xref: /linux/net/core/net-sysfs.c (revision 359bcf15ec1d6738ede721db628594ecf05fd998)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_lock.h>
27 #include <net/netdev_rx_queue.h>
28 #include <net/rps.h>
29 
30 #include "dev.h"
31 #include "net-sysfs.h"
32 
33 #ifdef CONFIG_SYSFS
34 static const char fmt_hex[] = "%#x\n";
35 static const char fmt_dec[] = "%d\n";
36 static const char fmt_uint[] = "%u\n";
37 static const char fmt_ulong[] = "%lu\n";
38 static const char fmt_u64[] = "%llu\n";
39 
40 /* Caller holds RTNL, netdev->lock or RCU */
41 static inline int dev_isalive(const struct net_device *dev)
42 {
43 	return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
44 }
45 
46 /* There is a possible ABBA deadlock between rtnl_lock and kernfs_node->active,
47  * when unregistering a net device and accessing associated sysfs files. The
48  * potential deadlock is as follow:
49  *
50  *         CPU 0                                         CPU 1
51  *
52  *    rtnl_lock                                   vfs_read
53  *    unregister_netdevice_many                   kernfs_seq_start
54  *    device_del / kobject_put                      kernfs_get_active (kn->active++)
55  *    kernfs_drain                                sysfs_kf_seq_show
56  *    wait_event(                                 rtnl_lock
57  *       kn->active == KN_DEACTIVATED_BIAS)       -> waits on CPU 0 to release
58  *    -> waits on CPU 1 to decrease kn->active       the rtnl lock.
59  *
60  * The historical fix was to use rtnl_trylock with restart_syscall to bail out
61  * of sysfs operations when the lock couldn't be taken. This fixed the above
62  * issue as it allowed CPU 1 to bail out of the ABBA situation.
63  *
64  * But it came with performances issues, as syscalls are being restarted in
65  * loops when there was contention on the rtnl lock, with huge slow downs in
66  * specific scenarios (e.g. lots of virtual interfaces created and userspace
67  * daemons querying their attributes).
68  *
69  * The idea below is to bail out of the active kernfs_node protection
70  * (kn->active) while trying to take the rtnl lock.
71  *
72  * This replaces rtnl_lock() and still has to be used with rtnl_unlock(). The
73  * net device is guaranteed to be alive if this returns successfully.
74  */
75 static int sysfs_rtnl_lock(struct kobject *kobj, struct attribute *attr,
76 			   struct net_device *ndev)
77 {
78 	struct kernfs_node *kn;
79 	int ret = 0;
80 
81 	/* First, we hold a reference to the net device as the unregistration
82 	 * path might run in parallel. This will ensure the net device and the
83 	 * associated sysfs objects won't be freed while we try to take the rtnl
84 	 * lock.
85 	 */
86 	dev_hold(ndev);
87 	/* sysfs_break_active_protection was introduced to allow self-removal of
88 	 * devices and their associated sysfs files by bailing out of the
89 	 * sysfs/kernfs protection. We do this here to allow the unregistration
90 	 * path to complete in parallel. The following takes a reference on the
91 	 * kobject and the kernfs_node being accessed.
92 	 *
93 	 * This works because we hold a reference onto the net device and the
94 	 * unregistration path will wait for us eventually in netdev_run_todo
95 	 * (outside an rtnl lock section).
96 	 */
97 	kn = sysfs_break_active_protection(kobj, attr);
98 	/* We can now try to take the rtnl lock. This can't deadlock us as the
99 	 * unregistration path is able to drain sysfs files (kernfs_node) thanks
100 	 * to the above dance.
101 	 */
102 	if (rtnl_lock_interruptible()) {
103 		ret = -ERESTARTSYS;
104 		goto unbreak;
105 	}
106 	/* Check dismantle on the device hasn't started, otherwise deny the
107 	 * operation.
108 	 */
109 	if (!dev_isalive(ndev)) {
110 		rtnl_unlock();
111 		ret = -ENODEV;
112 		goto unbreak;
113 	}
114 	/* We are now sure the device dismantle hasn't started nor that it can
115 	 * start before we exit the locking section as we hold the rtnl lock.
116 	 * There's no need to keep unbreaking the sysfs protection nor to hold
117 	 * a net device reference from that point; that was only needed to take
118 	 * the rtnl lock.
119 	 */
120 unbreak:
121 	sysfs_unbreak_active_protection(kn);
122 	dev_put(ndev);
123 
124 	return ret;
125 }
126 
127 /* use same locking rules as GIF* ioctl's */
128 static ssize_t netdev_show(const struct device *dev,
129 			   struct device_attribute *attr, char *buf,
130 			   ssize_t (*format)(const struct net_device *, char *))
131 {
132 	struct net_device *ndev = to_net_dev(dev);
133 	ssize_t ret = -EINVAL;
134 
135 	rcu_read_lock();
136 	if (dev_isalive(ndev))
137 		ret = (*format)(ndev, buf);
138 	rcu_read_unlock();
139 
140 	return ret;
141 }
142 
143 /* generate a show function for simple field */
144 #define NETDEVICE_SHOW(field, format_string)				\
145 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
146 {									\
147 	return sysfs_emit(buf, format_string, READ_ONCE(dev->field));		\
148 }									\
149 static ssize_t field##_show(struct device *dev,				\
150 			    struct device_attribute *attr, char *buf)	\
151 {									\
152 	return netdev_show(dev, attr, buf, format_##field);		\
153 }									\
154 
155 #define NETDEVICE_SHOW_RO(field, format_string)				\
156 NETDEVICE_SHOW(field, format_string);					\
157 static DEVICE_ATTR_RO(field)
158 
159 #define NETDEVICE_SHOW_RW(field, format_string)				\
160 NETDEVICE_SHOW(field, format_string);					\
161 static DEVICE_ATTR_RW(field)
162 
163 /* use same locking and permission rules as SIF* ioctl's */
164 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
165 			    const char *buf, size_t len,
166 			    int (*set)(struct net_device *, unsigned long))
167 {
168 	struct net_device *netdev = to_net_dev(dev);
169 	struct net *net = dev_net(netdev);
170 	unsigned long new;
171 	int ret;
172 
173 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
174 		return -EPERM;
175 
176 	ret = kstrtoul(buf, 0, &new);
177 	if (ret)
178 		goto err;
179 
180 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
181 	if (ret)
182 		goto err;
183 
184 	ret = (*set)(netdev, new);
185 	if (ret == 0)
186 		ret = len;
187 
188 	rtnl_unlock();
189  err:
190 	return ret;
191 }
192 
193 /* Same as netdev_store() but takes netdev_lock() instead of rtnl_lock() */
194 static ssize_t
195 netdev_lock_store(struct device *dev, struct device_attribute *attr,
196 		  const char *buf, size_t len,
197 		  int (*set)(struct net_device *, unsigned long))
198 {
199 	struct net_device *netdev = to_net_dev(dev);
200 	struct net *net = dev_net(netdev);
201 	unsigned long new;
202 	int ret;
203 
204 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
205 		return -EPERM;
206 
207 	ret = kstrtoul(buf, 0, &new);
208 	if (ret)
209 		return ret;
210 
211 	netdev_lock(netdev);
212 
213 	if (dev_isalive(netdev)) {
214 		ret = (*set)(netdev, new);
215 		if (ret == 0)
216 			ret = len;
217 	}
218 	netdev_unlock(netdev);
219 
220 	return ret;
221 }
222 
223 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
224 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
225 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
226 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
227 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
228 NETDEVICE_SHOW_RO(type, fmt_dec);
229 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
230 
231 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
232 			   char *buf)
233 {
234 	struct net_device *ndev = to_net_dev(dev);
235 
236 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
237 }
238 static DEVICE_ATTR_RO(iflink);
239 
240 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
241 {
242 	return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
243 }
244 
245 static ssize_t name_assign_type_show(struct device *dev,
246 				     struct device_attribute *attr,
247 				     char *buf)
248 {
249 	struct net_device *ndev = to_net_dev(dev);
250 	ssize_t ret = -EINVAL;
251 
252 	if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
253 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
254 
255 	return ret;
256 }
257 static DEVICE_ATTR_RO(name_assign_type);
258 
259 /* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */
260 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
261 			    char *buf)
262 {
263 	struct net_device *ndev = to_net_dev(dev);
264 	ssize_t ret = -EINVAL;
265 
266 	down_read(&dev_addr_sem);
267 
268 	rcu_read_lock();
269 	if (dev_isalive(ndev))
270 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
271 	rcu_read_unlock();
272 
273 	up_read(&dev_addr_sem);
274 	return ret;
275 }
276 static DEVICE_ATTR_RO(address);
277 
278 static ssize_t broadcast_show(struct device *dev,
279 			      struct device_attribute *attr, char *buf)
280 {
281 	struct net_device *ndev = to_net_dev(dev);
282 	int ret = -EINVAL;
283 
284 	rcu_read_lock();
285 	if (dev_isalive(ndev))
286 		ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
287 	rcu_read_unlock();
288 	return ret;
289 }
290 static DEVICE_ATTR_RO(broadcast);
291 
292 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
293 {
294 	if (!netif_running(dev))
295 		return -EINVAL;
296 	return dev_change_carrier(dev, (bool)new_carrier);
297 }
298 
299 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
300 			     const char *buf, size_t len)
301 {
302 	struct net_device *netdev = to_net_dev(dev);
303 
304 	/* The check is also done in change_carrier; this helps returning early
305 	 * without hitting the locking section in netdev_store.
306 	 */
307 	if (!netdev->netdev_ops->ndo_change_carrier)
308 		return -EOPNOTSUPP;
309 
310 	return netdev_store(dev, attr, buf, len, change_carrier);
311 }
312 
313 static ssize_t carrier_show(struct device *dev,
314 			    struct device_attribute *attr, char *buf)
315 {
316 	struct net_device *netdev = to_net_dev(dev);
317 	int ret;
318 
319 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
320 	if (ret)
321 		return ret;
322 
323 	ret = -EINVAL;
324 	if (netif_running(netdev)) {
325 		/* Synchronize carrier state with link watch,
326 		 * see also rtnl_getlink().
327 		 */
328 		linkwatch_sync_dev(netdev);
329 
330 		ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
331 	}
332 
333 	rtnl_unlock();
334 	return ret;
335 }
336 static DEVICE_ATTR_RW(carrier);
337 
338 static ssize_t speed_show(struct device *dev,
339 			  struct device_attribute *attr, char *buf)
340 {
341 	struct net_device *netdev = to_net_dev(dev);
342 	int ret = -EINVAL;
343 
344 	/* The check is also done in __ethtool_get_link_ksettings; this helps
345 	 * returning early without hitting the locking section below.
346 	 */
347 	if (!netdev->ethtool_ops->get_link_ksettings)
348 		return ret;
349 
350 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
351 	if (ret)
352 		return ret;
353 
354 	ret = -EINVAL;
355 	if (netif_running(netdev)) {
356 		struct ethtool_link_ksettings cmd;
357 
358 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
359 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
360 	}
361 	rtnl_unlock();
362 	return ret;
363 }
364 static DEVICE_ATTR_RO(speed);
365 
366 static ssize_t duplex_show(struct device *dev,
367 			   struct device_attribute *attr, char *buf)
368 {
369 	struct net_device *netdev = to_net_dev(dev);
370 	int ret = -EINVAL;
371 
372 	/* The check is also done in __ethtool_get_link_ksettings; this helps
373 	 * returning early without hitting the locking section below.
374 	 */
375 	if (!netdev->ethtool_ops->get_link_ksettings)
376 		return ret;
377 
378 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
379 	if (ret)
380 		return ret;
381 
382 	ret = -EINVAL;
383 	if (netif_running(netdev)) {
384 		struct ethtool_link_ksettings cmd;
385 
386 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
387 			const char *duplex;
388 
389 			switch (cmd.base.duplex) {
390 			case DUPLEX_HALF:
391 				duplex = "half";
392 				break;
393 			case DUPLEX_FULL:
394 				duplex = "full";
395 				break;
396 			default:
397 				duplex = "unknown";
398 				break;
399 			}
400 			ret = sysfs_emit(buf, "%s\n", duplex);
401 		}
402 	}
403 	rtnl_unlock();
404 	return ret;
405 }
406 static DEVICE_ATTR_RO(duplex);
407 
408 static ssize_t testing_show(struct device *dev,
409 			    struct device_attribute *attr, char *buf)
410 {
411 	struct net_device *netdev = to_net_dev(dev);
412 
413 	if (netif_running(netdev))
414 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
415 
416 	return -EINVAL;
417 }
418 static DEVICE_ATTR_RO(testing);
419 
420 static ssize_t dormant_show(struct device *dev,
421 			    struct device_attribute *attr, char *buf)
422 {
423 	struct net_device *netdev = to_net_dev(dev);
424 
425 	if (netif_running(netdev))
426 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
427 
428 	return -EINVAL;
429 }
430 static DEVICE_ATTR_RO(dormant);
431 
432 static const char *const operstates[] = {
433 	"unknown",
434 	"notpresent", /* currently unused */
435 	"down",
436 	"lowerlayerdown",
437 	"testing",
438 	"dormant",
439 	"up"
440 };
441 
442 static ssize_t operstate_show(struct device *dev,
443 			      struct device_attribute *attr, char *buf)
444 {
445 	const struct net_device *netdev = to_net_dev(dev);
446 	unsigned char operstate;
447 
448 	operstate = READ_ONCE(netdev->operstate);
449 	if (!netif_running(netdev))
450 		operstate = IF_OPER_DOWN;
451 
452 	if (operstate >= ARRAY_SIZE(operstates))
453 		return -EINVAL; /* should not happen */
454 
455 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
456 }
457 static DEVICE_ATTR_RO(operstate);
458 
459 static ssize_t carrier_changes_show(struct device *dev,
460 				    struct device_attribute *attr,
461 				    char *buf)
462 {
463 	struct net_device *netdev = to_net_dev(dev);
464 
465 	return sysfs_emit(buf, fmt_dec,
466 			  atomic_read(&netdev->carrier_up_count) +
467 			  atomic_read(&netdev->carrier_down_count));
468 }
469 static DEVICE_ATTR_RO(carrier_changes);
470 
471 static ssize_t carrier_up_count_show(struct device *dev,
472 				     struct device_attribute *attr,
473 				     char *buf)
474 {
475 	struct net_device *netdev = to_net_dev(dev);
476 
477 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
478 }
479 static DEVICE_ATTR_RO(carrier_up_count);
480 
481 static ssize_t carrier_down_count_show(struct device *dev,
482 				       struct device_attribute *attr,
483 				       char *buf)
484 {
485 	struct net_device *netdev = to_net_dev(dev);
486 
487 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
488 }
489 static DEVICE_ATTR_RO(carrier_down_count);
490 
491 /* read-write attributes */
492 
493 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
494 {
495 	return dev_set_mtu(dev, (int)new_mtu);
496 }
497 
498 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
499 			 const char *buf, size_t len)
500 {
501 	return netdev_store(dev, attr, buf, len, change_mtu);
502 }
503 NETDEVICE_SHOW_RW(mtu, fmt_dec);
504 
505 static int change_flags(struct net_device *dev, unsigned long new_flags)
506 {
507 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
508 }
509 
510 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
511 			   const char *buf, size_t len)
512 {
513 	return netdev_store(dev, attr, buf, len, change_flags);
514 }
515 NETDEVICE_SHOW_RW(flags, fmt_hex);
516 
517 static ssize_t tx_queue_len_store(struct device *dev,
518 				  struct device_attribute *attr,
519 				  const char *buf, size_t len)
520 {
521 	if (!capable(CAP_NET_ADMIN))
522 		return -EPERM;
523 
524 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
525 }
526 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
527 
528 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
529 {
530 	netdev_set_gro_flush_timeout(dev, val);
531 	return 0;
532 }
533 
534 static ssize_t gro_flush_timeout_store(struct device *dev,
535 				       struct device_attribute *attr,
536 				       const char *buf, size_t len)
537 {
538 	if (!capable(CAP_NET_ADMIN))
539 		return -EPERM;
540 
541 	return netdev_lock_store(dev, attr, buf, len, change_gro_flush_timeout);
542 }
543 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
544 
545 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
546 {
547 	if (val > S32_MAX)
548 		return -ERANGE;
549 
550 	netdev_set_defer_hard_irqs(dev, (u32)val);
551 	return 0;
552 }
553 
554 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
555 					  struct device_attribute *attr,
556 					  const char *buf, size_t len)
557 {
558 	if (!capable(CAP_NET_ADMIN))
559 		return -EPERM;
560 
561 	return netdev_lock_store(dev, attr, buf, len,
562 				 change_napi_defer_hard_irqs);
563 }
564 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
565 
566 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
567 			     const char *buf, size_t len)
568 {
569 	struct net_device *netdev = to_net_dev(dev);
570 	struct net *net = dev_net(netdev);
571 	size_t count = len;
572 	ssize_t ret;
573 
574 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
575 		return -EPERM;
576 
577 	/* ignore trailing newline */
578 	if (len >  0 && buf[len - 1] == '\n')
579 		--count;
580 
581 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
582 	if (ret)
583 		return ret;
584 
585 	ret = dev_set_alias(netdev, buf, count);
586 	if (ret < 0)
587 		goto err;
588 	ret = len;
589 	netdev_state_change(netdev);
590 err:
591 	rtnl_unlock();
592 
593 	return ret;
594 }
595 
596 static ssize_t ifalias_show(struct device *dev,
597 			    struct device_attribute *attr, char *buf)
598 {
599 	const struct net_device *netdev = to_net_dev(dev);
600 	char tmp[IFALIASZ];
601 	ssize_t ret;
602 
603 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
604 	if (ret > 0)
605 		ret = sysfs_emit(buf, "%s\n", tmp);
606 	return ret;
607 }
608 static DEVICE_ATTR_RW(ifalias);
609 
610 static int change_group(struct net_device *dev, unsigned long new_group)
611 {
612 	dev_set_group(dev, (int)new_group);
613 	return 0;
614 }
615 
616 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
617 			   const char *buf, size_t len)
618 {
619 	return netdev_store(dev, attr, buf, len, change_group);
620 }
621 NETDEVICE_SHOW(group, fmt_dec);
622 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
623 
624 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
625 {
626 	return dev_change_proto_down(dev, (bool)proto_down);
627 }
628 
629 static ssize_t proto_down_store(struct device *dev,
630 				struct device_attribute *attr,
631 				const char *buf, size_t len)
632 {
633 	return netdev_store(dev, attr, buf, len, change_proto_down);
634 }
635 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
636 
637 static ssize_t phys_port_id_show(struct device *dev,
638 				 struct device_attribute *attr, char *buf)
639 {
640 	struct net_device *netdev = to_net_dev(dev);
641 	struct netdev_phys_item_id ppid;
642 	ssize_t ret;
643 
644 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
645 	if (ret)
646 		return ret;
647 
648 	ret = dev_get_phys_port_id(netdev, &ppid);
649 	if (!ret)
650 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
651 
652 	rtnl_unlock();
653 
654 	return ret;
655 }
656 static DEVICE_ATTR_RO(phys_port_id);
657 
658 static ssize_t phys_port_name_show(struct device *dev,
659 				   struct device_attribute *attr, char *buf)
660 {
661 	struct net_device *netdev = to_net_dev(dev);
662 	char name[IFNAMSIZ];
663 	ssize_t ret;
664 
665 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
666 	if (ret)
667 		return ret;
668 
669 	ret = dev_get_phys_port_name(netdev, name, sizeof(name));
670 	if (!ret)
671 		ret = sysfs_emit(buf, "%s\n", name);
672 
673 	rtnl_unlock();
674 
675 	return ret;
676 }
677 static DEVICE_ATTR_RO(phys_port_name);
678 
679 static ssize_t phys_switch_id_show(struct device *dev,
680 				   struct device_attribute *attr, char *buf)
681 {
682 	struct net_device *netdev = to_net_dev(dev);
683 	struct netdev_phys_item_id ppid = { };
684 	ssize_t ret;
685 
686 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
687 	if (ret)
688 		return ret;
689 
690 	ret = dev_get_port_parent_id(netdev, &ppid, false);
691 	if (!ret)
692 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
693 
694 	rtnl_unlock();
695 
696 	return ret;
697 }
698 static DEVICE_ATTR_RO(phys_switch_id);
699 
700 static struct attribute *netdev_phys_attrs[] __ro_after_init = {
701 	&dev_attr_phys_port_id.attr,
702 	&dev_attr_phys_port_name.attr,
703 	&dev_attr_phys_switch_id.attr,
704 	NULL,
705 };
706 
707 static umode_t netdev_phys_is_visible(struct kobject *kobj,
708 				      struct attribute *attr, int index)
709 {
710 	struct device *dev = kobj_to_dev(kobj);
711 	struct net_device *netdev = to_net_dev(dev);
712 
713 	if (attr == &dev_attr_phys_port_id.attr) {
714 		if (!netdev->netdev_ops->ndo_get_phys_port_id)
715 			return 0;
716 	} else if (attr == &dev_attr_phys_port_name.attr) {
717 		if (!netdev->netdev_ops->ndo_get_phys_port_name &&
718 		    !netdev->devlink_port)
719 			return 0;
720 	} else if (attr == &dev_attr_phys_switch_id.attr) {
721 		if (!netdev->netdev_ops->ndo_get_port_parent_id &&
722 		    !netdev->devlink_port)
723 			return 0;
724 	}
725 
726 	return attr->mode;
727 }
728 
729 static const struct attribute_group netdev_phys_group = {
730 	.attrs = netdev_phys_attrs,
731 	.is_visible = netdev_phys_is_visible,
732 };
733 
734 static ssize_t threaded_show(struct device *dev,
735 			     struct device_attribute *attr, char *buf)
736 {
737 	struct net_device *netdev = to_net_dev(dev);
738 	ssize_t ret = -EINVAL;
739 
740 	rcu_read_lock();
741 
742 	if (dev_isalive(netdev))
743 		ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
744 
745 	rcu_read_unlock();
746 
747 	return ret;
748 }
749 
750 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
751 {
752 	int ret;
753 
754 	if (list_empty(&dev->napi_list))
755 		return -EOPNOTSUPP;
756 
757 	if (val != 0 && val != 1)
758 		return -EOPNOTSUPP;
759 
760 	ret = dev_set_threaded(dev, val);
761 
762 	return ret;
763 }
764 
765 static ssize_t threaded_store(struct device *dev,
766 			      struct device_attribute *attr,
767 			      const char *buf, size_t len)
768 {
769 	return netdev_lock_store(dev, attr, buf, len, modify_napi_threaded);
770 }
771 static DEVICE_ATTR_RW(threaded);
772 
773 static struct attribute *net_class_attrs[] __ro_after_init = {
774 	&dev_attr_netdev_group.attr,
775 	&dev_attr_type.attr,
776 	&dev_attr_dev_id.attr,
777 	&dev_attr_dev_port.attr,
778 	&dev_attr_iflink.attr,
779 	&dev_attr_ifindex.attr,
780 	&dev_attr_name_assign_type.attr,
781 	&dev_attr_addr_assign_type.attr,
782 	&dev_attr_addr_len.attr,
783 	&dev_attr_link_mode.attr,
784 	&dev_attr_address.attr,
785 	&dev_attr_broadcast.attr,
786 	&dev_attr_speed.attr,
787 	&dev_attr_duplex.attr,
788 	&dev_attr_dormant.attr,
789 	&dev_attr_testing.attr,
790 	&dev_attr_operstate.attr,
791 	&dev_attr_carrier_changes.attr,
792 	&dev_attr_ifalias.attr,
793 	&dev_attr_carrier.attr,
794 	&dev_attr_mtu.attr,
795 	&dev_attr_flags.attr,
796 	&dev_attr_tx_queue_len.attr,
797 	&dev_attr_gro_flush_timeout.attr,
798 	&dev_attr_napi_defer_hard_irqs.attr,
799 	&dev_attr_proto_down.attr,
800 	&dev_attr_carrier_up_count.attr,
801 	&dev_attr_carrier_down_count.attr,
802 	&dev_attr_threaded.attr,
803 	NULL,
804 };
805 ATTRIBUTE_GROUPS(net_class);
806 
807 /* Show a given an attribute in the statistics group */
808 static ssize_t netstat_show(const struct device *d,
809 			    struct device_attribute *attr, char *buf,
810 			    unsigned long offset)
811 {
812 	struct net_device *dev = to_net_dev(d);
813 	ssize_t ret = -EINVAL;
814 
815 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
816 		offset % sizeof(u64) != 0);
817 
818 	rcu_read_lock();
819 	if (dev_isalive(dev)) {
820 		struct rtnl_link_stats64 temp;
821 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
822 
823 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
824 	}
825 	rcu_read_unlock();
826 	return ret;
827 }
828 
829 /* generate a read-only statistics attribute */
830 #define NETSTAT_ENTRY(name)						\
831 static ssize_t name##_show(struct device *d,				\
832 			   struct device_attribute *attr, char *buf)	\
833 {									\
834 	return netstat_show(d, attr, buf,				\
835 			    offsetof(struct rtnl_link_stats64, name));	\
836 }									\
837 static DEVICE_ATTR_RO(name)
838 
839 NETSTAT_ENTRY(rx_packets);
840 NETSTAT_ENTRY(tx_packets);
841 NETSTAT_ENTRY(rx_bytes);
842 NETSTAT_ENTRY(tx_bytes);
843 NETSTAT_ENTRY(rx_errors);
844 NETSTAT_ENTRY(tx_errors);
845 NETSTAT_ENTRY(rx_dropped);
846 NETSTAT_ENTRY(tx_dropped);
847 NETSTAT_ENTRY(multicast);
848 NETSTAT_ENTRY(collisions);
849 NETSTAT_ENTRY(rx_length_errors);
850 NETSTAT_ENTRY(rx_over_errors);
851 NETSTAT_ENTRY(rx_crc_errors);
852 NETSTAT_ENTRY(rx_frame_errors);
853 NETSTAT_ENTRY(rx_fifo_errors);
854 NETSTAT_ENTRY(rx_missed_errors);
855 NETSTAT_ENTRY(tx_aborted_errors);
856 NETSTAT_ENTRY(tx_carrier_errors);
857 NETSTAT_ENTRY(tx_fifo_errors);
858 NETSTAT_ENTRY(tx_heartbeat_errors);
859 NETSTAT_ENTRY(tx_window_errors);
860 NETSTAT_ENTRY(rx_compressed);
861 NETSTAT_ENTRY(tx_compressed);
862 NETSTAT_ENTRY(rx_nohandler);
863 
864 static struct attribute *netstat_attrs[] __ro_after_init = {
865 	&dev_attr_rx_packets.attr,
866 	&dev_attr_tx_packets.attr,
867 	&dev_attr_rx_bytes.attr,
868 	&dev_attr_tx_bytes.attr,
869 	&dev_attr_rx_errors.attr,
870 	&dev_attr_tx_errors.attr,
871 	&dev_attr_rx_dropped.attr,
872 	&dev_attr_tx_dropped.attr,
873 	&dev_attr_multicast.attr,
874 	&dev_attr_collisions.attr,
875 	&dev_attr_rx_length_errors.attr,
876 	&dev_attr_rx_over_errors.attr,
877 	&dev_attr_rx_crc_errors.attr,
878 	&dev_attr_rx_frame_errors.attr,
879 	&dev_attr_rx_fifo_errors.attr,
880 	&dev_attr_rx_missed_errors.attr,
881 	&dev_attr_tx_aborted_errors.attr,
882 	&dev_attr_tx_carrier_errors.attr,
883 	&dev_attr_tx_fifo_errors.attr,
884 	&dev_attr_tx_heartbeat_errors.attr,
885 	&dev_attr_tx_window_errors.attr,
886 	&dev_attr_rx_compressed.attr,
887 	&dev_attr_tx_compressed.attr,
888 	&dev_attr_rx_nohandler.attr,
889 	NULL
890 };
891 
892 static const struct attribute_group netstat_group = {
893 	.name  = "statistics",
894 	.attrs  = netstat_attrs,
895 };
896 
897 static struct attribute *wireless_attrs[] = {
898 	NULL
899 };
900 
901 static const struct attribute_group wireless_group = {
902 	.name = "wireless",
903 	.attrs = wireless_attrs,
904 };
905 
906 static bool wireless_group_needed(struct net_device *ndev)
907 {
908 #if IS_ENABLED(CONFIG_CFG80211)
909 	if (ndev->ieee80211_ptr)
910 		return true;
911 #endif
912 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
913 	if (ndev->wireless_handlers)
914 		return true;
915 #endif
916 	return false;
917 }
918 
919 #else /* CONFIG_SYSFS */
920 #define net_class_groups	NULL
921 #endif /* CONFIG_SYSFS */
922 
923 #ifdef CONFIG_SYSFS
924 #define to_rx_queue_attr(_attr) \
925 	container_of(_attr, struct rx_queue_attribute, attr)
926 
927 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
928 
929 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
930 				  char *buf)
931 {
932 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
933 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
934 
935 	if (!attribute->show)
936 		return -EIO;
937 
938 	return attribute->show(queue, buf);
939 }
940 
941 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
942 				   const char *buf, size_t count)
943 {
944 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
945 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
946 
947 	if (!attribute->store)
948 		return -EIO;
949 
950 	return attribute->store(queue, buf, count);
951 }
952 
953 static const struct sysfs_ops rx_queue_sysfs_ops = {
954 	.show = rx_queue_attr_show,
955 	.store = rx_queue_attr_store,
956 };
957 
958 #ifdef CONFIG_RPS
959 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
960 {
961 	struct rps_map *map;
962 	cpumask_var_t mask;
963 	int i, len;
964 
965 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
966 		return -ENOMEM;
967 
968 	rcu_read_lock();
969 	map = rcu_dereference(queue->rps_map);
970 	if (map)
971 		for (i = 0; i < map->len; i++)
972 			cpumask_set_cpu(map->cpus[i], mask);
973 
974 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
975 	rcu_read_unlock();
976 	free_cpumask_var(mask);
977 
978 	return len < PAGE_SIZE ? len : -EINVAL;
979 }
980 
981 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
982 					cpumask_var_t mask)
983 {
984 	static DEFINE_MUTEX(rps_map_mutex);
985 	struct rps_map *old_map, *map;
986 	int cpu, i;
987 
988 	map = kzalloc(max_t(unsigned int,
989 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
990 		      GFP_KERNEL);
991 	if (!map)
992 		return -ENOMEM;
993 
994 	i = 0;
995 	for_each_cpu_and(cpu, mask, cpu_online_mask)
996 		map->cpus[i++] = cpu;
997 
998 	if (i) {
999 		map->len = i;
1000 	} else {
1001 		kfree(map);
1002 		map = NULL;
1003 	}
1004 
1005 	mutex_lock(&rps_map_mutex);
1006 	old_map = rcu_dereference_protected(queue->rps_map,
1007 					    mutex_is_locked(&rps_map_mutex));
1008 	rcu_assign_pointer(queue->rps_map, map);
1009 
1010 	if (map)
1011 		static_branch_inc(&rps_needed);
1012 	if (old_map)
1013 		static_branch_dec(&rps_needed);
1014 
1015 	mutex_unlock(&rps_map_mutex);
1016 
1017 	if (old_map)
1018 		kfree_rcu(old_map, rcu);
1019 	return 0;
1020 }
1021 
1022 int rps_cpumask_housekeeping(struct cpumask *mask)
1023 {
1024 	if (!cpumask_empty(mask)) {
1025 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
1026 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
1027 		if (cpumask_empty(mask))
1028 			return -EINVAL;
1029 	}
1030 	return 0;
1031 }
1032 
1033 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
1034 			     const char *buf, size_t len)
1035 {
1036 	cpumask_var_t mask;
1037 	int err;
1038 
1039 	if (!capable(CAP_NET_ADMIN))
1040 		return -EPERM;
1041 
1042 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1043 		return -ENOMEM;
1044 
1045 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1046 	if (err)
1047 		goto out;
1048 
1049 	err = rps_cpumask_housekeeping(mask);
1050 	if (err)
1051 		goto out;
1052 
1053 	err = netdev_rx_queue_set_rps_mask(queue, mask);
1054 
1055 out:
1056 	free_cpumask_var(mask);
1057 	return err ? : len;
1058 }
1059 
1060 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1061 					   char *buf)
1062 {
1063 	struct rps_dev_flow_table *flow_table;
1064 	unsigned long val = 0;
1065 
1066 	rcu_read_lock();
1067 	flow_table = rcu_dereference(queue->rps_flow_table);
1068 	if (flow_table)
1069 		val = 1UL << flow_table->log;
1070 	rcu_read_unlock();
1071 
1072 	return sysfs_emit(buf, "%lu\n", val);
1073 }
1074 
1075 static void rps_dev_flow_table_release(struct rcu_head *rcu)
1076 {
1077 	struct rps_dev_flow_table *table = container_of(rcu,
1078 	    struct rps_dev_flow_table, rcu);
1079 	vfree(table);
1080 }
1081 
1082 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1083 					    const char *buf, size_t len)
1084 {
1085 	unsigned long mask, count;
1086 	struct rps_dev_flow_table *table, *old_table;
1087 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
1088 	int rc;
1089 
1090 	if (!capable(CAP_NET_ADMIN))
1091 		return -EPERM;
1092 
1093 	rc = kstrtoul(buf, 0, &count);
1094 	if (rc < 0)
1095 		return rc;
1096 
1097 	if (count) {
1098 		mask = count - 1;
1099 		/* mask = roundup_pow_of_two(count) - 1;
1100 		 * without overflows...
1101 		 */
1102 		while ((mask | (mask >> 1)) != mask)
1103 			mask |= (mask >> 1);
1104 		/* On 64 bit arches, must check mask fits in table->mask (u32),
1105 		 * and on 32bit arches, must check
1106 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
1107 		 */
1108 #if BITS_PER_LONG > 32
1109 		if (mask > (unsigned long)(u32)mask)
1110 			return -EINVAL;
1111 #else
1112 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
1113 				/ sizeof(struct rps_dev_flow)) {
1114 			/* Enforce a limit to prevent overflow */
1115 			return -EINVAL;
1116 		}
1117 #endif
1118 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
1119 		if (!table)
1120 			return -ENOMEM;
1121 
1122 		table->log = ilog2(mask) + 1;
1123 		for (count = 0; count <= mask; count++)
1124 			table->flows[count].cpu = RPS_NO_CPU;
1125 	} else {
1126 		table = NULL;
1127 	}
1128 
1129 	spin_lock(&rps_dev_flow_lock);
1130 	old_table = rcu_dereference_protected(queue->rps_flow_table,
1131 					      lockdep_is_held(&rps_dev_flow_lock));
1132 	rcu_assign_pointer(queue->rps_flow_table, table);
1133 	spin_unlock(&rps_dev_flow_lock);
1134 
1135 	if (old_table)
1136 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1137 
1138 	return len;
1139 }
1140 
1141 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1142 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1143 
1144 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1145 	= __ATTR(rps_flow_cnt, 0644,
1146 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1147 #endif /* CONFIG_RPS */
1148 
1149 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1150 #ifdef CONFIG_RPS
1151 	&rps_cpus_attribute.attr,
1152 	&rps_dev_flow_table_cnt_attribute.attr,
1153 #endif
1154 	NULL
1155 };
1156 ATTRIBUTE_GROUPS(rx_queue_default);
1157 
1158 static void rx_queue_release(struct kobject *kobj)
1159 {
1160 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1161 #ifdef CONFIG_RPS
1162 	struct rps_map *map;
1163 	struct rps_dev_flow_table *flow_table;
1164 
1165 	map = rcu_dereference_protected(queue->rps_map, 1);
1166 	if (map) {
1167 		RCU_INIT_POINTER(queue->rps_map, NULL);
1168 		kfree_rcu(map, rcu);
1169 	}
1170 
1171 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1172 	if (flow_table) {
1173 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1174 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1175 	}
1176 #endif
1177 
1178 	memset(kobj, 0, sizeof(*kobj));
1179 	netdev_put(queue->dev, &queue->dev_tracker);
1180 }
1181 
1182 static const void *rx_queue_namespace(const struct kobject *kobj)
1183 {
1184 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1185 	struct device *dev = &queue->dev->dev;
1186 	const void *ns = NULL;
1187 
1188 	if (dev->class && dev->class->namespace)
1189 		ns = dev->class->namespace(dev);
1190 
1191 	return ns;
1192 }
1193 
1194 static void rx_queue_get_ownership(const struct kobject *kobj,
1195 				   kuid_t *uid, kgid_t *gid)
1196 {
1197 	const struct net *net = rx_queue_namespace(kobj);
1198 
1199 	net_ns_get_ownership(net, uid, gid);
1200 }
1201 
1202 static const struct kobj_type rx_queue_ktype = {
1203 	.sysfs_ops = &rx_queue_sysfs_ops,
1204 	.release = rx_queue_release,
1205 	.namespace = rx_queue_namespace,
1206 	.get_ownership = rx_queue_get_ownership,
1207 };
1208 
1209 static int rx_queue_default_mask(struct net_device *dev,
1210 				 struct netdev_rx_queue *queue)
1211 {
1212 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1213 	struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1214 
1215 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1216 		return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1217 #endif
1218 	return 0;
1219 }
1220 
1221 static int rx_queue_add_kobject(struct net_device *dev, int index)
1222 {
1223 	struct netdev_rx_queue *queue = dev->_rx + index;
1224 	struct kobject *kobj = &queue->kobj;
1225 	int error = 0;
1226 
1227 	/* Rx queues are cleared in rx_queue_release to allow later
1228 	 * re-registration. This is triggered when their kobj refcount is
1229 	 * dropped.
1230 	 *
1231 	 * If a queue is removed while both a read (or write) operation and a
1232 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1233 	 * it might happen that the re-addition will execute before the read,
1234 	 * making the initial removal to never happen (queue's kobj refcount
1235 	 * won't drop enough because of the pending read). In such rare case,
1236 	 * return to allow the removal operation to complete.
1237 	 */
1238 	if (unlikely(kobj->state_initialized)) {
1239 		netdev_warn_once(dev, "Cannot re-add rx queues before their removal completed");
1240 		return -EAGAIN;
1241 	}
1242 
1243 	/* Kobject_put later will trigger rx_queue_release call which
1244 	 * decreases dev refcount: Take that reference here
1245 	 */
1246 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1247 
1248 	kobj->kset = dev->queues_kset;
1249 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1250 				     "rx-%u", index);
1251 	if (error)
1252 		goto err;
1253 
1254 	queue->groups = rx_queue_default_groups;
1255 	error = sysfs_create_groups(kobj, queue->groups);
1256 	if (error)
1257 		goto err;
1258 
1259 	if (dev->sysfs_rx_queue_group) {
1260 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1261 		if (error)
1262 			goto err_default_groups;
1263 	}
1264 
1265 	error = rx_queue_default_mask(dev, queue);
1266 	if (error)
1267 		goto err_default_groups;
1268 
1269 	kobject_uevent(kobj, KOBJ_ADD);
1270 
1271 	return error;
1272 
1273 err_default_groups:
1274 	sysfs_remove_groups(kobj, queue->groups);
1275 err:
1276 	kobject_put(kobj);
1277 	return error;
1278 }
1279 
1280 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1281 				 kgid_t kgid)
1282 {
1283 	struct netdev_rx_queue *queue = dev->_rx + index;
1284 	struct kobject *kobj = &queue->kobj;
1285 	int error;
1286 
1287 	error = sysfs_change_owner(kobj, kuid, kgid);
1288 	if (error)
1289 		return error;
1290 
1291 	if (dev->sysfs_rx_queue_group)
1292 		error = sysfs_group_change_owner(
1293 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1294 
1295 	return error;
1296 }
1297 #endif /* CONFIG_SYSFS */
1298 
1299 int
1300 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1301 {
1302 #ifdef CONFIG_SYSFS
1303 	int i;
1304 	int error = 0;
1305 
1306 #ifndef CONFIG_RPS
1307 	if (!dev->sysfs_rx_queue_group)
1308 		return 0;
1309 #endif
1310 	for (i = old_num; i < new_num; i++) {
1311 		error = rx_queue_add_kobject(dev, i);
1312 		if (error) {
1313 			new_num = old_num;
1314 			break;
1315 		}
1316 	}
1317 
1318 	while (--i >= new_num) {
1319 		struct netdev_rx_queue *queue = &dev->_rx[i];
1320 		struct kobject *kobj = &queue->kobj;
1321 
1322 		if (!refcount_read(&dev_net(dev)->ns.count))
1323 			kobj->uevent_suppress = 1;
1324 		if (dev->sysfs_rx_queue_group)
1325 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1326 		sysfs_remove_groups(kobj, queue->groups);
1327 		kobject_put(kobj);
1328 	}
1329 
1330 	return error;
1331 #else
1332 	return 0;
1333 #endif
1334 }
1335 
1336 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1337 				     kuid_t kuid, kgid_t kgid)
1338 {
1339 #ifdef CONFIG_SYSFS
1340 	int error = 0;
1341 	int i;
1342 
1343 #ifndef CONFIG_RPS
1344 	if (!dev->sysfs_rx_queue_group)
1345 		return 0;
1346 #endif
1347 	for (i = 0; i < num; i++) {
1348 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1349 		if (error)
1350 			break;
1351 	}
1352 
1353 	return error;
1354 #else
1355 	return 0;
1356 #endif
1357 }
1358 
1359 #ifdef CONFIG_SYSFS
1360 /*
1361  * netdev_queue sysfs structures and functions.
1362  */
1363 struct netdev_queue_attribute {
1364 	struct attribute attr;
1365 	ssize_t (*show)(struct kobject *kobj, struct attribute *attr,
1366 			struct netdev_queue *queue, char *buf);
1367 	ssize_t (*store)(struct kobject *kobj, struct attribute *attr,
1368 			 struct netdev_queue *queue, const char *buf,
1369 			 size_t len);
1370 };
1371 #define to_netdev_queue_attr(_attr) \
1372 	container_of(_attr, struct netdev_queue_attribute, attr)
1373 
1374 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1375 
1376 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1377 				      struct attribute *attr, char *buf)
1378 {
1379 	const struct netdev_queue_attribute *attribute
1380 		= to_netdev_queue_attr(attr);
1381 	struct netdev_queue *queue = to_netdev_queue(kobj);
1382 
1383 	if (!attribute->show)
1384 		return -EIO;
1385 
1386 	return attribute->show(kobj, attr, queue, buf);
1387 }
1388 
1389 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1390 				       struct attribute *attr,
1391 				       const char *buf, size_t count)
1392 {
1393 	const struct netdev_queue_attribute *attribute
1394 		= to_netdev_queue_attr(attr);
1395 	struct netdev_queue *queue = to_netdev_queue(kobj);
1396 
1397 	if (!attribute->store)
1398 		return -EIO;
1399 
1400 	return attribute->store(kobj, attr, queue, buf, count);
1401 }
1402 
1403 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1404 	.show = netdev_queue_attr_show,
1405 	.store = netdev_queue_attr_store,
1406 };
1407 
1408 static ssize_t tx_timeout_show(struct kobject *kobj, struct attribute *attr,
1409 			       struct netdev_queue *queue, char *buf)
1410 {
1411 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1412 
1413 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1414 }
1415 
1416 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1417 {
1418 	struct net_device *dev = queue->dev;
1419 	unsigned int i;
1420 
1421 	i = queue - dev->_tx;
1422 	BUG_ON(i >= dev->num_tx_queues);
1423 
1424 	return i;
1425 }
1426 
1427 static ssize_t traffic_class_show(struct kobject *kobj, struct attribute *attr,
1428 				  struct netdev_queue *queue, char *buf)
1429 {
1430 	struct net_device *dev = queue->dev;
1431 	int num_tc, tc, index, ret;
1432 
1433 	if (!netif_is_multiqueue(dev))
1434 		return -ENOENT;
1435 
1436 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1437 	if (ret)
1438 		return ret;
1439 
1440 	index = get_netdev_queue_index(queue);
1441 
1442 	/* If queue belongs to subordinate dev use its TC mapping */
1443 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1444 
1445 	num_tc = dev->num_tc;
1446 	tc = netdev_txq_to_tc(dev, index);
1447 
1448 	rtnl_unlock();
1449 
1450 	if (tc < 0)
1451 		return -EINVAL;
1452 
1453 	/* We can report the traffic class one of two ways:
1454 	 * Subordinate device traffic classes are reported with the traffic
1455 	 * class first, and then the subordinate class so for example TC0 on
1456 	 * subordinate device 2 will be reported as "0-2". If the queue
1457 	 * belongs to the root device it will be reported with just the
1458 	 * traffic class, so just "0" for TC 0 for example.
1459 	 */
1460 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1461 			    sysfs_emit(buf, "%d\n", tc);
1462 }
1463 
1464 #ifdef CONFIG_XPS
1465 static ssize_t tx_maxrate_show(struct kobject *kobj, struct attribute *attr,
1466 			       struct netdev_queue *queue, char *buf)
1467 {
1468 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1469 }
1470 
1471 static ssize_t tx_maxrate_store(struct kobject *kobj, struct attribute *attr,
1472 				struct netdev_queue *queue, const char *buf,
1473 				size_t len)
1474 {
1475 	int err, index = get_netdev_queue_index(queue);
1476 	struct net_device *dev = queue->dev;
1477 	u32 rate = 0;
1478 
1479 	if (!capable(CAP_NET_ADMIN))
1480 		return -EPERM;
1481 
1482 	/* The check is also done later; this helps returning early without
1483 	 * hitting the locking section below.
1484 	 */
1485 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1486 		return -EOPNOTSUPP;
1487 
1488 	err = kstrtou32(buf, 10, &rate);
1489 	if (err < 0)
1490 		return err;
1491 
1492 	err = sysfs_rtnl_lock(kobj, attr, dev);
1493 	if (err)
1494 		return err;
1495 
1496 	err = -EOPNOTSUPP;
1497 	netdev_lock_ops(dev);
1498 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1499 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1500 	netdev_unlock_ops(dev);
1501 
1502 	if (!err) {
1503 		queue->tx_maxrate = rate;
1504 		rtnl_unlock();
1505 		return len;
1506 	}
1507 
1508 	rtnl_unlock();
1509 	return err;
1510 }
1511 
1512 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1513 	= __ATTR_RW(tx_maxrate);
1514 #endif
1515 
1516 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1517 	= __ATTR_RO(tx_timeout);
1518 
1519 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1520 	= __ATTR_RO(traffic_class);
1521 
1522 #ifdef CONFIG_BQL
1523 /*
1524  * Byte queue limits sysfs structures and functions.
1525  */
1526 static ssize_t bql_show(char *buf, unsigned int value)
1527 {
1528 	return sysfs_emit(buf, "%u\n", value);
1529 }
1530 
1531 static ssize_t bql_set(const char *buf, const size_t count,
1532 		       unsigned int *pvalue)
1533 {
1534 	unsigned int value;
1535 	int err;
1536 
1537 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1538 		value = DQL_MAX_LIMIT;
1539 	} else {
1540 		err = kstrtouint(buf, 10, &value);
1541 		if (err < 0)
1542 			return err;
1543 		if (value > DQL_MAX_LIMIT)
1544 			return -EINVAL;
1545 	}
1546 
1547 	*pvalue = value;
1548 
1549 	return count;
1550 }
1551 
1552 static ssize_t bql_show_hold_time(struct kobject *kobj, struct attribute *attr,
1553 				  struct netdev_queue *queue, char *buf)
1554 {
1555 	struct dql *dql = &queue->dql;
1556 
1557 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1558 }
1559 
1560 static ssize_t bql_set_hold_time(struct kobject *kobj, struct attribute *attr,
1561 				 struct netdev_queue *queue, const char *buf,
1562 				 size_t len)
1563 {
1564 	struct dql *dql = &queue->dql;
1565 	unsigned int value;
1566 	int err;
1567 
1568 	err = kstrtouint(buf, 10, &value);
1569 	if (err < 0)
1570 		return err;
1571 
1572 	dql->slack_hold_time = msecs_to_jiffies(value);
1573 
1574 	return len;
1575 }
1576 
1577 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1578 	= __ATTR(hold_time, 0644,
1579 		 bql_show_hold_time, bql_set_hold_time);
1580 
1581 static ssize_t bql_show_stall_thrs(struct kobject *kobj, struct attribute *attr,
1582 				   struct netdev_queue *queue, char *buf)
1583 {
1584 	struct dql *dql = &queue->dql;
1585 
1586 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1587 }
1588 
1589 static ssize_t bql_set_stall_thrs(struct kobject *kobj, struct attribute *attr,
1590 				  struct netdev_queue *queue, const char *buf,
1591 				  size_t len)
1592 {
1593 	struct dql *dql = &queue->dql;
1594 	unsigned int value;
1595 	int err;
1596 
1597 	err = kstrtouint(buf, 10, &value);
1598 	if (err < 0)
1599 		return err;
1600 
1601 	value = msecs_to_jiffies(value);
1602 	if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1603 		return -ERANGE;
1604 
1605 	if (!dql->stall_thrs && value)
1606 		dql->last_reap = jiffies;
1607 	/* Force last_reap to be live */
1608 	smp_wmb();
1609 	dql->stall_thrs = value;
1610 
1611 	return len;
1612 }
1613 
1614 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1615 	__ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1616 
1617 static ssize_t bql_show_stall_max(struct kobject *kobj, struct attribute *attr,
1618 				  struct netdev_queue *queue, char *buf)
1619 {
1620 	return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1621 }
1622 
1623 static ssize_t bql_set_stall_max(struct kobject *kobj, struct attribute *attr,
1624 				 struct netdev_queue *queue, const char *buf,
1625 				 size_t len)
1626 {
1627 	WRITE_ONCE(queue->dql.stall_max, 0);
1628 	return len;
1629 }
1630 
1631 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1632 	__ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1633 
1634 static ssize_t bql_show_stall_cnt(struct kobject *kobj, struct attribute *attr,
1635 				  struct netdev_queue *queue, char *buf)
1636 {
1637 	struct dql *dql = &queue->dql;
1638 
1639 	return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1640 }
1641 
1642 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1643 	__ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1644 
1645 static ssize_t bql_show_inflight(struct kobject *kobj, struct attribute *attr,
1646 				 struct netdev_queue *queue, char *buf)
1647 {
1648 	struct dql *dql = &queue->dql;
1649 
1650 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1651 }
1652 
1653 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1654 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1655 
1656 #define BQL_ATTR(NAME, FIELD)						\
1657 static ssize_t bql_show_ ## NAME(struct kobject *kobj,			\
1658 				 struct attribute *attr,		\
1659 				 struct netdev_queue *queue, char *buf)	\
1660 {									\
1661 	return bql_show(buf, queue->dql.FIELD);				\
1662 }									\
1663 									\
1664 static ssize_t bql_set_ ## NAME(struct kobject *kobj,			\
1665 				struct attribute *attr,			\
1666 				struct netdev_queue *queue,		\
1667 				const char *buf, size_t len)		\
1668 {									\
1669 	return bql_set(buf, len, &queue->dql.FIELD);			\
1670 }									\
1671 									\
1672 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1673 	= __ATTR(NAME, 0644,				\
1674 		 bql_show_ ## NAME, bql_set_ ## NAME)
1675 
1676 BQL_ATTR(limit, limit);
1677 BQL_ATTR(limit_max, max_limit);
1678 BQL_ATTR(limit_min, min_limit);
1679 
1680 static struct attribute *dql_attrs[] __ro_after_init = {
1681 	&bql_limit_attribute.attr,
1682 	&bql_limit_max_attribute.attr,
1683 	&bql_limit_min_attribute.attr,
1684 	&bql_hold_time_attribute.attr,
1685 	&bql_inflight_attribute.attr,
1686 	&bql_stall_thrs_attribute.attr,
1687 	&bql_stall_cnt_attribute.attr,
1688 	&bql_stall_max_attribute.attr,
1689 	NULL
1690 };
1691 
1692 static const struct attribute_group dql_group = {
1693 	.name  = "byte_queue_limits",
1694 	.attrs  = dql_attrs,
1695 };
1696 #else
1697 /* Fake declaration, all the code using it should be dead */
1698 static const struct attribute_group dql_group = {};
1699 #endif /* CONFIG_BQL */
1700 
1701 #ifdef CONFIG_XPS
1702 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1703 			      int tc, char *buf, enum xps_map_type type)
1704 {
1705 	struct xps_dev_maps *dev_maps;
1706 	unsigned long *mask;
1707 	unsigned int nr_ids;
1708 	int j, len;
1709 
1710 	rcu_read_lock();
1711 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1712 
1713 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1714 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1715 	 */
1716 	nr_ids = dev_maps ? dev_maps->nr_ids :
1717 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1718 
1719 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1720 	if (!mask) {
1721 		rcu_read_unlock();
1722 		return -ENOMEM;
1723 	}
1724 
1725 	if (!dev_maps || tc >= dev_maps->num_tc)
1726 		goto out_no_maps;
1727 
1728 	for (j = 0; j < nr_ids; j++) {
1729 		int i, tci = j * dev_maps->num_tc + tc;
1730 		struct xps_map *map;
1731 
1732 		map = rcu_dereference(dev_maps->attr_map[tci]);
1733 		if (!map)
1734 			continue;
1735 
1736 		for (i = map->len; i--;) {
1737 			if (map->queues[i] == index) {
1738 				__set_bit(j, mask);
1739 				break;
1740 			}
1741 		}
1742 	}
1743 out_no_maps:
1744 	rcu_read_unlock();
1745 
1746 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1747 	bitmap_free(mask);
1748 
1749 	return len < PAGE_SIZE ? len : -EINVAL;
1750 }
1751 
1752 static ssize_t xps_cpus_show(struct kobject *kobj, struct attribute *attr,
1753 			     struct netdev_queue *queue, char *buf)
1754 {
1755 	struct net_device *dev = queue->dev;
1756 	unsigned int index;
1757 	int len, tc, ret;
1758 
1759 	if (!netif_is_multiqueue(dev))
1760 		return -ENOENT;
1761 
1762 	index = get_netdev_queue_index(queue);
1763 
1764 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1765 	if (ret)
1766 		return ret;
1767 
1768 	/* If queue belongs to subordinate dev use its map */
1769 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1770 
1771 	tc = netdev_txq_to_tc(dev, index);
1772 	if (tc < 0) {
1773 		rtnl_unlock();
1774 		return -EINVAL;
1775 	}
1776 
1777 	/* Increase the net device refcnt to make sure it won't be freed while
1778 	 * xps_queue_show is running.
1779 	 */
1780 	dev_hold(dev);
1781 	rtnl_unlock();
1782 
1783 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1784 
1785 	dev_put(dev);
1786 	return len;
1787 }
1788 
1789 static ssize_t xps_cpus_store(struct kobject *kobj, struct attribute *attr,
1790 			      struct netdev_queue *queue, const char *buf,
1791 			      size_t len)
1792 {
1793 	struct net_device *dev = queue->dev;
1794 	unsigned int index;
1795 	cpumask_var_t mask;
1796 	int err;
1797 
1798 	if (!netif_is_multiqueue(dev))
1799 		return -ENOENT;
1800 
1801 	if (!capable(CAP_NET_ADMIN))
1802 		return -EPERM;
1803 
1804 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1805 		return -ENOMEM;
1806 
1807 	index = get_netdev_queue_index(queue);
1808 
1809 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1810 	if (err) {
1811 		free_cpumask_var(mask);
1812 		return err;
1813 	}
1814 
1815 	err = sysfs_rtnl_lock(kobj, attr, dev);
1816 	if (err) {
1817 		free_cpumask_var(mask);
1818 		return err;
1819 	}
1820 
1821 	err = netif_set_xps_queue(dev, mask, index);
1822 	rtnl_unlock();
1823 
1824 	free_cpumask_var(mask);
1825 
1826 	return err ? : len;
1827 }
1828 
1829 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1830 	= __ATTR_RW(xps_cpus);
1831 
1832 static ssize_t xps_rxqs_show(struct kobject *kobj, struct attribute *attr,
1833 			     struct netdev_queue *queue, char *buf)
1834 {
1835 	struct net_device *dev = queue->dev;
1836 	unsigned int index;
1837 	int tc, ret;
1838 
1839 	index = get_netdev_queue_index(queue);
1840 
1841 	ret = sysfs_rtnl_lock(kobj, attr, dev);
1842 	if (ret)
1843 		return ret;
1844 
1845 	tc = netdev_txq_to_tc(dev, index);
1846 
1847 	/* Increase the net device refcnt to make sure it won't be freed while
1848 	 * xps_queue_show is running.
1849 	 */
1850 	dev_hold(dev);
1851 	rtnl_unlock();
1852 
1853 	ret = tc >= 0 ? xps_queue_show(dev, index, tc, buf, XPS_RXQS) : -EINVAL;
1854 	dev_put(dev);
1855 	return ret;
1856 }
1857 
1858 static ssize_t xps_rxqs_store(struct kobject *kobj, struct attribute *attr,
1859 			      struct netdev_queue *queue, const char *buf,
1860 			      size_t len)
1861 {
1862 	struct net_device *dev = queue->dev;
1863 	struct net *net = dev_net(dev);
1864 	unsigned long *mask;
1865 	unsigned int index;
1866 	int err;
1867 
1868 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1869 		return -EPERM;
1870 
1871 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1872 	if (!mask)
1873 		return -ENOMEM;
1874 
1875 	index = get_netdev_queue_index(queue);
1876 
1877 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1878 	if (err) {
1879 		bitmap_free(mask);
1880 		return err;
1881 	}
1882 
1883 	err = sysfs_rtnl_lock(kobj, attr, dev);
1884 	if (err) {
1885 		bitmap_free(mask);
1886 		return err;
1887 	}
1888 
1889 	cpus_read_lock();
1890 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1891 	cpus_read_unlock();
1892 
1893 	rtnl_unlock();
1894 
1895 	bitmap_free(mask);
1896 	return err ? : len;
1897 }
1898 
1899 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1900 	= __ATTR_RW(xps_rxqs);
1901 #endif /* CONFIG_XPS */
1902 
1903 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1904 	&queue_trans_timeout.attr,
1905 	&queue_traffic_class.attr,
1906 #ifdef CONFIG_XPS
1907 	&xps_cpus_attribute.attr,
1908 	&xps_rxqs_attribute.attr,
1909 	&queue_tx_maxrate.attr,
1910 #endif
1911 	NULL
1912 };
1913 ATTRIBUTE_GROUPS(netdev_queue_default);
1914 
1915 static void netdev_queue_release(struct kobject *kobj)
1916 {
1917 	struct netdev_queue *queue = to_netdev_queue(kobj);
1918 
1919 	memset(kobj, 0, sizeof(*kobj));
1920 	netdev_put(queue->dev, &queue->dev_tracker);
1921 }
1922 
1923 static const void *netdev_queue_namespace(const struct kobject *kobj)
1924 {
1925 	struct netdev_queue *queue = to_netdev_queue(kobj);
1926 	struct device *dev = &queue->dev->dev;
1927 	const void *ns = NULL;
1928 
1929 	if (dev->class && dev->class->namespace)
1930 		ns = dev->class->namespace(dev);
1931 
1932 	return ns;
1933 }
1934 
1935 static void netdev_queue_get_ownership(const struct kobject *kobj,
1936 				       kuid_t *uid, kgid_t *gid)
1937 {
1938 	const struct net *net = netdev_queue_namespace(kobj);
1939 
1940 	net_ns_get_ownership(net, uid, gid);
1941 }
1942 
1943 static const struct kobj_type netdev_queue_ktype = {
1944 	.sysfs_ops = &netdev_queue_sysfs_ops,
1945 	.release = netdev_queue_release,
1946 	.namespace = netdev_queue_namespace,
1947 	.get_ownership = netdev_queue_get_ownership,
1948 };
1949 
1950 static bool netdev_uses_bql(const struct net_device *dev)
1951 {
1952 	if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
1953 		return false;
1954 
1955 	return IS_ENABLED(CONFIG_BQL);
1956 }
1957 
1958 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1959 {
1960 	struct netdev_queue *queue = dev->_tx + index;
1961 	struct kobject *kobj = &queue->kobj;
1962 	int error = 0;
1963 
1964 	/* Tx queues are cleared in netdev_queue_release to allow later
1965 	 * re-registration. This is triggered when their kobj refcount is
1966 	 * dropped.
1967 	 *
1968 	 * If a queue is removed while both a read (or write) operation and a
1969 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1970 	 * it might happen that the re-addition will execute before the read,
1971 	 * making the initial removal to never happen (queue's kobj refcount
1972 	 * won't drop enough because of the pending read). In such rare case,
1973 	 * return to allow the removal operation to complete.
1974 	 */
1975 	if (unlikely(kobj->state_initialized)) {
1976 		netdev_warn_once(dev, "Cannot re-add tx queues before their removal completed");
1977 		return -EAGAIN;
1978 	}
1979 
1980 	/* Kobject_put later will trigger netdev_queue_release call
1981 	 * which decreases dev refcount: Take that reference here
1982 	 */
1983 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1984 
1985 	kobj->kset = dev->queues_kset;
1986 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1987 				     "tx-%u", index);
1988 	if (error)
1989 		goto err;
1990 
1991 	queue->groups = netdev_queue_default_groups;
1992 	error = sysfs_create_groups(kobj, queue->groups);
1993 	if (error)
1994 		goto err;
1995 
1996 	if (netdev_uses_bql(dev)) {
1997 		error = sysfs_create_group(kobj, &dql_group);
1998 		if (error)
1999 			goto err_default_groups;
2000 	}
2001 
2002 	kobject_uevent(kobj, KOBJ_ADD);
2003 	return 0;
2004 
2005 err_default_groups:
2006 	sysfs_remove_groups(kobj, queue->groups);
2007 err:
2008 	kobject_put(kobj);
2009 	return error;
2010 }
2011 
2012 static int tx_queue_change_owner(struct net_device *ndev, int index,
2013 				 kuid_t kuid, kgid_t kgid)
2014 {
2015 	struct netdev_queue *queue = ndev->_tx + index;
2016 	struct kobject *kobj = &queue->kobj;
2017 	int error;
2018 
2019 	error = sysfs_change_owner(kobj, kuid, kgid);
2020 	if (error)
2021 		return error;
2022 
2023 	if (netdev_uses_bql(ndev))
2024 		error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
2025 
2026 	return error;
2027 }
2028 #endif /* CONFIG_SYSFS */
2029 
2030 int
2031 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
2032 {
2033 #ifdef CONFIG_SYSFS
2034 	int i;
2035 	int error = 0;
2036 
2037 	/* Tx queue kobjects are allowed to be updated when a device is being
2038 	 * unregistered, but solely to remove queues from qdiscs. Any path
2039 	 * adding queues should be fixed.
2040 	 */
2041 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
2042 	     "New queues can't be registered after device unregistration.");
2043 
2044 	for (i = old_num; i < new_num; i++) {
2045 		error = netdev_queue_add_kobject(dev, i);
2046 		if (error) {
2047 			new_num = old_num;
2048 			break;
2049 		}
2050 	}
2051 
2052 	while (--i >= new_num) {
2053 		struct netdev_queue *queue = dev->_tx + i;
2054 
2055 		if (!refcount_read(&dev_net(dev)->ns.count))
2056 			queue->kobj.uevent_suppress = 1;
2057 
2058 		if (netdev_uses_bql(dev))
2059 			sysfs_remove_group(&queue->kobj, &dql_group);
2060 
2061 		sysfs_remove_groups(&queue->kobj, queue->groups);
2062 		kobject_put(&queue->kobj);
2063 	}
2064 
2065 	return error;
2066 #else
2067 	return 0;
2068 #endif /* CONFIG_SYSFS */
2069 }
2070 
2071 static int net_tx_queue_change_owner(struct net_device *dev, int num,
2072 				     kuid_t kuid, kgid_t kgid)
2073 {
2074 #ifdef CONFIG_SYSFS
2075 	int error = 0;
2076 	int i;
2077 
2078 	for (i = 0; i < num; i++) {
2079 		error = tx_queue_change_owner(dev, i, kuid, kgid);
2080 		if (error)
2081 			break;
2082 	}
2083 
2084 	return error;
2085 #else
2086 	return 0;
2087 #endif /* CONFIG_SYSFS */
2088 }
2089 
2090 static int register_queue_kobjects(struct net_device *dev)
2091 {
2092 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
2093 
2094 #ifdef CONFIG_SYSFS
2095 	dev->queues_kset = kset_create_and_add("queues",
2096 					       NULL, &dev->dev.kobj);
2097 	if (!dev->queues_kset)
2098 		return -ENOMEM;
2099 	real_rx = dev->real_num_rx_queues;
2100 #endif
2101 	real_tx = dev->real_num_tx_queues;
2102 
2103 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
2104 	if (error)
2105 		goto error;
2106 	rxq = real_rx;
2107 
2108 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
2109 	if (error)
2110 		goto error;
2111 	txq = real_tx;
2112 
2113 	return 0;
2114 
2115 error:
2116 	netdev_queue_update_kobjects(dev, txq, 0);
2117 	net_rx_queue_update_kobjects(dev, rxq, 0);
2118 #ifdef CONFIG_SYSFS
2119 	kset_unregister(dev->queues_kset);
2120 #endif
2121 	return error;
2122 }
2123 
2124 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
2125 {
2126 	int error = 0, real_rx = 0, real_tx = 0;
2127 
2128 #ifdef CONFIG_SYSFS
2129 	if (ndev->queues_kset) {
2130 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
2131 		if (error)
2132 			return error;
2133 	}
2134 	real_rx = ndev->real_num_rx_queues;
2135 #endif
2136 	real_tx = ndev->real_num_tx_queues;
2137 
2138 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
2139 	if (error)
2140 		return error;
2141 
2142 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
2143 	if (error)
2144 		return error;
2145 
2146 	return 0;
2147 }
2148 
2149 static void remove_queue_kobjects(struct net_device *dev)
2150 {
2151 	int real_rx = 0, real_tx = 0;
2152 
2153 #ifdef CONFIG_SYSFS
2154 	real_rx = dev->real_num_rx_queues;
2155 #endif
2156 	real_tx = dev->real_num_tx_queues;
2157 
2158 	net_rx_queue_update_kobjects(dev, real_rx, 0);
2159 	netdev_queue_update_kobjects(dev, real_tx, 0);
2160 
2161 	netdev_lock_ops(dev);
2162 	dev->real_num_rx_queues = 0;
2163 	dev->real_num_tx_queues = 0;
2164 	netdev_unlock_ops(dev);
2165 #ifdef CONFIG_SYSFS
2166 	kset_unregister(dev->queues_kset);
2167 #endif
2168 }
2169 
2170 static bool net_current_may_mount(void)
2171 {
2172 	struct net *net = current->nsproxy->net_ns;
2173 
2174 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
2175 }
2176 
2177 static void *net_grab_current_ns(void)
2178 {
2179 	struct net *ns = current->nsproxy->net_ns;
2180 #ifdef CONFIG_NET_NS
2181 	if (ns)
2182 		refcount_inc(&ns->passive);
2183 #endif
2184 	return ns;
2185 }
2186 
2187 static const void *net_initial_ns(void)
2188 {
2189 	return &init_net;
2190 }
2191 
2192 static const void *net_netlink_ns(struct sock *sk)
2193 {
2194 	return sock_net(sk);
2195 }
2196 
2197 const struct kobj_ns_type_operations net_ns_type_operations = {
2198 	.type = KOBJ_NS_TYPE_NET,
2199 	.current_may_mount = net_current_may_mount,
2200 	.grab_current_ns = net_grab_current_ns,
2201 	.netlink_ns = net_netlink_ns,
2202 	.initial_ns = net_initial_ns,
2203 	.drop_ns = net_drop_ns,
2204 };
2205 EXPORT_SYMBOL_GPL(net_ns_type_operations);
2206 
2207 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
2208 {
2209 	const struct net_device *dev = to_net_dev(d);
2210 	int retval;
2211 
2212 	/* pass interface to uevent. */
2213 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2214 	if (retval)
2215 		goto exit;
2216 
2217 	/* pass ifindex to uevent.
2218 	 * ifindex is useful as it won't change (interface name may change)
2219 	 * and is what RtNetlink uses natively.
2220 	 */
2221 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2222 
2223 exit:
2224 	return retval;
2225 }
2226 
2227 /*
2228  *	netdev_release -- destroy and free a dead device.
2229  *	Called when last reference to device kobject is gone.
2230  */
2231 static void netdev_release(struct device *d)
2232 {
2233 	struct net_device *dev = to_net_dev(d);
2234 
2235 	BUG_ON(dev->reg_state != NETREG_RELEASED);
2236 
2237 	/* no need to wait for rcu grace period:
2238 	 * device is dead and about to be freed.
2239 	 */
2240 	kfree(rcu_access_pointer(dev->ifalias));
2241 	kvfree(dev);
2242 }
2243 
2244 static const void *net_namespace(const struct device *d)
2245 {
2246 	const struct net_device *dev = to_net_dev(d);
2247 
2248 	return dev_net(dev);
2249 }
2250 
2251 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2252 {
2253 	const struct net_device *dev = to_net_dev(d);
2254 	const struct net *net = dev_net(dev);
2255 
2256 	net_ns_get_ownership(net, uid, gid);
2257 }
2258 
2259 static const struct class net_class = {
2260 	.name = "net",
2261 	.dev_release = netdev_release,
2262 	.dev_groups = net_class_groups,
2263 	.dev_uevent = netdev_uevent,
2264 	.ns_type = &net_ns_type_operations,
2265 	.namespace = net_namespace,
2266 	.get_ownership = net_get_ownership,
2267 };
2268 
2269 #ifdef CONFIG_OF
2270 static int of_dev_node_match(struct device *dev, const void *data)
2271 {
2272 	for (; dev; dev = dev->parent) {
2273 		if (dev->of_node == data)
2274 			return 1;
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 /*
2281  * of_find_net_device_by_node - lookup the net device for the device node
2282  * @np: OF device node
2283  *
2284  * Looks up the net_device structure corresponding with the device node.
2285  * If successful, returns a pointer to the net_device with the embedded
2286  * struct device refcount incremented by one, or NULL on failure. The
2287  * refcount must be dropped when done with the net_device.
2288  */
2289 struct net_device *of_find_net_device_by_node(struct device_node *np)
2290 {
2291 	struct device *dev;
2292 
2293 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2294 	if (!dev)
2295 		return NULL;
2296 
2297 	return to_net_dev(dev);
2298 }
2299 EXPORT_SYMBOL(of_find_net_device_by_node);
2300 #endif
2301 
2302 /* Delete sysfs entries but hold kobject reference until after all
2303  * netdev references are gone.
2304  */
2305 void netdev_unregister_kobject(struct net_device *ndev)
2306 {
2307 	struct device *dev = &ndev->dev;
2308 
2309 	if (!refcount_read(&dev_net(ndev)->ns.count))
2310 		dev_set_uevent_suppress(dev, 1);
2311 
2312 	kobject_get(&dev->kobj);
2313 
2314 	remove_queue_kobjects(ndev);
2315 
2316 	pm_runtime_set_memalloc_noio(dev, false);
2317 
2318 	device_del(dev);
2319 }
2320 
2321 /* Create sysfs entries for network device. */
2322 int netdev_register_kobject(struct net_device *ndev)
2323 {
2324 	struct device *dev = &ndev->dev;
2325 	const struct attribute_group **groups = ndev->sysfs_groups;
2326 	int error = 0;
2327 
2328 	device_initialize(dev);
2329 	dev->class = &net_class;
2330 	dev->platform_data = ndev;
2331 	dev->groups = groups;
2332 
2333 	dev_set_name(dev, "%s", ndev->name);
2334 
2335 #ifdef CONFIG_SYSFS
2336 	/* Allow for a device specific group */
2337 	if (*groups)
2338 		groups++;
2339 
2340 	*groups++ = &netstat_group;
2341 	*groups++ = &netdev_phys_group;
2342 
2343 	if (wireless_group_needed(ndev))
2344 		*groups++ = &wireless_group;
2345 #endif /* CONFIG_SYSFS */
2346 
2347 	error = device_add(dev);
2348 	if (error)
2349 		return error;
2350 
2351 	error = register_queue_kobjects(ndev);
2352 	if (error) {
2353 		device_del(dev);
2354 		return error;
2355 	}
2356 
2357 	pm_runtime_set_memalloc_noio(dev, true);
2358 
2359 	return error;
2360 }
2361 
2362 /* Change owner for sysfs entries when moving network devices across network
2363  * namespaces owned by different user namespaces.
2364  */
2365 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2366 			const struct net *net_new)
2367 {
2368 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2369 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2370 	struct device *dev = &ndev->dev;
2371 	int error;
2372 
2373 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2374 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2375 
2376 	/* The network namespace was changed but the owning user namespace is
2377 	 * identical so there's no need to change the owner of sysfs entries.
2378 	 */
2379 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2380 		return 0;
2381 
2382 	error = device_change_owner(dev, new_uid, new_gid);
2383 	if (error)
2384 		return error;
2385 
2386 	error = queue_change_owner(ndev, new_uid, new_gid);
2387 	if (error)
2388 		return error;
2389 
2390 	return 0;
2391 }
2392 
2393 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2394 				const void *ns)
2395 {
2396 	return class_create_file_ns(&net_class, class_attr, ns);
2397 }
2398 EXPORT_SYMBOL(netdev_class_create_file_ns);
2399 
2400 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2401 				 const void *ns)
2402 {
2403 	class_remove_file_ns(&net_class, class_attr, ns);
2404 }
2405 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2406 
2407 int __init netdev_kobject_init(void)
2408 {
2409 	kobj_ns_type_register(&net_ns_type_operations);
2410 	return class_register(&net_class);
2411 }
2412