_net(dev);
1909 
1910 	net_ns_get_ownership(net, uid, gid);
1911 }
1912 
1913 static struct class net_class __ro_after_init = {
1914 	.name = "net",
1915 	.dev_release = netdev_release,
1916 	.dev_groups = net_class_groups,
1917 	.dev_uevent = netdev_uevent,
1918 	.ns_type = &net_ns_type_operations,
1919 	.namespace = net_namespace,
1920 	.get_ownership = net_get_ownership,
1921 };
1922 
1923 #ifdef CONFIG_OF
1924 static int of_dev_node_match(struct device *dev, const void *data)
1925 {
1926 	for (; dev; dev = dev->parent) {
1927 		if (dev->of_node == data)
1928 			return 1;
1929 	}
1930 
1931 	return 0;
1932 }
1933 
1934 /*
1935  * of_find_net_device_by_node - lookup the net device for the device node
1936  * @np: OF device node
1937  *
1938  * Looks up the net_device structure corresponding with the device node.
1939  * If successful, returns a pointer to the net_device with the embedded
1940  * struct device refcount incremented by one, or NULL on failure. The
1941  * refcount must be dropped when done with the net_device.
1942  */
1943 struct net_device *of_find_net_device_by_node(struct device_node *np)
1944 {
1945 	struct device *dev;
1946 
1947 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1948 	if (!dev)
1949 		return NULL;
1950 
1951 	return to_net_dev(dev);
1952 }
1953 EXPORT_SYMBOL(of_find_net_device_by_node);
1954 #endif
1955 
1956 /* Delete sysfs entries but hold kobject reference until after all
1957  * netdev references are gone.
1958  */
1959 void netdev_unregister_kobject(struct net_device *ndev)
1960 {
1961 	struct device *dev = &ndev->dev;
1962 
1963 	if (!refcount_read(&dev_net(ndev)->ns.count))
1964 		dev_set_uevent_suppress(dev, 1);
1965 
1966 	kobject_get(&dev->kobj);
1967 
1968 	remove_queue_kobjects(ndev);
1969 
1970 	pm_runtime_set_memalloc_noio(dev, false);
1971 
1972 	device_del(dev);
1973 }
1974 
1975 /* Create sysfs entries for network device. */
1976 int netdev_register_kobject(struct net_device *ndev)
1977 {
1978 	struct device *dev = &ndev->dev;
1979 	const struct attribute_group **groups = ndev->sysfs_groups;
1980 	int error = 0;
1981 
1982 	device_initialize(dev);
1983 	dev->class = &net_class;
1984 	dev->platform_data = ndev;
1985 	dev->groups = groups;
1986 
1987 	dev_set_name(dev, "%s", ndev->name);
1988 
1989 #ifdef CONFIG_SYSFS
1990 	/* Allow for a device specific group */
1991 	if (*groups)
1992 		groups++;
1993 
1994 	*groups++ = &netstat_group;
1995 
1996 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1997 	if (ndev->ieee80211_ptr)
1998 		*groups++ = &wireless_group;
1999 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
2000 	else if (ndev->wireless_handlers)
2001 		*groups++ = &wireless_group;
2002 #endif
2003 #endif
2004 #endif /* CONFIG_SYSFS */
2005 
2006 	error = device_add(dev);
2007 	if (error)
2008 		return error;
2009 
2010 	error = register_queue_kobjects(ndev);
2011 	if (error) {
2012 		device_del(dev);
2013 		return error;
2014 	}
2015 
2016 	pm_runtime_set_memalloc_noio(dev, true);
2017 
2018 	return error;
2019 }
2020 
2021 /* Change owner for sysfs entries when moving network devices across network
2022  * namespaces owned by different user namespaces.
2023  */
2024 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2025 			const struct net *net_new)
2026 {
2027 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2028 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2029 	struct device *dev = &ndev->dev;
2030 	int error;
2031 
2032 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2033 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2034 
2035 	/* The network namespace was changed but the owning user namespace is
2036 	 * identical so there's no need to change the owner of sysfs entries.
2037 	 */
2038 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2039 		return 0;
2040 
2041 	error = device_change_owner(dev, new_uid, new_gid);
2042 	if (error)
2043 		return error;
2044 
2045 	error = queue_change_owner(ndev, new_uid, new_gid);
2046 	if (error)
2047 		return error;
2048 
2049 	return 0;
2050 }
2051 
2052 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2053 				const void *ns)
2054 {
2055 	return class_create_file_ns(&net_class, class_attr, ns);
2056 }
2057 EXPORT_SYMBOL(netdev_class_create_file_ns);
2058 
2059 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2060 				 const void *ns)
2061 {
2062 	class_remove_file_ns(&net_class, class_attr, ns);
2063 }
2064 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2065 
2066 int __init netdev_kobject_init(void)
2067 {
2068 	kobj_ns_type_register(&net_ns_type_operations);
2069 	return class_register(&net_class);
2070 }
2071