xref: /linux/net/core/net-sysfs.c (revision cf4cebcec619d963fa7496018f03cb0ff00dc257)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_rx_queue.h>
27 #include <net/rps.h>
28 
29 #include "dev.h"
30 #include "net-sysfs.h"
31 
32 #ifdef CONFIG_SYSFS
33 static const char fmt_hex[] = "%#x\n";
34 static const char fmt_dec[] = "%d\n";
35 static const char fmt_ulong[] = "%lu\n";
36 static const char fmt_u64[] = "%llu\n";
37 
38 /* Caller holds RTNL or RCU */
39 static inline int dev_isalive(const struct net_device *dev)
40 {
41 	return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
42 }
43 
44 /* use same locking rules as GIF* ioctl's */
45 static ssize_t netdev_show(const struct device *dev,
46 			   struct device_attribute *attr, char *buf,
47 			   ssize_t (*format)(const struct net_device *, char *))
48 {
49 	struct net_device *ndev = to_net_dev(dev);
50 	ssize_t ret = -EINVAL;
51 
52 	rcu_read_lock();
53 	if (dev_isalive(ndev))
54 		ret = (*format)(ndev, buf);
55 	rcu_read_unlock();
56 
57 	return ret;
58 }
59 
60 /* generate a show function for simple field */
61 #define NETDEVICE_SHOW(field, format_string)				\
62 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
63 {									\
64 	return sysfs_emit(buf, format_string, READ_ONCE(dev->field));		\
65 }									\
66 static ssize_t field##_show(struct device *dev,				\
67 			    struct device_attribute *attr, char *buf)	\
68 {									\
69 	return netdev_show(dev, attr, buf, format_##field);		\
70 }									\
71 
72 #define NETDEVICE_SHOW_RO(field, format_string)				\
73 NETDEVICE_SHOW(field, format_string);					\
74 static DEVICE_ATTR_RO(field)
75 
76 #define NETDEVICE_SHOW_RW(field, format_string)				\
77 NETDEVICE_SHOW(field, format_string);					\
78 static DEVICE_ATTR_RW(field)
79 
80 /* use same locking and permission rules as SIF* ioctl's */
81 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
82 			    const char *buf, size_t len,
83 			    int (*set)(struct net_device *, unsigned long))
84 {
85 	struct net_device *netdev = to_net_dev(dev);
86 	struct net *net = dev_net(netdev);
87 	unsigned long new;
88 	int ret;
89 
90 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
91 		return -EPERM;
92 
93 	ret = kstrtoul(buf, 0, &new);
94 	if (ret)
95 		goto err;
96 
97 	if (!rtnl_trylock())
98 		return restart_syscall();
99 
100 	if (dev_isalive(netdev)) {
101 		ret = (*set)(netdev, new);
102 		if (ret == 0)
103 			ret = len;
104 	}
105 	rtnl_unlock();
106  err:
107 	return ret;
108 }
109 
110 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
111 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
112 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
113 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
114 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
115 NETDEVICE_SHOW_RO(type, fmt_dec);
116 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
117 
118 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
119 			   char *buf)
120 {
121 	struct net_device *ndev = to_net_dev(dev);
122 
123 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
124 }
125 static DEVICE_ATTR_RO(iflink);
126 
127 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
128 {
129 	return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
130 }
131 
132 static ssize_t name_assign_type_show(struct device *dev,
133 				     struct device_attribute *attr,
134 				     char *buf)
135 {
136 	struct net_device *ndev = to_net_dev(dev);
137 	ssize_t ret = -EINVAL;
138 
139 	if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
140 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
141 
142 	return ret;
143 }
144 static DEVICE_ATTR_RO(name_assign_type);
145 
146 /* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */
147 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
148 			    char *buf)
149 {
150 	struct net_device *ndev = to_net_dev(dev);
151 	ssize_t ret = -EINVAL;
152 
153 	down_read(&dev_addr_sem);
154 
155 	rcu_read_lock();
156 	if (dev_isalive(ndev))
157 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
158 	rcu_read_unlock();
159 
160 	up_read(&dev_addr_sem);
161 	return ret;
162 }
163 static DEVICE_ATTR_RO(address);
164 
165 static ssize_t broadcast_show(struct device *dev,
166 			      struct device_attribute *attr, char *buf)
167 {
168 	struct net_device *ndev = to_net_dev(dev);
169 	int ret = -EINVAL;
170 
171 	rcu_read_lock();
172 	if (dev_isalive(ndev))
173 		ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
174 	rcu_read_unlock();
175 	return ret;
176 }
177 static DEVICE_ATTR_RO(broadcast);
178 
179 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
180 {
181 	if (!netif_running(dev))
182 		return -EINVAL;
183 	return dev_change_carrier(dev, (bool)new_carrier);
184 }
185 
186 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
187 			     const char *buf, size_t len)
188 {
189 	struct net_device *netdev = to_net_dev(dev);
190 
191 	/* The check is also done in change_carrier; this helps returning early
192 	 * without hitting the trylock/restart in netdev_store.
193 	 */
194 	if (!netdev->netdev_ops->ndo_change_carrier)
195 		return -EOPNOTSUPP;
196 
197 	return netdev_store(dev, attr, buf, len, change_carrier);
198 }
199 
200 static ssize_t carrier_show(struct device *dev,
201 			    struct device_attribute *attr, char *buf)
202 {
203 	struct net_device *netdev = to_net_dev(dev);
204 	int ret = -EINVAL;
205 
206 	if (!rtnl_trylock())
207 		return restart_syscall();
208 
209 	if (netif_running(netdev)) {
210 		/* Synchronize carrier state with link watch,
211 		 * see also rtnl_getlink().
212 		 */
213 		linkwatch_sync_dev(netdev);
214 
215 		ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
216 	}
217 	rtnl_unlock();
218 
219 	return ret;
220 }
221 static DEVICE_ATTR_RW(carrier);
222 
223 static ssize_t speed_show(struct device *dev,
224 			  struct device_attribute *attr, char *buf)
225 {
226 	struct net_device *netdev = to_net_dev(dev);
227 	int ret = -EINVAL;
228 
229 	/* The check is also done in __ethtool_get_link_ksettings; this helps
230 	 * returning early without hitting the trylock/restart below.
231 	 */
232 	if (!netdev->ethtool_ops->get_link_ksettings)
233 		return ret;
234 
235 	if (!rtnl_trylock())
236 		return restart_syscall();
237 
238 	if (netif_running(netdev)) {
239 		struct ethtool_link_ksettings cmd;
240 
241 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
242 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
243 	}
244 	rtnl_unlock();
245 	return ret;
246 }
247 static DEVICE_ATTR_RO(speed);
248 
249 static ssize_t duplex_show(struct device *dev,
250 			   struct device_attribute *attr, char *buf)
251 {
252 	struct net_device *netdev = to_net_dev(dev);
253 	int ret = -EINVAL;
254 
255 	/* The check is also done in __ethtool_get_link_ksettings; this helps
256 	 * returning early without hitting the trylock/restart below.
257 	 */
258 	if (!netdev->ethtool_ops->get_link_ksettings)
259 		return ret;
260 
261 	if (!rtnl_trylock())
262 		return restart_syscall();
263 
264 	if (netif_running(netdev)) {
265 		struct ethtool_link_ksettings cmd;
266 
267 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
268 			const char *duplex;
269 
270 			switch (cmd.base.duplex) {
271 			case DUPLEX_HALF:
272 				duplex = "half";
273 				break;
274 			case DUPLEX_FULL:
275 				duplex = "full";
276 				break;
277 			default:
278 				duplex = "unknown";
279 				break;
280 			}
281 			ret = sysfs_emit(buf, "%s\n", duplex);
282 		}
283 	}
284 	rtnl_unlock();
285 	return ret;
286 }
287 static DEVICE_ATTR_RO(duplex);
288 
289 static ssize_t testing_show(struct device *dev,
290 			    struct device_attribute *attr, char *buf)
291 {
292 	struct net_device *netdev = to_net_dev(dev);
293 
294 	if (netif_running(netdev))
295 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
296 
297 	return -EINVAL;
298 }
299 static DEVICE_ATTR_RO(testing);
300 
301 static ssize_t dormant_show(struct device *dev,
302 			    struct device_attribute *attr, char *buf)
303 {
304 	struct net_device *netdev = to_net_dev(dev);
305 
306 	if (netif_running(netdev))
307 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
308 
309 	return -EINVAL;
310 }
311 static DEVICE_ATTR_RO(dormant);
312 
313 static const char *const operstates[] = {
314 	"unknown",
315 	"notpresent", /* currently unused */
316 	"down",
317 	"lowerlayerdown",
318 	"testing",
319 	"dormant",
320 	"up"
321 };
322 
323 static ssize_t operstate_show(struct device *dev,
324 			      struct device_attribute *attr, char *buf)
325 {
326 	const struct net_device *netdev = to_net_dev(dev);
327 	unsigned char operstate;
328 
329 	operstate = READ_ONCE(netdev->operstate);
330 	if (!netif_running(netdev))
331 		operstate = IF_OPER_DOWN;
332 
333 	if (operstate >= ARRAY_SIZE(operstates))
334 		return -EINVAL; /* should not happen */
335 
336 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
337 }
338 static DEVICE_ATTR_RO(operstate);
339 
340 static ssize_t carrier_changes_show(struct device *dev,
341 				    struct device_attribute *attr,
342 				    char *buf)
343 {
344 	struct net_device *netdev = to_net_dev(dev);
345 
346 	return sysfs_emit(buf, fmt_dec,
347 			  atomic_read(&netdev->carrier_up_count) +
348 			  atomic_read(&netdev->carrier_down_count));
349 }
350 static DEVICE_ATTR_RO(carrier_changes);
351 
352 static ssize_t carrier_up_count_show(struct device *dev,
353 				     struct device_attribute *attr,
354 				     char *buf)
355 {
356 	struct net_device *netdev = to_net_dev(dev);
357 
358 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
359 }
360 static DEVICE_ATTR_RO(carrier_up_count);
361 
362 static ssize_t carrier_down_count_show(struct device *dev,
363 				       struct device_attribute *attr,
364 				       char *buf)
365 {
366 	struct net_device *netdev = to_net_dev(dev);
367 
368 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
369 }
370 static DEVICE_ATTR_RO(carrier_down_count);
371 
372 /* read-write attributes */
373 
374 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
375 {
376 	return dev_set_mtu(dev, (int)new_mtu);
377 }
378 
379 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
380 			 const char *buf, size_t len)
381 {
382 	return netdev_store(dev, attr, buf, len, change_mtu);
383 }
384 NETDEVICE_SHOW_RW(mtu, fmt_dec);
385 
386 static int change_flags(struct net_device *dev, unsigned long new_flags)
387 {
388 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
389 }
390 
391 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
392 			   const char *buf, size_t len)
393 {
394 	return netdev_store(dev, attr, buf, len, change_flags);
395 }
396 NETDEVICE_SHOW_RW(flags, fmt_hex);
397 
398 static ssize_t tx_queue_len_store(struct device *dev,
399 				  struct device_attribute *attr,
400 				  const char *buf, size_t len)
401 {
402 	if (!capable(CAP_NET_ADMIN))
403 		return -EPERM;
404 
405 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
406 }
407 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
408 
409 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
410 {
411 	WRITE_ONCE(dev->gro_flush_timeout, val);
412 	return 0;
413 }
414 
415 static ssize_t gro_flush_timeout_store(struct device *dev,
416 				       struct device_attribute *attr,
417 				       const char *buf, size_t len)
418 {
419 	if (!capable(CAP_NET_ADMIN))
420 		return -EPERM;
421 
422 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
423 }
424 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
425 
426 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
427 {
428 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
429 	return 0;
430 }
431 
432 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
433 					  struct device_attribute *attr,
434 					  const char *buf, size_t len)
435 {
436 	if (!capable(CAP_NET_ADMIN))
437 		return -EPERM;
438 
439 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
440 }
441 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
442 
443 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
444 			     const char *buf, size_t len)
445 {
446 	struct net_device *netdev = to_net_dev(dev);
447 	struct net *net = dev_net(netdev);
448 	size_t count = len;
449 	ssize_t ret = 0;
450 
451 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
452 		return -EPERM;
453 
454 	/* ignore trailing newline */
455 	if (len >  0 && buf[len - 1] == '\n')
456 		--count;
457 
458 	if (!rtnl_trylock())
459 		return restart_syscall();
460 
461 	if (dev_isalive(netdev)) {
462 		ret = dev_set_alias(netdev, buf, count);
463 		if (ret < 0)
464 			goto err;
465 		ret = len;
466 		netdev_state_change(netdev);
467 	}
468 err:
469 	rtnl_unlock();
470 
471 	return ret;
472 }
473 
474 static ssize_t ifalias_show(struct device *dev,
475 			    struct device_attribute *attr, char *buf)
476 {
477 	const struct net_device *netdev = to_net_dev(dev);
478 	char tmp[IFALIASZ];
479 	ssize_t ret = 0;
480 
481 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
482 	if (ret > 0)
483 		ret = sysfs_emit(buf, "%s\n", tmp);
484 	return ret;
485 }
486 static DEVICE_ATTR_RW(ifalias);
487 
488 static int change_group(struct net_device *dev, unsigned long new_group)
489 {
490 	dev_set_group(dev, (int)new_group);
491 	return 0;
492 }
493 
494 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
495 			   const char *buf, size_t len)
496 {
497 	return netdev_store(dev, attr, buf, len, change_group);
498 }
499 NETDEVICE_SHOW(group, fmt_dec);
500 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
501 
502 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
503 {
504 	return dev_change_proto_down(dev, (bool)proto_down);
505 }
506 
507 static ssize_t proto_down_store(struct device *dev,
508 				struct device_attribute *attr,
509 				const char *buf, size_t len)
510 {
511 	return netdev_store(dev, attr, buf, len, change_proto_down);
512 }
513 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
514 
515 static ssize_t phys_port_id_show(struct device *dev,
516 				 struct device_attribute *attr, char *buf)
517 {
518 	struct net_device *netdev = to_net_dev(dev);
519 	ssize_t ret = -EINVAL;
520 
521 	/* The check is also done in dev_get_phys_port_id; this helps returning
522 	 * early without hitting the trylock/restart below.
523 	 */
524 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
525 		return -EOPNOTSUPP;
526 
527 	if (!rtnl_trylock())
528 		return restart_syscall();
529 
530 	if (dev_isalive(netdev)) {
531 		struct netdev_phys_item_id ppid;
532 
533 		ret = dev_get_phys_port_id(netdev, &ppid);
534 		if (!ret)
535 			ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
536 	}
537 	rtnl_unlock();
538 
539 	return ret;
540 }
541 static DEVICE_ATTR_RO(phys_port_id);
542 
543 static ssize_t phys_port_name_show(struct device *dev,
544 				   struct device_attribute *attr, char *buf)
545 {
546 	struct net_device *netdev = to_net_dev(dev);
547 	ssize_t ret = -EINVAL;
548 
549 	/* The checks are also done in dev_get_phys_port_name; this helps
550 	 * returning early without hitting the trylock/restart below.
551 	 */
552 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
553 	    !netdev->devlink_port)
554 		return -EOPNOTSUPP;
555 
556 	if (!rtnl_trylock())
557 		return restart_syscall();
558 
559 	if (dev_isalive(netdev)) {
560 		char name[IFNAMSIZ];
561 
562 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
563 		if (!ret)
564 			ret = sysfs_emit(buf, "%s\n", name);
565 	}
566 	rtnl_unlock();
567 
568 	return ret;
569 }
570 static DEVICE_ATTR_RO(phys_port_name);
571 
572 static ssize_t phys_switch_id_show(struct device *dev,
573 				   struct device_attribute *attr, char *buf)
574 {
575 	struct net_device *netdev = to_net_dev(dev);
576 	ssize_t ret = -EINVAL;
577 
578 	/* The checks are also done in dev_get_phys_port_name; this helps
579 	 * returning early without hitting the trylock/restart below. This works
580 	 * because recurse is false when calling dev_get_port_parent_id.
581 	 */
582 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
583 	    !netdev->devlink_port)
584 		return -EOPNOTSUPP;
585 
586 	if (!rtnl_trylock())
587 		return restart_syscall();
588 
589 	if (dev_isalive(netdev)) {
590 		struct netdev_phys_item_id ppid = { };
591 
592 		ret = dev_get_port_parent_id(netdev, &ppid, false);
593 		if (!ret)
594 			ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
595 	}
596 	rtnl_unlock();
597 
598 	return ret;
599 }
600 static DEVICE_ATTR_RO(phys_switch_id);
601 
602 static ssize_t threaded_show(struct device *dev,
603 			     struct device_attribute *attr, char *buf)
604 {
605 	struct net_device *netdev = to_net_dev(dev);
606 	ssize_t ret = -EINVAL;
607 
608 	rcu_read_lock();
609 
610 	if (dev_isalive(netdev))
611 		ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
612 
613 	rcu_read_unlock();
614 
615 	return ret;
616 }
617 
618 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
619 {
620 	int ret;
621 
622 	if (list_empty(&dev->napi_list))
623 		return -EOPNOTSUPP;
624 
625 	if (val != 0 && val != 1)
626 		return -EOPNOTSUPP;
627 
628 	ret = dev_set_threaded(dev, val);
629 
630 	return ret;
631 }
632 
633 static ssize_t threaded_store(struct device *dev,
634 			      struct device_attribute *attr,
635 			      const char *buf, size_t len)
636 {
637 	return netdev_store(dev, attr, buf, len, modify_napi_threaded);
638 }
639 static DEVICE_ATTR_RW(threaded);
640 
641 static struct attribute *net_class_attrs[] __ro_after_init = {
642 	&dev_attr_netdev_group.attr,
643 	&dev_attr_type.attr,
644 	&dev_attr_dev_id.attr,
645 	&dev_attr_dev_port.attr,
646 	&dev_attr_iflink.attr,
647 	&dev_attr_ifindex.attr,
648 	&dev_attr_name_assign_type.attr,
649 	&dev_attr_addr_assign_type.attr,
650 	&dev_attr_addr_len.attr,
651 	&dev_attr_link_mode.attr,
652 	&dev_attr_address.attr,
653 	&dev_attr_broadcast.attr,
654 	&dev_attr_speed.attr,
655 	&dev_attr_duplex.attr,
656 	&dev_attr_dormant.attr,
657 	&dev_attr_testing.attr,
658 	&dev_attr_operstate.attr,
659 	&dev_attr_carrier_changes.attr,
660 	&dev_attr_ifalias.attr,
661 	&dev_attr_carrier.attr,
662 	&dev_attr_mtu.attr,
663 	&dev_attr_flags.attr,
664 	&dev_attr_tx_queue_len.attr,
665 	&dev_attr_gro_flush_timeout.attr,
666 	&dev_attr_napi_defer_hard_irqs.attr,
667 	&dev_attr_phys_port_id.attr,
668 	&dev_attr_phys_port_name.attr,
669 	&dev_attr_phys_switch_id.attr,
670 	&dev_attr_proto_down.attr,
671 	&dev_attr_carrier_up_count.attr,
672 	&dev_attr_carrier_down_count.attr,
673 	&dev_attr_threaded.attr,
674 	NULL,
675 };
676 ATTRIBUTE_GROUPS(net_class);
677 
678 /* Show a given an attribute in the statistics group */
679 static ssize_t netstat_show(const struct device *d,
680 			    struct device_attribute *attr, char *buf,
681 			    unsigned long offset)
682 {
683 	struct net_device *dev = to_net_dev(d);
684 	ssize_t ret = -EINVAL;
685 
686 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
687 		offset % sizeof(u64) != 0);
688 
689 	rcu_read_lock();
690 	if (dev_isalive(dev)) {
691 		struct rtnl_link_stats64 temp;
692 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
693 
694 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
695 	}
696 	rcu_read_unlock();
697 	return ret;
698 }
699 
700 /* generate a read-only statistics attribute */
701 #define NETSTAT_ENTRY(name)						\
702 static ssize_t name##_show(struct device *d,				\
703 			   struct device_attribute *attr, char *buf)	\
704 {									\
705 	return netstat_show(d, attr, buf,				\
706 			    offsetof(struct rtnl_link_stats64, name));	\
707 }									\
708 static DEVICE_ATTR_RO(name)
709 
710 NETSTAT_ENTRY(rx_packets);
711 NETSTAT_ENTRY(tx_packets);
712 NETSTAT_ENTRY(rx_bytes);
713 NETSTAT_ENTRY(tx_bytes);
714 NETSTAT_ENTRY(rx_errors);
715 NETSTAT_ENTRY(tx_errors);
716 NETSTAT_ENTRY(rx_dropped);
717 NETSTAT_ENTRY(tx_dropped);
718 NETSTAT_ENTRY(multicast);
719 NETSTAT_ENTRY(collisions);
720 NETSTAT_ENTRY(rx_length_errors);
721 NETSTAT_ENTRY(rx_over_errors);
722 NETSTAT_ENTRY(rx_crc_errors);
723 NETSTAT_ENTRY(rx_frame_errors);
724 NETSTAT_ENTRY(rx_fifo_errors);
725 NETSTAT_ENTRY(rx_missed_errors);
726 NETSTAT_ENTRY(tx_aborted_errors);
727 NETSTAT_ENTRY(tx_carrier_errors);
728 NETSTAT_ENTRY(tx_fifo_errors);
729 NETSTAT_ENTRY(tx_heartbeat_errors);
730 NETSTAT_ENTRY(tx_window_errors);
731 NETSTAT_ENTRY(rx_compressed);
732 NETSTAT_ENTRY(tx_compressed);
733 NETSTAT_ENTRY(rx_nohandler);
734 
735 static struct attribute *netstat_attrs[] __ro_after_init = {
736 	&dev_attr_rx_packets.attr,
737 	&dev_attr_tx_packets.attr,
738 	&dev_attr_rx_bytes.attr,
739 	&dev_attr_tx_bytes.attr,
740 	&dev_attr_rx_errors.attr,
741 	&dev_attr_tx_errors.attr,
742 	&dev_attr_rx_dropped.attr,
743 	&dev_attr_tx_dropped.attr,
744 	&dev_attr_multicast.attr,
745 	&dev_attr_collisions.attr,
746 	&dev_attr_rx_length_errors.attr,
747 	&dev_attr_rx_over_errors.attr,
748 	&dev_attr_rx_crc_errors.attr,
749 	&dev_attr_rx_frame_errors.attr,
750 	&dev_attr_rx_fifo_errors.attr,
751 	&dev_attr_rx_missed_errors.attr,
752 	&dev_attr_tx_aborted_errors.attr,
753 	&dev_attr_tx_carrier_errors.attr,
754 	&dev_attr_tx_fifo_errors.attr,
755 	&dev_attr_tx_heartbeat_errors.attr,
756 	&dev_attr_tx_window_errors.attr,
757 	&dev_attr_rx_compressed.attr,
758 	&dev_attr_tx_compressed.attr,
759 	&dev_attr_rx_nohandler.attr,
760 	NULL
761 };
762 
763 static const struct attribute_group netstat_group = {
764 	.name  = "statistics",
765 	.attrs  = netstat_attrs,
766 };
767 
768 static struct attribute *wireless_attrs[] = {
769 	NULL
770 };
771 
772 static const struct attribute_group wireless_group = {
773 	.name = "wireless",
774 	.attrs = wireless_attrs,
775 };
776 
777 static bool wireless_group_needed(struct net_device *ndev)
778 {
779 #if IS_ENABLED(CONFIG_CFG80211)
780 	if (ndev->ieee80211_ptr)
781 		return true;
782 #endif
783 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
784 	if (ndev->wireless_handlers)
785 		return true;
786 #endif
787 	return false;
788 }
789 
790 #else /* CONFIG_SYSFS */
791 #define net_class_groups	NULL
792 #endif /* CONFIG_SYSFS */
793 
794 #ifdef CONFIG_SYSFS
795 #define to_rx_queue_attr(_attr) \
796 	container_of(_attr, struct rx_queue_attribute, attr)
797 
798 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
799 
800 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
801 				  char *buf)
802 {
803 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
804 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
805 
806 	if (!attribute->show)
807 		return -EIO;
808 
809 	return attribute->show(queue, buf);
810 }
811 
812 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
813 				   const char *buf, size_t count)
814 {
815 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
816 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
817 
818 	if (!attribute->store)
819 		return -EIO;
820 
821 	return attribute->store(queue, buf, count);
822 }
823 
824 static const struct sysfs_ops rx_queue_sysfs_ops = {
825 	.show = rx_queue_attr_show,
826 	.store = rx_queue_attr_store,
827 };
828 
829 #ifdef CONFIG_RPS
830 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
831 {
832 	struct rps_map *map;
833 	cpumask_var_t mask;
834 	int i, len;
835 
836 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
837 		return -ENOMEM;
838 
839 	rcu_read_lock();
840 	map = rcu_dereference(queue->rps_map);
841 	if (map)
842 		for (i = 0; i < map->len; i++)
843 			cpumask_set_cpu(map->cpus[i], mask);
844 
845 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
846 	rcu_read_unlock();
847 	free_cpumask_var(mask);
848 
849 	return len < PAGE_SIZE ? len : -EINVAL;
850 }
851 
852 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
853 					cpumask_var_t mask)
854 {
855 	static DEFINE_MUTEX(rps_map_mutex);
856 	struct rps_map *old_map, *map;
857 	int cpu, i;
858 
859 	map = kzalloc(max_t(unsigned int,
860 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
861 		      GFP_KERNEL);
862 	if (!map)
863 		return -ENOMEM;
864 
865 	i = 0;
866 	for_each_cpu_and(cpu, mask, cpu_online_mask)
867 		map->cpus[i++] = cpu;
868 
869 	if (i) {
870 		map->len = i;
871 	} else {
872 		kfree(map);
873 		map = NULL;
874 	}
875 
876 	mutex_lock(&rps_map_mutex);
877 	old_map = rcu_dereference_protected(queue->rps_map,
878 					    mutex_is_locked(&rps_map_mutex));
879 	rcu_assign_pointer(queue->rps_map, map);
880 
881 	if (map)
882 		static_branch_inc(&rps_needed);
883 	if (old_map)
884 		static_branch_dec(&rps_needed);
885 
886 	mutex_unlock(&rps_map_mutex);
887 
888 	if (old_map)
889 		kfree_rcu(old_map, rcu);
890 	return 0;
891 }
892 
893 int rps_cpumask_housekeeping(struct cpumask *mask)
894 {
895 	if (!cpumask_empty(mask)) {
896 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
897 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
898 		if (cpumask_empty(mask))
899 			return -EINVAL;
900 	}
901 	return 0;
902 }
903 
904 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
905 			     const char *buf, size_t len)
906 {
907 	cpumask_var_t mask;
908 	int err;
909 
910 	if (!capable(CAP_NET_ADMIN))
911 		return -EPERM;
912 
913 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
914 		return -ENOMEM;
915 
916 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
917 	if (err)
918 		goto out;
919 
920 	err = rps_cpumask_housekeeping(mask);
921 	if (err)
922 		goto out;
923 
924 	err = netdev_rx_queue_set_rps_mask(queue, mask);
925 
926 out:
927 	free_cpumask_var(mask);
928 	return err ? : len;
929 }
930 
931 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
932 					   char *buf)
933 {
934 	struct rps_dev_flow_table *flow_table;
935 	unsigned long val = 0;
936 
937 	rcu_read_lock();
938 	flow_table = rcu_dereference(queue->rps_flow_table);
939 	if (flow_table)
940 		val = (unsigned long)flow_table->mask + 1;
941 	rcu_read_unlock();
942 
943 	return sysfs_emit(buf, "%lu\n", val);
944 }
945 
946 static void rps_dev_flow_table_release(struct rcu_head *rcu)
947 {
948 	struct rps_dev_flow_table *table = container_of(rcu,
949 	    struct rps_dev_flow_table, rcu);
950 	vfree(table);
951 }
952 
953 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
954 					    const char *buf, size_t len)
955 {
956 	unsigned long mask, count;
957 	struct rps_dev_flow_table *table, *old_table;
958 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
959 	int rc;
960 
961 	if (!capable(CAP_NET_ADMIN))
962 		return -EPERM;
963 
964 	rc = kstrtoul(buf, 0, &count);
965 	if (rc < 0)
966 		return rc;
967 
968 	if (count) {
969 		mask = count - 1;
970 		/* mask = roundup_pow_of_two(count) - 1;
971 		 * without overflows...
972 		 */
973 		while ((mask | (mask >> 1)) != mask)
974 			mask |= (mask >> 1);
975 		/* On 64 bit arches, must check mask fits in table->mask (u32),
976 		 * and on 32bit arches, must check
977 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
978 		 */
979 #if BITS_PER_LONG > 32
980 		if (mask > (unsigned long)(u32)mask)
981 			return -EINVAL;
982 #else
983 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
984 				/ sizeof(struct rps_dev_flow)) {
985 			/* Enforce a limit to prevent overflow */
986 			return -EINVAL;
987 		}
988 #endif
989 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
990 		if (!table)
991 			return -ENOMEM;
992 
993 		table->mask = mask;
994 		for (count = 0; count <= mask; count++)
995 			table->flows[count].cpu = RPS_NO_CPU;
996 	} else {
997 		table = NULL;
998 	}
999 
1000 	spin_lock(&rps_dev_flow_lock);
1001 	old_table = rcu_dereference_protected(queue->rps_flow_table,
1002 					      lockdep_is_held(&rps_dev_flow_lock));
1003 	rcu_assign_pointer(queue->rps_flow_table, table);
1004 	spin_unlock(&rps_dev_flow_lock);
1005 
1006 	if (old_table)
1007 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1008 
1009 	return len;
1010 }
1011 
1012 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1013 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1014 
1015 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1016 	= __ATTR(rps_flow_cnt, 0644,
1017 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1018 #endif /* CONFIG_RPS */
1019 
1020 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1021 #ifdef CONFIG_RPS
1022 	&rps_cpus_attribute.attr,
1023 	&rps_dev_flow_table_cnt_attribute.attr,
1024 #endif
1025 	NULL
1026 };
1027 ATTRIBUTE_GROUPS(rx_queue_default);
1028 
1029 static void rx_queue_release(struct kobject *kobj)
1030 {
1031 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1032 #ifdef CONFIG_RPS
1033 	struct rps_map *map;
1034 	struct rps_dev_flow_table *flow_table;
1035 
1036 	map = rcu_dereference_protected(queue->rps_map, 1);
1037 	if (map) {
1038 		RCU_INIT_POINTER(queue->rps_map, NULL);
1039 		kfree_rcu(map, rcu);
1040 	}
1041 
1042 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1043 	if (flow_table) {
1044 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1045 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1046 	}
1047 #endif
1048 
1049 	memset(kobj, 0, sizeof(*kobj));
1050 	netdev_put(queue->dev, &queue->dev_tracker);
1051 }
1052 
1053 static const void *rx_queue_namespace(const struct kobject *kobj)
1054 {
1055 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1056 	struct device *dev = &queue->dev->dev;
1057 	const void *ns = NULL;
1058 
1059 	if (dev->class && dev->class->ns_type)
1060 		ns = dev->class->namespace(dev);
1061 
1062 	return ns;
1063 }
1064 
1065 static void rx_queue_get_ownership(const struct kobject *kobj,
1066 				   kuid_t *uid, kgid_t *gid)
1067 {
1068 	const struct net *net = rx_queue_namespace(kobj);
1069 
1070 	net_ns_get_ownership(net, uid, gid);
1071 }
1072 
1073 static const struct kobj_type rx_queue_ktype = {
1074 	.sysfs_ops = &rx_queue_sysfs_ops,
1075 	.release = rx_queue_release,
1076 	.default_groups = rx_queue_default_groups,
1077 	.namespace = rx_queue_namespace,
1078 	.get_ownership = rx_queue_get_ownership,
1079 };
1080 
1081 static int rx_queue_default_mask(struct net_device *dev,
1082 				 struct netdev_rx_queue *queue)
1083 {
1084 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1085 	struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1086 
1087 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1088 		return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1089 #endif
1090 	return 0;
1091 }
1092 
1093 static int rx_queue_add_kobject(struct net_device *dev, int index)
1094 {
1095 	struct netdev_rx_queue *queue = dev->_rx + index;
1096 	struct kobject *kobj = &queue->kobj;
1097 	int error = 0;
1098 
1099 	/* Kobject_put later will trigger rx_queue_release call which
1100 	 * decreases dev refcount: Take that reference here
1101 	 */
1102 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1103 
1104 	kobj->kset = dev->queues_kset;
1105 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1106 				     "rx-%u", index);
1107 	if (error)
1108 		goto err;
1109 
1110 	if (dev->sysfs_rx_queue_group) {
1111 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1112 		if (error)
1113 			goto err;
1114 	}
1115 
1116 	error = rx_queue_default_mask(dev, queue);
1117 	if (error)
1118 		goto err;
1119 
1120 	kobject_uevent(kobj, KOBJ_ADD);
1121 
1122 	return error;
1123 
1124 err:
1125 	kobject_put(kobj);
1126 	return error;
1127 }
1128 
1129 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1130 				 kgid_t kgid)
1131 {
1132 	struct netdev_rx_queue *queue = dev->_rx + index;
1133 	struct kobject *kobj = &queue->kobj;
1134 	int error;
1135 
1136 	error = sysfs_change_owner(kobj, kuid, kgid);
1137 	if (error)
1138 		return error;
1139 
1140 	if (dev->sysfs_rx_queue_group)
1141 		error = sysfs_group_change_owner(
1142 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1143 
1144 	return error;
1145 }
1146 #endif /* CONFIG_SYSFS */
1147 
1148 int
1149 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1150 {
1151 #ifdef CONFIG_SYSFS
1152 	int i;
1153 	int error = 0;
1154 
1155 #ifndef CONFIG_RPS
1156 	if (!dev->sysfs_rx_queue_group)
1157 		return 0;
1158 #endif
1159 	for (i = old_num; i < new_num; i++) {
1160 		error = rx_queue_add_kobject(dev, i);
1161 		if (error) {
1162 			new_num = old_num;
1163 			break;
1164 		}
1165 	}
1166 
1167 	while (--i >= new_num) {
1168 		struct kobject *kobj = &dev->_rx[i].kobj;
1169 
1170 		if (!refcount_read(&dev_net(dev)->ns.count))
1171 			kobj->uevent_suppress = 1;
1172 		if (dev->sysfs_rx_queue_group)
1173 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1174 		kobject_put(kobj);
1175 	}
1176 
1177 	return error;
1178 #else
1179 	return 0;
1180 #endif
1181 }
1182 
1183 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1184 				     kuid_t kuid, kgid_t kgid)
1185 {
1186 #ifdef CONFIG_SYSFS
1187 	int error = 0;
1188 	int i;
1189 
1190 #ifndef CONFIG_RPS
1191 	if (!dev->sysfs_rx_queue_group)
1192 		return 0;
1193 #endif
1194 	for (i = 0; i < num; i++) {
1195 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1196 		if (error)
1197 			break;
1198 	}
1199 
1200 	return error;
1201 #else
1202 	return 0;
1203 #endif
1204 }
1205 
1206 #ifdef CONFIG_SYSFS
1207 /*
1208  * netdev_queue sysfs structures and functions.
1209  */
1210 struct netdev_queue_attribute {
1211 	struct attribute attr;
1212 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1213 	ssize_t (*store)(struct netdev_queue *queue,
1214 			 const char *buf, size_t len);
1215 };
1216 #define to_netdev_queue_attr(_attr) \
1217 	container_of(_attr, struct netdev_queue_attribute, attr)
1218 
1219 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1220 
1221 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1222 				      struct attribute *attr, char *buf)
1223 {
1224 	const struct netdev_queue_attribute *attribute
1225 		= to_netdev_queue_attr(attr);
1226 	struct netdev_queue *queue = to_netdev_queue(kobj);
1227 
1228 	if (!attribute->show)
1229 		return -EIO;
1230 
1231 	return attribute->show(queue, buf);
1232 }
1233 
1234 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1235 				       struct attribute *attr,
1236 				       const char *buf, size_t count)
1237 {
1238 	const struct netdev_queue_attribute *attribute
1239 		= to_netdev_queue_attr(attr);
1240 	struct netdev_queue *queue = to_netdev_queue(kobj);
1241 
1242 	if (!attribute->store)
1243 		return -EIO;
1244 
1245 	return attribute->store(queue, buf, count);
1246 }
1247 
1248 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1249 	.show = netdev_queue_attr_show,
1250 	.store = netdev_queue_attr_store,
1251 };
1252 
1253 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1254 {
1255 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1256 
1257 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1258 }
1259 
1260 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1261 {
1262 	struct net_device *dev = queue->dev;
1263 	unsigned int i;
1264 
1265 	i = queue - dev->_tx;
1266 	BUG_ON(i >= dev->num_tx_queues);
1267 
1268 	return i;
1269 }
1270 
1271 static ssize_t traffic_class_show(struct netdev_queue *queue,
1272 				  char *buf)
1273 {
1274 	struct net_device *dev = queue->dev;
1275 	int num_tc, tc;
1276 	int index;
1277 
1278 	if (!netif_is_multiqueue(dev))
1279 		return -ENOENT;
1280 
1281 	if (!rtnl_trylock())
1282 		return restart_syscall();
1283 
1284 	index = get_netdev_queue_index(queue);
1285 
1286 	/* If queue belongs to subordinate dev use its TC mapping */
1287 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1288 
1289 	num_tc = dev->num_tc;
1290 	tc = netdev_txq_to_tc(dev, index);
1291 
1292 	rtnl_unlock();
1293 
1294 	if (tc < 0)
1295 		return -EINVAL;
1296 
1297 	/* We can report the traffic class one of two ways:
1298 	 * Subordinate device traffic classes are reported with the traffic
1299 	 * class first, and then the subordinate class so for example TC0 on
1300 	 * subordinate device 2 will be reported as "0-2". If the queue
1301 	 * belongs to the root device it will be reported with just the
1302 	 * traffic class, so just "0" for TC 0 for example.
1303 	 */
1304 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1305 			    sysfs_emit(buf, "%d\n", tc);
1306 }
1307 
1308 #ifdef CONFIG_XPS
1309 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1310 			       char *buf)
1311 {
1312 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1313 }
1314 
1315 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1316 				const char *buf, size_t len)
1317 {
1318 	struct net_device *dev = queue->dev;
1319 	int err, index = get_netdev_queue_index(queue);
1320 	u32 rate = 0;
1321 
1322 	if (!capable(CAP_NET_ADMIN))
1323 		return -EPERM;
1324 
1325 	/* The check is also done later; this helps returning early without
1326 	 * hitting the trylock/restart below.
1327 	 */
1328 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1329 		return -EOPNOTSUPP;
1330 
1331 	err = kstrtou32(buf, 10, &rate);
1332 	if (err < 0)
1333 		return err;
1334 
1335 	if (!rtnl_trylock())
1336 		return restart_syscall();
1337 
1338 	err = -EOPNOTSUPP;
1339 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1340 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1341 
1342 	rtnl_unlock();
1343 	if (!err) {
1344 		queue->tx_maxrate = rate;
1345 		return len;
1346 	}
1347 	return err;
1348 }
1349 
1350 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1351 	= __ATTR_RW(tx_maxrate);
1352 #endif
1353 
1354 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1355 	= __ATTR_RO(tx_timeout);
1356 
1357 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1358 	= __ATTR_RO(traffic_class);
1359 
1360 #ifdef CONFIG_BQL
1361 /*
1362  * Byte queue limits sysfs structures and functions.
1363  */
1364 static ssize_t bql_show(char *buf, unsigned int value)
1365 {
1366 	return sysfs_emit(buf, "%u\n", value);
1367 }
1368 
1369 static ssize_t bql_set(const char *buf, const size_t count,
1370 		       unsigned int *pvalue)
1371 {
1372 	unsigned int value;
1373 	int err;
1374 
1375 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1376 		value = DQL_MAX_LIMIT;
1377 	} else {
1378 		err = kstrtouint(buf, 10, &value);
1379 		if (err < 0)
1380 			return err;
1381 		if (value > DQL_MAX_LIMIT)
1382 			return -EINVAL;
1383 	}
1384 
1385 	*pvalue = value;
1386 
1387 	return count;
1388 }
1389 
1390 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1391 				  char *buf)
1392 {
1393 	struct dql *dql = &queue->dql;
1394 
1395 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1396 }
1397 
1398 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1399 				 const char *buf, size_t len)
1400 {
1401 	struct dql *dql = &queue->dql;
1402 	unsigned int value;
1403 	int err;
1404 
1405 	err = kstrtouint(buf, 10, &value);
1406 	if (err < 0)
1407 		return err;
1408 
1409 	dql->slack_hold_time = msecs_to_jiffies(value);
1410 
1411 	return len;
1412 }
1413 
1414 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1415 	= __ATTR(hold_time, 0644,
1416 		 bql_show_hold_time, bql_set_hold_time);
1417 
1418 static ssize_t bql_show_stall_thrs(struct netdev_queue *queue, char *buf)
1419 {
1420 	struct dql *dql = &queue->dql;
1421 
1422 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1423 }
1424 
1425 static ssize_t bql_set_stall_thrs(struct netdev_queue *queue,
1426 				  const char *buf, size_t len)
1427 {
1428 	struct dql *dql = &queue->dql;
1429 	unsigned int value;
1430 	int err;
1431 
1432 	err = kstrtouint(buf, 10, &value);
1433 	if (err < 0)
1434 		return err;
1435 
1436 	value = msecs_to_jiffies(value);
1437 	if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1438 		return -ERANGE;
1439 
1440 	if (!dql->stall_thrs && value)
1441 		dql->last_reap = jiffies;
1442 	/* Force last_reap to be live */
1443 	smp_wmb();
1444 	dql->stall_thrs = value;
1445 
1446 	return len;
1447 }
1448 
1449 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1450 	__ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1451 
1452 static ssize_t bql_show_stall_max(struct netdev_queue *queue, char *buf)
1453 {
1454 	return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1455 }
1456 
1457 static ssize_t bql_set_stall_max(struct netdev_queue *queue,
1458 				 const char *buf, size_t len)
1459 {
1460 	WRITE_ONCE(queue->dql.stall_max, 0);
1461 	return len;
1462 }
1463 
1464 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1465 	__ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1466 
1467 static ssize_t bql_show_stall_cnt(struct netdev_queue *queue, char *buf)
1468 {
1469 	struct dql *dql = &queue->dql;
1470 
1471 	return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1472 }
1473 
1474 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1475 	__ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1476 
1477 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1478 				 char *buf)
1479 {
1480 	struct dql *dql = &queue->dql;
1481 
1482 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1483 }
1484 
1485 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1486 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1487 
1488 #define BQL_ATTR(NAME, FIELD)						\
1489 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1490 				 char *buf)				\
1491 {									\
1492 	return bql_show(buf, queue->dql.FIELD);				\
1493 }									\
1494 									\
1495 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1496 				const char *buf, size_t len)		\
1497 {									\
1498 	return bql_set(buf, len, &queue->dql.FIELD);			\
1499 }									\
1500 									\
1501 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1502 	= __ATTR(NAME, 0644,				\
1503 		 bql_show_ ## NAME, bql_set_ ## NAME)
1504 
1505 BQL_ATTR(limit, limit);
1506 BQL_ATTR(limit_max, max_limit);
1507 BQL_ATTR(limit_min, min_limit);
1508 
1509 static struct attribute *dql_attrs[] __ro_after_init = {
1510 	&bql_limit_attribute.attr,
1511 	&bql_limit_max_attribute.attr,
1512 	&bql_limit_min_attribute.attr,
1513 	&bql_hold_time_attribute.attr,
1514 	&bql_inflight_attribute.attr,
1515 	&bql_stall_thrs_attribute.attr,
1516 	&bql_stall_cnt_attribute.attr,
1517 	&bql_stall_max_attribute.attr,
1518 	NULL
1519 };
1520 
1521 static const struct attribute_group dql_group = {
1522 	.name  = "byte_queue_limits",
1523 	.attrs  = dql_attrs,
1524 };
1525 #else
1526 /* Fake declaration, all the code using it should be dead */
1527 static const struct attribute_group dql_group = {};
1528 #endif /* CONFIG_BQL */
1529 
1530 #ifdef CONFIG_XPS
1531 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1532 			      int tc, char *buf, enum xps_map_type type)
1533 {
1534 	struct xps_dev_maps *dev_maps;
1535 	unsigned long *mask;
1536 	unsigned int nr_ids;
1537 	int j, len;
1538 
1539 	rcu_read_lock();
1540 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1541 
1542 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1543 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1544 	 */
1545 	nr_ids = dev_maps ? dev_maps->nr_ids :
1546 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1547 
1548 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1549 	if (!mask) {
1550 		rcu_read_unlock();
1551 		return -ENOMEM;
1552 	}
1553 
1554 	if (!dev_maps || tc >= dev_maps->num_tc)
1555 		goto out_no_maps;
1556 
1557 	for (j = 0; j < nr_ids; j++) {
1558 		int i, tci = j * dev_maps->num_tc + tc;
1559 		struct xps_map *map;
1560 
1561 		map = rcu_dereference(dev_maps->attr_map[tci]);
1562 		if (!map)
1563 			continue;
1564 
1565 		for (i = map->len; i--;) {
1566 			if (map->queues[i] == index) {
1567 				__set_bit(j, mask);
1568 				break;
1569 			}
1570 		}
1571 	}
1572 out_no_maps:
1573 	rcu_read_unlock();
1574 
1575 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1576 	bitmap_free(mask);
1577 
1578 	return len < PAGE_SIZE ? len : -EINVAL;
1579 }
1580 
1581 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1582 {
1583 	struct net_device *dev = queue->dev;
1584 	unsigned int index;
1585 	int len, tc;
1586 
1587 	if (!netif_is_multiqueue(dev))
1588 		return -ENOENT;
1589 
1590 	index = get_netdev_queue_index(queue);
1591 
1592 	if (!rtnl_trylock())
1593 		return restart_syscall();
1594 
1595 	/* If queue belongs to subordinate dev use its map */
1596 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1597 
1598 	tc = netdev_txq_to_tc(dev, index);
1599 	if (tc < 0) {
1600 		rtnl_unlock();
1601 		return -EINVAL;
1602 	}
1603 
1604 	/* Make sure the subordinate device can't be freed */
1605 	get_device(&dev->dev);
1606 	rtnl_unlock();
1607 
1608 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1609 
1610 	put_device(&dev->dev);
1611 	return len;
1612 }
1613 
1614 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1615 			      const char *buf, size_t len)
1616 {
1617 	struct net_device *dev = queue->dev;
1618 	unsigned int index;
1619 	cpumask_var_t mask;
1620 	int err;
1621 
1622 	if (!netif_is_multiqueue(dev))
1623 		return -ENOENT;
1624 
1625 	if (!capable(CAP_NET_ADMIN))
1626 		return -EPERM;
1627 
1628 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1629 		return -ENOMEM;
1630 
1631 	index = get_netdev_queue_index(queue);
1632 
1633 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1634 	if (err) {
1635 		free_cpumask_var(mask);
1636 		return err;
1637 	}
1638 
1639 	if (!rtnl_trylock()) {
1640 		free_cpumask_var(mask);
1641 		return restart_syscall();
1642 	}
1643 
1644 	err = netif_set_xps_queue(dev, mask, index);
1645 	rtnl_unlock();
1646 
1647 	free_cpumask_var(mask);
1648 
1649 	return err ? : len;
1650 }
1651 
1652 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1653 	= __ATTR_RW(xps_cpus);
1654 
1655 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1656 {
1657 	struct net_device *dev = queue->dev;
1658 	unsigned int index;
1659 	int tc;
1660 
1661 	index = get_netdev_queue_index(queue);
1662 
1663 	if (!rtnl_trylock())
1664 		return restart_syscall();
1665 
1666 	tc = netdev_txq_to_tc(dev, index);
1667 	rtnl_unlock();
1668 	if (tc < 0)
1669 		return -EINVAL;
1670 
1671 	return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1672 }
1673 
1674 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1675 			      size_t len)
1676 {
1677 	struct net_device *dev = queue->dev;
1678 	struct net *net = dev_net(dev);
1679 	unsigned long *mask;
1680 	unsigned int index;
1681 	int err;
1682 
1683 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1684 		return -EPERM;
1685 
1686 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1687 	if (!mask)
1688 		return -ENOMEM;
1689 
1690 	index = get_netdev_queue_index(queue);
1691 
1692 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1693 	if (err) {
1694 		bitmap_free(mask);
1695 		return err;
1696 	}
1697 
1698 	if (!rtnl_trylock()) {
1699 		bitmap_free(mask);
1700 		return restart_syscall();
1701 	}
1702 
1703 	cpus_read_lock();
1704 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1705 	cpus_read_unlock();
1706 
1707 	rtnl_unlock();
1708 
1709 	bitmap_free(mask);
1710 	return err ? : len;
1711 }
1712 
1713 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1714 	= __ATTR_RW(xps_rxqs);
1715 #endif /* CONFIG_XPS */
1716 
1717 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1718 	&queue_trans_timeout.attr,
1719 	&queue_traffic_class.attr,
1720 #ifdef CONFIG_XPS
1721 	&xps_cpus_attribute.attr,
1722 	&xps_rxqs_attribute.attr,
1723 	&queue_tx_maxrate.attr,
1724 #endif
1725 	NULL
1726 };
1727 ATTRIBUTE_GROUPS(netdev_queue_default);
1728 
1729 static void netdev_queue_release(struct kobject *kobj)
1730 {
1731 	struct netdev_queue *queue = to_netdev_queue(kobj);
1732 
1733 	memset(kobj, 0, sizeof(*kobj));
1734 	netdev_put(queue->dev, &queue->dev_tracker);
1735 }
1736 
1737 static const void *netdev_queue_namespace(const struct kobject *kobj)
1738 {
1739 	struct netdev_queue *queue = to_netdev_queue(kobj);
1740 	struct device *dev = &queue->dev->dev;
1741 	const void *ns = NULL;
1742 
1743 	if (dev->class && dev->class->ns_type)
1744 		ns = dev->class->namespace(dev);
1745 
1746 	return ns;
1747 }
1748 
1749 static void netdev_queue_get_ownership(const struct kobject *kobj,
1750 				       kuid_t *uid, kgid_t *gid)
1751 {
1752 	const struct net *net = netdev_queue_namespace(kobj);
1753 
1754 	net_ns_get_ownership(net, uid, gid);
1755 }
1756 
1757 static const struct kobj_type netdev_queue_ktype = {
1758 	.sysfs_ops = &netdev_queue_sysfs_ops,
1759 	.release = netdev_queue_release,
1760 	.default_groups = netdev_queue_default_groups,
1761 	.namespace = netdev_queue_namespace,
1762 	.get_ownership = netdev_queue_get_ownership,
1763 };
1764 
1765 static bool netdev_uses_bql(const struct net_device *dev)
1766 {
1767 	if (dev->features & NETIF_F_LLTX ||
1768 	    dev->priv_flags & IFF_NO_QUEUE)
1769 		return false;
1770 
1771 	return IS_ENABLED(CONFIG_BQL);
1772 }
1773 
1774 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1775 {
1776 	struct netdev_queue *queue = dev->_tx + index;
1777 	struct kobject *kobj = &queue->kobj;
1778 	int error = 0;
1779 
1780 	/* Kobject_put later will trigger netdev_queue_release call
1781 	 * which decreases dev refcount: Take that reference here
1782 	 */
1783 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1784 
1785 	kobj->kset = dev->queues_kset;
1786 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1787 				     "tx-%u", index);
1788 	if (error)
1789 		goto err;
1790 
1791 	if (netdev_uses_bql(dev)) {
1792 		error = sysfs_create_group(kobj, &dql_group);
1793 		if (error)
1794 			goto err;
1795 	}
1796 
1797 	kobject_uevent(kobj, KOBJ_ADD);
1798 	return 0;
1799 
1800 err:
1801 	kobject_put(kobj);
1802 	return error;
1803 }
1804 
1805 static int tx_queue_change_owner(struct net_device *ndev, int index,
1806 				 kuid_t kuid, kgid_t kgid)
1807 {
1808 	struct netdev_queue *queue = ndev->_tx + index;
1809 	struct kobject *kobj = &queue->kobj;
1810 	int error;
1811 
1812 	error = sysfs_change_owner(kobj, kuid, kgid);
1813 	if (error)
1814 		return error;
1815 
1816 	if (netdev_uses_bql(ndev))
1817 		error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1818 
1819 	return error;
1820 }
1821 #endif /* CONFIG_SYSFS */
1822 
1823 int
1824 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1825 {
1826 #ifdef CONFIG_SYSFS
1827 	int i;
1828 	int error = 0;
1829 
1830 	/* Tx queue kobjects are allowed to be updated when a device is being
1831 	 * unregistered, but solely to remove queues from qdiscs. Any path
1832 	 * adding queues should be fixed.
1833 	 */
1834 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
1835 	     "New queues can't be registered after device unregistration.");
1836 
1837 	for (i = old_num; i < new_num; i++) {
1838 		error = netdev_queue_add_kobject(dev, i);
1839 		if (error) {
1840 			new_num = old_num;
1841 			break;
1842 		}
1843 	}
1844 
1845 	while (--i >= new_num) {
1846 		struct netdev_queue *queue = dev->_tx + i;
1847 
1848 		if (!refcount_read(&dev_net(dev)->ns.count))
1849 			queue->kobj.uevent_suppress = 1;
1850 
1851 		if (netdev_uses_bql(dev))
1852 			sysfs_remove_group(&queue->kobj, &dql_group);
1853 
1854 		kobject_put(&queue->kobj);
1855 	}
1856 
1857 	return error;
1858 #else
1859 	return 0;
1860 #endif /* CONFIG_SYSFS */
1861 }
1862 
1863 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1864 				     kuid_t kuid, kgid_t kgid)
1865 {
1866 #ifdef CONFIG_SYSFS
1867 	int error = 0;
1868 	int i;
1869 
1870 	for (i = 0; i < num; i++) {
1871 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1872 		if (error)
1873 			break;
1874 	}
1875 
1876 	return error;
1877 #else
1878 	return 0;
1879 #endif /* CONFIG_SYSFS */
1880 }
1881 
1882 static int register_queue_kobjects(struct net_device *dev)
1883 {
1884 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1885 
1886 #ifdef CONFIG_SYSFS
1887 	dev->queues_kset = kset_create_and_add("queues",
1888 					       NULL, &dev->dev.kobj);
1889 	if (!dev->queues_kset)
1890 		return -ENOMEM;
1891 	real_rx = dev->real_num_rx_queues;
1892 #endif
1893 	real_tx = dev->real_num_tx_queues;
1894 
1895 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1896 	if (error)
1897 		goto error;
1898 	rxq = real_rx;
1899 
1900 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1901 	if (error)
1902 		goto error;
1903 	txq = real_tx;
1904 
1905 	return 0;
1906 
1907 error:
1908 	netdev_queue_update_kobjects(dev, txq, 0);
1909 	net_rx_queue_update_kobjects(dev, rxq, 0);
1910 #ifdef CONFIG_SYSFS
1911 	kset_unregister(dev->queues_kset);
1912 #endif
1913 	return error;
1914 }
1915 
1916 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1917 {
1918 	int error = 0, real_rx = 0, real_tx = 0;
1919 
1920 #ifdef CONFIG_SYSFS
1921 	if (ndev->queues_kset) {
1922 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1923 		if (error)
1924 			return error;
1925 	}
1926 	real_rx = ndev->real_num_rx_queues;
1927 #endif
1928 	real_tx = ndev->real_num_tx_queues;
1929 
1930 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1931 	if (error)
1932 		return error;
1933 
1934 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1935 	if (error)
1936 		return error;
1937 
1938 	return 0;
1939 }
1940 
1941 static void remove_queue_kobjects(struct net_device *dev)
1942 {
1943 	int real_rx = 0, real_tx = 0;
1944 
1945 #ifdef CONFIG_SYSFS
1946 	real_rx = dev->real_num_rx_queues;
1947 #endif
1948 	real_tx = dev->real_num_tx_queues;
1949 
1950 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1951 	netdev_queue_update_kobjects(dev, real_tx, 0);
1952 
1953 	dev->real_num_rx_queues = 0;
1954 	dev->real_num_tx_queues = 0;
1955 #ifdef CONFIG_SYSFS
1956 	kset_unregister(dev->queues_kset);
1957 #endif
1958 }
1959 
1960 static bool net_current_may_mount(void)
1961 {
1962 	struct net *net = current->nsproxy->net_ns;
1963 
1964 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1965 }
1966 
1967 static void *net_grab_current_ns(void)
1968 {
1969 	struct net *ns = current->nsproxy->net_ns;
1970 #ifdef CONFIG_NET_NS
1971 	if (ns)
1972 		refcount_inc(&ns->passive);
1973 #endif
1974 	return ns;
1975 }
1976 
1977 static const void *net_initial_ns(void)
1978 {
1979 	return &init_net;
1980 }
1981 
1982 static const void *net_netlink_ns(struct sock *sk)
1983 {
1984 	return sock_net(sk);
1985 }
1986 
1987 const struct kobj_ns_type_operations net_ns_type_operations = {
1988 	.type = KOBJ_NS_TYPE_NET,
1989 	.current_may_mount = net_current_may_mount,
1990 	.grab_current_ns = net_grab_current_ns,
1991 	.netlink_ns = net_netlink_ns,
1992 	.initial_ns = net_initial_ns,
1993 	.drop_ns = net_drop_ns,
1994 };
1995 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1996 
1997 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
1998 {
1999 	const struct net_device *dev = to_net_dev(d);
2000 	int retval;
2001 
2002 	/* pass interface to uevent. */
2003 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2004 	if (retval)
2005 		goto exit;
2006 
2007 	/* pass ifindex to uevent.
2008 	 * ifindex is useful as it won't change (interface name may change)
2009 	 * and is what RtNetlink uses natively.
2010 	 */
2011 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2012 
2013 exit:
2014 	return retval;
2015 }
2016 
2017 /*
2018  *	netdev_release -- destroy and free a dead device.
2019  *	Called when last reference to device kobject is gone.
2020  */
2021 static void netdev_release(struct device *d)
2022 {
2023 	struct net_device *dev = to_net_dev(d);
2024 
2025 	BUG_ON(dev->reg_state != NETREG_RELEASED);
2026 
2027 	/* no need to wait for rcu grace period:
2028 	 * device is dead and about to be freed.
2029 	 */
2030 	kfree(rcu_access_pointer(dev->ifalias));
2031 	kvfree(dev);
2032 }
2033 
2034 static const void *net_namespace(const struct device *d)
2035 {
2036 	const struct net_device *dev = to_net_dev(d);
2037 
2038 	return dev_net(dev);
2039 }
2040 
2041 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2042 {
2043 	const struct net_device *dev = to_net_dev(d);
2044 	const struct net *net = dev_net(dev);
2045 
2046 	net_ns_get_ownership(net, uid, gid);
2047 }
2048 
2049 static const struct class net_class = {
2050 	.name = "net",
2051 	.dev_release = netdev_release,
2052 	.dev_groups = net_class_groups,
2053 	.dev_uevent = netdev_uevent,
2054 	.ns_type = &net_ns_type_operations,
2055 	.namespace = net_namespace,
2056 	.get_ownership = net_get_ownership,
2057 };
2058 
2059 #ifdef CONFIG_OF
2060 static int of_dev_node_match(struct device *dev, const void *data)
2061 {
2062 	for (; dev; dev = dev->parent) {
2063 		if (dev->of_node == data)
2064 			return 1;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 /*
2071  * of_find_net_device_by_node - lookup the net device for the device node
2072  * @np: OF device node
2073  *
2074  * Looks up the net_device structure corresponding with the device node.
2075  * If successful, returns a pointer to the net_device with the embedded
2076  * struct device refcount incremented by one, or NULL on failure. The
2077  * refcount must be dropped when done with the net_device.
2078  */
2079 struct net_device *of_find_net_device_by_node(struct device_node *np)
2080 {
2081 	struct device *dev;
2082 
2083 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2084 	if (!dev)
2085 		return NULL;
2086 
2087 	return to_net_dev(dev);
2088 }
2089 EXPORT_SYMBOL(of_find_net_device_by_node);
2090 #endif
2091 
2092 /* Delete sysfs entries but hold kobject reference until after all
2093  * netdev references are gone.
2094  */
2095 void netdev_unregister_kobject(struct net_device *ndev)
2096 {
2097 	struct device *dev = &ndev->dev;
2098 
2099 	if (!refcount_read(&dev_net(ndev)->ns.count))
2100 		dev_set_uevent_suppress(dev, 1);
2101 
2102 	kobject_get(&dev->kobj);
2103 
2104 	remove_queue_kobjects(ndev);
2105 
2106 	pm_runtime_set_memalloc_noio(dev, false);
2107 
2108 	device_del(dev);
2109 }
2110 
2111 /* Create sysfs entries for network device. */
2112 int netdev_register_kobject(struct net_device *ndev)
2113 {
2114 	struct device *dev = &ndev->dev;
2115 	const struct attribute_group **groups = ndev->sysfs_groups;
2116 	int error = 0;
2117 
2118 	device_initialize(dev);
2119 	dev->class = &net_class;
2120 	dev->platform_data = ndev;
2121 	dev->groups = groups;
2122 
2123 	dev_set_name(dev, "%s", ndev->name);
2124 
2125 #ifdef CONFIG_SYSFS
2126 	/* Allow for a device specific group */
2127 	if (*groups)
2128 		groups++;
2129 
2130 	*groups++ = &netstat_group;
2131 
2132 	if (wireless_group_needed(ndev))
2133 		*groups++ = &wireless_group;
2134 #endif /* CONFIG_SYSFS */
2135 
2136 	error = device_add(dev);
2137 	if (error)
2138 		return error;
2139 
2140 	error = register_queue_kobjects(ndev);
2141 	if (error) {
2142 		device_del(dev);
2143 		return error;
2144 	}
2145 
2146 	pm_runtime_set_memalloc_noio(dev, true);
2147 
2148 	return error;
2149 }
2150 
2151 /* Change owner for sysfs entries when moving network devices across network
2152  * namespaces owned by different user namespaces.
2153  */
2154 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2155 			const struct net *net_new)
2156 {
2157 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2158 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2159 	struct device *dev = &ndev->dev;
2160 	int error;
2161 
2162 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2163 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2164 
2165 	/* The network namespace was changed but the owning user namespace is
2166 	 * identical so there's no need to change the owner of sysfs entries.
2167 	 */
2168 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2169 		return 0;
2170 
2171 	error = device_change_owner(dev, new_uid, new_gid);
2172 	if (error)
2173 		return error;
2174 
2175 	error = queue_change_owner(ndev, new_uid, new_gid);
2176 	if (error)
2177 		return error;
2178 
2179 	return 0;
2180 }
2181 
2182 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2183 				const void *ns)
2184 {
2185 	return class_create_file_ns(&net_class, class_attr, ns);
2186 }
2187 EXPORT_SYMBOL(netdev_class_create_file_ns);
2188 
2189 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2190 				 const void *ns)
2191 {
2192 	class_remove_file_ns(&net_class, class_attr, ns);
2193 }
2194 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2195 
2196 int __init netdev_kobject_init(void)
2197 {
2198 	kobj_ns_type_register(&net_ns_type_operations);
2199 	return class_register(&net_class);
2200 }
2201