xref: /linux/net/core/net-sysfs.c (revision 38fe0e0156c037c060f81fe4e36549fae760322d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 
27 #include "net-sysfs.h"
28 
29 #ifdef CONFIG_SYSFS
30 static const char fmt_hex[] = "%#x\n";
31 static const char fmt_dec[] = "%d\n";
32 static const char fmt_ulong[] = "%lu\n";
33 static const char fmt_u64[] = "%llu\n";
34 
35 static inline int dev_isalive(const struct net_device *dev)
36 {
37 	return dev->reg_state <= NETREG_REGISTERED;
38 }
39 
40 /* use same locking rules as GIF* ioctl's */
41 static ssize_t netdev_show(const struct device *dev,
42 			   struct device_attribute *attr, char *buf,
43 			   ssize_t (*format)(const struct net_device *, char *))
44 {
45 	struct net_device *ndev = to_net_dev(dev);
46 	ssize_t ret = -EINVAL;
47 
48 	read_lock(&dev_base_lock);
49 	if (dev_isalive(ndev))
50 		ret = (*format)(ndev, buf);
51 	read_unlock(&dev_base_lock);
52 
53 	return ret;
54 }
55 
56 /* generate a show function for simple field */
57 #define NETDEVICE_SHOW(field, format_string)				\
58 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
59 {									\
60 	return sprintf(buf, format_string, dev->field);			\
61 }									\
62 static ssize_t field##_show(struct device *dev,				\
63 			    struct device_attribute *attr, char *buf)	\
64 {									\
65 	return netdev_show(dev, attr, buf, format_##field);		\
66 }									\
67 
68 #define NETDEVICE_SHOW_RO(field, format_string)				\
69 NETDEVICE_SHOW(field, format_string);					\
70 static DEVICE_ATTR_RO(field)
71 
72 #define NETDEVICE_SHOW_RW(field, format_string)				\
73 NETDEVICE_SHOW(field, format_string);					\
74 static DEVICE_ATTR_RW(field)
75 
76 /* use same locking and permission rules as SIF* ioctl's */
77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
78 			    const char *buf, size_t len,
79 			    int (*set)(struct net_device *, unsigned long))
80 {
81 	struct net_device *netdev = to_net_dev(dev);
82 	struct net *net = dev_net(netdev);
83 	unsigned long new;
84 	int ret;
85 
86 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
87 		return -EPERM;
88 
89 	ret = kstrtoul(buf, 0, &new);
90 	if (ret)
91 		goto err;
92 
93 	if (!rtnl_trylock())
94 		return restart_syscall();
95 
96 	if (dev_isalive(netdev)) {
97 		ret = (*set)(netdev, new);
98 		if (ret == 0)
99 			ret = len;
100 	}
101 	rtnl_unlock();
102  err:
103 	return ret;
104 }
105 
106 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
107 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
109 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
110 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
111 NETDEVICE_SHOW_RO(type, fmt_dec);
112 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
113 
114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
115 			   char *buf)
116 {
117 	struct net_device *ndev = to_net_dev(dev);
118 
119 	return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
120 }
121 static DEVICE_ATTR_RO(iflink);
122 
123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
124 {
125 	return sprintf(buf, fmt_dec, dev->name_assign_type);
126 }
127 
128 static ssize_t name_assign_type_show(struct device *dev,
129 				     struct device_attribute *attr,
130 				     char *buf)
131 {
132 	struct net_device *ndev = to_net_dev(dev);
133 	ssize_t ret = -EINVAL;
134 
135 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
136 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
137 
138 	return ret;
139 }
140 static DEVICE_ATTR_RO(name_assign_type);
141 
142 /* use same locking rules as GIFHWADDR ioctl's */
143 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
144 			    char *buf)
145 {
146 	struct net_device *ndev = to_net_dev(dev);
147 	ssize_t ret = -EINVAL;
148 
149 	read_lock(&dev_base_lock);
150 	if (dev_isalive(ndev))
151 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
152 	read_unlock(&dev_base_lock);
153 	return ret;
154 }
155 static DEVICE_ATTR_RO(address);
156 
157 static ssize_t broadcast_show(struct device *dev,
158 			      struct device_attribute *attr, char *buf)
159 {
160 	struct net_device *ndev = to_net_dev(dev);
161 
162 	if (dev_isalive(ndev))
163 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
164 	return -EINVAL;
165 }
166 static DEVICE_ATTR_RO(broadcast);
167 
168 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
169 {
170 	if (!netif_running(dev))
171 		return -EINVAL;
172 	return dev_change_carrier(dev, (bool)new_carrier);
173 }
174 
175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
176 			     const char *buf, size_t len)
177 {
178 	return netdev_store(dev, attr, buf, len, change_carrier);
179 }
180 
181 static ssize_t carrier_show(struct device *dev,
182 			    struct device_attribute *attr, char *buf)
183 {
184 	struct net_device *netdev = to_net_dev(dev);
185 
186 	if (netif_running(netdev))
187 		return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
188 
189 	return -EINVAL;
190 }
191 static DEVICE_ATTR_RW(carrier);
192 
193 static ssize_t speed_show(struct device *dev,
194 			  struct device_attribute *attr, char *buf)
195 {
196 	struct net_device *netdev = to_net_dev(dev);
197 	int ret = -EINVAL;
198 
199 	if (!rtnl_trylock())
200 		return restart_syscall();
201 
202 	if (netif_running(netdev)) {
203 		struct ethtool_link_ksettings cmd;
204 
205 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
206 			ret = sprintf(buf, fmt_dec, cmd.base.speed);
207 	}
208 	rtnl_unlock();
209 	return ret;
210 }
211 static DEVICE_ATTR_RO(speed);
212 
213 static ssize_t duplex_show(struct device *dev,
214 			   struct device_attribute *attr, char *buf)
215 {
216 	struct net_device *netdev = to_net_dev(dev);
217 	int ret = -EINVAL;
218 
219 	if (!rtnl_trylock())
220 		return restart_syscall();
221 
222 	if (netif_running(netdev)) {
223 		struct ethtool_link_ksettings cmd;
224 
225 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
226 			const char *duplex;
227 
228 			switch (cmd.base.duplex) {
229 			case DUPLEX_HALF:
230 				duplex = "half";
231 				break;
232 			case DUPLEX_FULL:
233 				duplex = "full";
234 				break;
235 			default:
236 				duplex = "unknown";
237 				break;
238 			}
239 			ret = sprintf(buf, "%s\n", duplex);
240 		}
241 	}
242 	rtnl_unlock();
243 	return ret;
244 }
245 static DEVICE_ATTR_RO(duplex);
246 
247 static ssize_t testing_show(struct device *dev,
248 			    struct device_attribute *attr, char *buf)
249 {
250 	struct net_device *netdev = to_net_dev(dev);
251 
252 	if (netif_running(netdev))
253 		return sprintf(buf, fmt_dec, !!netif_testing(netdev));
254 
255 	return -EINVAL;
256 }
257 static DEVICE_ATTR_RO(testing);
258 
259 static ssize_t dormant_show(struct device *dev,
260 			    struct device_attribute *attr, char *buf)
261 {
262 	struct net_device *netdev = to_net_dev(dev);
263 
264 	if (netif_running(netdev))
265 		return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
266 
267 	return -EINVAL;
268 }
269 static DEVICE_ATTR_RO(dormant);
270 
271 static const char *const operstates[] = {
272 	"unknown",
273 	"notpresent", /* currently unused */
274 	"down",
275 	"lowerlayerdown",
276 	"testing",
277 	"dormant",
278 	"up"
279 };
280 
281 static ssize_t operstate_show(struct device *dev,
282 			      struct device_attribute *attr, char *buf)
283 {
284 	const struct net_device *netdev = to_net_dev(dev);
285 	unsigned char operstate;
286 
287 	read_lock(&dev_base_lock);
288 	operstate = netdev->operstate;
289 	if (!netif_running(netdev))
290 		operstate = IF_OPER_DOWN;
291 	read_unlock(&dev_base_lock);
292 
293 	if (operstate >= ARRAY_SIZE(operstates))
294 		return -EINVAL; /* should not happen */
295 
296 	return sprintf(buf, "%s\n", operstates[operstate]);
297 }
298 static DEVICE_ATTR_RO(operstate);
299 
300 static ssize_t carrier_changes_show(struct device *dev,
301 				    struct device_attribute *attr,
302 				    char *buf)
303 {
304 	struct net_device *netdev = to_net_dev(dev);
305 
306 	return sprintf(buf, fmt_dec,
307 		       atomic_read(&netdev->carrier_up_count) +
308 		       atomic_read(&netdev->carrier_down_count));
309 }
310 static DEVICE_ATTR_RO(carrier_changes);
311 
312 static ssize_t carrier_up_count_show(struct device *dev,
313 				     struct device_attribute *attr,
314 				     char *buf)
315 {
316 	struct net_device *netdev = to_net_dev(dev);
317 
318 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
319 }
320 static DEVICE_ATTR_RO(carrier_up_count);
321 
322 static ssize_t carrier_down_count_show(struct device *dev,
323 				       struct device_attribute *attr,
324 				       char *buf)
325 {
326 	struct net_device *netdev = to_net_dev(dev);
327 
328 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
329 }
330 static DEVICE_ATTR_RO(carrier_down_count);
331 
332 /* read-write attributes */
333 
334 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
335 {
336 	return dev_set_mtu(dev, (int)new_mtu);
337 }
338 
339 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
340 			 const char *buf, size_t len)
341 {
342 	return netdev_store(dev, attr, buf, len, change_mtu);
343 }
344 NETDEVICE_SHOW_RW(mtu, fmt_dec);
345 
346 static int change_flags(struct net_device *dev, unsigned long new_flags)
347 {
348 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
349 }
350 
351 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
352 			   const char *buf, size_t len)
353 {
354 	return netdev_store(dev, attr, buf, len, change_flags);
355 }
356 NETDEVICE_SHOW_RW(flags, fmt_hex);
357 
358 static ssize_t tx_queue_len_store(struct device *dev,
359 				  struct device_attribute *attr,
360 				  const char *buf, size_t len)
361 {
362 	if (!capable(CAP_NET_ADMIN))
363 		return -EPERM;
364 
365 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
366 }
367 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
368 
369 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
370 {
371 	WRITE_ONCE(dev->gro_flush_timeout, val);
372 	return 0;
373 }
374 
375 static ssize_t gro_flush_timeout_store(struct device *dev,
376 				       struct device_attribute *attr,
377 				       const char *buf, size_t len)
378 {
379 	if (!capable(CAP_NET_ADMIN))
380 		return -EPERM;
381 
382 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
383 }
384 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
385 
386 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
387 {
388 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
389 	return 0;
390 }
391 
392 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
393 					  struct device_attribute *attr,
394 					  const char *buf, size_t len)
395 {
396 	if (!capable(CAP_NET_ADMIN))
397 		return -EPERM;
398 
399 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
400 }
401 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
402 
403 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
404 			     const char *buf, size_t len)
405 {
406 	struct net_device *netdev = to_net_dev(dev);
407 	struct net *net = dev_net(netdev);
408 	size_t count = len;
409 	ssize_t ret = 0;
410 
411 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
412 		return -EPERM;
413 
414 	/* ignore trailing newline */
415 	if (len >  0 && buf[len - 1] == '\n')
416 		--count;
417 
418 	if (!rtnl_trylock())
419 		return restart_syscall();
420 
421 	if (dev_isalive(netdev)) {
422 		ret = dev_set_alias(netdev, buf, count);
423 		if (ret < 0)
424 			goto err;
425 		ret = len;
426 		netdev_state_change(netdev);
427 	}
428 err:
429 	rtnl_unlock();
430 
431 	return ret;
432 }
433 
434 static ssize_t ifalias_show(struct device *dev,
435 			    struct device_attribute *attr, char *buf)
436 {
437 	const struct net_device *netdev = to_net_dev(dev);
438 	char tmp[IFALIASZ];
439 	ssize_t ret = 0;
440 
441 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
442 	if (ret > 0)
443 		ret = sprintf(buf, "%s\n", tmp);
444 	return ret;
445 }
446 static DEVICE_ATTR_RW(ifalias);
447 
448 static int change_group(struct net_device *dev, unsigned long new_group)
449 {
450 	dev_set_group(dev, (int)new_group);
451 	return 0;
452 }
453 
454 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
455 			   const char *buf, size_t len)
456 {
457 	return netdev_store(dev, attr, buf, len, change_group);
458 }
459 NETDEVICE_SHOW(group, fmt_dec);
460 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
461 
462 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
463 {
464 	return dev_change_proto_down(dev, (bool)proto_down);
465 }
466 
467 static ssize_t proto_down_store(struct device *dev,
468 				struct device_attribute *attr,
469 				const char *buf, size_t len)
470 {
471 	return netdev_store(dev, attr, buf, len, change_proto_down);
472 }
473 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
474 
475 static ssize_t phys_port_id_show(struct device *dev,
476 				 struct device_attribute *attr, char *buf)
477 {
478 	struct net_device *netdev = to_net_dev(dev);
479 	ssize_t ret = -EINVAL;
480 
481 	if (!rtnl_trylock())
482 		return restart_syscall();
483 
484 	if (dev_isalive(netdev)) {
485 		struct netdev_phys_item_id ppid;
486 
487 		ret = dev_get_phys_port_id(netdev, &ppid);
488 		if (!ret)
489 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
490 	}
491 	rtnl_unlock();
492 
493 	return ret;
494 }
495 static DEVICE_ATTR_RO(phys_port_id);
496 
497 static ssize_t phys_port_name_show(struct device *dev,
498 				   struct device_attribute *attr, char *buf)
499 {
500 	struct net_device *netdev = to_net_dev(dev);
501 	ssize_t ret = -EINVAL;
502 
503 	if (!rtnl_trylock())
504 		return restart_syscall();
505 
506 	if (dev_isalive(netdev)) {
507 		char name[IFNAMSIZ];
508 
509 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
510 		if (!ret)
511 			ret = sprintf(buf, "%s\n", name);
512 	}
513 	rtnl_unlock();
514 
515 	return ret;
516 }
517 static DEVICE_ATTR_RO(phys_port_name);
518 
519 static ssize_t phys_switch_id_show(struct device *dev,
520 				   struct device_attribute *attr, char *buf)
521 {
522 	struct net_device *netdev = to_net_dev(dev);
523 	ssize_t ret = -EINVAL;
524 
525 	if (!rtnl_trylock())
526 		return restart_syscall();
527 
528 	if (dev_isalive(netdev)) {
529 		struct netdev_phys_item_id ppid = { };
530 
531 		ret = dev_get_port_parent_id(netdev, &ppid, false);
532 		if (!ret)
533 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
534 	}
535 	rtnl_unlock();
536 
537 	return ret;
538 }
539 static DEVICE_ATTR_RO(phys_switch_id);
540 
541 static ssize_t threaded_show(struct device *dev,
542 			     struct device_attribute *attr, char *buf)
543 {
544 	struct net_device *netdev = to_net_dev(dev);
545 	ssize_t ret = -EINVAL;
546 
547 	if (!rtnl_trylock())
548 		return restart_syscall();
549 
550 	if (dev_isalive(netdev))
551 		ret = sprintf(buf, fmt_dec, netdev->threaded);
552 
553 	rtnl_unlock();
554 	return ret;
555 }
556 
557 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
558 {
559 	int ret;
560 
561 	if (list_empty(&dev->napi_list))
562 		return -EOPNOTSUPP;
563 
564 	if (val != 0 && val != 1)
565 		return -EOPNOTSUPP;
566 
567 	ret = dev_set_threaded(dev, val);
568 
569 	return ret;
570 }
571 
572 static ssize_t threaded_store(struct device *dev,
573 			      struct device_attribute *attr,
574 			      const char *buf, size_t len)
575 {
576 	return netdev_store(dev, attr, buf, len, modify_napi_threaded);
577 }
578 static DEVICE_ATTR_RW(threaded);
579 
580 static struct attribute *net_class_attrs[] __ro_after_init = {
581 	&dev_attr_netdev_group.attr,
582 	&dev_attr_type.attr,
583 	&dev_attr_dev_id.attr,
584 	&dev_attr_dev_port.attr,
585 	&dev_attr_iflink.attr,
586 	&dev_attr_ifindex.attr,
587 	&dev_attr_name_assign_type.attr,
588 	&dev_attr_addr_assign_type.attr,
589 	&dev_attr_addr_len.attr,
590 	&dev_attr_link_mode.attr,
591 	&dev_attr_address.attr,
592 	&dev_attr_broadcast.attr,
593 	&dev_attr_speed.attr,
594 	&dev_attr_duplex.attr,
595 	&dev_attr_dormant.attr,
596 	&dev_attr_testing.attr,
597 	&dev_attr_operstate.attr,
598 	&dev_attr_carrier_changes.attr,
599 	&dev_attr_ifalias.attr,
600 	&dev_attr_carrier.attr,
601 	&dev_attr_mtu.attr,
602 	&dev_attr_flags.attr,
603 	&dev_attr_tx_queue_len.attr,
604 	&dev_attr_gro_flush_timeout.attr,
605 	&dev_attr_napi_defer_hard_irqs.attr,
606 	&dev_attr_phys_port_id.attr,
607 	&dev_attr_phys_port_name.attr,
608 	&dev_attr_phys_switch_id.attr,
609 	&dev_attr_proto_down.attr,
610 	&dev_attr_carrier_up_count.attr,
611 	&dev_attr_carrier_down_count.attr,
612 	&dev_attr_threaded.attr,
613 	NULL,
614 };
615 ATTRIBUTE_GROUPS(net_class);
616 
617 /* Show a given an attribute in the statistics group */
618 static ssize_t netstat_show(const struct device *d,
619 			    struct device_attribute *attr, char *buf,
620 			    unsigned long offset)
621 {
622 	struct net_device *dev = to_net_dev(d);
623 	ssize_t ret = -EINVAL;
624 
625 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
626 		offset % sizeof(u64) != 0);
627 
628 	read_lock(&dev_base_lock);
629 	if (dev_isalive(dev)) {
630 		struct rtnl_link_stats64 temp;
631 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
632 
633 		ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
634 	}
635 	read_unlock(&dev_base_lock);
636 	return ret;
637 }
638 
639 /* generate a read-only statistics attribute */
640 #define NETSTAT_ENTRY(name)						\
641 static ssize_t name##_show(struct device *d,				\
642 			   struct device_attribute *attr, char *buf)	\
643 {									\
644 	return netstat_show(d, attr, buf,				\
645 			    offsetof(struct rtnl_link_stats64, name));	\
646 }									\
647 static DEVICE_ATTR_RO(name)
648 
649 NETSTAT_ENTRY(rx_packets);
650 NETSTAT_ENTRY(tx_packets);
651 NETSTAT_ENTRY(rx_bytes);
652 NETSTAT_ENTRY(tx_bytes);
653 NETSTAT_ENTRY(rx_errors);
654 NETSTAT_ENTRY(tx_errors);
655 NETSTAT_ENTRY(rx_dropped);
656 NETSTAT_ENTRY(tx_dropped);
657 NETSTAT_ENTRY(multicast);
658 NETSTAT_ENTRY(collisions);
659 NETSTAT_ENTRY(rx_length_errors);
660 NETSTAT_ENTRY(rx_over_errors);
661 NETSTAT_ENTRY(rx_crc_errors);
662 NETSTAT_ENTRY(rx_frame_errors);
663 NETSTAT_ENTRY(rx_fifo_errors);
664 NETSTAT_ENTRY(rx_missed_errors);
665 NETSTAT_ENTRY(tx_aborted_errors);
666 NETSTAT_ENTRY(tx_carrier_errors);
667 NETSTAT_ENTRY(tx_fifo_errors);
668 NETSTAT_ENTRY(tx_heartbeat_errors);
669 NETSTAT_ENTRY(tx_window_errors);
670 NETSTAT_ENTRY(rx_compressed);
671 NETSTAT_ENTRY(tx_compressed);
672 NETSTAT_ENTRY(rx_nohandler);
673 
674 static struct attribute *netstat_attrs[] __ro_after_init = {
675 	&dev_attr_rx_packets.attr,
676 	&dev_attr_tx_packets.attr,
677 	&dev_attr_rx_bytes.attr,
678 	&dev_attr_tx_bytes.attr,
679 	&dev_attr_rx_errors.attr,
680 	&dev_attr_tx_errors.attr,
681 	&dev_attr_rx_dropped.attr,
682 	&dev_attr_tx_dropped.attr,
683 	&dev_attr_multicast.attr,
684 	&dev_attr_collisions.attr,
685 	&dev_attr_rx_length_errors.attr,
686 	&dev_attr_rx_over_errors.attr,
687 	&dev_attr_rx_crc_errors.attr,
688 	&dev_attr_rx_frame_errors.attr,
689 	&dev_attr_rx_fifo_errors.attr,
690 	&dev_attr_rx_missed_errors.attr,
691 	&dev_attr_tx_aborted_errors.attr,
692 	&dev_attr_tx_carrier_errors.attr,
693 	&dev_attr_tx_fifo_errors.attr,
694 	&dev_attr_tx_heartbeat_errors.attr,
695 	&dev_attr_tx_window_errors.attr,
696 	&dev_attr_rx_compressed.attr,
697 	&dev_attr_tx_compressed.attr,
698 	&dev_attr_rx_nohandler.attr,
699 	NULL
700 };
701 
702 static const struct attribute_group netstat_group = {
703 	.name  = "statistics",
704 	.attrs  = netstat_attrs,
705 };
706 
707 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
708 static struct attribute *wireless_attrs[] = {
709 	NULL
710 };
711 
712 static const struct attribute_group wireless_group = {
713 	.name = "wireless",
714 	.attrs = wireless_attrs,
715 };
716 #endif
717 
718 #else /* CONFIG_SYSFS */
719 #define net_class_groups	NULL
720 #endif /* CONFIG_SYSFS */
721 
722 #ifdef CONFIG_SYSFS
723 #define to_rx_queue_attr(_attr) \
724 	container_of(_attr, struct rx_queue_attribute, attr)
725 
726 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
727 
728 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
729 				  char *buf)
730 {
731 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
732 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
733 
734 	if (!attribute->show)
735 		return -EIO;
736 
737 	return attribute->show(queue, buf);
738 }
739 
740 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
741 				   const char *buf, size_t count)
742 {
743 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
744 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
745 
746 	if (!attribute->store)
747 		return -EIO;
748 
749 	return attribute->store(queue, buf, count);
750 }
751 
752 static const struct sysfs_ops rx_queue_sysfs_ops = {
753 	.show = rx_queue_attr_show,
754 	.store = rx_queue_attr_store,
755 };
756 
757 #ifdef CONFIG_RPS
758 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
759 {
760 	struct rps_map *map;
761 	cpumask_var_t mask;
762 	int i, len;
763 
764 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
765 		return -ENOMEM;
766 
767 	rcu_read_lock();
768 	map = rcu_dereference(queue->rps_map);
769 	if (map)
770 		for (i = 0; i < map->len; i++)
771 			cpumask_set_cpu(map->cpus[i], mask);
772 
773 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
774 	rcu_read_unlock();
775 	free_cpumask_var(mask);
776 
777 	return len < PAGE_SIZE ? len : -EINVAL;
778 }
779 
780 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
781 			     const char *buf, size_t len)
782 {
783 	struct rps_map *old_map, *map;
784 	cpumask_var_t mask;
785 	int err, cpu, i, hk_flags;
786 	static DEFINE_MUTEX(rps_map_mutex);
787 
788 	if (!capable(CAP_NET_ADMIN))
789 		return -EPERM;
790 
791 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
792 		return -ENOMEM;
793 
794 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
795 	if (err) {
796 		free_cpumask_var(mask);
797 		return err;
798 	}
799 
800 	if (!cpumask_empty(mask)) {
801 		hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
802 		cpumask_and(mask, mask, housekeeping_cpumask(hk_flags));
803 		if (cpumask_empty(mask)) {
804 			free_cpumask_var(mask);
805 			return -EINVAL;
806 		}
807 	}
808 
809 	map = kzalloc(max_t(unsigned int,
810 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
811 		      GFP_KERNEL);
812 	if (!map) {
813 		free_cpumask_var(mask);
814 		return -ENOMEM;
815 	}
816 
817 	i = 0;
818 	for_each_cpu_and(cpu, mask, cpu_online_mask)
819 		map->cpus[i++] = cpu;
820 
821 	if (i) {
822 		map->len = i;
823 	} else {
824 		kfree(map);
825 		map = NULL;
826 	}
827 
828 	mutex_lock(&rps_map_mutex);
829 	old_map = rcu_dereference_protected(queue->rps_map,
830 					    mutex_is_locked(&rps_map_mutex));
831 	rcu_assign_pointer(queue->rps_map, map);
832 
833 	if (map)
834 		static_branch_inc(&rps_needed);
835 	if (old_map)
836 		static_branch_dec(&rps_needed);
837 
838 	mutex_unlock(&rps_map_mutex);
839 
840 	if (old_map)
841 		kfree_rcu(old_map, rcu);
842 
843 	free_cpumask_var(mask);
844 	return len;
845 }
846 
847 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
848 					   char *buf)
849 {
850 	struct rps_dev_flow_table *flow_table;
851 	unsigned long val = 0;
852 
853 	rcu_read_lock();
854 	flow_table = rcu_dereference(queue->rps_flow_table);
855 	if (flow_table)
856 		val = (unsigned long)flow_table->mask + 1;
857 	rcu_read_unlock();
858 
859 	return sprintf(buf, "%lu\n", val);
860 }
861 
862 static void rps_dev_flow_table_release(struct rcu_head *rcu)
863 {
864 	struct rps_dev_flow_table *table = container_of(rcu,
865 	    struct rps_dev_flow_table, rcu);
866 	vfree(table);
867 }
868 
869 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
870 					    const char *buf, size_t len)
871 {
872 	unsigned long mask, count;
873 	struct rps_dev_flow_table *table, *old_table;
874 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
875 	int rc;
876 
877 	if (!capable(CAP_NET_ADMIN))
878 		return -EPERM;
879 
880 	rc = kstrtoul(buf, 0, &count);
881 	if (rc < 0)
882 		return rc;
883 
884 	if (count) {
885 		mask = count - 1;
886 		/* mask = roundup_pow_of_two(count) - 1;
887 		 * without overflows...
888 		 */
889 		while ((mask | (mask >> 1)) != mask)
890 			mask |= (mask >> 1);
891 		/* On 64 bit arches, must check mask fits in table->mask (u32),
892 		 * and on 32bit arches, must check
893 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
894 		 */
895 #if BITS_PER_LONG > 32
896 		if (mask > (unsigned long)(u32)mask)
897 			return -EINVAL;
898 #else
899 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
900 				/ sizeof(struct rps_dev_flow)) {
901 			/* Enforce a limit to prevent overflow */
902 			return -EINVAL;
903 		}
904 #endif
905 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
906 		if (!table)
907 			return -ENOMEM;
908 
909 		table->mask = mask;
910 		for (count = 0; count <= mask; count++)
911 			table->flows[count].cpu = RPS_NO_CPU;
912 	} else {
913 		table = NULL;
914 	}
915 
916 	spin_lock(&rps_dev_flow_lock);
917 	old_table = rcu_dereference_protected(queue->rps_flow_table,
918 					      lockdep_is_held(&rps_dev_flow_lock));
919 	rcu_assign_pointer(queue->rps_flow_table, table);
920 	spin_unlock(&rps_dev_flow_lock);
921 
922 	if (old_table)
923 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
924 
925 	return len;
926 }
927 
928 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
929 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
930 
931 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
932 	= __ATTR(rps_flow_cnt, 0644,
933 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
934 #endif /* CONFIG_RPS */
935 
936 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
937 #ifdef CONFIG_RPS
938 	&rps_cpus_attribute.attr,
939 	&rps_dev_flow_table_cnt_attribute.attr,
940 #endif
941 	NULL
942 };
943 ATTRIBUTE_GROUPS(rx_queue_default);
944 
945 static void rx_queue_release(struct kobject *kobj)
946 {
947 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
948 #ifdef CONFIG_RPS
949 	struct rps_map *map;
950 	struct rps_dev_flow_table *flow_table;
951 
952 	map = rcu_dereference_protected(queue->rps_map, 1);
953 	if (map) {
954 		RCU_INIT_POINTER(queue->rps_map, NULL);
955 		kfree_rcu(map, rcu);
956 	}
957 
958 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
959 	if (flow_table) {
960 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
961 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
962 	}
963 #endif
964 
965 	memset(kobj, 0, sizeof(*kobj));
966 	dev_put(queue->dev);
967 }
968 
969 static const void *rx_queue_namespace(struct kobject *kobj)
970 {
971 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
972 	struct device *dev = &queue->dev->dev;
973 	const void *ns = NULL;
974 
975 	if (dev->class && dev->class->ns_type)
976 		ns = dev->class->namespace(dev);
977 
978 	return ns;
979 }
980 
981 static void rx_queue_get_ownership(struct kobject *kobj,
982 				   kuid_t *uid, kgid_t *gid)
983 {
984 	const struct net *net = rx_queue_namespace(kobj);
985 
986 	net_ns_get_ownership(net, uid, gid);
987 }
988 
989 static struct kobj_type rx_queue_ktype __ro_after_init = {
990 	.sysfs_ops = &rx_queue_sysfs_ops,
991 	.release = rx_queue_release,
992 	.default_groups = rx_queue_default_groups,
993 	.namespace = rx_queue_namespace,
994 	.get_ownership = rx_queue_get_ownership,
995 };
996 
997 static int rx_queue_add_kobject(struct net_device *dev, int index)
998 {
999 	struct netdev_rx_queue *queue = dev->_rx + index;
1000 	struct kobject *kobj = &queue->kobj;
1001 	int error = 0;
1002 
1003 	/* Kobject_put later will trigger rx_queue_release call which
1004 	 * decreases dev refcount: Take that reference here
1005 	 */
1006 	dev_hold(queue->dev);
1007 
1008 	kobj->kset = dev->queues_kset;
1009 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1010 				     "rx-%u", index);
1011 	if (error)
1012 		goto err;
1013 
1014 	if (dev->sysfs_rx_queue_group) {
1015 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1016 		if (error)
1017 			goto err;
1018 	}
1019 
1020 	kobject_uevent(kobj, KOBJ_ADD);
1021 
1022 	return error;
1023 
1024 err:
1025 	kobject_put(kobj);
1026 	return error;
1027 }
1028 
1029 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1030 				 kgid_t kgid)
1031 {
1032 	struct netdev_rx_queue *queue = dev->_rx + index;
1033 	struct kobject *kobj = &queue->kobj;
1034 	int error;
1035 
1036 	error = sysfs_change_owner(kobj, kuid, kgid);
1037 	if (error)
1038 		return error;
1039 
1040 	if (dev->sysfs_rx_queue_group)
1041 		error = sysfs_group_change_owner(
1042 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1043 
1044 	return error;
1045 }
1046 #endif /* CONFIG_SYSFS */
1047 
1048 int
1049 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1050 {
1051 #ifdef CONFIG_SYSFS
1052 	int i;
1053 	int error = 0;
1054 
1055 #ifndef CONFIG_RPS
1056 	if (!dev->sysfs_rx_queue_group)
1057 		return 0;
1058 #endif
1059 	for (i = old_num; i < new_num; i++) {
1060 		error = rx_queue_add_kobject(dev, i);
1061 		if (error) {
1062 			new_num = old_num;
1063 			break;
1064 		}
1065 	}
1066 
1067 	while (--i >= new_num) {
1068 		struct kobject *kobj = &dev->_rx[i].kobj;
1069 
1070 		if (!refcount_read(&dev_net(dev)->ns.count))
1071 			kobj->uevent_suppress = 1;
1072 		if (dev->sysfs_rx_queue_group)
1073 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1074 		kobject_put(kobj);
1075 	}
1076 
1077 	return error;
1078 #else
1079 	return 0;
1080 #endif
1081 }
1082 
1083 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1084 				     kuid_t kuid, kgid_t kgid)
1085 {
1086 #ifdef CONFIG_SYSFS
1087 	int error = 0;
1088 	int i;
1089 
1090 #ifndef CONFIG_RPS
1091 	if (!dev->sysfs_rx_queue_group)
1092 		return 0;
1093 #endif
1094 	for (i = 0; i < num; i++) {
1095 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1096 		if (error)
1097 			break;
1098 	}
1099 
1100 	return error;
1101 #else
1102 	return 0;
1103 #endif
1104 }
1105 
1106 #ifdef CONFIG_SYSFS
1107 /*
1108  * netdev_queue sysfs structures and functions.
1109  */
1110 struct netdev_queue_attribute {
1111 	struct attribute attr;
1112 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1113 	ssize_t (*store)(struct netdev_queue *queue,
1114 			 const char *buf, size_t len);
1115 };
1116 #define to_netdev_queue_attr(_attr) \
1117 	container_of(_attr, struct netdev_queue_attribute, attr)
1118 
1119 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1120 
1121 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1122 				      struct attribute *attr, char *buf)
1123 {
1124 	const struct netdev_queue_attribute *attribute
1125 		= to_netdev_queue_attr(attr);
1126 	struct netdev_queue *queue = to_netdev_queue(kobj);
1127 
1128 	if (!attribute->show)
1129 		return -EIO;
1130 
1131 	return attribute->show(queue, buf);
1132 }
1133 
1134 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1135 				       struct attribute *attr,
1136 				       const char *buf, size_t count)
1137 {
1138 	const struct netdev_queue_attribute *attribute
1139 		= to_netdev_queue_attr(attr);
1140 	struct netdev_queue *queue = to_netdev_queue(kobj);
1141 
1142 	if (!attribute->store)
1143 		return -EIO;
1144 
1145 	return attribute->store(queue, buf, count);
1146 }
1147 
1148 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1149 	.show = netdev_queue_attr_show,
1150 	.store = netdev_queue_attr_store,
1151 };
1152 
1153 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1154 {
1155 	unsigned long trans_timeout;
1156 
1157 	spin_lock_irq(&queue->_xmit_lock);
1158 	trans_timeout = queue->trans_timeout;
1159 	spin_unlock_irq(&queue->_xmit_lock);
1160 
1161 	return sprintf(buf, fmt_ulong, trans_timeout);
1162 }
1163 
1164 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1165 {
1166 	struct net_device *dev = queue->dev;
1167 	unsigned int i;
1168 
1169 	i = queue - dev->_tx;
1170 	BUG_ON(i >= dev->num_tx_queues);
1171 
1172 	return i;
1173 }
1174 
1175 static ssize_t traffic_class_show(struct netdev_queue *queue,
1176 				  char *buf)
1177 {
1178 	struct net_device *dev = queue->dev;
1179 	int num_tc, tc;
1180 	int index;
1181 
1182 	if (!netif_is_multiqueue(dev))
1183 		return -ENOENT;
1184 
1185 	if (!rtnl_trylock())
1186 		return restart_syscall();
1187 
1188 	index = get_netdev_queue_index(queue);
1189 
1190 	/* If queue belongs to subordinate dev use its TC mapping */
1191 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1192 
1193 	num_tc = dev->num_tc;
1194 	tc = netdev_txq_to_tc(dev, index);
1195 
1196 	rtnl_unlock();
1197 
1198 	if (tc < 0)
1199 		return -EINVAL;
1200 
1201 	/* We can report the traffic class one of two ways:
1202 	 * Subordinate device traffic classes are reported with the traffic
1203 	 * class first, and then the subordinate class so for example TC0 on
1204 	 * subordinate device 2 will be reported as "0-2". If the queue
1205 	 * belongs to the root device it will be reported with just the
1206 	 * traffic class, so just "0" for TC 0 for example.
1207 	 */
1208 	return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) :
1209 			    sprintf(buf, "%d\n", tc);
1210 }
1211 
1212 #ifdef CONFIG_XPS
1213 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1214 			       char *buf)
1215 {
1216 	return sprintf(buf, "%lu\n", queue->tx_maxrate);
1217 }
1218 
1219 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1220 				const char *buf, size_t len)
1221 {
1222 	struct net_device *dev = queue->dev;
1223 	int err, index = get_netdev_queue_index(queue);
1224 	u32 rate = 0;
1225 
1226 	if (!capable(CAP_NET_ADMIN))
1227 		return -EPERM;
1228 
1229 	err = kstrtou32(buf, 10, &rate);
1230 	if (err < 0)
1231 		return err;
1232 
1233 	if (!rtnl_trylock())
1234 		return restart_syscall();
1235 
1236 	err = -EOPNOTSUPP;
1237 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1238 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1239 
1240 	rtnl_unlock();
1241 	if (!err) {
1242 		queue->tx_maxrate = rate;
1243 		return len;
1244 	}
1245 	return err;
1246 }
1247 
1248 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1249 	= __ATTR_RW(tx_maxrate);
1250 #endif
1251 
1252 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1253 	= __ATTR_RO(tx_timeout);
1254 
1255 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1256 	= __ATTR_RO(traffic_class);
1257 
1258 #ifdef CONFIG_BQL
1259 /*
1260  * Byte queue limits sysfs structures and functions.
1261  */
1262 static ssize_t bql_show(char *buf, unsigned int value)
1263 {
1264 	return sprintf(buf, "%u\n", value);
1265 }
1266 
1267 static ssize_t bql_set(const char *buf, const size_t count,
1268 		       unsigned int *pvalue)
1269 {
1270 	unsigned int value;
1271 	int err;
1272 
1273 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1274 		value = DQL_MAX_LIMIT;
1275 	} else {
1276 		err = kstrtouint(buf, 10, &value);
1277 		if (err < 0)
1278 			return err;
1279 		if (value > DQL_MAX_LIMIT)
1280 			return -EINVAL;
1281 	}
1282 
1283 	*pvalue = value;
1284 
1285 	return count;
1286 }
1287 
1288 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1289 				  char *buf)
1290 {
1291 	struct dql *dql = &queue->dql;
1292 
1293 	return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1294 }
1295 
1296 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1297 				 const char *buf, size_t len)
1298 {
1299 	struct dql *dql = &queue->dql;
1300 	unsigned int value;
1301 	int err;
1302 
1303 	err = kstrtouint(buf, 10, &value);
1304 	if (err < 0)
1305 		return err;
1306 
1307 	dql->slack_hold_time = msecs_to_jiffies(value);
1308 
1309 	return len;
1310 }
1311 
1312 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1313 	= __ATTR(hold_time, 0644,
1314 		 bql_show_hold_time, bql_set_hold_time);
1315 
1316 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1317 				 char *buf)
1318 {
1319 	struct dql *dql = &queue->dql;
1320 
1321 	return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1322 }
1323 
1324 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1325 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1326 
1327 #define BQL_ATTR(NAME, FIELD)						\
1328 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1329 				 char *buf)				\
1330 {									\
1331 	return bql_show(buf, queue->dql.FIELD);				\
1332 }									\
1333 									\
1334 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1335 				const char *buf, size_t len)		\
1336 {									\
1337 	return bql_set(buf, len, &queue->dql.FIELD);			\
1338 }									\
1339 									\
1340 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1341 	= __ATTR(NAME, 0644,				\
1342 		 bql_show_ ## NAME, bql_set_ ## NAME)
1343 
1344 BQL_ATTR(limit, limit);
1345 BQL_ATTR(limit_max, max_limit);
1346 BQL_ATTR(limit_min, min_limit);
1347 
1348 static struct attribute *dql_attrs[] __ro_after_init = {
1349 	&bql_limit_attribute.attr,
1350 	&bql_limit_max_attribute.attr,
1351 	&bql_limit_min_attribute.attr,
1352 	&bql_hold_time_attribute.attr,
1353 	&bql_inflight_attribute.attr,
1354 	NULL
1355 };
1356 
1357 static const struct attribute_group dql_group = {
1358 	.name  = "byte_queue_limits",
1359 	.attrs  = dql_attrs,
1360 };
1361 #endif /* CONFIG_BQL */
1362 
1363 #ifdef CONFIG_XPS
1364 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1365 			      int tc, char *buf, enum xps_map_type type)
1366 {
1367 	struct xps_dev_maps *dev_maps;
1368 	unsigned long *mask;
1369 	unsigned int nr_ids;
1370 	int j, len;
1371 
1372 	rcu_read_lock();
1373 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1374 
1375 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1376 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1377 	 */
1378 	nr_ids = dev_maps ? dev_maps->nr_ids :
1379 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1380 
1381 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1382 	if (!mask) {
1383 		rcu_read_unlock();
1384 		return -ENOMEM;
1385 	}
1386 
1387 	if (!dev_maps || tc >= dev_maps->num_tc)
1388 		goto out_no_maps;
1389 
1390 	for (j = 0; j < nr_ids; j++) {
1391 		int i, tci = j * dev_maps->num_tc + tc;
1392 		struct xps_map *map;
1393 
1394 		map = rcu_dereference(dev_maps->attr_map[tci]);
1395 		if (!map)
1396 			continue;
1397 
1398 		for (i = map->len; i--;) {
1399 			if (map->queues[i] == index) {
1400 				set_bit(j, mask);
1401 				break;
1402 			}
1403 		}
1404 	}
1405 out_no_maps:
1406 	rcu_read_unlock();
1407 
1408 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1409 	bitmap_free(mask);
1410 
1411 	return len < PAGE_SIZE ? len : -EINVAL;
1412 }
1413 
1414 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1415 {
1416 	struct net_device *dev = queue->dev;
1417 	unsigned int index;
1418 	int len, tc;
1419 
1420 	if (!netif_is_multiqueue(dev))
1421 		return -ENOENT;
1422 
1423 	index = get_netdev_queue_index(queue);
1424 
1425 	if (!rtnl_trylock())
1426 		return restart_syscall();
1427 
1428 	/* If queue belongs to subordinate dev use its map */
1429 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1430 
1431 	tc = netdev_txq_to_tc(dev, index);
1432 	if (tc < 0) {
1433 		rtnl_unlock();
1434 		return -EINVAL;
1435 	}
1436 
1437 	/* Make sure the subordinate device can't be freed */
1438 	get_device(&dev->dev);
1439 	rtnl_unlock();
1440 
1441 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1442 
1443 	put_device(&dev->dev);
1444 	return len;
1445 }
1446 
1447 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1448 			      const char *buf, size_t len)
1449 {
1450 	struct net_device *dev = queue->dev;
1451 	unsigned int index;
1452 	cpumask_var_t mask;
1453 	int err;
1454 
1455 	if (!netif_is_multiqueue(dev))
1456 		return -ENOENT;
1457 
1458 	if (!capable(CAP_NET_ADMIN))
1459 		return -EPERM;
1460 
1461 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1462 		return -ENOMEM;
1463 
1464 	index = get_netdev_queue_index(queue);
1465 
1466 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1467 	if (err) {
1468 		free_cpumask_var(mask);
1469 		return err;
1470 	}
1471 
1472 	if (!rtnl_trylock()) {
1473 		free_cpumask_var(mask);
1474 		return restart_syscall();
1475 	}
1476 
1477 	err = netif_set_xps_queue(dev, mask, index);
1478 	rtnl_unlock();
1479 
1480 	free_cpumask_var(mask);
1481 
1482 	return err ? : len;
1483 }
1484 
1485 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1486 	= __ATTR_RW(xps_cpus);
1487 
1488 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1489 {
1490 	struct net_device *dev = queue->dev;
1491 	unsigned int index;
1492 	int tc;
1493 
1494 	index = get_netdev_queue_index(queue);
1495 
1496 	if (!rtnl_trylock())
1497 		return restart_syscall();
1498 
1499 	tc = netdev_txq_to_tc(dev, index);
1500 	rtnl_unlock();
1501 	if (tc < 0)
1502 		return -EINVAL;
1503 
1504 	return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1505 }
1506 
1507 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1508 			      size_t len)
1509 {
1510 	struct net_device *dev = queue->dev;
1511 	struct net *net = dev_net(dev);
1512 	unsigned long *mask;
1513 	unsigned int index;
1514 	int err;
1515 
1516 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1517 		return -EPERM;
1518 
1519 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1520 	if (!mask)
1521 		return -ENOMEM;
1522 
1523 	index = get_netdev_queue_index(queue);
1524 
1525 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1526 	if (err) {
1527 		bitmap_free(mask);
1528 		return err;
1529 	}
1530 
1531 	if (!rtnl_trylock()) {
1532 		bitmap_free(mask);
1533 		return restart_syscall();
1534 	}
1535 
1536 	cpus_read_lock();
1537 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1538 	cpus_read_unlock();
1539 
1540 	rtnl_unlock();
1541 
1542 	bitmap_free(mask);
1543 	return err ? : len;
1544 }
1545 
1546 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1547 	= __ATTR_RW(xps_rxqs);
1548 #endif /* CONFIG_XPS */
1549 
1550 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1551 	&queue_trans_timeout.attr,
1552 	&queue_traffic_class.attr,
1553 #ifdef CONFIG_XPS
1554 	&xps_cpus_attribute.attr,
1555 	&xps_rxqs_attribute.attr,
1556 	&queue_tx_maxrate.attr,
1557 #endif
1558 	NULL
1559 };
1560 ATTRIBUTE_GROUPS(netdev_queue_default);
1561 
1562 static void netdev_queue_release(struct kobject *kobj)
1563 {
1564 	struct netdev_queue *queue = to_netdev_queue(kobj);
1565 
1566 	memset(kobj, 0, sizeof(*kobj));
1567 	dev_put(queue->dev);
1568 }
1569 
1570 static const void *netdev_queue_namespace(struct kobject *kobj)
1571 {
1572 	struct netdev_queue *queue = to_netdev_queue(kobj);
1573 	struct device *dev = &queue->dev->dev;
1574 	const void *ns = NULL;
1575 
1576 	if (dev->class && dev->class->ns_type)
1577 		ns = dev->class->namespace(dev);
1578 
1579 	return ns;
1580 }
1581 
1582 static void netdev_queue_get_ownership(struct kobject *kobj,
1583 				       kuid_t *uid, kgid_t *gid)
1584 {
1585 	const struct net *net = netdev_queue_namespace(kobj);
1586 
1587 	net_ns_get_ownership(net, uid, gid);
1588 }
1589 
1590 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1591 	.sysfs_ops = &netdev_queue_sysfs_ops,
1592 	.release = netdev_queue_release,
1593 	.default_groups = netdev_queue_default_groups,
1594 	.namespace = netdev_queue_namespace,
1595 	.get_ownership = netdev_queue_get_ownership,
1596 };
1597 
1598 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1599 {
1600 	struct netdev_queue *queue = dev->_tx + index;
1601 	struct kobject *kobj = &queue->kobj;
1602 	int error = 0;
1603 
1604 	/* Kobject_put later will trigger netdev_queue_release call
1605 	 * which decreases dev refcount: Take that reference here
1606 	 */
1607 	dev_hold(queue->dev);
1608 
1609 	kobj->kset = dev->queues_kset;
1610 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1611 				     "tx-%u", index);
1612 	if (error)
1613 		goto err;
1614 
1615 #ifdef CONFIG_BQL
1616 	error = sysfs_create_group(kobj, &dql_group);
1617 	if (error)
1618 		goto err;
1619 #endif
1620 
1621 	kobject_uevent(kobj, KOBJ_ADD);
1622 	return 0;
1623 
1624 err:
1625 	kobject_put(kobj);
1626 	return error;
1627 }
1628 
1629 static int tx_queue_change_owner(struct net_device *ndev, int index,
1630 				 kuid_t kuid, kgid_t kgid)
1631 {
1632 	struct netdev_queue *queue = ndev->_tx + index;
1633 	struct kobject *kobj = &queue->kobj;
1634 	int error;
1635 
1636 	error = sysfs_change_owner(kobj, kuid, kgid);
1637 	if (error)
1638 		return error;
1639 
1640 #ifdef CONFIG_BQL
1641 	error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1642 #endif
1643 	return error;
1644 }
1645 #endif /* CONFIG_SYSFS */
1646 
1647 int
1648 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1649 {
1650 #ifdef CONFIG_SYSFS
1651 	int i;
1652 	int error = 0;
1653 
1654 	for (i = old_num; i < new_num; i++) {
1655 		error = netdev_queue_add_kobject(dev, i);
1656 		if (error) {
1657 			new_num = old_num;
1658 			break;
1659 		}
1660 	}
1661 
1662 	while (--i >= new_num) {
1663 		struct netdev_queue *queue = dev->_tx + i;
1664 
1665 		if (!refcount_read(&dev_net(dev)->ns.count))
1666 			queue->kobj.uevent_suppress = 1;
1667 #ifdef CONFIG_BQL
1668 		sysfs_remove_group(&queue->kobj, &dql_group);
1669 #endif
1670 		kobject_put(&queue->kobj);
1671 	}
1672 
1673 	return error;
1674 #else
1675 	return 0;
1676 #endif /* CONFIG_SYSFS */
1677 }
1678 
1679 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1680 				     kuid_t kuid, kgid_t kgid)
1681 {
1682 #ifdef CONFIG_SYSFS
1683 	int error = 0;
1684 	int i;
1685 
1686 	for (i = 0; i < num; i++) {
1687 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1688 		if (error)
1689 			break;
1690 	}
1691 
1692 	return error;
1693 #else
1694 	return 0;
1695 #endif /* CONFIG_SYSFS */
1696 }
1697 
1698 static int register_queue_kobjects(struct net_device *dev)
1699 {
1700 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1701 
1702 #ifdef CONFIG_SYSFS
1703 	dev->queues_kset = kset_create_and_add("queues",
1704 					       NULL, &dev->dev.kobj);
1705 	if (!dev->queues_kset)
1706 		return -ENOMEM;
1707 	real_rx = dev->real_num_rx_queues;
1708 #endif
1709 	real_tx = dev->real_num_tx_queues;
1710 
1711 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1712 	if (error)
1713 		goto error;
1714 	rxq = real_rx;
1715 
1716 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1717 	if (error)
1718 		goto error;
1719 	txq = real_tx;
1720 
1721 	return 0;
1722 
1723 error:
1724 	netdev_queue_update_kobjects(dev, txq, 0);
1725 	net_rx_queue_update_kobjects(dev, rxq, 0);
1726 #ifdef CONFIG_SYSFS
1727 	kset_unregister(dev->queues_kset);
1728 #endif
1729 	return error;
1730 }
1731 
1732 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1733 {
1734 	int error = 0, real_rx = 0, real_tx = 0;
1735 
1736 #ifdef CONFIG_SYSFS
1737 	if (ndev->queues_kset) {
1738 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1739 		if (error)
1740 			return error;
1741 	}
1742 	real_rx = ndev->real_num_rx_queues;
1743 #endif
1744 	real_tx = ndev->real_num_tx_queues;
1745 
1746 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1747 	if (error)
1748 		return error;
1749 
1750 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1751 	if (error)
1752 		return error;
1753 
1754 	return 0;
1755 }
1756 
1757 static void remove_queue_kobjects(struct net_device *dev)
1758 {
1759 	int real_rx = 0, real_tx = 0;
1760 
1761 #ifdef CONFIG_SYSFS
1762 	real_rx = dev->real_num_rx_queues;
1763 #endif
1764 	real_tx = dev->real_num_tx_queues;
1765 
1766 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1767 	netdev_queue_update_kobjects(dev, real_tx, 0);
1768 #ifdef CONFIG_SYSFS
1769 	kset_unregister(dev->queues_kset);
1770 #endif
1771 }
1772 
1773 static bool net_current_may_mount(void)
1774 {
1775 	struct net *net = current->nsproxy->net_ns;
1776 
1777 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1778 }
1779 
1780 static void *net_grab_current_ns(void)
1781 {
1782 	struct net *ns = current->nsproxy->net_ns;
1783 #ifdef CONFIG_NET_NS
1784 	if (ns)
1785 		refcount_inc(&ns->passive);
1786 #endif
1787 	return ns;
1788 }
1789 
1790 static const void *net_initial_ns(void)
1791 {
1792 	return &init_net;
1793 }
1794 
1795 static const void *net_netlink_ns(struct sock *sk)
1796 {
1797 	return sock_net(sk);
1798 }
1799 
1800 const struct kobj_ns_type_operations net_ns_type_operations = {
1801 	.type = KOBJ_NS_TYPE_NET,
1802 	.current_may_mount = net_current_may_mount,
1803 	.grab_current_ns = net_grab_current_ns,
1804 	.netlink_ns = net_netlink_ns,
1805 	.initial_ns = net_initial_ns,
1806 	.drop_ns = net_drop_ns,
1807 };
1808 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1809 
1810 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1811 {
1812 	struct net_device *dev = to_net_dev(d);
1813 	int retval;
1814 
1815 	/* pass interface to uevent. */
1816 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1817 	if (retval)
1818 		goto exit;
1819 
1820 	/* pass ifindex to uevent.
1821 	 * ifindex is useful as it won't change (interface name may change)
1822 	 * and is what RtNetlink uses natively.
1823 	 */
1824 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1825 
1826 exit:
1827 	return retval;
1828 }
1829 
1830 /*
1831  *	netdev_release -- destroy and free a dead device.
1832  *	Called when last reference to device kobject is gone.
1833  */
1834 static void netdev_release(struct device *d)
1835 {
1836 	struct net_device *dev = to_net_dev(d);
1837 
1838 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1839 
1840 	/* no need to wait for rcu grace period:
1841 	 * device is dead and about to be freed.
1842 	 */
1843 	kfree(rcu_access_pointer(dev->ifalias));
1844 	netdev_freemem(dev);
1845 }
1846 
1847 static const void *net_namespace(struct device *d)
1848 {
1849 	struct net_device *dev = to_net_dev(d);
1850 
1851 	return dev_net(dev);
1852 }
1853 
1854 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1855 {
1856 	struct net_device *dev = to_net_dev(d);
1857 	const struct net *net = dev_net(dev);
1858 
1859 	net_ns_get_ownership(net, uid, gid);
1860 }
1861 
1862 static struct class net_class __ro_after_init = {
1863 	.name = "net",
1864 	.dev_release = netdev_release,
1865 	.dev_groups = net_class_groups,
1866 	.dev_uevent = netdev_uevent,
1867 	.ns_type = &net_ns_type_operations,
1868 	.namespace = net_namespace,
1869 	.get_ownership = net_get_ownership,
1870 };
1871 
1872 #ifdef CONFIG_OF_NET
1873 static int of_dev_node_match(struct device *dev, const void *data)
1874 {
1875 	for (; dev; dev = dev->parent) {
1876 		if (dev->of_node == data)
1877 			return 1;
1878 	}
1879 
1880 	return 0;
1881 }
1882 
1883 /*
1884  * of_find_net_device_by_node - lookup the net device for the device node
1885  * @np: OF device node
1886  *
1887  * Looks up the net_device structure corresponding with the device node.
1888  * If successful, returns a pointer to the net_device with the embedded
1889  * struct device refcount incremented by one, or NULL on failure. The
1890  * refcount must be dropped when done with the net_device.
1891  */
1892 struct net_device *of_find_net_device_by_node(struct device_node *np)
1893 {
1894 	struct device *dev;
1895 
1896 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1897 	if (!dev)
1898 		return NULL;
1899 
1900 	return to_net_dev(dev);
1901 }
1902 EXPORT_SYMBOL(of_find_net_device_by_node);
1903 #endif
1904 
1905 /* Delete sysfs entries but hold kobject reference until after all
1906  * netdev references are gone.
1907  */
1908 void netdev_unregister_kobject(struct net_device *ndev)
1909 {
1910 	struct device *dev = &ndev->dev;
1911 
1912 	if (!refcount_read(&dev_net(ndev)->ns.count))
1913 		dev_set_uevent_suppress(dev, 1);
1914 
1915 	kobject_get(&dev->kobj);
1916 
1917 	remove_queue_kobjects(ndev);
1918 
1919 	pm_runtime_set_memalloc_noio(dev, false);
1920 
1921 	device_del(dev);
1922 }
1923 
1924 /* Create sysfs entries for network device. */
1925 int netdev_register_kobject(struct net_device *ndev)
1926 {
1927 	struct device *dev = &ndev->dev;
1928 	const struct attribute_group **groups = ndev->sysfs_groups;
1929 	int error = 0;
1930 
1931 	device_initialize(dev);
1932 	dev->class = &net_class;
1933 	dev->platform_data = ndev;
1934 	dev->groups = groups;
1935 
1936 	dev_set_name(dev, "%s", ndev->name);
1937 
1938 #ifdef CONFIG_SYSFS
1939 	/* Allow for a device specific group */
1940 	if (*groups)
1941 		groups++;
1942 
1943 	*groups++ = &netstat_group;
1944 
1945 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1946 	if (ndev->ieee80211_ptr)
1947 		*groups++ = &wireless_group;
1948 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
1949 	else if (ndev->wireless_handlers)
1950 		*groups++ = &wireless_group;
1951 #endif
1952 #endif
1953 #endif /* CONFIG_SYSFS */
1954 
1955 	error = device_add(dev);
1956 	if (error)
1957 		return error;
1958 
1959 	error = register_queue_kobjects(ndev);
1960 	if (error) {
1961 		device_del(dev);
1962 		return error;
1963 	}
1964 
1965 	pm_runtime_set_memalloc_noio(dev, true);
1966 
1967 	return error;
1968 }
1969 
1970 /* Change owner for sysfs entries when moving network devices across network
1971  * namespaces owned by different user namespaces.
1972  */
1973 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
1974 			const struct net *net_new)
1975 {
1976 	struct device *dev = &ndev->dev;
1977 	kuid_t old_uid, new_uid;
1978 	kgid_t old_gid, new_gid;
1979 	int error;
1980 
1981 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
1982 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
1983 
1984 	/* The network namespace was changed but the owning user namespace is
1985 	 * identical so there's no need to change the owner of sysfs entries.
1986 	 */
1987 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
1988 		return 0;
1989 
1990 	error = device_change_owner(dev, new_uid, new_gid);
1991 	if (error)
1992 		return error;
1993 
1994 	error = queue_change_owner(ndev, new_uid, new_gid);
1995 	if (error)
1996 		return error;
1997 
1998 	return 0;
1999 }
2000 
2001 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2002 				const void *ns)
2003 {
2004 	return class_create_file_ns(&net_class, class_attr, ns);
2005 }
2006 EXPORT_SYMBOL(netdev_class_create_file_ns);
2007 
2008 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2009 				 const void *ns)
2010 {
2011 	class_remove_file_ns(&net_class, class_attr, ns);
2012 }
2013 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2014 
2015 int __init netdev_kobject_init(void)
2016 {
2017 	kobj_ns_type_register(&net_ns_type_operations);
2018 	return class_register(&net_class);
2019 }
2020