xref: /linux/net/core/net-sysfs.c (revision 2d7f3d1a5866705be2393150e1ffdf67030ab88d)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_rx_queue.h>
27 
28 #include "dev.h"
29 #include "net-sysfs.h"
30 
31 #ifdef CONFIG_SYSFS
32 static const char fmt_hex[] = "%#x\n";
33 static const char fmt_dec[] = "%d\n";
34 static const char fmt_ulong[] = "%lu\n";
35 static const char fmt_u64[] = "%llu\n";
36 
37 /* Caller holds RTNL or dev_base_lock */
38 static inline int dev_isalive(const struct net_device *dev)
39 {
40 	return dev->reg_state <= NETREG_REGISTERED;
41 }
42 
43 /* use same locking rules as GIF* ioctl's */
44 static ssize_t netdev_show(const struct device *dev,
45 			   struct device_attribute *attr, char *buf,
46 			   ssize_t (*format)(const struct net_device *, char *))
47 {
48 	struct net_device *ndev = to_net_dev(dev);
49 	ssize_t ret = -EINVAL;
50 
51 	read_lock(&dev_base_lock);
52 	if (dev_isalive(ndev))
53 		ret = (*format)(ndev, buf);
54 	read_unlock(&dev_base_lock);
55 
56 	return ret;
57 }
58 
59 /* generate a show function for simple field */
60 #define NETDEVICE_SHOW(field, format_string)				\
61 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
62 {									\
63 	return sysfs_emit(buf, format_string, dev->field);		\
64 }									\
65 static ssize_t field##_show(struct device *dev,				\
66 			    struct device_attribute *attr, char *buf)	\
67 {									\
68 	return netdev_show(dev, attr, buf, format_##field);		\
69 }									\
70 
71 #define NETDEVICE_SHOW_RO(field, format_string)				\
72 NETDEVICE_SHOW(field, format_string);					\
73 static DEVICE_ATTR_RO(field)
74 
75 #define NETDEVICE_SHOW_RW(field, format_string)				\
76 NETDEVICE_SHOW(field, format_string);					\
77 static DEVICE_ATTR_RW(field)
78 
79 /* use same locking and permission rules as SIF* ioctl's */
80 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
81 			    const char *buf, size_t len,
82 			    int (*set)(struct net_device *, unsigned long))
83 {
84 	struct net_device *netdev = to_net_dev(dev);
85 	struct net *net = dev_net(netdev);
86 	unsigned long new;
87 	int ret;
88 
89 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
90 		return -EPERM;
91 
92 	ret = kstrtoul(buf, 0, &new);
93 	if (ret)
94 		goto err;
95 
96 	if (!rtnl_trylock())
97 		return restart_syscall();
98 
99 	if (dev_isalive(netdev)) {
100 		ret = (*set)(netdev, new);
101 		if (ret == 0)
102 			ret = len;
103 	}
104 	rtnl_unlock();
105  err:
106 	return ret;
107 }
108 
109 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
110 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
111 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
112 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
113 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
114 NETDEVICE_SHOW_RO(type, fmt_dec);
115 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
116 
117 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
118 			   char *buf)
119 {
120 	struct net_device *ndev = to_net_dev(dev);
121 
122 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
123 }
124 static DEVICE_ATTR_RO(iflink);
125 
126 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
127 {
128 	return sysfs_emit(buf, fmt_dec, dev->name_assign_type);
129 }
130 
131 static ssize_t name_assign_type_show(struct device *dev,
132 				     struct device_attribute *attr,
133 				     char *buf)
134 {
135 	struct net_device *ndev = to_net_dev(dev);
136 	ssize_t ret = -EINVAL;
137 
138 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
139 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
140 
141 	return ret;
142 }
143 static DEVICE_ATTR_RO(name_assign_type);
144 
145 /* use same locking rules as GIFHWADDR ioctl's */
146 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
147 			    char *buf)
148 {
149 	struct net_device *ndev = to_net_dev(dev);
150 	ssize_t ret = -EINVAL;
151 
152 	read_lock(&dev_base_lock);
153 	if (dev_isalive(ndev))
154 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
155 	read_unlock(&dev_base_lock);
156 	return ret;
157 }
158 static DEVICE_ATTR_RO(address);
159 
160 static ssize_t broadcast_show(struct device *dev,
161 			      struct device_attribute *attr, char *buf)
162 {
163 	struct net_device *ndev = to_net_dev(dev);
164 
165 	if (dev_isalive(ndev))
166 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
167 	return -EINVAL;
168 }
169 static DEVICE_ATTR_RO(broadcast);
170 
171 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
172 {
173 	if (!netif_running(dev))
174 		return -EINVAL;
175 	return dev_change_carrier(dev, (bool)new_carrier);
176 }
177 
178 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
179 			     const char *buf, size_t len)
180 {
181 	struct net_device *netdev = to_net_dev(dev);
182 
183 	/* The check is also done in change_carrier; this helps returning early
184 	 * without hitting the trylock/restart in netdev_store.
185 	 */
186 	if (!netdev->netdev_ops->ndo_change_carrier)
187 		return -EOPNOTSUPP;
188 
189 	return netdev_store(dev, attr, buf, len, change_carrier);
190 }
191 
192 static ssize_t carrier_show(struct device *dev,
193 			    struct device_attribute *attr, char *buf)
194 {
195 	struct net_device *netdev = to_net_dev(dev);
196 	int ret = -EINVAL;
197 
198 	if (!rtnl_trylock())
199 		return restart_syscall();
200 
201 	if (netif_running(netdev)) {
202 		/* Synchronize carrier state with link watch,
203 		 * see also rtnl_getlink().
204 		 */
205 		linkwatch_sync_dev(netdev);
206 
207 		ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
208 	}
209 	rtnl_unlock();
210 
211 	return ret;
212 }
213 static DEVICE_ATTR_RW(carrier);
214 
215 static ssize_t speed_show(struct device *dev,
216 			  struct device_attribute *attr, char *buf)
217 {
218 	struct net_device *netdev = to_net_dev(dev);
219 	int ret = -EINVAL;
220 
221 	/* The check is also done in __ethtool_get_link_ksettings; this helps
222 	 * returning early without hitting the trylock/restart below.
223 	 */
224 	if (!netdev->ethtool_ops->get_link_ksettings)
225 		return ret;
226 
227 	if (!rtnl_trylock())
228 		return restart_syscall();
229 
230 	if (netif_running(netdev) && netif_device_present(netdev)) {
231 		struct ethtool_link_ksettings cmd;
232 
233 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
234 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
235 	}
236 	rtnl_unlock();
237 	return ret;
238 }
239 static DEVICE_ATTR_RO(speed);
240 
241 static ssize_t duplex_show(struct device *dev,
242 			   struct device_attribute *attr, char *buf)
243 {
244 	struct net_device *netdev = to_net_dev(dev);
245 	int ret = -EINVAL;
246 
247 	/* The check is also done in __ethtool_get_link_ksettings; this helps
248 	 * returning early without hitting the trylock/restart below.
249 	 */
250 	if (!netdev->ethtool_ops->get_link_ksettings)
251 		return ret;
252 
253 	if (!rtnl_trylock())
254 		return restart_syscall();
255 
256 	if (netif_running(netdev)) {
257 		struct ethtool_link_ksettings cmd;
258 
259 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
260 			const char *duplex;
261 
262 			switch (cmd.base.duplex) {
263 			case DUPLEX_HALF:
264 				duplex = "half";
265 				break;
266 			case DUPLEX_FULL:
267 				duplex = "full";
268 				break;
269 			default:
270 				duplex = "unknown";
271 				break;
272 			}
273 			ret = sysfs_emit(buf, "%s\n", duplex);
274 		}
275 	}
276 	rtnl_unlock();
277 	return ret;
278 }
279 static DEVICE_ATTR_RO(duplex);
280 
281 static ssize_t testing_show(struct device *dev,
282 			    struct device_attribute *attr, char *buf)
283 {
284 	struct net_device *netdev = to_net_dev(dev);
285 
286 	if (netif_running(netdev))
287 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
288 
289 	return -EINVAL;
290 }
291 static DEVICE_ATTR_RO(testing);
292 
293 static ssize_t dormant_show(struct device *dev,
294 			    struct device_attribute *attr, char *buf)
295 {
296 	struct net_device *netdev = to_net_dev(dev);
297 
298 	if (netif_running(netdev))
299 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
300 
301 	return -EINVAL;
302 }
303 static DEVICE_ATTR_RO(dormant);
304 
305 static const char *const operstates[] = {
306 	"unknown",
307 	"notpresent", /* currently unused */
308 	"down",
309 	"lowerlayerdown",
310 	"testing",
311 	"dormant",
312 	"up"
313 };
314 
315 static ssize_t operstate_show(struct device *dev,
316 			      struct device_attribute *attr, char *buf)
317 {
318 	const struct net_device *netdev = to_net_dev(dev);
319 	unsigned char operstate;
320 
321 	read_lock(&dev_base_lock);
322 	operstate = netdev->operstate;
323 	if (!netif_running(netdev))
324 		operstate = IF_OPER_DOWN;
325 	read_unlock(&dev_base_lock);
326 
327 	if (operstate >= ARRAY_SIZE(operstates))
328 		return -EINVAL; /* should not happen */
329 
330 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
331 }
332 static DEVICE_ATTR_RO(operstate);
333 
334 static ssize_t carrier_changes_show(struct device *dev,
335 				    struct device_attribute *attr,
336 				    char *buf)
337 {
338 	struct net_device *netdev = to_net_dev(dev);
339 
340 	return sysfs_emit(buf, fmt_dec,
341 			  atomic_read(&netdev->carrier_up_count) +
342 			  atomic_read(&netdev->carrier_down_count));
343 }
344 static DEVICE_ATTR_RO(carrier_changes);
345 
346 static ssize_t carrier_up_count_show(struct device *dev,
347 				     struct device_attribute *attr,
348 				     char *buf)
349 {
350 	struct net_device *netdev = to_net_dev(dev);
351 
352 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
353 }
354 static DEVICE_ATTR_RO(carrier_up_count);
355 
356 static ssize_t carrier_down_count_show(struct device *dev,
357 				       struct device_attribute *attr,
358 				       char *buf)
359 {
360 	struct net_device *netdev = to_net_dev(dev);
361 
362 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
363 }
364 static DEVICE_ATTR_RO(carrier_down_count);
365 
366 /* read-write attributes */
367 
368 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
369 {
370 	return dev_set_mtu(dev, (int)new_mtu);
371 }
372 
373 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
374 			 const char *buf, size_t len)
375 {
376 	return netdev_store(dev, attr, buf, len, change_mtu);
377 }
378 NETDEVICE_SHOW_RW(mtu, fmt_dec);
379 
380 static int change_flags(struct net_device *dev, unsigned long new_flags)
381 {
382 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
383 }
384 
385 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
386 			   const char *buf, size_t len)
387 {
388 	return netdev_store(dev, attr, buf, len, change_flags);
389 }
390 NETDEVICE_SHOW_RW(flags, fmt_hex);
391 
392 static ssize_t tx_queue_len_store(struct device *dev,
393 				  struct device_attribute *attr,
394 				  const char *buf, size_t len)
395 {
396 	if (!capable(CAP_NET_ADMIN))
397 		return -EPERM;
398 
399 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
400 }
401 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
402 
403 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
404 {
405 	WRITE_ONCE(dev->gro_flush_timeout, val);
406 	return 0;
407 }
408 
409 static ssize_t gro_flush_timeout_store(struct device *dev,
410 				       struct device_attribute *attr,
411 				       const char *buf, size_t len)
412 {
413 	if (!capable(CAP_NET_ADMIN))
414 		return -EPERM;
415 
416 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
417 }
418 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
419 
420 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
421 {
422 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
423 	return 0;
424 }
425 
426 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
427 					  struct device_attribute *attr,
428 					  const char *buf, size_t len)
429 {
430 	if (!capable(CAP_NET_ADMIN))
431 		return -EPERM;
432 
433 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
434 }
435 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
436 
437 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
438 			     const char *buf, size_t len)
439 {
440 	struct net_device *netdev = to_net_dev(dev);
441 	struct net *net = dev_net(netdev);
442 	size_t count = len;
443 	ssize_t ret = 0;
444 
445 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
446 		return -EPERM;
447 
448 	/* ignore trailing newline */
449 	if (len >  0 && buf[len - 1] == '\n')
450 		--count;
451 
452 	if (!rtnl_trylock())
453 		return restart_syscall();
454 
455 	if (dev_isalive(netdev)) {
456 		ret = dev_set_alias(netdev, buf, count);
457 		if (ret < 0)
458 			goto err;
459 		ret = len;
460 		netdev_state_change(netdev);
461 	}
462 err:
463 	rtnl_unlock();
464 
465 	return ret;
466 }
467 
468 static ssize_t ifalias_show(struct device *dev,
469 			    struct device_attribute *attr, char *buf)
470 {
471 	const struct net_device *netdev = to_net_dev(dev);
472 	char tmp[IFALIASZ];
473 	ssize_t ret = 0;
474 
475 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
476 	if (ret > 0)
477 		ret = sysfs_emit(buf, "%s\n", tmp);
478 	return ret;
479 }
480 static DEVICE_ATTR_RW(ifalias);
481 
482 static int change_group(struct net_device *dev, unsigned long new_group)
483 {
484 	dev_set_group(dev, (int)new_group);
485 	return 0;
486 }
487 
488 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
489 			   const char *buf, size_t len)
490 {
491 	return netdev_store(dev, attr, buf, len, change_group);
492 }
493 NETDEVICE_SHOW(group, fmt_dec);
494 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
495 
496 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
497 {
498 	return dev_change_proto_down(dev, (bool)proto_down);
499 }
500 
501 static ssize_t proto_down_store(struct device *dev,
502 				struct device_attribute *attr,
503 				const char *buf, size_t len)
504 {
505 	return netdev_store(dev, attr, buf, len, change_proto_down);
506 }
507 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
508 
509 static ssize_t phys_port_id_show(struct device *dev,
510 				 struct device_attribute *attr, char *buf)
511 {
512 	struct net_device *netdev = to_net_dev(dev);
513 	ssize_t ret = -EINVAL;
514 
515 	/* The check is also done in dev_get_phys_port_id; this helps returning
516 	 * early without hitting the trylock/restart below.
517 	 */
518 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
519 		return -EOPNOTSUPP;
520 
521 	if (!rtnl_trylock())
522 		return restart_syscall();
523 
524 	if (dev_isalive(netdev)) {
525 		struct netdev_phys_item_id ppid;
526 
527 		ret = dev_get_phys_port_id(netdev, &ppid);
528 		if (!ret)
529 			ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
530 	}
531 	rtnl_unlock();
532 
533 	return ret;
534 }
535 static DEVICE_ATTR_RO(phys_port_id);
536 
537 static ssize_t phys_port_name_show(struct device *dev,
538 				   struct device_attribute *attr, char *buf)
539 {
540 	struct net_device *netdev = to_net_dev(dev);
541 	ssize_t ret = -EINVAL;
542 
543 	/* The checks are also done in dev_get_phys_port_name; this helps
544 	 * returning early without hitting the trylock/restart below.
545 	 */
546 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
547 	    !netdev->devlink_port)
548 		return -EOPNOTSUPP;
549 
550 	if (!rtnl_trylock())
551 		return restart_syscall();
552 
553 	if (dev_isalive(netdev)) {
554 		char name[IFNAMSIZ];
555 
556 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
557 		if (!ret)
558 			ret = sysfs_emit(buf, "%s\n", name);
559 	}
560 	rtnl_unlock();
561 
562 	return ret;
563 }
564 static DEVICE_ATTR_RO(phys_port_name);
565 
566 static ssize_t phys_switch_id_show(struct device *dev,
567 				   struct device_attribute *attr, char *buf)
568 {
569 	struct net_device *netdev = to_net_dev(dev);
570 	ssize_t ret = -EINVAL;
571 
572 	/* The checks are also done in dev_get_phys_port_name; this helps
573 	 * returning early without hitting the trylock/restart below. This works
574 	 * because recurse is false when calling dev_get_port_parent_id.
575 	 */
576 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
577 	    !netdev->devlink_port)
578 		return -EOPNOTSUPP;
579 
580 	if (!rtnl_trylock())
581 		return restart_syscall();
582 
583 	if (dev_isalive(netdev)) {
584 		struct netdev_phys_item_id ppid = { };
585 
586 		ret = dev_get_port_parent_id(netdev, &ppid, false);
587 		if (!ret)
588 			ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
589 	}
590 	rtnl_unlock();
591 
592 	return ret;
593 }
594 static DEVICE_ATTR_RO(phys_switch_id);
595 
596 static ssize_t threaded_show(struct device *dev,
597 			     struct device_attribute *attr, char *buf)
598 {
599 	struct net_device *netdev = to_net_dev(dev);
600 	ssize_t ret = -EINVAL;
601 
602 	if (!rtnl_trylock())
603 		return restart_syscall();
604 
605 	if (dev_isalive(netdev))
606 		ret = sysfs_emit(buf, fmt_dec, netdev->threaded);
607 
608 	rtnl_unlock();
609 	return ret;
610 }
611 
612 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
613 {
614 	int ret;
615 
616 	if (list_empty(&dev->napi_list))
617 		return -EOPNOTSUPP;
618 
619 	if (val != 0 && val != 1)
620 		return -EOPNOTSUPP;
621 
622 	ret = dev_set_threaded(dev, val);
623 
624 	return ret;
625 }
626 
627 static ssize_t threaded_store(struct device *dev,
628 			      struct device_attribute *attr,
629 			      const char *buf, size_t len)
630 {
631 	return netdev_store(dev, attr, buf, len, modify_napi_threaded);
632 }
633 static DEVICE_ATTR_RW(threaded);
634 
635 static struct attribute *net_class_attrs[] __ro_after_init = {
636 	&dev_attr_netdev_group.attr,
637 	&dev_attr_type.attr,
638 	&dev_attr_dev_id.attr,
639 	&dev_attr_dev_port.attr,
640 	&dev_attr_iflink.attr,
641 	&dev_attr_ifindex.attr,
642 	&dev_attr_name_assign_type.attr,
643 	&dev_attr_addr_assign_type.attr,
644 	&dev_attr_addr_len.attr,
645 	&dev_attr_link_mode.attr,
646 	&dev_attr_address.attr,
647 	&dev_attr_broadcast.attr,
648 	&dev_attr_speed.attr,
649 	&dev_attr_duplex.attr,
650 	&dev_attr_dormant.attr,
651 	&dev_attr_testing.attr,
652 	&dev_attr_operstate.attr,
653 	&dev_attr_carrier_changes.attr,
654 	&dev_attr_ifalias.attr,
655 	&dev_attr_carrier.attr,
656 	&dev_attr_mtu.attr,
657 	&dev_attr_flags.attr,
658 	&dev_attr_tx_queue_len.attr,
659 	&dev_attr_gro_flush_timeout.attr,
660 	&dev_attr_napi_defer_hard_irqs.attr,
661 	&dev_attr_phys_port_id.attr,
662 	&dev_attr_phys_port_name.attr,
663 	&dev_attr_phys_switch_id.attr,
664 	&dev_attr_proto_down.attr,
665 	&dev_attr_carrier_up_count.attr,
666 	&dev_attr_carrier_down_count.attr,
667 	&dev_attr_threaded.attr,
668 	NULL,
669 };
670 ATTRIBUTE_GROUPS(net_class);
671 
672 /* Show a given an attribute in the statistics group */
673 static ssize_t netstat_show(const struct device *d,
674 			    struct device_attribute *attr, char *buf,
675 			    unsigned long offset)
676 {
677 	struct net_device *dev = to_net_dev(d);
678 	ssize_t ret = -EINVAL;
679 
680 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
681 		offset % sizeof(u64) != 0);
682 
683 	read_lock(&dev_base_lock);
684 	if (dev_isalive(dev)) {
685 		struct rtnl_link_stats64 temp;
686 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
687 
688 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
689 	}
690 	read_unlock(&dev_base_lock);
691 	return ret;
692 }
693 
694 /* generate a read-only statistics attribute */
695 #define NETSTAT_ENTRY(name)						\
696 static ssize_t name##_show(struct device *d,				\
697 			   struct device_attribute *attr, char *buf)	\
698 {									\
699 	return netstat_show(d, attr, buf,				\
700 			    offsetof(struct rtnl_link_stats64, name));	\
701 }									\
702 static DEVICE_ATTR_RO(name)
703 
704 NETSTAT_ENTRY(rx_packets);
705 NETSTAT_ENTRY(tx_packets);
706 NETSTAT_ENTRY(rx_bytes);
707 NETSTAT_ENTRY(tx_bytes);
708 NETSTAT_ENTRY(rx_errors);
709 NETSTAT_ENTRY(tx_errors);
710 NETSTAT_ENTRY(rx_dropped);
711 NETSTAT_ENTRY(tx_dropped);
712 NETSTAT_ENTRY(multicast);
713 NETSTAT_ENTRY(collisions);
714 NETSTAT_ENTRY(rx_length_errors);
715 NETSTAT_ENTRY(rx_over_errors);
716 NETSTAT_ENTRY(rx_crc_errors);
717 NETSTAT_ENTRY(rx_frame_errors);
718 NETSTAT_ENTRY(rx_fifo_errors);
719 NETSTAT_ENTRY(rx_missed_errors);
720 NETSTAT_ENTRY(tx_aborted_errors);
721 NETSTAT_ENTRY(tx_carrier_errors);
722 NETSTAT_ENTRY(tx_fifo_errors);
723 NETSTAT_ENTRY(tx_heartbeat_errors);
724 NETSTAT_ENTRY(tx_window_errors);
725 NETSTAT_ENTRY(rx_compressed);
726 NETSTAT_ENTRY(tx_compressed);
727 NETSTAT_ENTRY(rx_nohandler);
728 
729 static struct attribute *netstat_attrs[] __ro_after_init = {
730 	&dev_attr_rx_packets.attr,
731 	&dev_attr_tx_packets.attr,
732 	&dev_attr_rx_bytes.attr,
733 	&dev_attr_tx_bytes.attr,
734 	&dev_attr_rx_errors.attr,
735 	&dev_attr_tx_errors.attr,
736 	&dev_attr_rx_dropped.attr,
737 	&dev_attr_tx_dropped.attr,
738 	&dev_attr_multicast.attr,
739 	&dev_attr_collisions.attr,
740 	&dev_attr_rx_length_errors.attr,
741 	&dev_attr_rx_over_errors.attr,
742 	&dev_attr_rx_crc_errors.attr,
743 	&dev_attr_rx_frame_errors.attr,
744 	&dev_attr_rx_fifo_errors.attr,
745 	&dev_attr_rx_missed_errors.attr,
746 	&dev_attr_tx_aborted_errors.attr,
747 	&dev_attr_tx_carrier_errors.attr,
748 	&dev_attr_tx_fifo_errors.attr,
749 	&dev_attr_tx_heartbeat_errors.attr,
750 	&dev_attr_tx_window_errors.attr,
751 	&dev_attr_rx_compressed.attr,
752 	&dev_attr_tx_compressed.attr,
753 	&dev_attr_rx_nohandler.attr,
754 	NULL
755 };
756 
757 static const struct attribute_group netstat_group = {
758 	.name  = "statistics",
759 	.attrs  = netstat_attrs,
760 };
761 
762 static struct attribute *wireless_attrs[] = {
763 	NULL
764 };
765 
766 static const struct attribute_group wireless_group = {
767 	.name = "wireless",
768 	.attrs = wireless_attrs,
769 };
770 
771 static bool wireless_group_needed(struct net_device *ndev)
772 {
773 #if IS_ENABLED(CONFIG_CFG80211)
774 	if (ndev->ieee80211_ptr)
775 		return true;
776 #endif
777 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
778 	if (ndev->wireless_handlers)
779 		return true;
780 #endif
781 	return false;
782 }
783 
784 #else /* CONFIG_SYSFS */
785 #define net_class_groups	NULL
786 #endif /* CONFIG_SYSFS */
787 
788 #ifdef CONFIG_SYSFS
789 #define to_rx_queue_attr(_attr) \
790 	container_of(_attr, struct rx_queue_attribute, attr)
791 
792 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
793 
794 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
795 				  char *buf)
796 {
797 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
798 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
799 
800 	if (!attribute->show)
801 		return -EIO;
802 
803 	return attribute->show(queue, buf);
804 }
805 
806 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
807 				   const char *buf, size_t count)
808 {
809 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
810 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
811 
812 	if (!attribute->store)
813 		return -EIO;
814 
815 	return attribute->store(queue, buf, count);
816 }
817 
818 static const struct sysfs_ops rx_queue_sysfs_ops = {
819 	.show = rx_queue_attr_show,
820 	.store = rx_queue_attr_store,
821 };
822 
823 #ifdef CONFIG_RPS
824 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
825 {
826 	struct rps_map *map;
827 	cpumask_var_t mask;
828 	int i, len;
829 
830 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
831 		return -ENOMEM;
832 
833 	rcu_read_lock();
834 	map = rcu_dereference(queue->rps_map);
835 	if (map)
836 		for (i = 0; i < map->len; i++)
837 			cpumask_set_cpu(map->cpus[i], mask);
838 
839 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
840 	rcu_read_unlock();
841 	free_cpumask_var(mask);
842 
843 	return len < PAGE_SIZE ? len : -EINVAL;
844 }
845 
846 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
847 					cpumask_var_t mask)
848 {
849 	static DEFINE_MUTEX(rps_map_mutex);
850 	struct rps_map *old_map, *map;
851 	int cpu, i;
852 
853 	map = kzalloc(max_t(unsigned int,
854 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
855 		      GFP_KERNEL);
856 	if (!map)
857 		return -ENOMEM;
858 
859 	i = 0;
860 	for_each_cpu_and(cpu, mask, cpu_online_mask)
861 		map->cpus[i++] = cpu;
862 
863 	if (i) {
864 		map->len = i;
865 	} else {
866 		kfree(map);
867 		map = NULL;
868 	}
869 
870 	mutex_lock(&rps_map_mutex);
871 	old_map = rcu_dereference_protected(queue->rps_map,
872 					    mutex_is_locked(&rps_map_mutex));
873 	rcu_assign_pointer(queue->rps_map, map);
874 
875 	if (map)
876 		static_branch_inc(&rps_needed);
877 	if (old_map)
878 		static_branch_dec(&rps_needed);
879 
880 	mutex_unlock(&rps_map_mutex);
881 
882 	if (old_map)
883 		kfree_rcu(old_map, rcu);
884 	return 0;
885 }
886 
887 int rps_cpumask_housekeeping(struct cpumask *mask)
888 {
889 	if (!cpumask_empty(mask)) {
890 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
891 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
892 		if (cpumask_empty(mask))
893 			return -EINVAL;
894 	}
895 	return 0;
896 }
897 
898 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
899 			     const char *buf, size_t len)
900 {
901 	cpumask_var_t mask;
902 	int err;
903 
904 	if (!capable(CAP_NET_ADMIN))
905 		return -EPERM;
906 
907 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
908 		return -ENOMEM;
909 
910 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
911 	if (err)
912 		goto out;
913 
914 	err = rps_cpumask_housekeeping(mask);
915 	if (err)
916 		goto out;
917 
918 	err = netdev_rx_queue_set_rps_mask(queue, mask);
919 
920 out:
921 	free_cpumask_var(mask);
922 	return err ? : len;
923 }
924 
925 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
926 					   char *buf)
927 {
928 	struct rps_dev_flow_table *flow_table;
929 	unsigned long val = 0;
930 
931 	rcu_read_lock();
932 	flow_table = rcu_dereference(queue->rps_flow_table);
933 	if (flow_table)
934 		val = (unsigned long)flow_table->mask + 1;
935 	rcu_read_unlock();
936 
937 	return sysfs_emit(buf, "%lu\n", val);
938 }
939 
940 static void rps_dev_flow_table_release(struct rcu_head *rcu)
941 {
942 	struct rps_dev_flow_table *table = container_of(rcu,
943 	    struct rps_dev_flow_table, rcu);
944 	vfree(table);
945 }
946 
947 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
948 					    const char *buf, size_t len)
949 {
950 	unsigned long mask, count;
951 	struct rps_dev_flow_table *table, *old_table;
952 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
953 	int rc;
954 
955 	if (!capable(CAP_NET_ADMIN))
956 		return -EPERM;
957 
958 	rc = kstrtoul(buf, 0, &count);
959 	if (rc < 0)
960 		return rc;
961 
962 	if (count) {
963 		mask = count - 1;
964 		/* mask = roundup_pow_of_two(count) - 1;
965 		 * without overflows...
966 		 */
967 		while ((mask | (mask >> 1)) != mask)
968 			mask |= (mask >> 1);
969 		/* On 64 bit arches, must check mask fits in table->mask (u32),
970 		 * and on 32bit arches, must check
971 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
972 		 */
973 #if BITS_PER_LONG > 32
974 		if (mask > (unsigned long)(u32)mask)
975 			return -EINVAL;
976 #else
977 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
978 				/ sizeof(struct rps_dev_flow)) {
979 			/* Enforce a limit to prevent overflow */
980 			return -EINVAL;
981 		}
982 #endif
983 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
984 		if (!table)
985 			return -ENOMEM;
986 
987 		table->mask = mask;
988 		for (count = 0; count <= mask; count++)
989 			table->flows[count].cpu = RPS_NO_CPU;
990 	} else {
991 		table = NULL;
992 	}
993 
994 	spin_lock(&rps_dev_flow_lock);
995 	old_table = rcu_dereference_protected(queue->rps_flow_table,
996 					      lockdep_is_held(&rps_dev_flow_lock));
997 	rcu_assign_pointer(queue->rps_flow_table, table);
998 	spin_unlock(&rps_dev_flow_lock);
999 
1000 	if (old_table)
1001 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1002 
1003 	return len;
1004 }
1005 
1006 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1007 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1008 
1009 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1010 	= __ATTR(rps_flow_cnt, 0644,
1011 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1012 #endif /* CONFIG_RPS */
1013 
1014 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1015 #ifdef CONFIG_RPS
1016 	&rps_cpus_attribute.attr,
1017 	&rps_dev_flow_table_cnt_attribute.attr,
1018 #endif
1019 	NULL
1020 };
1021 ATTRIBUTE_GROUPS(rx_queue_default);
1022 
1023 static void rx_queue_release(struct kobject *kobj)
1024 {
1025 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1026 #ifdef CONFIG_RPS
1027 	struct rps_map *map;
1028 	struct rps_dev_flow_table *flow_table;
1029 
1030 	map = rcu_dereference_protected(queue->rps_map, 1);
1031 	if (map) {
1032 		RCU_INIT_POINTER(queue->rps_map, NULL);
1033 		kfree_rcu(map, rcu);
1034 	}
1035 
1036 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1037 	if (flow_table) {
1038 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1039 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1040 	}
1041 #endif
1042 
1043 	memset(kobj, 0, sizeof(*kobj));
1044 	netdev_put(queue->dev, &queue->dev_tracker);
1045 }
1046 
1047 static const void *rx_queue_namespace(const struct kobject *kobj)
1048 {
1049 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1050 	struct device *dev = &queue->dev->dev;
1051 	const void *ns = NULL;
1052 
1053 	if (dev->class && dev->class->ns_type)
1054 		ns = dev->class->namespace(dev);
1055 
1056 	return ns;
1057 }
1058 
1059 static void rx_queue_get_ownership(const struct kobject *kobj,
1060 				   kuid_t *uid, kgid_t *gid)
1061 {
1062 	const struct net *net = rx_queue_namespace(kobj);
1063 
1064 	net_ns_get_ownership(net, uid, gid);
1065 }
1066 
1067 static const struct kobj_type rx_queue_ktype = {
1068 	.sysfs_ops = &rx_queue_sysfs_ops,
1069 	.release = rx_queue_release,
1070 	.default_groups = rx_queue_default_groups,
1071 	.namespace = rx_queue_namespace,
1072 	.get_ownership = rx_queue_get_ownership,
1073 };
1074 
1075 static int rx_queue_default_mask(struct net_device *dev,
1076 				 struct netdev_rx_queue *queue)
1077 {
1078 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1079 	struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1080 
1081 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1082 		return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1083 #endif
1084 	return 0;
1085 }
1086 
1087 static int rx_queue_add_kobject(struct net_device *dev, int index)
1088 {
1089 	struct netdev_rx_queue *queue = dev->_rx + index;
1090 	struct kobject *kobj = &queue->kobj;
1091 	int error = 0;
1092 
1093 	/* Kobject_put later will trigger rx_queue_release call which
1094 	 * decreases dev refcount: Take that reference here
1095 	 */
1096 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1097 
1098 	kobj->kset = dev->queues_kset;
1099 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1100 				     "rx-%u", index);
1101 	if (error)
1102 		goto err;
1103 
1104 	if (dev->sysfs_rx_queue_group) {
1105 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1106 		if (error)
1107 			goto err;
1108 	}
1109 
1110 	error = rx_queue_default_mask(dev, queue);
1111 	if (error)
1112 		goto err;
1113 
1114 	kobject_uevent(kobj, KOBJ_ADD);
1115 
1116 	return error;
1117 
1118 err:
1119 	kobject_put(kobj);
1120 	return error;
1121 }
1122 
1123 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1124 				 kgid_t kgid)
1125 {
1126 	struct netdev_rx_queue *queue = dev->_rx + index;
1127 	struct kobject *kobj = &queue->kobj;
1128 	int error;
1129 
1130 	error = sysfs_change_owner(kobj, kuid, kgid);
1131 	if (error)
1132 		return error;
1133 
1134 	if (dev->sysfs_rx_queue_group)
1135 		error = sysfs_group_change_owner(
1136 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1137 
1138 	return error;
1139 }
1140 #endif /* CONFIG_SYSFS */
1141 
1142 int
1143 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1144 {
1145 #ifdef CONFIG_SYSFS
1146 	int i;
1147 	int error = 0;
1148 
1149 #ifndef CONFIG_RPS
1150 	if (!dev->sysfs_rx_queue_group)
1151 		return 0;
1152 #endif
1153 	for (i = old_num; i < new_num; i++) {
1154 		error = rx_queue_add_kobject(dev, i);
1155 		if (error) {
1156 			new_num = old_num;
1157 			break;
1158 		}
1159 	}
1160 
1161 	while (--i >= new_num) {
1162 		struct kobject *kobj = &dev->_rx[i].kobj;
1163 
1164 		if (!refcount_read(&dev_net(dev)->ns.count))
1165 			kobj->uevent_suppress = 1;
1166 		if (dev->sysfs_rx_queue_group)
1167 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1168 		kobject_put(kobj);
1169 	}
1170 
1171 	return error;
1172 #else
1173 	return 0;
1174 #endif
1175 }
1176 
1177 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1178 				     kuid_t kuid, kgid_t kgid)
1179 {
1180 #ifdef CONFIG_SYSFS
1181 	int error = 0;
1182 	int i;
1183 
1184 #ifndef CONFIG_RPS
1185 	if (!dev->sysfs_rx_queue_group)
1186 		return 0;
1187 #endif
1188 	for (i = 0; i < num; i++) {
1189 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1190 		if (error)
1191 			break;
1192 	}
1193 
1194 	return error;
1195 #else
1196 	return 0;
1197 #endif
1198 }
1199 
1200 #ifdef CONFIG_SYSFS
1201 /*
1202  * netdev_queue sysfs structures and functions.
1203  */
1204 struct netdev_queue_attribute {
1205 	struct attribute attr;
1206 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1207 	ssize_t (*store)(struct netdev_queue *queue,
1208 			 const char *buf, size_t len);
1209 };
1210 #define to_netdev_queue_attr(_attr) \
1211 	container_of(_attr, struct netdev_queue_attribute, attr)
1212 
1213 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1214 
1215 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1216 				      struct attribute *attr, char *buf)
1217 {
1218 	const struct netdev_queue_attribute *attribute
1219 		= to_netdev_queue_attr(attr);
1220 	struct netdev_queue *queue = to_netdev_queue(kobj);
1221 
1222 	if (!attribute->show)
1223 		return -EIO;
1224 
1225 	return attribute->show(queue, buf);
1226 }
1227 
1228 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1229 				       struct attribute *attr,
1230 				       const char *buf, size_t count)
1231 {
1232 	const struct netdev_queue_attribute *attribute
1233 		= to_netdev_queue_attr(attr);
1234 	struct netdev_queue *queue = to_netdev_queue(kobj);
1235 
1236 	if (!attribute->store)
1237 		return -EIO;
1238 
1239 	return attribute->store(queue, buf, count);
1240 }
1241 
1242 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1243 	.show = netdev_queue_attr_show,
1244 	.store = netdev_queue_attr_store,
1245 };
1246 
1247 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1248 {
1249 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1250 
1251 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1252 }
1253 
1254 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1255 {
1256 	struct net_device *dev = queue->dev;
1257 	unsigned int i;
1258 
1259 	i = queue - dev->_tx;
1260 	BUG_ON(i >= dev->num_tx_queues);
1261 
1262 	return i;
1263 }
1264 
1265 static ssize_t traffic_class_show(struct netdev_queue *queue,
1266 				  char *buf)
1267 {
1268 	struct net_device *dev = queue->dev;
1269 	int num_tc, tc;
1270 	int index;
1271 
1272 	if (!netif_is_multiqueue(dev))
1273 		return -ENOENT;
1274 
1275 	if (!rtnl_trylock())
1276 		return restart_syscall();
1277 
1278 	index = get_netdev_queue_index(queue);
1279 
1280 	/* If queue belongs to subordinate dev use its TC mapping */
1281 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1282 
1283 	num_tc = dev->num_tc;
1284 	tc = netdev_txq_to_tc(dev, index);
1285 
1286 	rtnl_unlock();
1287 
1288 	if (tc < 0)
1289 		return -EINVAL;
1290 
1291 	/* We can report the traffic class one of two ways:
1292 	 * Subordinate device traffic classes are reported with the traffic
1293 	 * class first, and then the subordinate class so for example TC0 on
1294 	 * subordinate device 2 will be reported as "0-2". If the queue
1295 	 * belongs to the root device it will be reported with just the
1296 	 * traffic class, so just "0" for TC 0 for example.
1297 	 */
1298 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1299 			    sysfs_emit(buf, "%d\n", tc);
1300 }
1301 
1302 #ifdef CONFIG_XPS
1303 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1304 			       char *buf)
1305 {
1306 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1307 }
1308 
1309 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1310 				const char *buf, size_t len)
1311 {
1312 	struct net_device *dev = queue->dev;
1313 	int err, index = get_netdev_queue_index(queue);
1314 	u32 rate = 0;
1315 
1316 	if (!capable(CAP_NET_ADMIN))
1317 		return -EPERM;
1318 
1319 	/* The check is also done later; this helps returning early without
1320 	 * hitting the trylock/restart below.
1321 	 */
1322 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1323 		return -EOPNOTSUPP;
1324 
1325 	err = kstrtou32(buf, 10, &rate);
1326 	if (err < 0)
1327 		return err;
1328 
1329 	if (!rtnl_trylock())
1330 		return restart_syscall();
1331 
1332 	err = -EOPNOTSUPP;
1333 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1334 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1335 
1336 	rtnl_unlock();
1337 	if (!err) {
1338 		queue->tx_maxrate = rate;
1339 		return len;
1340 	}
1341 	return err;
1342 }
1343 
1344 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1345 	= __ATTR_RW(tx_maxrate);
1346 #endif
1347 
1348 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1349 	= __ATTR_RO(tx_timeout);
1350 
1351 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1352 	= __ATTR_RO(traffic_class);
1353 
1354 #ifdef CONFIG_BQL
1355 /*
1356  * Byte queue limits sysfs structures and functions.
1357  */
1358 static ssize_t bql_show(char *buf, unsigned int value)
1359 {
1360 	return sysfs_emit(buf, "%u\n", value);
1361 }
1362 
1363 static ssize_t bql_set(const char *buf, const size_t count,
1364 		       unsigned int *pvalue)
1365 {
1366 	unsigned int value;
1367 	int err;
1368 
1369 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1370 		value = DQL_MAX_LIMIT;
1371 	} else {
1372 		err = kstrtouint(buf, 10, &value);
1373 		if (err < 0)
1374 			return err;
1375 		if (value > DQL_MAX_LIMIT)
1376 			return -EINVAL;
1377 	}
1378 
1379 	*pvalue = value;
1380 
1381 	return count;
1382 }
1383 
1384 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1385 				  char *buf)
1386 {
1387 	struct dql *dql = &queue->dql;
1388 
1389 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1390 }
1391 
1392 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1393 				 const char *buf, size_t len)
1394 {
1395 	struct dql *dql = &queue->dql;
1396 	unsigned int value;
1397 	int err;
1398 
1399 	err = kstrtouint(buf, 10, &value);
1400 	if (err < 0)
1401 		return err;
1402 
1403 	dql->slack_hold_time = msecs_to_jiffies(value);
1404 
1405 	return len;
1406 }
1407 
1408 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1409 	= __ATTR(hold_time, 0644,
1410 		 bql_show_hold_time, bql_set_hold_time);
1411 
1412 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1413 				 char *buf)
1414 {
1415 	struct dql *dql = &queue->dql;
1416 
1417 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1418 }
1419 
1420 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1421 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1422 
1423 #define BQL_ATTR(NAME, FIELD)						\
1424 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1425 				 char *buf)				\
1426 {									\
1427 	return bql_show(buf, queue->dql.FIELD);				\
1428 }									\
1429 									\
1430 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1431 				const char *buf, size_t len)		\
1432 {									\
1433 	return bql_set(buf, len, &queue->dql.FIELD);			\
1434 }									\
1435 									\
1436 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1437 	= __ATTR(NAME, 0644,				\
1438 		 bql_show_ ## NAME, bql_set_ ## NAME)
1439 
1440 BQL_ATTR(limit, limit);
1441 BQL_ATTR(limit_max, max_limit);
1442 BQL_ATTR(limit_min, min_limit);
1443 
1444 static struct attribute *dql_attrs[] __ro_after_init = {
1445 	&bql_limit_attribute.attr,
1446 	&bql_limit_max_attribute.attr,
1447 	&bql_limit_min_attribute.attr,
1448 	&bql_hold_time_attribute.attr,
1449 	&bql_inflight_attribute.attr,
1450 	NULL
1451 };
1452 
1453 static const struct attribute_group dql_group = {
1454 	.name  = "byte_queue_limits",
1455 	.attrs  = dql_attrs,
1456 };
1457 #endif /* CONFIG_BQL */
1458 
1459 #ifdef CONFIG_XPS
1460 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1461 			      int tc, char *buf, enum xps_map_type type)
1462 {
1463 	struct xps_dev_maps *dev_maps;
1464 	unsigned long *mask;
1465 	unsigned int nr_ids;
1466 	int j, len;
1467 
1468 	rcu_read_lock();
1469 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1470 
1471 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1472 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1473 	 */
1474 	nr_ids = dev_maps ? dev_maps->nr_ids :
1475 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1476 
1477 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1478 	if (!mask) {
1479 		rcu_read_unlock();
1480 		return -ENOMEM;
1481 	}
1482 
1483 	if (!dev_maps || tc >= dev_maps->num_tc)
1484 		goto out_no_maps;
1485 
1486 	for (j = 0; j < nr_ids; j++) {
1487 		int i, tci = j * dev_maps->num_tc + tc;
1488 		struct xps_map *map;
1489 
1490 		map = rcu_dereference(dev_maps->attr_map[tci]);
1491 		if (!map)
1492 			continue;
1493 
1494 		for (i = map->len; i--;) {
1495 			if (map->queues[i] == index) {
1496 				__set_bit(j, mask);
1497 				break;
1498 			}
1499 		}
1500 	}
1501 out_no_maps:
1502 	rcu_read_unlock();
1503 
1504 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1505 	bitmap_free(mask);
1506 
1507 	return len < PAGE_SIZE ? len : -EINVAL;
1508 }
1509 
1510 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1511 {
1512 	struct net_device *dev = queue->dev;
1513 	unsigned int index;
1514 	int len, tc;
1515 
1516 	if (!netif_is_multiqueue(dev))
1517 		return -ENOENT;
1518 
1519 	index = get_netdev_queue_index(queue);
1520 
1521 	if (!rtnl_trylock())
1522 		return restart_syscall();
1523 
1524 	/* If queue belongs to subordinate dev use its map */
1525 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1526 
1527 	tc = netdev_txq_to_tc(dev, index);
1528 	if (tc < 0) {
1529 		rtnl_unlock();
1530 		return -EINVAL;
1531 	}
1532 
1533 	/* Make sure the subordinate device can't be freed */
1534 	get_device(&dev->dev);
1535 	rtnl_unlock();
1536 
1537 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1538 
1539 	put_device(&dev->dev);
1540 	return len;
1541 }
1542 
1543 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1544 			      const char *buf, size_t len)
1545 {
1546 	struct net_device *dev = queue->dev;
1547 	unsigned int index;
1548 	cpumask_var_t mask;
1549 	int err;
1550 
1551 	if (!netif_is_multiqueue(dev))
1552 		return -ENOENT;
1553 
1554 	if (!capable(CAP_NET_ADMIN))
1555 		return -EPERM;
1556 
1557 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1558 		return -ENOMEM;
1559 
1560 	index = get_netdev_queue_index(queue);
1561 
1562 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1563 	if (err) {
1564 		free_cpumask_var(mask);
1565 		return err;
1566 	}
1567 
1568 	if (!rtnl_trylock()) {
1569 		free_cpumask_var(mask);
1570 		return restart_syscall();
1571 	}
1572 
1573 	err = netif_set_xps_queue(dev, mask, index);
1574 	rtnl_unlock();
1575 
1576 	free_cpumask_var(mask);
1577 
1578 	return err ? : len;
1579 }
1580 
1581 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1582 	= __ATTR_RW(xps_cpus);
1583 
1584 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1585 {
1586 	struct net_device *dev = queue->dev;
1587 	unsigned int index;
1588 	int tc;
1589 
1590 	index = get_netdev_queue_index(queue);
1591 
1592 	if (!rtnl_trylock())
1593 		return restart_syscall();
1594 
1595 	tc = netdev_txq_to_tc(dev, index);
1596 	rtnl_unlock();
1597 	if (tc < 0)
1598 		return -EINVAL;
1599 
1600 	return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1601 }
1602 
1603 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1604 			      size_t len)
1605 {
1606 	struct net_device *dev = queue->dev;
1607 	struct net *net = dev_net(dev);
1608 	unsigned long *mask;
1609 	unsigned int index;
1610 	int err;
1611 
1612 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1613 		return -EPERM;
1614 
1615 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1616 	if (!mask)
1617 		return -ENOMEM;
1618 
1619 	index = get_netdev_queue_index(queue);
1620 
1621 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1622 	if (err) {
1623 		bitmap_free(mask);
1624 		return err;
1625 	}
1626 
1627 	if (!rtnl_trylock()) {
1628 		bitmap_free(mask);
1629 		return restart_syscall();
1630 	}
1631 
1632 	cpus_read_lock();
1633 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1634 	cpus_read_unlock();
1635 
1636 	rtnl_unlock();
1637 
1638 	bitmap_free(mask);
1639 	return err ? : len;
1640 }
1641 
1642 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1643 	= __ATTR_RW(xps_rxqs);
1644 #endif /* CONFIG_XPS */
1645 
1646 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1647 	&queue_trans_timeout.attr,
1648 	&queue_traffic_class.attr,
1649 #ifdef CONFIG_XPS
1650 	&xps_cpus_attribute.attr,
1651 	&xps_rxqs_attribute.attr,
1652 	&queue_tx_maxrate.attr,
1653 #endif
1654 	NULL
1655 };
1656 ATTRIBUTE_GROUPS(netdev_queue_default);
1657 
1658 static void netdev_queue_release(struct kobject *kobj)
1659 {
1660 	struct netdev_queue *queue = to_netdev_queue(kobj);
1661 
1662 	memset(kobj, 0, sizeof(*kobj));
1663 	netdev_put(queue->dev, &queue->dev_tracker);
1664 }
1665 
1666 static const void *netdev_queue_namespace(const struct kobject *kobj)
1667 {
1668 	struct netdev_queue *queue = to_netdev_queue(kobj);
1669 	struct device *dev = &queue->dev->dev;
1670 	const void *ns = NULL;
1671 
1672 	if (dev->class && dev->class->ns_type)
1673 		ns = dev->class->namespace(dev);
1674 
1675 	return ns;
1676 }
1677 
1678 static void netdev_queue_get_ownership(const struct kobject *kobj,
1679 				       kuid_t *uid, kgid_t *gid)
1680 {
1681 	const struct net *net = netdev_queue_namespace(kobj);
1682 
1683 	net_ns_get_ownership(net, uid, gid);
1684 }
1685 
1686 static const struct kobj_type netdev_queue_ktype = {
1687 	.sysfs_ops = &netdev_queue_sysfs_ops,
1688 	.release = netdev_queue_release,
1689 	.default_groups = netdev_queue_default_groups,
1690 	.namespace = netdev_queue_namespace,
1691 	.get_ownership = netdev_queue_get_ownership,
1692 };
1693 
1694 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1695 {
1696 	struct netdev_queue *queue = dev->_tx + index;
1697 	struct kobject *kobj = &queue->kobj;
1698 	int error = 0;
1699 
1700 	/* Kobject_put later will trigger netdev_queue_release call
1701 	 * which decreases dev refcount: Take that reference here
1702 	 */
1703 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1704 
1705 	kobj->kset = dev->queues_kset;
1706 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1707 				     "tx-%u", index);
1708 	if (error)
1709 		goto err;
1710 
1711 #ifdef CONFIG_BQL
1712 	error = sysfs_create_group(kobj, &dql_group);
1713 	if (error)
1714 		goto err;
1715 #endif
1716 
1717 	kobject_uevent(kobj, KOBJ_ADD);
1718 	return 0;
1719 
1720 err:
1721 	kobject_put(kobj);
1722 	return error;
1723 }
1724 
1725 static int tx_queue_change_owner(struct net_device *ndev, int index,
1726 				 kuid_t kuid, kgid_t kgid)
1727 {
1728 	struct netdev_queue *queue = ndev->_tx + index;
1729 	struct kobject *kobj = &queue->kobj;
1730 	int error;
1731 
1732 	error = sysfs_change_owner(kobj, kuid, kgid);
1733 	if (error)
1734 		return error;
1735 
1736 #ifdef CONFIG_BQL
1737 	error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1738 #endif
1739 	return error;
1740 }
1741 #endif /* CONFIG_SYSFS */
1742 
1743 int
1744 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1745 {
1746 #ifdef CONFIG_SYSFS
1747 	int i;
1748 	int error = 0;
1749 
1750 	/* Tx queue kobjects are allowed to be updated when a device is being
1751 	 * unregistered, but solely to remove queues from qdiscs. Any path
1752 	 * adding queues should be fixed.
1753 	 */
1754 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
1755 	     "New queues can't be registered after device unregistration.");
1756 
1757 	for (i = old_num; i < new_num; i++) {
1758 		error = netdev_queue_add_kobject(dev, i);
1759 		if (error) {
1760 			new_num = old_num;
1761 			break;
1762 		}
1763 	}
1764 
1765 	while (--i >= new_num) {
1766 		struct netdev_queue *queue = dev->_tx + i;
1767 
1768 		if (!refcount_read(&dev_net(dev)->ns.count))
1769 			queue->kobj.uevent_suppress = 1;
1770 #ifdef CONFIG_BQL
1771 		sysfs_remove_group(&queue->kobj, &dql_group);
1772 #endif
1773 		kobject_put(&queue->kobj);
1774 	}
1775 
1776 	return error;
1777 #else
1778 	return 0;
1779 #endif /* CONFIG_SYSFS */
1780 }
1781 
1782 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1783 				     kuid_t kuid, kgid_t kgid)
1784 {
1785 #ifdef CONFIG_SYSFS
1786 	int error = 0;
1787 	int i;
1788 
1789 	for (i = 0; i < num; i++) {
1790 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1791 		if (error)
1792 			break;
1793 	}
1794 
1795 	return error;
1796 #else
1797 	return 0;
1798 #endif /* CONFIG_SYSFS */
1799 }
1800 
1801 static int register_queue_kobjects(struct net_device *dev)
1802 {
1803 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1804 
1805 #ifdef CONFIG_SYSFS
1806 	dev->queues_kset = kset_create_and_add("queues",
1807 					       NULL, &dev->dev.kobj);
1808 	if (!dev->queues_kset)
1809 		return -ENOMEM;
1810 	real_rx = dev->real_num_rx_queues;
1811 #endif
1812 	real_tx = dev->real_num_tx_queues;
1813 
1814 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1815 	if (error)
1816 		goto error;
1817 	rxq = real_rx;
1818 
1819 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1820 	if (error)
1821 		goto error;
1822 	txq = real_tx;
1823 
1824 	return 0;
1825 
1826 error:
1827 	netdev_queue_update_kobjects(dev, txq, 0);
1828 	net_rx_queue_update_kobjects(dev, rxq, 0);
1829 #ifdef CONFIG_SYSFS
1830 	kset_unregister(dev->queues_kset);
1831 #endif
1832 	return error;
1833 }
1834 
1835 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1836 {
1837 	int error = 0, real_rx = 0, real_tx = 0;
1838 
1839 #ifdef CONFIG_SYSFS
1840 	if (ndev->queues_kset) {
1841 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1842 		if (error)
1843 			return error;
1844 	}
1845 	real_rx = ndev->real_num_rx_queues;
1846 #endif
1847 	real_tx = ndev->real_num_tx_queues;
1848 
1849 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1850 	if (error)
1851 		return error;
1852 
1853 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1854 	if (error)
1855 		return error;
1856 
1857 	return 0;
1858 }
1859 
1860 static void remove_queue_kobjects(struct net_device *dev)
1861 {
1862 	int real_rx = 0, real_tx = 0;
1863 
1864 #ifdef CONFIG_SYSFS
1865 	real_rx = dev->real_num_rx_queues;
1866 #endif
1867 	real_tx = dev->real_num_tx_queues;
1868 
1869 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1870 	netdev_queue_update_kobjects(dev, real_tx, 0);
1871 
1872 	dev->real_num_rx_queues = 0;
1873 	dev->real_num_tx_queues = 0;
1874 #ifdef CONFIG_SYSFS
1875 	kset_unregister(dev->queues_kset);
1876 #endif
1877 }
1878 
1879 static bool net_current_may_mount(void)
1880 {
1881 	struct net *net = current->nsproxy->net_ns;
1882 
1883 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1884 }
1885 
1886 static void *net_grab_current_ns(void)
1887 {
1888 	struct net *ns = current->nsproxy->net_ns;
1889 #ifdef CONFIG_NET_NS
1890 	if (ns)
1891 		refcount_inc(&ns->passive);
1892 #endif
1893 	return ns;
1894 }
1895 
1896 static const void *net_initial_ns(void)
1897 {
1898 	return &init_net;
1899 }
1900 
1901 static const void *net_netlink_ns(struct sock *sk)
1902 {
1903 	return sock_net(sk);
1904 }
1905 
1906 const struct kobj_ns_type_operations net_ns_type_operations = {
1907 	.type = KOBJ_NS_TYPE_NET,
1908 	.current_may_mount = net_current_may_mount,
1909 	.grab_current_ns = net_grab_current_ns,
1910 	.netlink_ns = net_netlink_ns,
1911 	.initial_ns = net_initial_ns,
1912 	.drop_ns = net_drop_ns,
1913 };
1914 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1915 
1916 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
1917 {
1918 	const struct net_device *dev = to_net_dev(d);
1919 	int retval;
1920 
1921 	/* pass interface to uevent. */
1922 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1923 	if (retval)
1924 		goto exit;
1925 
1926 	/* pass ifindex to uevent.
1927 	 * ifindex is useful as it won't change (interface name may change)
1928 	 * and is what RtNetlink uses natively.
1929 	 */
1930 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1931 
1932 exit:
1933 	return retval;
1934 }
1935 
1936 /*
1937  *	netdev_release -- destroy and free a dead device.
1938  *	Called when last reference to device kobject is gone.
1939  */
1940 static void netdev_release(struct device *d)
1941 {
1942 	struct net_device *dev = to_net_dev(d);
1943 
1944 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1945 
1946 	/* no need to wait for rcu grace period:
1947 	 * device is dead and about to be freed.
1948 	 */
1949 	kfree(rcu_access_pointer(dev->ifalias));
1950 	netdev_freemem(dev);
1951 }
1952 
1953 static const void *net_namespace(const struct device *d)
1954 {
1955 	const struct net_device *dev = to_net_dev(d);
1956 
1957 	return dev_net(dev);
1958 }
1959 
1960 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
1961 {
1962 	const struct net_device *dev = to_net_dev(d);
1963 	const struct net *net = dev_net(dev);
1964 
1965 	net_ns_get_ownership(net, uid, gid);
1966 }
1967 
1968 static struct class net_class __ro_after_init = {
1969 	.name = "net",
1970 	.dev_release = netdev_release,
1971 	.dev_groups = net_class_groups,
1972 	.dev_uevent = netdev_uevent,
1973 	.ns_type = &net_ns_type_operations,
1974 	.namespace = net_namespace,
1975 	.get_ownership = net_get_ownership,
1976 };
1977 
1978 #ifdef CONFIG_OF
1979 static int of_dev_node_match(struct device *dev, const void *data)
1980 {
1981 	for (; dev; dev = dev->parent) {
1982 		if (dev->of_node == data)
1983 			return 1;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 /*
1990  * of_find_net_device_by_node - lookup the net device for the device node
1991  * @np: OF device node
1992  *
1993  * Looks up the net_device structure corresponding with the device node.
1994  * If successful, returns a pointer to the net_device with the embedded
1995  * struct device refcount incremented by one, or NULL on failure. The
1996  * refcount must be dropped when done with the net_device.
1997  */
1998 struct net_device *of_find_net_device_by_node(struct device_node *np)
1999 {
2000 	struct device *dev;
2001 
2002 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2003 	if (!dev)
2004 		return NULL;
2005 
2006 	return to_net_dev(dev);
2007 }
2008 EXPORT_SYMBOL(of_find_net_device_by_node);
2009 #endif
2010 
2011 /* Delete sysfs entries but hold kobject reference until after all
2012  * netdev references are gone.
2013  */
2014 void netdev_unregister_kobject(struct net_device *ndev)
2015 {
2016 	struct device *dev = &ndev->dev;
2017 
2018 	if (!refcount_read(&dev_net(ndev)->ns.count))
2019 		dev_set_uevent_suppress(dev, 1);
2020 
2021 	kobject_get(&dev->kobj);
2022 
2023 	remove_queue_kobjects(ndev);
2024 
2025 	pm_runtime_set_memalloc_noio(dev, false);
2026 
2027 	device_del(dev);
2028 }
2029 
2030 /* Create sysfs entries for network device. */
2031 int netdev_register_kobject(struct net_device *ndev)
2032 {
2033 	struct device *dev = &ndev->dev;
2034 	const struct attribute_group **groups = ndev->sysfs_groups;
2035 	int error = 0;
2036 
2037 	device_initialize(dev);
2038 	dev->class = &net_class;
2039 	dev->platform_data = ndev;
2040 	dev->groups = groups;
2041 
2042 	dev_set_name(dev, "%s", ndev->name);
2043 
2044 #ifdef CONFIG_SYSFS
2045 	/* Allow for a device specific group */
2046 	if (*groups)
2047 		groups++;
2048 
2049 	*groups++ = &netstat_group;
2050 
2051 	if (wireless_group_needed(ndev))
2052 		*groups++ = &wireless_group;
2053 #endif /* CONFIG_SYSFS */
2054 
2055 	error = device_add(dev);
2056 	if (error)
2057 		return error;
2058 
2059 	error = register_queue_kobjects(ndev);
2060 	if (error) {
2061 		device_del(dev);
2062 		return error;
2063 	}
2064 
2065 	pm_runtime_set_memalloc_noio(dev, true);
2066 
2067 	return error;
2068 }
2069 
2070 /* Change owner for sysfs entries when moving network devices across network
2071  * namespaces owned by different user namespaces.
2072  */
2073 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2074 			const struct net *net_new)
2075 {
2076 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2077 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2078 	struct device *dev = &ndev->dev;
2079 	int error;
2080 
2081 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2082 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2083 
2084 	/* The network namespace was changed but the owning user namespace is
2085 	 * identical so there's no need to change the owner of sysfs entries.
2086 	 */
2087 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2088 		return 0;
2089 
2090 	error = device_change_owner(dev, new_uid, new_gid);
2091 	if (error)
2092 		return error;
2093 
2094 	error = queue_change_owner(ndev, new_uid, new_gid);
2095 	if (error)
2096 		return error;
2097 
2098 	return 0;
2099 }
2100 
2101 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2102 				const void *ns)
2103 {
2104 	return class_create_file_ns(&net_class, class_attr, ns);
2105 }
2106 EXPORT_SYMBOL(netdev_class_create_file_ns);
2107 
2108 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2109 				 const void *ns)
2110 {
2111 	class_remove_file_ns(&net_class, class_attr, ns);
2112 }
2113 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2114 
2115 int __init netdev_kobject_init(void)
2116 {
2117 	kobj_ns_type_register(&net_ns_type_operations);
2118 	return class_register(&net_class);
2119 }
2120