xref: /linux/net/core/net-sysfs.c (revision d1e879ec600f9b3bdd253167533959facfefb17b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_rx_queue.h>
27 #include <net/rps.h>
28 
29 #include "dev.h"
30 #include "net-sysfs.h"
31 
32 #ifdef CONFIG_SYSFS
33 static const char fmt_hex[] = "%#x\n";
34 static const char fmt_dec[] = "%d\n";
35 static const char fmt_uint[] = "%u\n";
36 static const char fmt_ulong[] = "%lu\n";
37 static const char fmt_u64[] = "%llu\n";
38 
39 /* Caller holds RTNL, netdev->lock or RCU */
40 static inline int dev_isalive(const struct net_device *dev)
41 {
42 	return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
43 }
44 
45 /* There is a possible ABBA deadlock between rtnl_lock and kernfs_node->active,
46  * when unregistering a net device and accessing associated sysfs files. The
47  * potential deadlock is as follow:
48  *
49  *         CPU 0                                         CPU 1
50  *
51  *    rtnl_lock                                   vfs_read
52  *    unregister_netdevice_many                   kernfs_seq_start
53  *    device_del / kobject_put                      kernfs_get_active (kn->active++)
54  *    kernfs_drain                                sysfs_kf_seq_show
55  *    wait_event(                                 rtnl_lock
56  *       kn->active == KN_DEACTIVATED_BIAS)       -> waits on CPU 0 to release
57  *    -> waits on CPU 1 to decrease kn->active       the rtnl lock.
58  *
59  * The historical fix was to use rtnl_trylock with restart_syscall to bail out
60  * of sysfs operations when the lock couldn't be taken. This fixed the above
61  * issue as it allowed CPU 1 to bail out of the ABBA situation.
62  *
63  * But it came with performances issues, as syscalls are being restarted in
64  * loops when there was contention on the rtnl lock, with huge slow downs in
65  * specific scenarios (e.g. lots of virtual interfaces created and userspace
66  * daemons querying their attributes).
67  *
68  * The idea below is to bail out of the active kernfs_node protection
69  * (kn->active) while trying to take the rtnl lock.
70  *
71  * This replaces rtnl_lock() and still has to be used with rtnl_unlock(). The
72  * net device is guaranteed to be alive if this returns successfully.
73  */
74 static int sysfs_rtnl_lock(struct kobject *kobj, struct attribute *attr,
75 			   struct net_device *ndev)
76 {
77 	struct kernfs_node *kn;
78 	int ret = 0;
79 
80 	/* First, we hold a reference to the net device as the unregistration
81 	 * path might run in parallel. This will ensure the net device and the
82 	 * associated sysfs objects won't be freed while we try to take the rtnl
83 	 * lock.
84 	 */
85 	dev_hold(ndev);
86 	/* sysfs_break_active_protection was introduced to allow self-removal of
87 	 * devices and their associated sysfs files by bailing out of the
88 	 * sysfs/kernfs protection. We do this here to allow the unregistration
89 	 * path to complete in parallel. The following takes a reference on the
90 	 * kobject and the kernfs_node being accessed.
91 	 *
92 	 * This works because we hold a reference onto the net device and the
93 	 * unregistration path will wait for us eventually in netdev_run_todo
94 	 * (outside an rtnl lock section).
95 	 */
96 	kn = sysfs_break_active_protection(kobj, attr);
97 	/* We can now try to take the rtnl lock. This can't deadlock us as the
98 	 * unregistration path is able to drain sysfs files (kernfs_node) thanks
99 	 * to the above dance.
100 	 */
101 	if (rtnl_lock_interruptible()) {
102 		ret = -ERESTARTSYS;
103 		goto unbreak;
104 	}
105 	/* Check dismantle on the device hasn't started, otherwise deny the
106 	 * operation.
107 	 */
108 	if (!dev_isalive(ndev)) {
109 		rtnl_unlock();
110 		ret = -ENODEV;
111 		goto unbreak;
112 	}
113 	/* We are now sure the device dismantle hasn't started nor that it can
114 	 * start before we exit the locking section as we hold the rtnl lock.
115 	 * There's no need to keep unbreaking the sysfs protection nor to hold
116 	 * a net device reference from that point; that was only needed to take
117 	 * the rtnl lock.
118 	 */
119 unbreak:
120 	sysfs_unbreak_active_protection(kn);
121 	dev_put(ndev);
122 
123 	return ret;
124 }
125 
126 /* use same locking rules as GIF* ioctl's */
127 static ssize_t netdev_show(const struct device *dev,
128 			   struct device_attribute *attr, char *buf,
129 			   ssize_t (*format)(const struct net_device *, char *))
130 {
131 	struct net_device *ndev = to_net_dev(dev);
132 	ssize_t ret = -EINVAL;
133 
134 	rcu_read_lock();
135 	if (dev_isalive(ndev))
136 		ret = (*format)(ndev, buf);
137 	rcu_read_unlock();
138 
139 	return ret;
140 }
141 
142 /* generate a show function for simple field */
143 #define NETDEVICE_SHOW(field, format_string)				\
144 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
145 {									\
146 	return sysfs_emit(buf, format_string, READ_ONCE(dev->field));		\
147 }									\
148 static ssize_t field##_show(struct device *dev,				\
149 			    struct device_attribute *attr, char *buf)	\
150 {									\
151 	return netdev_show(dev, attr, buf, format_##field);		\
152 }									\
153 
154 #define NETDEVICE_SHOW_RO(field, format_string)				\
155 NETDEVICE_SHOW(field, format_string);					\
156 static DEVICE_ATTR_RO(field)
157 
158 #define NETDEVICE_SHOW_RW(field, format_string)				\
159 NETDEVICE_SHOW(field, format_string);					\
160 static DEVICE_ATTR_RW(field)
161 
162 /* use same locking and permission rules as SIF* ioctl's */
163 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
164 			    const char *buf, size_t len,
165 			    int (*set)(struct net_device *, unsigned long))
166 {
167 	struct net_device *netdev = to_net_dev(dev);
168 	struct net *net = dev_net(netdev);
169 	unsigned long new;
170 	int ret;
171 
172 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
173 		return -EPERM;
174 
175 	ret = kstrtoul(buf, 0, &new);
176 	if (ret)
177 		goto err;
178 
179 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
180 	if (ret)
181 		goto err;
182 
183 	ret = (*set)(netdev, new);
184 	if (ret == 0)
185 		ret = len;
186 
187 	rtnl_unlock();
188  err:
189 	return ret;
190 }
191 
192 /* Same as netdev_store() but takes netdev_lock() instead of rtnl_lock() */
193 static ssize_t
194 netdev_lock_store(struct device *dev, struct device_attribute *attr,
195 		  const char *buf, size_t len,
196 		  int (*set)(struct net_device *, unsigned long))
197 {
198 	struct net_device *netdev = to_net_dev(dev);
199 	struct net *net = dev_net(netdev);
200 	unsigned long new;
201 	int ret;
202 
203 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
204 		return -EPERM;
205 
206 	ret = kstrtoul(buf, 0, &new);
207 	if (ret)
208 		return ret;
209 
210 	netdev_lock(netdev);
211 
212 	if (dev_isalive(netdev)) {
213 		ret = (*set)(netdev, new);
214 		if (ret == 0)
215 			ret = len;
216 	}
217 	netdev_unlock(netdev);
218 
219 	return ret;
220 }
221 
222 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
223 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
224 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
225 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
226 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
227 NETDEVICE_SHOW_RO(type, fmt_dec);
228 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
229 
230 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
231 			   char *buf)
232 {
233 	struct net_device *ndev = to_net_dev(dev);
234 
235 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
236 }
237 static DEVICE_ATTR_RO(iflink);
238 
239 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
240 {
241 	return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
242 }
243 
244 static ssize_t name_assign_type_show(struct device *dev,
245 				     struct device_attribute *attr,
246 				     char *buf)
247 {
248 	struct net_device *ndev = to_net_dev(dev);
249 	ssize_t ret = -EINVAL;
250 
251 	if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
252 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
253 
254 	return ret;
255 }
256 static DEVICE_ATTR_RO(name_assign_type);
257 
258 /* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */
259 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
260 			    char *buf)
261 {
262 	struct net_device *ndev = to_net_dev(dev);
263 	ssize_t ret = -EINVAL;
264 
265 	down_read(&dev_addr_sem);
266 
267 	rcu_read_lock();
268 	if (dev_isalive(ndev))
269 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
270 	rcu_read_unlock();
271 
272 	up_read(&dev_addr_sem);
273 	return ret;
274 }
275 static DEVICE_ATTR_RO(address);
276 
277 static ssize_t broadcast_show(struct device *dev,
278 			      struct device_attribute *attr, char *buf)
279 {
280 	struct net_device *ndev = to_net_dev(dev);
281 	int ret = -EINVAL;
282 
283 	rcu_read_lock();
284 	if (dev_isalive(ndev))
285 		ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
286 	rcu_read_unlock();
287 	return ret;
288 }
289 static DEVICE_ATTR_RO(broadcast);
290 
291 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
292 {
293 	if (!netif_running(dev))
294 		return -EINVAL;
295 	return dev_change_carrier(dev, (bool)new_carrier);
296 }
297 
298 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
299 			     const char *buf, size_t len)
300 {
301 	struct net_device *netdev = to_net_dev(dev);
302 
303 	/* The check is also done in change_carrier; this helps returning early
304 	 * without hitting the locking section in netdev_store.
305 	 */
306 	if (!netdev->netdev_ops->ndo_change_carrier)
307 		return -EOPNOTSUPP;
308 
309 	return netdev_store(dev, attr, buf, len, change_carrier);
310 }
311 
312 static ssize_t carrier_show(struct device *dev,
313 			    struct device_attribute *attr, char *buf)
314 {
315 	struct net_device *netdev = to_net_dev(dev);
316 	int ret;
317 
318 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
319 	if (ret)
320 		return ret;
321 
322 	ret = -EINVAL;
323 	if (netif_running(netdev)) {
324 		/* Synchronize carrier state with link watch,
325 		 * see also rtnl_getlink().
326 		 */
327 		linkwatch_sync_dev(netdev);
328 
329 		ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
330 	}
331 
332 	rtnl_unlock();
333 	return ret;
334 }
335 static DEVICE_ATTR_RW(carrier);
336 
337 static ssize_t speed_show(struct device *dev,
338 			  struct device_attribute *attr, char *buf)
339 {
340 	struct net_device *netdev = to_net_dev(dev);
341 	int ret = -EINVAL;
342 
343 	/* The check is also done in __ethtool_get_link_ksettings; this helps
344 	 * returning early without hitting the locking section below.
345 	 */
346 	if (!netdev->ethtool_ops->get_link_ksettings)
347 		return ret;
348 
349 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
350 	if (ret)
351 		return ret;
352 
353 	ret = -EINVAL;
354 	if (netif_running(netdev)) {
355 		struct ethtool_link_ksettings cmd;
356 
357 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
358 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
359 	}
360 	rtnl_unlock();
361 	return ret;
362 }
363 static DEVICE_ATTR_RO(speed);
364 
365 static ssize_t duplex_show(struct device *dev,
366 			   struct device_attribute *attr, char *buf)
367 {
368 	struct net_device *netdev = to_net_dev(dev);
369 	int ret = -EINVAL;
370 
371 	/* The check is also done in __ethtool_get_link_ksettings; this helps
372 	 * returning early without hitting the locking section below.
373 	 */
374 	if (!netdev->ethtool_ops->get_link_ksettings)
375 		return ret;
376 
377 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
378 	if (ret)
379 		return ret;
380 
381 	ret = -EINVAL;
382 	if (netif_running(netdev)) {
383 		struct ethtool_link_ksettings cmd;
384 
385 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
386 			const char *duplex;
387 
388 			switch (cmd.base.duplex) {
389 			case DUPLEX_HALF:
390 				duplex = "half";
391 				break;
392 			case DUPLEX_FULL:
393 				duplex = "full";
394 				break;
395 			default:
396 				duplex = "unknown";
397 				break;
398 			}
399 			ret = sysfs_emit(buf, "%s\n", duplex);
400 		}
401 	}
402 	rtnl_unlock();
403 	return ret;
404 }
405 static DEVICE_ATTR_RO(duplex);
406 
407 static ssize_t testing_show(struct device *dev,
408 			    struct device_attribute *attr, char *buf)
409 {
410 	struct net_device *netdev = to_net_dev(dev);
411 
412 	if (netif_running(netdev))
413 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
414 
415 	return -EINVAL;
416 }
417 static DEVICE_ATTR_RO(testing);
418 
419 static ssize_t dormant_show(struct device *dev,
420 			    struct device_attribute *attr, char *buf)
421 {
422 	struct net_device *netdev = to_net_dev(dev);
423 
424 	if (netif_running(netdev))
425 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
426 
427 	return -EINVAL;
428 }
429 static DEVICE_ATTR_RO(dormant);
430 
431 static const char *const operstates[] = {
432 	"unknown",
433 	"notpresent", /* currently unused */
434 	"down",
435 	"lowerlayerdown",
436 	"testing",
437 	"dormant",
438 	"up"
439 };
440 
441 static ssize_t operstate_show(struct device *dev,
442 			      struct device_attribute *attr, char *buf)
443 {
444 	const struct net_device *netdev = to_net_dev(dev);
445 	unsigned char operstate;
446 
447 	operstate = READ_ONCE(netdev->operstate);
448 	if (!netif_running(netdev))
449 		operstate = IF_OPER_DOWN;
450 
451 	if (operstate >= ARRAY_SIZE(operstates))
452 		return -EINVAL; /* should not happen */
453 
454 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
455 }
456 static DEVICE_ATTR_RO(operstate);
457 
458 static ssize_t carrier_changes_show(struct device *dev,
459 				    struct device_attribute *attr,
460 				    char *buf)
461 {
462 	struct net_device *netdev = to_net_dev(dev);
463 
464 	return sysfs_emit(buf, fmt_dec,
465 			  atomic_read(&netdev->carrier_up_count) +
466 			  atomic_read(&netdev->carrier_down_count));
467 }
468 static DEVICE_ATTR_RO(carrier_changes);
469 
470 static ssize_t carrier_up_count_show(struct device *dev,
471 				     struct device_attribute *attr,
472 				     char *buf)
473 {
474 	struct net_device *netdev = to_net_dev(dev);
475 
476 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
477 }
478 static DEVICE_ATTR_RO(carrier_up_count);
479 
480 static ssize_t carrier_down_count_show(struct device *dev,
481 				       struct device_attribute *attr,
482 				       char *buf)
483 {
484 	struct net_device *netdev = to_net_dev(dev);
485 
486 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
487 }
488 static DEVICE_ATTR_RO(carrier_down_count);
489 
490 /* read-write attributes */
491 
492 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
493 {
494 	return dev_set_mtu(dev, (int)new_mtu);
495 }
496 
497 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
498 			 const char *buf, size_t len)
499 {
500 	return netdev_store(dev, attr, buf, len, change_mtu);
501 }
502 NETDEVICE_SHOW_RW(mtu, fmt_dec);
503 
504 static int change_flags(struct net_device *dev, unsigned long new_flags)
505 {
506 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
507 }
508 
509 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
510 			   const char *buf, size_t len)
511 {
512 	return netdev_store(dev, attr, buf, len, change_flags);
513 }
514 NETDEVICE_SHOW_RW(flags, fmt_hex);
515 
516 static ssize_t tx_queue_len_store(struct device *dev,
517 				  struct device_attribute *attr,
518 				  const char *buf, size_t len)
519 {
520 	if (!capable(CAP_NET_ADMIN))
521 		return -EPERM;
522 
523 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
524 }
525 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
526 
527 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
528 {
529 	netdev_set_gro_flush_timeout(dev, val);
530 	return 0;
531 }
532 
533 static ssize_t gro_flush_timeout_store(struct device *dev,
534 				       struct device_attribute *attr,
535 				       const char *buf, size_t len)
536 {
537 	if (!capable(CAP_NET_ADMIN))
538 		return -EPERM;
539 
540 	return netdev_lock_store(dev, attr, buf, len, change_gro_flush_timeout);
541 }
542 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
543 
544 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
545 {
546 	if (val > S32_MAX)
547 		return -ERANGE;
548 
549 	netdev_set_defer_hard_irqs(dev, (u32)val);
550 	return 0;
551 }
552 
553 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
554 					  struct device_attribute *attr,
555 					  const char *buf, size_t len)
556 {
557 	if (!capable(CAP_NET_ADMIN))
558 		return -EPERM;
559 
560 	return netdev_lock_store(dev, attr, buf, len,
561 				 change_napi_defer_hard_irqs);
562 }
563 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
564 
565 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
566 			     const char *buf, size_t len)
567 {
568 	struct net_device *netdev = to_net_dev(dev);
569 	struct net *net = dev_net(netdev);
570 	size_t count = len;
571 	ssize_t ret;
572 
573 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
574 		return -EPERM;
575 
576 	/* ignore trailing newline */
577 	if (len >  0 && buf[len - 1] == '\n')
578 		--count;
579 
580 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
581 	if (ret)
582 		return ret;
583 
584 	ret = dev_set_alias(netdev, buf, count);
585 	if (ret < 0)
586 		goto err;
587 	ret = len;
588 	netdev_state_change(netdev);
589 err:
590 	rtnl_unlock();
591 
592 	return ret;
593 }
594 
595 static ssize_t ifalias_show(struct device *dev,
596 			    struct device_attribute *attr, char *buf)
597 {
598 	const struct net_device *netdev = to_net_dev(dev);
599 	char tmp[IFALIASZ];
600 	ssize_t ret;
601 
602 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
603 	if (ret > 0)
604 		ret = sysfs_emit(buf, "%s\n", tmp);
605 	return ret;
606 }
607 static DEVICE_ATTR_RW(ifalias);
608 
609 static int change_group(struct net_device *dev, unsigned long new_group)
610 {
611 	dev_set_group(dev, (int)new_group);
612 	return 0;
613 }
614 
615 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
616 			   const char *buf, size_t len)
617 {
618 	return netdev_store(dev, attr, buf, len, change_group);
619 }
620 NETDEVICE_SHOW(group, fmt_dec);
621 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
622 
623 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
624 {
625 	return dev_change_proto_down(dev, (bool)proto_down);
626 }
627 
628 static ssize_t proto_down_store(struct device *dev,
629 				struct device_attribute *attr,
630 				const char *buf, size_t len)
631 {
632 	return netdev_store(dev, attr, buf, len, change_proto_down);
633 }
634 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
635 
636 static ssize_t phys_port_id_show(struct device *dev,
637 				 struct device_attribute *attr, char *buf)
638 {
639 	struct net_device *netdev = to_net_dev(dev);
640 	struct netdev_phys_item_id ppid;
641 	ssize_t ret;
642 
643 	/* The check is also done in dev_get_phys_port_id; this helps returning
644 	 * early without hitting the locking section below.
645 	 */
646 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
647 		return -EOPNOTSUPP;
648 
649 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
650 	if (ret)
651 		return ret;
652 
653 	ret = dev_get_phys_port_id(netdev, &ppid);
654 	if (!ret)
655 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
656 
657 	rtnl_unlock();
658 
659 	return ret;
660 }
661 static DEVICE_ATTR_RO(phys_port_id);
662 
663 static ssize_t phys_port_name_show(struct device *dev,
664 				   struct device_attribute *attr, char *buf)
665 {
666 	struct net_device *netdev = to_net_dev(dev);
667 	char name[IFNAMSIZ];
668 	ssize_t ret;
669 
670 	/* The checks are also done in dev_get_phys_port_name; this helps
671 	 * returning early without hitting the locking section below.
672 	 */
673 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
674 	    !netdev->devlink_port)
675 		return -EOPNOTSUPP;
676 
677 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
678 	if (ret)
679 		return ret;
680 
681 	ret = dev_get_phys_port_name(netdev, name, sizeof(name));
682 	if (!ret)
683 		ret = sysfs_emit(buf, "%s\n", name);
684 
685 	rtnl_unlock();
686 
687 	return ret;
688 }
689 static DEVICE_ATTR_RO(phys_port_name);
690 
691 static ssize_t phys_switch_id_show(struct device *dev,
692 				   struct device_attribute *attr, char *buf)
693 {
694 	struct net_device *netdev = to_net_dev(dev);
695 	struct netdev_phys_item_id ppid = { };
696 	ssize_t ret;
697 
698 	/* The checks are also done in dev_get_phys_port_name; this helps
699 	 * returning early without hitting the locking section below. This works
700 	 * because recurse is false when calling dev_get_port_parent_id.
701 	 */
702 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
703 	    !netdev->devlink_port)
704 		return -EOPNOTSUPP;
705 
706 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
707 	if (ret)
708 		return ret;
709 
710 	ret = dev_get_port_parent_id(netdev, &ppid, false);
711 	if (!ret)
712 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
713 
714 	rtnl_unlock();
715 
716 	return ret;
717 }
718 static DEVICE_ATTR_RO(phys_switch_id);
719 
720 static ssize_t threaded_show(struct device *dev,
721 			     struct device_attribute *attr, char *buf)
722 {
723 	struct net_device *netdev = to_net_dev(dev);
724 	ssize_t ret = -EINVAL;
725 
726 	rcu_read_lock();
727 
728 	if (dev_isalive(netdev))
729 		ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
730 
731 	rcu_read_unlock();
732 
733 	return ret;
734 }
735 
736 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
737 {
738 	int ret;
739 
740 	if (list_empty(&dev->napi_list))
741 		return -EOPNOTSUPP;
742 
743 	if (val != 0 && val != 1)
744 		return -EOPNOTSUPP;
745 
746 	ret = dev_set_threaded(dev, val);
747 
748 	return ret;
749 }
750 
751 static ssize_t threaded_store(struct device *dev,
752 			      struct device_attribute *attr,
753 			      const char *buf, size_t len)
754 {
755 	return netdev_lock_store(dev, attr, buf, len, modify_napi_threaded);
756 }
757 static DEVICE_ATTR_RW(threaded);
758 
759 static struct attribute *net_class_attrs[] __ro_after_init = {
760 	&dev_attr_netdev_group.attr,
761 	&dev_attr_type.attr,
762 	&dev_attr_dev_id.attr,
763 	&dev_attr_dev_port.attr,
764 	&dev_attr_iflink.attr,
765 	&dev_attr_ifindex.attr,
766 	&dev_attr_name_assign_type.attr,
767 	&dev_attr_addr_assign_type.attr,
768 	&dev_attr_addr_len.attr,
769 	&dev_attr_link_mode.attr,
770 	&dev_attr_address.attr,
771 	&dev_attr_broadcast.attr,
772 	&dev_attr_speed.attr,
773 	&dev_attr_duplex.attr,
774 	&dev_attr_dormant.attr,
775 	&dev_attr_testing.attr,
776 	&dev_attr_operstate.attr,
777 	&dev_attr_carrier_changes.attr,
778 	&dev_attr_ifalias.attr,
779 	&dev_attr_carrier.attr,
780 	&dev_attr_mtu.attr,
781 	&dev_attr_flags.attr,
782 	&dev_attr_tx_queue_len.attr,
783 	&dev_attr_gro_flush_timeout.attr,
784 	&dev_attr_napi_defer_hard_irqs.attr,
785 	&dev_attr_phys_port_id.attr,
786 	&dev_attr_phys_port_name.attr,
787 	&dev_attr_phys_switch_id.attr,
788 	&dev_attr_proto_down.attr,
789 	&dev_attr_carrier_up_count.attr,
790 	&dev_attr_carrier_down_count.attr,
791 	&dev_attr_threaded.attr,
792 	NULL,
793 };
794 ATTRIBUTE_GROUPS(net_class);
795 
796 /* Show a given an attribute in the statistics group */
797 static ssize_t netstat_show(const struct device *d,
798 			    struct device_attribute *attr, char *buf,
799 			    unsigned long offset)
800 {
801 	struct net_device *dev = to_net_dev(d);
802 	ssize_t ret = -EINVAL;
803 
804 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
805 		offset % sizeof(u64) != 0);
806 
807 	rcu_read_lock();
808 	if (dev_isalive(dev)) {
809 		struct rtnl_link_stats64 temp;
810 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
811 
812 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
813 	}
814 	rcu_read_unlock();
815 	return ret;
816 }
817 
818 /* generate a read-only statistics attribute */
819 #define NETSTAT_ENTRY(name)						\
820 static ssize_t name##_show(struct device *d,				\
821 			   struct device_attribute *attr, char *buf)	\
822 {									\
823 	return netstat_show(d, attr, buf,				\
824 			    offsetof(struct rtnl_link_stats64, name));	\
825 }									\
826 static DEVICE_ATTR_RO(name)
827 
828 NETSTAT_ENTRY(rx_packets);
829 NETSTAT_ENTRY(tx_packets);
830 NETSTAT_ENTRY(rx_bytes);
831 NETSTAT_ENTRY(tx_bytes);
832 NETSTAT_ENTRY(rx_errors);
833 NETSTAT_ENTRY(tx_errors);
834 NETSTAT_ENTRY(rx_dropped);
835 NETSTAT_ENTRY(tx_dropped);
836 NETSTAT_ENTRY(multicast);
837 NETSTAT_ENTRY(collisions);
838 NETSTAT_ENTRY(rx_length_errors);
839 NETSTAT_ENTRY(rx_over_errors);
840 NETSTAT_ENTRY(rx_crc_errors);
841 NETSTAT_ENTRY(rx_frame_errors);
842 NETSTAT_ENTRY(rx_fifo_errors);
843 NETSTAT_ENTRY(rx_missed_errors);
844 NETSTAT_ENTRY(tx_aborted_errors);
845 NETSTAT_ENTRY(tx_carrier_errors);
846 NETSTAT_ENTRY(tx_fifo_errors);
847 NETSTAT_ENTRY(tx_heartbeat_errors);
848 NETSTAT_ENTRY(tx_window_errors);
849 NETSTAT_ENTRY(rx_compressed);
850 NETSTAT_ENTRY(tx_compressed);
851 NETSTAT_ENTRY(rx_nohandler);
852 
853 static struct attribute *netstat_attrs[] __ro_after_init = {
854 	&dev_attr_rx_packets.attr,
855 	&dev_attr_tx_packets.attr,
856 	&dev_attr_rx_bytes.attr,
857 	&dev_attr_tx_bytes.attr,
858 	&dev_attr_rx_errors.attr,
859 	&dev_attr_tx_errors.attr,
860 	&dev_attr_rx_dropped.attr,
861 	&dev_attr_tx_dropped.attr,
862 	&dev_attr_multicast.attr,
863 	&dev_attr_collisions.attr,
864 	&dev_attr_rx_length_errors.attr,
865 	&dev_attr_rx_over_errors.attr,
866 	&dev_attr_rx_crc_errors.attr,
867 	&dev_attr_rx_frame_errors.attr,
868 	&dev_attr_rx_fifo_errors.attr,
869 	&dev_attr_rx_missed_errors.attr,
870 	&dev_attr_tx_aborted_errors.attr,
871 	&dev_attr_tx_carrier_errors.attr,
872 	&dev_attr_tx_fifo_errors.attr,
873 	&dev_attr_tx_heartbeat_errors.attr,
874 	&dev_attr_tx_window_errors.attr,
875 	&dev_attr_rx_compressed.attr,
876 	&dev_attr_tx_compressed.attr,
877 	&dev_attr_rx_nohandler.attr,
878 	NULL
879 };
880 
881 static const struct attribute_group netstat_group = {
882 	.name  = "statistics",
883 	.attrs  = netstat_attrs,
884 };
885 
886 static struct attribute *wireless_attrs[] = {
887 	NULL
888 };
889 
890 static const struct attribute_group wireless_group = {
891 	.name = "wireless",
892 	.attrs = wireless_attrs,
893 };
894 
895 static bool wireless_group_needed(struct net_device *ndev)
896 {
897 #if IS_ENABLED(CONFIG_CFG80211)
898 	if (ndev->ieee80211_ptr)
899 		return true;
900 #endif
901 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
902 	if (ndev->wireless_handlers)
903 		return true;
904 #endif
905 	return false;
906 }
907 
908 #else /* CONFIG_SYSFS */
909 #define net_class_groups	NULL
910 #endif /* CONFIG_SYSFS */
911 
912 #ifdef CONFIG_SYSFS
913 #define to_rx_queue_attr(_attr) \
914 	container_of(_attr, struct rx_queue_attribute, attr)
915 
916 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
917 
918 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
919 				  char *buf)
920 {
921 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
922 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
923 
924 	if (!attribute->show)
925 		return -EIO;
926 
927 	return attribute->show(queue, buf);
928 }
929 
930 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
931 				   const char *buf, size_t count)
932 {
933 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
934 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
935 
936 	if (!attribute->store)
937 		return -EIO;
938 
939 	return attribute->store(queue, buf, count);
940 }
941 
942 static const struct sysfs_ops rx_queue_sysfs_ops = {
943 	.show = rx_queue_attr_show,
944 	.store = rx_queue_attr_store,
945 };
946 
947 #ifdef CONFIG_RPS
948 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
949 {
950 	struct rps_map *map;
951 	cpumask_var_t mask;
952 	int i, len;
953 
954 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
955 		return -ENOMEM;
956 
957 	rcu_read_lock();
958 	map = rcu_dereference(queue->rps_map);
959 	if (map)
960 		for (i = 0; i < map->len; i++)
961 			cpumask_set_cpu(map->cpus[i], mask);
962 
963 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
964 	rcu_read_unlock();
965 	free_cpumask_var(mask);
966 
967 	return len < PAGE_SIZE ? len : -EINVAL;
968 }
969 
970 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
971 					cpumask_var_t mask)
972 {
973 	static DEFINE_MUTEX(rps_map_mutex);
974 	struct rps_map *old_map, *map;
975 	int cpu, i;
976 
977 	map = kzalloc(max_t(unsigned int,
978 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
979 		      GFP_KERNEL);
980 	if (!map)
981 		return -ENOMEM;
982 
983 	i = 0;
984 	for_each_cpu_and(cpu, mask, cpu_online_mask)
985 		map->cpus[i++] = cpu;
986 
987 	if (i) {
988 		map->len = i;
989 	} else {
990 		kfree(map);
991 		map = NULL;
992 	}
993 
994 	mutex_lock(&rps_map_mutex);
995 	old_map = rcu_dereference_protected(queue->rps_map,
996 					    mutex_is_locked(&rps_map_mutex));
997 	rcu_assign_pointer(queue->rps_map, map);
998 
999 	if (map)
1000 		static_branch_inc(&rps_needed);
1001 	if (old_map)
1002 		static_branch_dec(&rps_needed);
1003 
1004 	mutex_unlock(&rps_map_mutex);
1005 
1006 	if (old_map)
1007 		kfree_rcu(old_map, rcu);
1008 	return 0;
1009 }
1010 
1011 int rps_cpumask_housekeeping(struct cpumask *mask)
1012 {
1013 	if (!cpumask_empty(mask)) {
1014 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
1015 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
1016 		if (cpumask_empty(mask))
1017 			return -EINVAL;
1018 	}
1019 	return 0;
1020 }
1021 
1022 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
1023 			     const char *buf, size_t len)
1024 {
1025 	cpumask_var_t mask;
1026 	int err;
1027 
1028 	if (!capable(CAP_NET_ADMIN))
1029 		return -EPERM;
1030 
1031 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1032 		return -ENOMEM;
1033 
1034 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1035 	if (err)
1036 		goto out;
1037 
1038 	err = rps_cpumask_housekeeping(mask);
1039 	if (err)
1040 		goto out;
1041 
1042 	err = netdev_rx_queue_set_rps_mask(queue, mask);
1043 
1044 out:
1045 	free_cpumask_var(mask);
1046 	return err ? : len;
1047 }
1048 
1049 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1050 					   char *buf)
1051 {
1052 	struct rps_dev_flow_table *flow_table;
1053 	unsigned long val = 0;
1054 
1055 	rcu_read_lock();
1056 	flow_table = rcu_dereference(queue->rps_flow_table);
1057 	if (flow_table)
1058 		val = (unsigned long)flow_table->mask + 1;
1059 	rcu_read_unlock();
1060 
1061 	return sysfs_emit(buf, "%lu\n", val);
1062 }
1063 
1064 static void rps_dev_flow_table_release(struct rcu_head *rcu)
1065 {
1066 	struct rps_dev_flow_table *table = container_of(rcu,
1067 	    struct rps_dev_flow_table, rcu);
1068 	vfree(table);
1069 }
1070 
1071 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1072 					    const char *buf, size_t len)
1073 {
1074 	unsigned long mask, count;
1075 	struct rps_dev_flow_table *table, *old_table;
1076 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
1077 	int rc;
1078 
1079 	if (!capable(CAP_NET_ADMIN))
1080 		return -EPERM;
1081 
1082 	rc = kstrtoul(buf, 0, &count);
1083 	if (rc < 0)
1084 		return rc;
1085 
1086 	if (count) {
1087 		mask = count - 1;
1088 		/* mask = roundup_pow_of_two(count) - 1;
1089 		 * without overflows...
1090 		 */
1091 		while ((mask | (mask >> 1)) != mask)
1092 			mask |= (mask >> 1);
1093 		/* On 64 bit arches, must check mask fits in table->mask (u32),
1094 		 * and on 32bit arches, must check
1095 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
1096 		 */
1097 #if BITS_PER_LONG > 32
1098 		if (mask > (unsigned long)(u32)mask)
1099 			return -EINVAL;
1100 #else
1101 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
1102 				/ sizeof(struct rps_dev_flow)) {
1103 			/* Enforce a limit to prevent overflow */
1104 			return -EINVAL;
1105 		}
1106 #endif
1107 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
1108 		if (!table)
1109 			return -ENOMEM;
1110 
1111 		table->mask = mask;
1112 		for (count = 0; count <= mask; count++)
1113 			table->flows[count].cpu = RPS_NO_CPU;
1114 	} else {
1115 		table = NULL;
1116 	}
1117 
1118 	spin_lock(&rps_dev_flow_lock);
1119 	old_table = rcu_dereference_protected(queue->rps_flow_table,
1120 					      lockdep_is_held(&rps_dev_flow_lock));
1121 	rcu_assign_pointer(queue->rps_flow_table, table);
1122 	spin_unlock(&rps_dev_flow_lock);
1123 
1124 	if (old_table)
1125 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1126 
1127 	return len;
1128 }
1129 
1130 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1131 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1132 
1133 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1134 	= __ATTR(rps_flow_cnt, 0644,
1135 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1136 #endif /* CONFIG_RPS */
1137 
1138 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1139 #ifdef CONFIG_RPS
1140 	&rps_cpus_attribute.attr,
1141 	&rps_dev_flow_table_cnt_attribute.attr,
1142 #endif
1143 	NULL
1144 };
1145 ATTRIBUTE_GROUPS(rx_queue_default);
1146 
1147 static void rx_queue_release(struct kobject *kobj)
1148 {
1149 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1150 #ifdef CONFIG_RPS
1151 	struct rps_map *map;
1152 	struct rps_dev_flow_table *flow_table;
1153 
1154 	map = rcu_dereference_protected(queue->rps_map, 1);
1155 	if (map) {
1156 		RCU_INIT_POINTER(queue->rps_map, NULL);
1157 		kfree_rcu(map, rcu);
1158 	}
1159 
1160 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1161 	if (flow_table) {
1162 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1163 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1164 	}
1165 #endif
1166 
1167 	memset(kobj, 0, sizeof(*kobj));
1168 	netdev_put(queue->dev, &queue->dev_tracker);
1169 }
1170 
1171 static const void *rx_queue_namespace(const struct kobject *kobj)
1172 {
1173 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1174 	struct device *dev = &queue->dev->dev;
1175 	const void *ns = NULL;
1176 
1177 	if (dev->class && dev->class->namespace)
1178 		ns = dev->class->namespace(dev);
1179 
1180 	return ns;
1181 }
1182 
1183 static void rx_queue_get_ownership(const struct kobject *kobj,
1184 				   kuid_t *uid, kgid_t *gid)
1185 {
1186 	const struct net *net = rx_queue_namespace(kobj);
1187 
1188 	net_ns_get_ownership(net, uid, gid);
1189 }
1190 
1191 static const struct kobj_type rx_queue_ktype = {
1192 	.sysfs_ops = &rx_queue_sysfs_ops,
1193 	.release = rx_queue_release,
1194 	.namespace = rx_queue_namespace,
1195 	.get_ownership = rx_queue_get_ownership,
1196 };
1197 
1198 static int rx_queue_default_mask(struct net_device *dev,
1199 				 struct netdev_rx_queue *queue)
1200 {
1201 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1202 	struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1203 
1204 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1205 		return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1206 #endif
1207 	return 0;
1208 }
1209 
1210 static int rx_queue_add_kobject(struct net_device *dev, int index)
1211 {
1212 	struct netdev_rx_queue *queue = dev->_rx + index;
1213 	struct kobject *kobj = &queue->kobj;
1214 	int error = 0;
1215 
1216 	/* Rx queues are cleared in rx_queue_release to allow later
1217 	 * re-registration. This is triggered when their kobj refcount is
1218 	 * dropped.
1219 	 *
1220 	 * If a queue is removed while both a read (or write) operation and a
1221 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1222 	 * it might happen that the re-addition will execute before the read,
1223 	 * making the initial removal to never happen (queue's kobj refcount
1224 	 * won't drop enough because of the pending read). In such rare case,
1225 	 * return to allow the removal operation to complete.
1226 	 */
1227 	if (unlikely(kobj->state_initialized)) {
1228 		netdev_warn_once(dev, "Cannot re-add rx queues before their removal completed");
1229 		return -EAGAIN;
1230 	}
1231 
1232 	/* Kobject_put later will trigger rx_queue_release call which
1233 	 * decreases dev refcount: Take that reference here
1234 	 */
1235 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1236 
1237 	kobj->kset = dev->queues_kset;
1238 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1239 				     "rx-%u", index);
1240 	if (error)
1241 		goto err;
1242 
1243 	queue->groups = rx_queue_default_groups;
1244 	error = sysfs_create_groups(kobj, queue->groups);
1245 	if (error)
1246 		goto err;
1247 
1248 	if (dev->sysfs_rx_queue_group) {
1249 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1250 		if (error)
1251 			goto err_default_groups;
1252 	}
1253 
1254 	error = rx_queue_default_mask(dev, queue);
1255 	if (error)
1256 		goto err_default_groups;
1257 
1258 	kobject_uevent(kobj, KOBJ_ADD);
1259 
1260 	return error;
1261 
1262 err_default_groups:
1263 	sysfs_remove_groups(kobj, queue->groups);
1264 err:
1265 	kobject_put(kobj);
1266 	return error;
1267 }
1268 
1269 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1270 				 kgid_t kgid)
1271 {
1272 	struct netdev_rx_queue *queue = dev->_rx + index;
1273 	struct kobject *kobj = &queue->kobj;
1274 	int error;
1275 
1276 	error = sysfs_change_owner(kobj, kuid, kgid);
1277 	if (error)
1278 		return error;
1279 
1280 	if (dev->sysfs_rx_queue_group)
1281 		error = sysfs_group_change_owner(
1282 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1283 
1284 	return error;
1285 }
1286 #endif /* CONFIG_SYSFS */
1287 
1288 int
1289 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1290 {
1291 #ifdef CONFIG_SYSFS
1292 	int i;
1293 	int error = 0;
1294 
1295 #ifndef CONFIG_RPS
1296 	if (!dev->sysfs_rx_queue_group)
1297 		return 0;
1298 #endif
1299 	for (i = old_num; i < new_num; i++) {
1300 		error = rx_queue_add_kobject(dev, i);
1301 		if (error) {
1302 			new_num = old_num;
1303 			break;
1304 		}
1305 	}
1306 
1307 	while (--i >= new_num) {
1308 		struct netdev_rx_queue *queue = &dev->_rx[i];
1309 		struct kobject *kobj = &queue->kobj;
1310 
1311 		if (!refcount_read(&dev_net(dev)->ns.count))
1312 			kobj->uevent_suppress = 1;
1313 		if (dev->sysfs_rx_queue_group)
1314 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1315 		sysfs_remove_groups(kobj, queue->groups);
1316 		kobject_put(kobj);
1317 	}
1318 
1319 	return error;
1320 #else
1321 	return 0;
1322 #endif
1323 }
1324 
1325 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1326 				     kuid_t kuid, kgid_t kgid)
1327 {
1328 #ifdef CONFIG_SYSFS
1329 	int error = 0;
1330 	int i;
1331 
1332 #ifndef CONFIG_RPS
1333 	if (!dev->sysfs_rx_queue_group)
1334 		return 0;
1335 #endif
1336 	for (i = 0; i < num; i++) {
1337 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1338 		if (error)
1339 			break;
1340 	}
1341 
1342 	return error;
1343 #else
1344 	return 0;
1345 #endif
1346 }
1347 
1348 #ifdef CONFIG_SYSFS
1349 /*
1350  * netdev_queue sysfs structures and functions.
1351  */
1352 struct netdev_queue_attribute {
1353 	struct attribute attr;
1354 	ssize_t (*show)(struct kobject *kobj, struct attribute *attr,
1355 			struct netdev_queue *queue, char *buf);
1356 	ssize_t (*store)(struct kobject *kobj, struct attribute *attr,
1357 			 struct netdev_queue *queue, const char *buf,
1358 			 size_t len);
1359 };
1360 #define to_netdev_queue_attr(_attr) \
1361 	container_of(_attr, struct netdev_queue_attribute, attr)
1362 
1363 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1364 
1365 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1366 				      struct attribute *attr, char *buf)
1367 {
1368 	const struct netdev_queue_attribute *attribute
1369 		= to_netdev_queue_attr(attr);
1370 	struct netdev_queue *queue = to_netdev_queue(kobj);
1371 
1372 	if (!attribute->show)
1373 		return -EIO;
1374 
1375 	return attribute->show(kobj, attr, queue, buf);
1376 }
1377 
1378 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1379 				       struct attribute *attr,
1380 				       const char *buf, size_t count)
1381 {
1382 	const struct netdev_queue_attribute *attribute
1383 		= to_netdev_queue_attr(attr);
1384 	struct netdev_queue *queue = to_netdev_queue(kobj);
1385 
1386 	if (!attribute->store)
1387 		return -EIO;
1388 
1389 	return attribute->store(kobj, attr, queue, buf, count);
1390 }
1391 
1392 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1393 	.show = netdev_queue_attr_show,
1394 	.store = netdev_queue_attr_store,
1395 };
1396 
1397 static ssize_t tx_timeout_show(struct kobject *kobj, struct attribute *attr,
1398 			       struct netdev_queue *queue, char *buf)
1399 {
1400 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1401 
1402 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1403 }
1404 
1405 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1406 {
1407 	struct net_device *dev = queue->dev;
1408 	unsigned int i;
1409 
1410 	i = queue - dev->_tx;
1411 	BUG_ON(i >= dev->num_tx_queues);
1412 
1413 	return i;
1414 }
1415 
1416 static ssize_t traffic_class_show(struct kobject *kobj, struct attribute *attr,
1417 				  struct netdev_queue *queue, char *buf)
1418 {
1419 	struct net_device *dev = queue->dev;
1420 	int num_tc, tc, index, ret;
1421 
1422 	if (!netif_is_multiqueue(dev))
1423 		return -ENOENT;
1424 
1425 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1426 	if (ret)
1427 		return ret;
1428 
1429 	index = get_netdev_queue_index(queue);
1430 
1431 	/* If queue belongs to subordinate dev use its TC mapping */
1432 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1433 
1434 	num_tc = dev->num_tc;
1435 	tc = netdev_txq_to_tc(dev, index);
1436 
1437 	rtnl_unlock();
1438 
1439 	if (tc < 0)
1440 		return -EINVAL;
1441 
1442 	/* We can report the traffic class one of two ways:
1443 	 * Subordinate device traffic classes are reported with the traffic
1444 	 * class first, and then the subordinate class so for example TC0 on
1445 	 * subordinate device 2 will be reported as "0-2". If the queue
1446 	 * belongs to the root device it will be reported with just the
1447 	 * traffic class, so just "0" for TC 0 for example.
1448 	 */
1449 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1450 			    sysfs_emit(buf, "%d\n", tc);
1451 }
1452 
1453 #ifdef CONFIG_XPS
1454 static ssize_t tx_maxrate_show(struct kobject *kobj, struct attribute *attr,
1455 			       struct netdev_queue *queue, char *buf)
1456 {
1457 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1458 }
1459 
1460 static ssize_t tx_maxrate_store(struct kobject *kobj, struct attribute *attr,
1461 				struct netdev_queue *queue, const char *buf,
1462 				size_t len)
1463 {
1464 	int err, index = get_netdev_queue_index(queue);
1465 	struct net_device *dev = queue->dev;
1466 	u32 rate = 0;
1467 
1468 	if (!capable(CAP_NET_ADMIN))
1469 		return -EPERM;
1470 
1471 	/* The check is also done later; this helps returning early without
1472 	 * hitting the locking section below.
1473 	 */
1474 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1475 		return -EOPNOTSUPP;
1476 
1477 	err = kstrtou32(buf, 10, &rate);
1478 	if (err < 0)
1479 		return err;
1480 
1481 	err = sysfs_rtnl_lock(kobj, attr, dev);
1482 	if (err)
1483 		return err;
1484 
1485 	err = -EOPNOTSUPP;
1486 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1487 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1488 
1489 	if (!err) {
1490 		queue->tx_maxrate = rate;
1491 		rtnl_unlock();
1492 		return len;
1493 	}
1494 
1495 	rtnl_unlock();
1496 	return err;
1497 }
1498 
1499 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1500 	= __ATTR_RW(tx_maxrate);
1501 #endif
1502 
1503 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1504 	= __ATTR_RO(tx_timeout);
1505 
1506 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1507 	= __ATTR_RO(traffic_class);
1508 
1509 #ifdef CONFIG_BQL
1510 /*
1511  * Byte queue limits sysfs structures and functions.
1512  */
1513 static ssize_t bql_show(char *buf, unsigned int value)
1514 {
1515 	return sysfs_emit(buf, "%u\n", value);
1516 }
1517 
1518 static ssize_t bql_set(const char *buf, const size_t count,
1519 		       unsigned int *pvalue)
1520 {
1521 	unsigned int value;
1522 	int err;
1523 
1524 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1525 		value = DQL_MAX_LIMIT;
1526 	} else {
1527 		err = kstrtouint(buf, 10, &value);
1528 		if (err < 0)
1529 			return err;
1530 		if (value > DQL_MAX_LIMIT)
1531 			return -EINVAL;
1532 	}
1533 
1534 	*pvalue = value;
1535 
1536 	return count;
1537 }
1538 
1539 static ssize_t bql_show_hold_time(struct kobject *kobj, struct attribute *attr,
1540 				  struct netdev_queue *queue, char *buf)
1541 {
1542 	struct dql *dql = &queue->dql;
1543 
1544 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1545 }
1546 
1547 static ssize_t bql_set_hold_time(struct kobject *kobj, struct attribute *attr,
1548 				 struct netdev_queue *queue, const char *buf,
1549 				 size_t len)
1550 {
1551 	struct dql *dql = &queue->dql;
1552 	unsigned int value;
1553 	int err;
1554 
1555 	err = kstrtouint(buf, 10, &value);
1556 	if (err < 0)
1557 		return err;
1558 
1559 	dql->slack_hold_time = msecs_to_jiffies(value);
1560 
1561 	return len;
1562 }
1563 
1564 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1565 	= __ATTR(hold_time, 0644,
1566 		 bql_show_hold_time, bql_set_hold_time);
1567 
1568 static ssize_t bql_show_stall_thrs(struct kobject *kobj, struct attribute *attr,
1569 				   struct netdev_queue *queue, char *buf)
1570 {
1571 	struct dql *dql = &queue->dql;
1572 
1573 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1574 }
1575 
1576 static ssize_t bql_set_stall_thrs(struct kobject *kobj, struct attribute *attr,
1577 				  struct netdev_queue *queue, const char *buf,
1578 				  size_t len)
1579 {
1580 	struct dql *dql = &queue->dql;
1581 	unsigned int value;
1582 	int err;
1583 
1584 	err = kstrtouint(buf, 10, &value);
1585 	if (err < 0)
1586 		return err;
1587 
1588 	value = msecs_to_jiffies(value);
1589 	if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1590 		return -ERANGE;
1591 
1592 	if (!dql->stall_thrs && value)
1593 		dql->last_reap = jiffies;
1594 	/* Force last_reap to be live */
1595 	smp_wmb();
1596 	dql->stall_thrs = value;
1597 
1598 	return len;
1599 }
1600 
1601 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1602 	__ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1603 
1604 static ssize_t bql_show_stall_max(struct kobject *kobj, struct attribute *attr,
1605 				  struct netdev_queue *queue, char *buf)
1606 {
1607 	return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1608 }
1609 
1610 static ssize_t bql_set_stall_max(struct kobject *kobj, struct attribute *attr,
1611 				 struct netdev_queue *queue, const char *buf,
1612 				 size_t len)
1613 {
1614 	WRITE_ONCE(queue->dql.stall_max, 0);
1615 	return len;
1616 }
1617 
1618 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1619 	__ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1620 
1621 static ssize_t bql_show_stall_cnt(struct kobject *kobj, struct attribute *attr,
1622 				  struct netdev_queue *queue, char *buf)
1623 {
1624 	struct dql *dql = &queue->dql;
1625 
1626 	return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1627 }
1628 
1629 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1630 	__ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1631 
1632 static ssize_t bql_show_inflight(struct kobject *kobj, struct attribute *attr,
1633 				 struct netdev_queue *queue, char *buf)
1634 {
1635 	struct dql *dql = &queue->dql;
1636 
1637 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1638 }
1639 
1640 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1641 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1642 
1643 #define BQL_ATTR(NAME, FIELD)						\
1644 static ssize_t bql_show_ ## NAME(struct kobject *kobj,			\
1645 				 struct attribute *attr,		\
1646 				 struct netdev_queue *queue, char *buf)	\
1647 {									\
1648 	return bql_show(buf, queue->dql.FIELD);				\
1649 }									\
1650 									\
1651 static ssize_t bql_set_ ## NAME(struct kobject *kobj,			\
1652 				struct attribute *attr,			\
1653 				struct netdev_queue *queue,		\
1654 				const char *buf, size_t len)		\
1655 {									\
1656 	return bql_set(buf, len, &queue->dql.FIELD);			\
1657 }									\
1658 									\
1659 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1660 	= __ATTR(NAME, 0644,				\
1661 		 bql_show_ ## NAME, bql_set_ ## NAME)
1662 
1663 BQL_ATTR(limit, limit);
1664 BQL_ATTR(limit_max, max_limit);
1665 BQL_ATTR(limit_min, min_limit);
1666 
1667 static struct attribute *dql_attrs[] __ro_after_init = {
1668 	&bql_limit_attribute.attr,
1669 	&bql_limit_max_attribute.attr,
1670 	&bql_limit_min_attribute.attr,
1671 	&bql_hold_time_attribute.attr,
1672 	&bql_inflight_attribute.attr,
1673 	&bql_stall_thrs_attribute.attr,
1674 	&bql_stall_cnt_attribute.attr,
1675 	&bql_stall_max_attribute.attr,
1676 	NULL
1677 };
1678 
1679 static const struct attribute_group dql_group = {
1680 	.name  = "byte_queue_limits",
1681 	.attrs  = dql_attrs,
1682 };
1683 #else
1684 /* Fake declaration, all the code using it should be dead */
1685 static const struct attribute_group dql_group = {};
1686 #endif /* CONFIG_BQL */
1687 
1688 #ifdef CONFIG_XPS
1689 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1690 			      int tc, char *buf, enum xps_map_type type)
1691 {
1692 	struct xps_dev_maps *dev_maps;
1693 	unsigned long *mask;
1694 	unsigned int nr_ids;
1695 	int j, len;
1696 
1697 	rcu_read_lock();
1698 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1699 
1700 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1701 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1702 	 */
1703 	nr_ids = dev_maps ? dev_maps->nr_ids :
1704 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1705 
1706 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1707 	if (!mask) {
1708 		rcu_read_unlock();
1709 		return -ENOMEM;
1710 	}
1711 
1712 	if (!dev_maps || tc >= dev_maps->num_tc)
1713 		goto out_no_maps;
1714 
1715 	for (j = 0; j < nr_ids; j++) {
1716 		int i, tci = j * dev_maps->num_tc + tc;
1717 		struct xps_map *map;
1718 
1719 		map = rcu_dereference(dev_maps->attr_map[tci]);
1720 		if (!map)
1721 			continue;
1722 
1723 		for (i = map->len; i--;) {
1724 			if (map->queues[i] == index) {
1725 				__set_bit(j, mask);
1726 				break;
1727 			}
1728 		}
1729 	}
1730 out_no_maps:
1731 	rcu_read_unlock();
1732 
1733 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1734 	bitmap_free(mask);
1735 
1736 	return len < PAGE_SIZE ? len : -EINVAL;
1737 }
1738 
1739 static ssize_t xps_cpus_show(struct kobject *kobj, struct attribute *attr,
1740 			     struct netdev_queue *queue, char *buf)
1741 {
1742 	struct net_device *dev = queue->dev;
1743 	unsigned int index;
1744 	int len, tc, ret;
1745 
1746 	if (!netif_is_multiqueue(dev))
1747 		return -ENOENT;
1748 
1749 	index = get_netdev_queue_index(queue);
1750 
1751 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1752 	if (ret)
1753 		return ret;
1754 
1755 	/* If queue belongs to subordinate dev use its map */
1756 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1757 
1758 	tc = netdev_txq_to_tc(dev, index);
1759 	if (tc < 0) {
1760 		rtnl_unlock();
1761 		return -EINVAL;
1762 	}
1763 
1764 	/* Increase the net device refcnt to make sure it won't be freed while
1765 	 * xps_queue_show is running.
1766 	 */
1767 	dev_hold(dev);
1768 	rtnl_unlock();
1769 
1770 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1771 
1772 	dev_put(dev);
1773 	return len;
1774 }
1775 
1776 static ssize_t xps_cpus_store(struct kobject *kobj, struct attribute *attr,
1777 			      struct netdev_queue *queue, const char *buf,
1778 			      size_t len)
1779 {
1780 	struct net_device *dev = queue->dev;
1781 	unsigned int index;
1782 	cpumask_var_t mask;
1783 	int err;
1784 
1785 	if (!netif_is_multiqueue(dev))
1786 		return -ENOENT;
1787 
1788 	if (!capable(CAP_NET_ADMIN))
1789 		return -EPERM;
1790 
1791 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1792 		return -ENOMEM;
1793 
1794 	index = get_netdev_queue_index(queue);
1795 
1796 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1797 	if (err) {
1798 		free_cpumask_var(mask);
1799 		return err;
1800 	}
1801 
1802 	err = sysfs_rtnl_lock(kobj, attr, dev);
1803 	if (err) {
1804 		free_cpumask_var(mask);
1805 		return err;
1806 	}
1807 
1808 	err = netif_set_xps_queue(dev, mask, index);
1809 	rtnl_unlock();
1810 
1811 	free_cpumask_var(mask);
1812 
1813 	return err ? : len;
1814 }
1815 
1816 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1817 	= __ATTR_RW(xps_cpus);
1818 
1819 static ssize_t xps_rxqs_show(struct kobject *kobj, struct attribute *attr,
1820 			     struct netdev_queue *queue, char *buf)
1821 {
1822 	struct net_device *dev = queue->dev;
1823 	unsigned int index;
1824 	int tc, ret;
1825 
1826 	index = get_netdev_queue_index(queue);
1827 
1828 	ret = sysfs_rtnl_lock(kobj, attr, dev);
1829 	if (ret)
1830 		return ret;
1831 
1832 	tc = netdev_txq_to_tc(dev, index);
1833 
1834 	/* Increase the net device refcnt to make sure it won't be freed while
1835 	 * xps_queue_show is running.
1836 	 */
1837 	dev_hold(dev);
1838 	rtnl_unlock();
1839 
1840 	ret = tc >= 0 ? xps_queue_show(dev, index, tc, buf, XPS_RXQS) : -EINVAL;
1841 	dev_put(dev);
1842 	return ret;
1843 }
1844 
1845 static ssize_t xps_rxqs_store(struct kobject *kobj, struct attribute *attr,
1846 			      struct netdev_queue *queue, const char *buf,
1847 			      size_t len)
1848 {
1849 	struct net_device *dev = queue->dev;
1850 	struct net *net = dev_net(dev);
1851 	unsigned long *mask;
1852 	unsigned int index;
1853 	int err;
1854 
1855 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1856 		return -EPERM;
1857 
1858 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1859 	if (!mask)
1860 		return -ENOMEM;
1861 
1862 	index = get_netdev_queue_index(queue);
1863 
1864 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1865 	if (err) {
1866 		bitmap_free(mask);
1867 		return err;
1868 	}
1869 
1870 	err = sysfs_rtnl_lock(kobj, attr, dev);
1871 	if (err) {
1872 		bitmap_free(mask);
1873 		return err;
1874 	}
1875 
1876 	cpus_read_lock();
1877 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1878 	cpus_read_unlock();
1879 
1880 	rtnl_unlock();
1881 
1882 	bitmap_free(mask);
1883 	return err ? : len;
1884 }
1885 
1886 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1887 	= __ATTR_RW(xps_rxqs);
1888 #endif /* CONFIG_XPS */
1889 
1890 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1891 	&queue_trans_timeout.attr,
1892 	&queue_traffic_class.attr,
1893 #ifdef CONFIG_XPS
1894 	&xps_cpus_attribute.attr,
1895 	&xps_rxqs_attribute.attr,
1896 	&queue_tx_maxrate.attr,
1897 #endif
1898 	NULL
1899 };
1900 ATTRIBUTE_GROUPS(netdev_queue_default);
1901 
1902 static void netdev_queue_release(struct kobject *kobj)
1903 {
1904 	struct netdev_queue *queue = to_netdev_queue(kobj);
1905 
1906 	memset(kobj, 0, sizeof(*kobj));
1907 	netdev_put(queue->dev, &queue->dev_tracker);
1908 }
1909 
1910 static const void *netdev_queue_namespace(const struct kobject *kobj)
1911 {
1912 	struct netdev_queue *queue = to_netdev_queue(kobj);
1913 	struct device *dev = &queue->dev->dev;
1914 	const void *ns = NULL;
1915 
1916 	if (dev->class && dev->class->namespace)
1917 		ns = dev->class->namespace(dev);
1918 
1919 	return ns;
1920 }
1921 
1922 static void netdev_queue_get_ownership(const struct kobject *kobj,
1923 				       kuid_t *uid, kgid_t *gid)
1924 {
1925 	const struct net *net = netdev_queue_namespace(kobj);
1926 
1927 	net_ns_get_ownership(net, uid, gid);
1928 }
1929 
1930 static const struct kobj_type netdev_queue_ktype = {
1931 	.sysfs_ops = &netdev_queue_sysfs_ops,
1932 	.release = netdev_queue_release,
1933 	.namespace = netdev_queue_namespace,
1934 	.get_ownership = netdev_queue_get_ownership,
1935 };
1936 
1937 static bool netdev_uses_bql(const struct net_device *dev)
1938 {
1939 	if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
1940 		return false;
1941 
1942 	return IS_ENABLED(CONFIG_BQL);
1943 }
1944 
1945 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1946 {
1947 	struct netdev_queue *queue = dev->_tx + index;
1948 	struct kobject *kobj = &queue->kobj;
1949 	int error = 0;
1950 
1951 	/* Tx queues are cleared in netdev_queue_release to allow later
1952 	 * re-registration. This is triggered when their kobj refcount is
1953 	 * dropped.
1954 	 *
1955 	 * If a queue is removed while both a read (or write) operation and a
1956 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1957 	 * it might happen that the re-addition will execute before the read,
1958 	 * making the initial removal to never happen (queue's kobj refcount
1959 	 * won't drop enough because of the pending read). In such rare case,
1960 	 * return to allow the removal operation to complete.
1961 	 */
1962 	if (unlikely(kobj->state_initialized)) {
1963 		netdev_warn_once(dev, "Cannot re-add tx queues before their removal completed");
1964 		return -EAGAIN;
1965 	}
1966 
1967 	/* Kobject_put later will trigger netdev_queue_release call
1968 	 * which decreases dev refcount: Take that reference here
1969 	 */
1970 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1971 
1972 	kobj->kset = dev->queues_kset;
1973 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1974 				     "tx-%u", index);
1975 	if (error)
1976 		goto err;
1977 
1978 	queue->groups = netdev_queue_default_groups;
1979 	error = sysfs_create_groups(kobj, queue->groups);
1980 	if (error)
1981 		goto err;
1982 
1983 	if (netdev_uses_bql(dev)) {
1984 		error = sysfs_create_group(kobj, &dql_group);
1985 		if (error)
1986 			goto err_default_groups;
1987 	}
1988 
1989 	kobject_uevent(kobj, KOBJ_ADD);
1990 	return 0;
1991 
1992 err_default_groups:
1993 	sysfs_remove_groups(kobj, queue->groups);
1994 err:
1995 	kobject_put(kobj);
1996 	return error;
1997 }
1998 
1999 static int tx_queue_change_owner(struct net_device *ndev, int index,
2000 				 kuid_t kuid, kgid_t kgid)
2001 {
2002 	struct netdev_queue *queue = ndev->_tx + index;
2003 	struct kobject *kobj = &queue->kobj;
2004 	int error;
2005 
2006 	error = sysfs_change_owner(kobj, kuid, kgid);
2007 	if (error)
2008 		return error;
2009 
2010 	if (netdev_uses_bql(ndev))
2011 		error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
2012 
2013 	return error;
2014 }
2015 #endif /* CONFIG_SYSFS */
2016 
2017 int
2018 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
2019 {
2020 #ifdef CONFIG_SYSFS
2021 	int i;
2022 	int error = 0;
2023 
2024 	/* Tx queue kobjects are allowed to be updated when a device is being
2025 	 * unregistered, but solely to remove queues from qdiscs. Any path
2026 	 * adding queues should be fixed.
2027 	 */
2028 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
2029 	     "New queues can't be registered after device unregistration.");
2030 
2031 	for (i = old_num; i < new_num; i++) {
2032 		error = netdev_queue_add_kobject(dev, i);
2033 		if (error) {
2034 			new_num = old_num;
2035 			break;
2036 		}
2037 	}
2038 
2039 	while (--i >= new_num) {
2040 		struct netdev_queue *queue = dev->_tx + i;
2041 
2042 		if (!refcount_read(&dev_net(dev)->ns.count))
2043 			queue->kobj.uevent_suppress = 1;
2044 
2045 		if (netdev_uses_bql(dev))
2046 			sysfs_remove_group(&queue->kobj, &dql_group);
2047 
2048 		sysfs_remove_groups(&queue->kobj, queue->groups);
2049 		kobject_put(&queue->kobj);
2050 	}
2051 
2052 	return error;
2053 #else
2054 	return 0;
2055 #endif /* CONFIG_SYSFS */
2056 }
2057 
2058 static int net_tx_queue_change_owner(struct net_device *dev, int num,
2059 				     kuid_t kuid, kgid_t kgid)
2060 {
2061 #ifdef CONFIG_SYSFS
2062 	int error = 0;
2063 	int i;
2064 
2065 	for (i = 0; i < num; i++) {
2066 		error = tx_queue_change_owner(dev, i, kuid, kgid);
2067 		if (error)
2068 			break;
2069 	}
2070 
2071 	return error;
2072 #else
2073 	return 0;
2074 #endif /* CONFIG_SYSFS */
2075 }
2076 
2077 static int register_queue_kobjects(struct net_device *dev)
2078 {
2079 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
2080 
2081 #ifdef CONFIG_SYSFS
2082 	dev->queues_kset = kset_create_and_add("queues",
2083 					       NULL, &dev->dev.kobj);
2084 	if (!dev->queues_kset)
2085 		return -ENOMEM;
2086 	real_rx = dev->real_num_rx_queues;
2087 #endif
2088 	real_tx = dev->real_num_tx_queues;
2089 
2090 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
2091 	if (error)
2092 		goto error;
2093 	rxq = real_rx;
2094 
2095 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
2096 	if (error)
2097 		goto error;
2098 	txq = real_tx;
2099 
2100 	return 0;
2101 
2102 error:
2103 	netdev_queue_update_kobjects(dev, txq, 0);
2104 	net_rx_queue_update_kobjects(dev, rxq, 0);
2105 #ifdef CONFIG_SYSFS
2106 	kset_unregister(dev->queues_kset);
2107 #endif
2108 	return error;
2109 }
2110 
2111 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
2112 {
2113 	int error = 0, real_rx = 0, real_tx = 0;
2114 
2115 #ifdef CONFIG_SYSFS
2116 	if (ndev->queues_kset) {
2117 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
2118 		if (error)
2119 			return error;
2120 	}
2121 	real_rx = ndev->real_num_rx_queues;
2122 #endif
2123 	real_tx = ndev->real_num_tx_queues;
2124 
2125 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
2126 	if (error)
2127 		return error;
2128 
2129 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
2130 	if (error)
2131 		return error;
2132 
2133 	return 0;
2134 }
2135 
2136 static void remove_queue_kobjects(struct net_device *dev)
2137 {
2138 	int real_rx = 0, real_tx = 0;
2139 
2140 #ifdef CONFIG_SYSFS
2141 	real_rx = dev->real_num_rx_queues;
2142 #endif
2143 	real_tx = dev->real_num_tx_queues;
2144 
2145 	net_rx_queue_update_kobjects(dev, real_rx, 0);
2146 	netdev_queue_update_kobjects(dev, real_tx, 0);
2147 
2148 	dev->real_num_rx_queues = 0;
2149 	dev->real_num_tx_queues = 0;
2150 #ifdef CONFIG_SYSFS
2151 	kset_unregister(dev->queues_kset);
2152 #endif
2153 }
2154 
2155 static bool net_current_may_mount(void)
2156 {
2157 	struct net *net = current->nsproxy->net_ns;
2158 
2159 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
2160 }
2161 
2162 static void *net_grab_current_ns(void)
2163 {
2164 	struct net *ns = current->nsproxy->net_ns;
2165 #ifdef CONFIG_NET_NS
2166 	if (ns)
2167 		refcount_inc(&ns->passive);
2168 #endif
2169 	return ns;
2170 }
2171 
2172 static const void *net_initial_ns(void)
2173 {
2174 	return &init_net;
2175 }
2176 
2177 static const void *net_netlink_ns(struct sock *sk)
2178 {
2179 	return sock_net(sk);
2180 }
2181 
2182 const struct kobj_ns_type_operations net_ns_type_operations = {
2183 	.type = KOBJ_NS_TYPE_NET,
2184 	.current_may_mount = net_current_may_mount,
2185 	.grab_current_ns = net_grab_current_ns,
2186 	.netlink_ns = net_netlink_ns,
2187 	.initial_ns = net_initial_ns,
2188 	.drop_ns = net_drop_ns,
2189 };
2190 EXPORT_SYMBOL_GPL(net_ns_type_operations);
2191 
2192 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
2193 {
2194 	const struct net_device *dev = to_net_dev(d);
2195 	int retval;
2196 
2197 	/* pass interface to uevent. */
2198 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2199 	if (retval)
2200 		goto exit;
2201 
2202 	/* pass ifindex to uevent.
2203 	 * ifindex is useful as it won't change (interface name may change)
2204 	 * and is what RtNetlink uses natively.
2205 	 */
2206 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2207 
2208 exit:
2209 	return retval;
2210 }
2211 
2212 /*
2213  *	netdev_release -- destroy and free a dead device.
2214  *	Called when last reference to device kobject is gone.
2215  */
2216 static void netdev_release(struct device *d)
2217 {
2218 	struct net_device *dev = to_net_dev(d);
2219 
2220 	BUG_ON(dev->reg_state != NETREG_RELEASED);
2221 
2222 	/* no need to wait for rcu grace period:
2223 	 * device is dead and about to be freed.
2224 	 */
2225 	kfree(rcu_access_pointer(dev->ifalias));
2226 	kvfree(dev);
2227 }
2228 
2229 static const void *net_namespace(const struct device *d)
2230 {
2231 	const struct net_device *dev = to_net_dev(d);
2232 
2233 	return dev_net(dev);
2234 }
2235 
2236 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2237 {
2238 	const struct net_device *dev = to_net_dev(d);
2239 	const struct net *net = dev_net(dev);
2240 
2241 	net_ns_get_ownership(net, uid, gid);
2242 }
2243 
2244 static const struct class net_class = {
2245 	.name = "net",
2246 	.dev_release = netdev_release,
2247 	.dev_groups = net_class_groups,
2248 	.dev_uevent = netdev_uevent,
2249 	.ns_type = &net_ns_type_operations,
2250 	.namespace = net_namespace,
2251 	.get_ownership = net_get_ownership,
2252 };
2253 
2254 #ifdef CONFIG_OF
2255 static int of_dev_node_match(struct device *dev, const void *data)
2256 {
2257 	for (; dev; dev = dev->parent) {
2258 		if (dev->of_node == data)
2259 			return 1;
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 /*
2266  * of_find_net_device_by_node - lookup the net device for the device node
2267  * @np: OF device node
2268  *
2269  * Looks up the net_device structure corresponding with the device node.
2270  * If successful, returns a pointer to the net_device with the embedded
2271  * struct device refcount incremented by one, or NULL on failure. The
2272  * refcount must be dropped when done with the net_device.
2273  */
2274 struct net_device *of_find_net_device_by_node(struct device_node *np)
2275 {
2276 	struct device *dev;
2277 
2278 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2279 	if (!dev)
2280 		return NULL;
2281 
2282 	return to_net_dev(dev);
2283 }
2284 EXPORT_SYMBOL(of_find_net_device_by_node);
2285 #endif
2286 
2287 /* Delete sysfs entries but hold kobject reference until after all
2288  * netdev references are gone.
2289  */
2290 void netdev_unregister_kobject(struct net_device *ndev)
2291 {
2292 	struct device *dev = &ndev->dev;
2293 
2294 	if (!refcount_read(&dev_net(ndev)->ns.count))
2295 		dev_set_uevent_suppress(dev, 1);
2296 
2297 	kobject_get(&dev->kobj);
2298 
2299 	remove_queue_kobjects(ndev);
2300 
2301 	pm_runtime_set_memalloc_noio(dev, false);
2302 
2303 	device_del(dev);
2304 }
2305 
2306 /* Create sysfs entries for network device. */
2307 int netdev_register_kobject(struct net_device *ndev)
2308 {
2309 	struct device *dev = &ndev->dev;
2310 	const struct attribute_group **groups = ndev->sysfs_groups;
2311 	int error = 0;
2312 
2313 	device_initialize(dev);
2314 	dev->class = &net_class;
2315 	dev->platform_data = ndev;
2316 	dev->groups = groups;
2317 
2318 	dev_set_name(dev, "%s", ndev->name);
2319 
2320 #ifdef CONFIG_SYSFS
2321 	/* Allow for a device specific group */
2322 	if (*groups)
2323 		groups++;
2324 
2325 	*groups++ = &netstat_group;
2326 
2327 	if (wireless_group_needed(ndev))
2328 		*groups++ = &wireless_group;
2329 #endif /* CONFIG_SYSFS */
2330 
2331 	error = device_add(dev);
2332 	if (error)
2333 		return error;
2334 
2335 	error = register_queue_kobjects(ndev);
2336 	if (error) {
2337 		device_del(dev);
2338 		return error;
2339 	}
2340 
2341 	pm_runtime_set_memalloc_noio(dev, true);
2342 
2343 	return error;
2344 }
2345 
2346 /* Change owner for sysfs entries when moving network devices across network
2347  * namespaces owned by different user namespaces.
2348  */
2349 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2350 			const struct net *net_new)
2351 {
2352 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2353 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2354 	struct device *dev = &ndev->dev;
2355 	int error;
2356 
2357 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2358 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2359 
2360 	/* The network namespace was changed but the owning user namespace is
2361 	 * identical so there's no need to change the owner of sysfs entries.
2362 	 */
2363 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2364 		return 0;
2365 
2366 	error = device_change_owner(dev, new_uid, new_gid);
2367 	if (error)
2368 		return error;
2369 
2370 	error = queue_change_owner(ndev, new_uid, new_gid);
2371 	if (error)
2372 		return error;
2373 
2374 	return 0;
2375 }
2376 
2377 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2378 				const void *ns)
2379 {
2380 	return class_create_file_ns(&net_class, class_attr, ns);
2381 }
2382 EXPORT_SYMBOL(netdev_class_create_file_ns);
2383 
2384 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2385 				 const void *ns)
2386 {
2387 	class_remove_file_ns(&net_class, class_attr, ns);
2388 }
2389 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2390 
2391 int __init netdev_kobject_init(void)
2392 {
2393 	kobj_ns_type_register(&net_ns_type_operations);
2394 	return class_register(&net_class);
2395 }
2396