xref: /linux/net/core/net-sysfs.c (revision 2151003e773c7e7dba4d64bed4bfc483681b5f6a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_rx_queue.h>
27 #include <net/rps.h>
28 
29 #include "dev.h"
30 #include "net-sysfs.h"
31 
32 #ifdef CONFIG_SYSFS
33 static const char fmt_hex[] = "%#x\n";
34 static const char fmt_dec[] = "%d\n";
35 static const char fmt_uint[] = "%u\n";
36 static const char fmt_ulong[] = "%lu\n";
37 static const char fmt_u64[] = "%llu\n";
38 
39 /* Caller holds RTNL, netdev->lock or RCU */
40 static inline int dev_isalive(const struct net_device *dev)
41 {
42 	return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
43 }
44 
45 /* There is a possible ABBA deadlock between rtnl_lock and kernfs_node->active,
46  * when unregistering a net device and accessing associated sysfs files. The
47  * potential deadlock is as follow:
48  *
49  *         CPU 0                                         CPU 1
50  *
51  *    rtnl_lock                                   vfs_read
52  *    unregister_netdevice_many                   kernfs_seq_start
53  *    device_del / kobject_put                      kernfs_get_active (kn->active++)
54  *    kernfs_drain                                sysfs_kf_seq_show
55  *    wait_event(                                 rtnl_lock
56  *       kn->active == KN_DEACTIVATED_BIAS)       -> waits on CPU 0 to release
57  *    -> waits on CPU 1 to decrease kn->active       the rtnl lock.
58  *
59  * The historical fix was to use rtnl_trylock with restart_syscall to bail out
60  * of sysfs operations when the lock couldn't be taken. This fixed the above
61  * issue as it allowed CPU 1 to bail out of the ABBA situation.
62  *
63  * But it came with performances issues, as syscalls are being restarted in
64  * loops when there was contention on the rtnl lock, with huge slow downs in
65  * specific scenarios (e.g. lots of virtual interfaces created and userspace
66  * daemons querying their attributes).
67  *
68  * The idea below is to bail out of the active kernfs_node protection
69  * (kn->active) while trying to take the rtnl lock.
70  *
71  * This replaces rtnl_lock() and still has to be used with rtnl_unlock(). The
72  * net device is guaranteed to be alive if this returns successfully.
73  */
74 static int sysfs_rtnl_lock(struct kobject *kobj, struct attribute *attr,
75 			   struct net_device *ndev)
76 {
77 	struct kernfs_node *kn;
78 	int ret = 0;
79 
80 	/* First, we hold a reference to the net device as the unregistration
81 	 * path might run in parallel. This will ensure the net device and the
82 	 * associated sysfs objects won't be freed while we try to take the rtnl
83 	 * lock.
84 	 */
85 	dev_hold(ndev);
86 	/* sysfs_break_active_protection was introduced to allow self-removal of
87 	 * devices and their associated sysfs files by bailing out of the
88 	 * sysfs/kernfs protection. We do this here to allow the unregistration
89 	 * path to complete in parallel. The following takes a reference on the
90 	 * kobject and the kernfs_node being accessed.
91 	 *
92 	 * This works because we hold a reference onto the net device and the
93 	 * unregistration path will wait for us eventually in netdev_run_todo
94 	 * (outside an rtnl lock section).
95 	 */
96 	kn = sysfs_break_active_protection(kobj, attr);
97 	/* We can now try to take the rtnl lock. This can't deadlock us as the
98 	 * unregistration path is able to drain sysfs files (kernfs_node) thanks
99 	 * to the above dance.
100 	 */
101 	if (rtnl_lock_interruptible()) {
102 		ret = -ERESTARTSYS;
103 		goto unbreak;
104 	}
105 	/* Check dismantle on the device hasn't started, otherwise deny the
106 	 * operation.
107 	 */
108 	if (!dev_isalive(ndev)) {
109 		rtnl_unlock();
110 		ret = -ENODEV;
111 		goto unbreak;
112 	}
113 	/* We are now sure the device dismantle hasn't started nor that it can
114 	 * start before we exit the locking section as we hold the rtnl lock.
115 	 * There's no need to keep unbreaking the sysfs protection nor to hold
116 	 * a net device reference from that point; that was only needed to take
117 	 * the rtnl lock.
118 	 */
119 unbreak:
120 	sysfs_unbreak_active_protection(kn);
121 	dev_put(ndev);
122 
123 	return ret;
124 }
125 
126 /* use same locking rules as GIF* ioctl's */
127 static ssize_t netdev_show(const struct device *dev,
128 			   struct device_attribute *attr, char *buf,
129 			   ssize_t (*format)(const struct net_device *, char *))
130 {
131 	struct net_device *ndev = to_net_dev(dev);
132 	ssize_t ret = -EINVAL;
133 
134 	rcu_read_lock();
135 	if (dev_isalive(ndev))
136 		ret = (*format)(ndev, buf);
137 	rcu_read_unlock();
138 
139 	return ret;
140 }
141 
142 /* generate a show function for simple field */
143 #define NETDEVICE_SHOW(field, format_string)				\
144 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
145 {									\
146 	return sysfs_emit(buf, format_string, READ_ONCE(dev->field));		\
147 }									\
148 static ssize_t field##_show(struct device *dev,				\
149 			    struct device_attribute *attr, char *buf)	\
150 {									\
151 	return netdev_show(dev, attr, buf, format_##field);		\
152 }									\
153 
154 #define NETDEVICE_SHOW_RO(field, format_string)				\
155 NETDEVICE_SHOW(field, format_string);					\
156 static DEVICE_ATTR_RO(field)
157 
158 #define NETDEVICE_SHOW_RW(field, format_string)				\
159 NETDEVICE_SHOW(field, format_string);					\
160 static DEVICE_ATTR_RW(field)
161 
162 /* use same locking and permission rules as SIF* ioctl's */
163 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
164 			    const char *buf, size_t len,
165 			    int (*set)(struct net_device *, unsigned long))
166 {
167 	struct net_device *netdev = to_net_dev(dev);
168 	struct net *net = dev_net(netdev);
169 	unsigned long new;
170 	int ret;
171 
172 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
173 		return -EPERM;
174 
175 	ret = kstrtoul(buf, 0, &new);
176 	if (ret)
177 		goto err;
178 
179 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
180 	if (ret)
181 		goto err;
182 
183 	ret = (*set)(netdev, new);
184 	if (ret == 0)
185 		ret = len;
186 
187 	rtnl_unlock();
188  err:
189 	return ret;
190 }
191 
192 /* Same as netdev_store() but takes netdev_lock() instead of rtnl_lock() */
193 static ssize_t
194 netdev_lock_store(struct device *dev, struct device_attribute *attr,
195 		  const char *buf, size_t len,
196 		  int (*set)(struct net_device *, unsigned long))
197 {
198 	struct net_device *netdev = to_net_dev(dev);
199 	struct net *net = dev_net(netdev);
200 	unsigned long new;
201 	int ret;
202 
203 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
204 		return -EPERM;
205 
206 	ret = kstrtoul(buf, 0, &new);
207 	if (ret)
208 		return ret;
209 
210 	netdev_lock(netdev);
211 
212 	if (dev_isalive(netdev)) {
213 		ret = (*set)(netdev, new);
214 		if (ret == 0)
215 			ret = len;
216 	}
217 	netdev_unlock(netdev);
218 
219 	return ret;
220 }
221 
222 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
223 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
224 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
225 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
226 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
227 NETDEVICE_SHOW_RO(type, fmt_dec);
228 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
229 
230 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
231 			   char *buf)
232 {
233 	struct net_device *ndev = to_net_dev(dev);
234 
235 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
236 }
237 static DEVICE_ATTR_RO(iflink);
238 
239 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
240 {
241 	return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
242 }
243 
244 static ssize_t name_assign_type_show(struct device *dev,
245 				     struct device_attribute *attr,
246 				     char *buf)
247 {
248 	struct net_device *ndev = to_net_dev(dev);
249 	ssize_t ret = -EINVAL;
250 
251 	if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
252 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
253 
254 	return ret;
255 }
256 static DEVICE_ATTR_RO(name_assign_type);
257 
258 /* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */
259 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
260 			    char *buf)
261 {
262 	struct net_device *ndev = to_net_dev(dev);
263 	ssize_t ret = -EINVAL;
264 
265 	down_read(&dev_addr_sem);
266 
267 	rcu_read_lock();
268 	if (dev_isalive(ndev))
269 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
270 	rcu_read_unlock();
271 
272 	up_read(&dev_addr_sem);
273 	return ret;
274 }
275 static DEVICE_ATTR_RO(address);
276 
277 static ssize_t broadcast_show(struct device *dev,
278 			      struct device_attribute *attr, char *buf)
279 {
280 	struct net_device *ndev = to_net_dev(dev);
281 	int ret = -EINVAL;
282 
283 	rcu_read_lock();
284 	if (dev_isalive(ndev))
285 		ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
286 	rcu_read_unlock();
287 	return ret;
288 }
289 static DEVICE_ATTR_RO(broadcast);
290 
291 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
292 {
293 	if (!netif_running(dev))
294 		return -EINVAL;
295 	return dev_change_carrier(dev, (bool)new_carrier);
296 }
297 
298 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
299 			     const char *buf, size_t len)
300 {
301 	struct net_device *netdev = to_net_dev(dev);
302 
303 	/* The check is also done in change_carrier; this helps returning early
304 	 * without hitting the locking section in netdev_store.
305 	 */
306 	if (!netdev->netdev_ops->ndo_change_carrier)
307 		return -EOPNOTSUPP;
308 
309 	return netdev_store(dev, attr, buf, len, change_carrier);
310 }
311 
312 static ssize_t carrier_show(struct device *dev,
313 			    struct device_attribute *attr, char *buf)
314 {
315 	struct net_device *netdev = to_net_dev(dev);
316 	int ret = -EINVAL;
317 
318 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
319 	if (ret)
320 		return ret;
321 
322 	if (netif_running(netdev)) {
323 		/* Synchronize carrier state with link watch,
324 		 * see also rtnl_getlink().
325 		 */
326 		linkwatch_sync_dev(netdev);
327 
328 		ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
329 	}
330 
331 	rtnl_unlock();
332 	return ret;
333 }
334 static DEVICE_ATTR_RW(carrier);
335 
336 static ssize_t speed_show(struct device *dev,
337 			  struct device_attribute *attr, char *buf)
338 {
339 	struct net_device *netdev = to_net_dev(dev);
340 	int ret = -EINVAL;
341 
342 	/* The check is also done in __ethtool_get_link_ksettings; this helps
343 	 * returning early without hitting the locking section below.
344 	 */
345 	if (!netdev->ethtool_ops->get_link_ksettings)
346 		return ret;
347 
348 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
349 	if (ret)
350 		return ret;
351 
352 	if (netif_running(netdev)) {
353 		struct ethtool_link_ksettings cmd;
354 
355 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
356 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
357 	}
358 	rtnl_unlock();
359 	return ret;
360 }
361 static DEVICE_ATTR_RO(speed);
362 
363 static ssize_t duplex_show(struct device *dev,
364 			   struct device_attribute *attr, char *buf)
365 {
366 	struct net_device *netdev = to_net_dev(dev);
367 	int ret = -EINVAL;
368 
369 	/* The check is also done in __ethtool_get_link_ksettings; this helps
370 	 * returning early without hitting the locking section below.
371 	 */
372 	if (!netdev->ethtool_ops->get_link_ksettings)
373 		return ret;
374 
375 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
376 	if (ret)
377 		return ret;
378 
379 	if (netif_running(netdev)) {
380 		struct ethtool_link_ksettings cmd;
381 
382 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
383 			const char *duplex;
384 
385 			switch (cmd.base.duplex) {
386 			case DUPLEX_HALF:
387 				duplex = "half";
388 				break;
389 			case DUPLEX_FULL:
390 				duplex = "full";
391 				break;
392 			default:
393 				duplex = "unknown";
394 				break;
395 			}
396 			ret = sysfs_emit(buf, "%s\n", duplex);
397 		}
398 	}
399 	rtnl_unlock();
400 	return ret;
401 }
402 static DEVICE_ATTR_RO(duplex);
403 
404 static ssize_t testing_show(struct device *dev,
405 			    struct device_attribute *attr, char *buf)
406 {
407 	struct net_device *netdev = to_net_dev(dev);
408 
409 	if (netif_running(netdev))
410 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
411 
412 	return -EINVAL;
413 }
414 static DEVICE_ATTR_RO(testing);
415 
416 static ssize_t dormant_show(struct device *dev,
417 			    struct device_attribute *attr, char *buf)
418 {
419 	struct net_device *netdev = to_net_dev(dev);
420 
421 	if (netif_running(netdev))
422 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
423 
424 	return -EINVAL;
425 }
426 static DEVICE_ATTR_RO(dormant);
427 
428 static const char *const operstates[] = {
429 	"unknown",
430 	"notpresent", /* currently unused */
431 	"down",
432 	"lowerlayerdown",
433 	"testing",
434 	"dormant",
435 	"up"
436 };
437 
438 static ssize_t operstate_show(struct device *dev,
439 			      struct device_attribute *attr, char *buf)
440 {
441 	const struct net_device *netdev = to_net_dev(dev);
442 	unsigned char operstate;
443 
444 	operstate = READ_ONCE(netdev->operstate);
445 	if (!netif_running(netdev))
446 		operstate = IF_OPER_DOWN;
447 
448 	if (operstate >= ARRAY_SIZE(operstates))
449 		return -EINVAL; /* should not happen */
450 
451 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
452 }
453 static DEVICE_ATTR_RO(operstate);
454 
455 static ssize_t carrier_changes_show(struct device *dev,
456 				    struct device_attribute *attr,
457 				    char *buf)
458 {
459 	struct net_device *netdev = to_net_dev(dev);
460 
461 	return sysfs_emit(buf, fmt_dec,
462 			  atomic_read(&netdev->carrier_up_count) +
463 			  atomic_read(&netdev->carrier_down_count));
464 }
465 static DEVICE_ATTR_RO(carrier_changes);
466 
467 static ssize_t carrier_up_count_show(struct device *dev,
468 				     struct device_attribute *attr,
469 				     char *buf)
470 {
471 	struct net_device *netdev = to_net_dev(dev);
472 
473 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
474 }
475 static DEVICE_ATTR_RO(carrier_up_count);
476 
477 static ssize_t carrier_down_count_show(struct device *dev,
478 				       struct device_attribute *attr,
479 				       char *buf)
480 {
481 	struct net_device *netdev = to_net_dev(dev);
482 
483 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
484 }
485 static DEVICE_ATTR_RO(carrier_down_count);
486 
487 /* read-write attributes */
488 
489 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
490 {
491 	return dev_set_mtu(dev, (int)new_mtu);
492 }
493 
494 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
495 			 const char *buf, size_t len)
496 {
497 	return netdev_store(dev, attr, buf, len, change_mtu);
498 }
499 NETDEVICE_SHOW_RW(mtu, fmt_dec);
500 
501 static int change_flags(struct net_device *dev, unsigned long new_flags)
502 {
503 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
504 }
505 
506 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
507 			   const char *buf, size_t len)
508 {
509 	return netdev_store(dev, attr, buf, len, change_flags);
510 }
511 NETDEVICE_SHOW_RW(flags, fmt_hex);
512 
513 static ssize_t tx_queue_len_store(struct device *dev,
514 				  struct device_attribute *attr,
515 				  const char *buf, size_t len)
516 {
517 	if (!capable(CAP_NET_ADMIN))
518 		return -EPERM;
519 
520 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
521 }
522 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
523 
524 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
525 {
526 	netdev_set_gro_flush_timeout(dev, val);
527 	return 0;
528 }
529 
530 static ssize_t gro_flush_timeout_store(struct device *dev,
531 				       struct device_attribute *attr,
532 				       const char *buf, size_t len)
533 {
534 	if (!capable(CAP_NET_ADMIN))
535 		return -EPERM;
536 
537 	return netdev_lock_store(dev, attr, buf, len, change_gro_flush_timeout);
538 }
539 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
540 
541 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
542 {
543 	if (val > S32_MAX)
544 		return -ERANGE;
545 
546 	netdev_set_defer_hard_irqs(dev, (u32)val);
547 	return 0;
548 }
549 
550 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
551 					  struct device_attribute *attr,
552 					  const char *buf, size_t len)
553 {
554 	if (!capable(CAP_NET_ADMIN))
555 		return -EPERM;
556 
557 	return netdev_lock_store(dev, attr, buf, len,
558 				 change_napi_defer_hard_irqs);
559 }
560 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
561 
562 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
563 			     const char *buf, size_t len)
564 {
565 	struct net_device *netdev = to_net_dev(dev);
566 	struct net *net = dev_net(netdev);
567 	size_t count = len;
568 	ssize_t ret = 0;
569 
570 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
571 		return -EPERM;
572 
573 	/* ignore trailing newline */
574 	if (len >  0 && buf[len - 1] == '\n')
575 		--count;
576 
577 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
578 	if (ret)
579 		return ret;
580 
581 	ret = dev_set_alias(netdev, buf, count);
582 	if (ret < 0)
583 		goto err;
584 	ret = len;
585 	netdev_state_change(netdev);
586 err:
587 	rtnl_unlock();
588 
589 	return ret;
590 }
591 
592 static ssize_t ifalias_show(struct device *dev,
593 			    struct device_attribute *attr, char *buf)
594 {
595 	const struct net_device *netdev = to_net_dev(dev);
596 	char tmp[IFALIASZ];
597 	ssize_t ret = 0;
598 
599 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
600 	if (ret > 0)
601 		ret = sysfs_emit(buf, "%s\n", tmp);
602 	return ret;
603 }
604 static DEVICE_ATTR_RW(ifalias);
605 
606 static int change_group(struct net_device *dev, unsigned long new_group)
607 {
608 	dev_set_group(dev, (int)new_group);
609 	return 0;
610 }
611 
612 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
613 			   const char *buf, size_t len)
614 {
615 	return netdev_store(dev, attr, buf, len, change_group);
616 }
617 NETDEVICE_SHOW(group, fmt_dec);
618 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
619 
620 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
621 {
622 	return dev_change_proto_down(dev, (bool)proto_down);
623 }
624 
625 static ssize_t proto_down_store(struct device *dev,
626 				struct device_attribute *attr,
627 				const char *buf, size_t len)
628 {
629 	return netdev_store(dev, attr, buf, len, change_proto_down);
630 }
631 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
632 
633 static ssize_t phys_port_id_show(struct device *dev,
634 				 struct device_attribute *attr, char *buf)
635 {
636 	struct net_device *netdev = to_net_dev(dev);
637 	struct netdev_phys_item_id ppid;
638 	ssize_t ret = -EINVAL;
639 
640 	/* The check is also done in dev_get_phys_port_id; this helps returning
641 	 * early without hitting the locking section below.
642 	 */
643 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
644 		return -EOPNOTSUPP;
645 
646 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
647 	if (ret)
648 		return ret;
649 
650 	ret = dev_get_phys_port_id(netdev, &ppid);
651 	if (!ret)
652 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
653 
654 	rtnl_unlock();
655 
656 	return ret;
657 }
658 static DEVICE_ATTR_RO(phys_port_id);
659 
660 static ssize_t phys_port_name_show(struct device *dev,
661 				   struct device_attribute *attr, char *buf)
662 {
663 	struct net_device *netdev = to_net_dev(dev);
664 	ssize_t ret = -EINVAL;
665 	char name[IFNAMSIZ];
666 
667 	/* The checks are also done in dev_get_phys_port_name; this helps
668 	 * returning early without hitting the locking section below.
669 	 */
670 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
671 	    !netdev->devlink_port)
672 		return -EOPNOTSUPP;
673 
674 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
675 	if (ret)
676 		return ret;
677 
678 	ret = dev_get_phys_port_name(netdev, name, sizeof(name));
679 	if (!ret)
680 		ret = sysfs_emit(buf, "%s\n", name);
681 
682 	rtnl_unlock();
683 
684 	return ret;
685 }
686 static DEVICE_ATTR_RO(phys_port_name);
687 
688 static ssize_t phys_switch_id_show(struct device *dev,
689 				   struct device_attribute *attr, char *buf)
690 {
691 	struct net_device *netdev = to_net_dev(dev);
692 	struct netdev_phys_item_id ppid = { };
693 	ssize_t ret = -EINVAL;
694 
695 	/* The checks are also done in dev_get_phys_port_name; this helps
696 	 * returning early without hitting the locking section below. This works
697 	 * because recurse is false when calling dev_get_port_parent_id.
698 	 */
699 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
700 	    !netdev->devlink_port)
701 		return -EOPNOTSUPP;
702 
703 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
704 	if (ret)
705 		return ret;
706 
707 	ret = dev_get_port_parent_id(netdev, &ppid, false);
708 	if (!ret)
709 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
710 
711 	rtnl_unlock();
712 
713 	return ret;
714 }
715 static DEVICE_ATTR_RO(phys_switch_id);
716 
717 static ssize_t threaded_show(struct device *dev,
718 			     struct device_attribute *attr, char *buf)
719 {
720 	struct net_device *netdev = to_net_dev(dev);
721 	ssize_t ret = -EINVAL;
722 
723 	rcu_read_lock();
724 
725 	if (dev_isalive(netdev))
726 		ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
727 
728 	rcu_read_unlock();
729 
730 	return ret;
731 }
732 
733 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
734 {
735 	int ret;
736 
737 	if (list_empty(&dev->napi_list))
738 		return -EOPNOTSUPP;
739 
740 	if (val != 0 && val != 1)
741 		return -EOPNOTSUPP;
742 
743 	ret = dev_set_threaded(dev, val);
744 
745 	return ret;
746 }
747 
748 static ssize_t threaded_store(struct device *dev,
749 			      struct device_attribute *attr,
750 			      const char *buf, size_t len)
751 {
752 	return netdev_lock_store(dev, attr, buf, len, modify_napi_threaded);
753 }
754 static DEVICE_ATTR_RW(threaded);
755 
756 static struct attribute *net_class_attrs[] __ro_after_init = {
757 	&dev_attr_netdev_group.attr,
758 	&dev_attr_type.attr,
759 	&dev_attr_dev_id.attr,
760 	&dev_attr_dev_port.attr,
761 	&dev_attr_iflink.attr,
762 	&dev_attr_ifindex.attr,
763 	&dev_attr_name_assign_type.attr,
764 	&dev_attr_addr_assign_type.attr,
765 	&dev_attr_addr_len.attr,
766 	&dev_attr_link_mode.attr,
767 	&dev_attr_address.attr,
768 	&dev_attr_broadcast.attr,
769 	&dev_attr_speed.attr,
770 	&dev_attr_duplex.attr,
771 	&dev_attr_dormant.attr,
772 	&dev_attr_testing.attr,
773 	&dev_attr_operstate.attr,
774 	&dev_attr_carrier_changes.attr,
775 	&dev_attr_ifalias.attr,
776 	&dev_attr_carrier.attr,
777 	&dev_attr_mtu.attr,
778 	&dev_attr_flags.attr,
779 	&dev_attr_tx_queue_len.attr,
780 	&dev_attr_gro_flush_timeout.attr,
781 	&dev_attr_napi_defer_hard_irqs.attr,
782 	&dev_attr_phys_port_id.attr,
783 	&dev_attr_phys_port_name.attr,
784 	&dev_attr_phys_switch_id.attr,
785 	&dev_attr_proto_down.attr,
786 	&dev_attr_carrier_up_count.attr,
787 	&dev_attr_carrier_down_count.attr,
788 	&dev_attr_threaded.attr,
789 	NULL,
790 };
791 ATTRIBUTE_GROUPS(net_class);
792 
793 /* Show a given an attribute in the statistics group */
794 static ssize_t netstat_show(const struct device *d,
795 			    struct device_attribute *attr, char *buf,
796 			    unsigned long offset)
797 {
798 	struct net_device *dev = to_net_dev(d);
799 	ssize_t ret = -EINVAL;
800 
801 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
802 		offset % sizeof(u64) != 0);
803 
804 	rcu_read_lock();
805 	if (dev_isalive(dev)) {
806 		struct rtnl_link_stats64 temp;
807 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
808 
809 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
810 	}
811 	rcu_read_unlock();
812 	return ret;
813 }
814 
815 /* generate a read-only statistics attribute */
816 #define NETSTAT_ENTRY(name)						\
817 static ssize_t name##_show(struct device *d,				\
818 			   struct device_attribute *attr, char *buf)	\
819 {									\
820 	return netstat_show(d, attr, buf,				\
821 			    offsetof(struct rtnl_link_stats64, name));	\
822 }									\
823 static DEVICE_ATTR_RO(name)
824 
825 NETSTAT_ENTRY(rx_packets);
826 NETSTAT_ENTRY(tx_packets);
827 NETSTAT_ENTRY(rx_bytes);
828 NETSTAT_ENTRY(tx_bytes);
829 NETSTAT_ENTRY(rx_errors);
830 NETSTAT_ENTRY(tx_errors);
831 NETSTAT_ENTRY(rx_dropped);
832 NETSTAT_ENTRY(tx_dropped);
833 NETSTAT_ENTRY(multicast);
834 NETSTAT_ENTRY(collisions);
835 NETSTAT_ENTRY(rx_length_errors);
836 NETSTAT_ENTRY(rx_over_errors);
837 NETSTAT_ENTRY(rx_crc_errors);
838 NETSTAT_ENTRY(rx_frame_errors);
839 NETSTAT_ENTRY(rx_fifo_errors);
840 NETSTAT_ENTRY(rx_missed_errors);
841 NETSTAT_ENTRY(tx_aborted_errors);
842 NETSTAT_ENTRY(tx_carrier_errors);
843 NETSTAT_ENTRY(tx_fifo_errors);
844 NETSTAT_ENTRY(tx_heartbeat_errors);
845 NETSTAT_ENTRY(tx_window_errors);
846 NETSTAT_ENTRY(rx_compressed);
847 NETSTAT_ENTRY(tx_compressed);
848 NETSTAT_ENTRY(rx_nohandler);
849 
850 static struct attribute *netstat_attrs[] __ro_after_init = {
851 	&dev_attr_rx_packets.attr,
852 	&dev_attr_tx_packets.attr,
853 	&dev_attr_rx_bytes.attr,
854 	&dev_attr_tx_bytes.attr,
855 	&dev_attr_rx_errors.attr,
856 	&dev_attr_tx_errors.attr,
857 	&dev_attr_rx_dropped.attr,
858 	&dev_attr_tx_dropped.attr,
859 	&dev_attr_multicast.attr,
860 	&dev_attr_collisions.attr,
861 	&dev_attr_rx_length_errors.attr,
862 	&dev_attr_rx_over_errors.attr,
863 	&dev_attr_rx_crc_errors.attr,
864 	&dev_attr_rx_frame_errors.attr,
865 	&dev_attr_rx_fifo_errors.attr,
866 	&dev_attr_rx_missed_errors.attr,
867 	&dev_attr_tx_aborted_errors.attr,
868 	&dev_attr_tx_carrier_errors.attr,
869 	&dev_attr_tx_fifo_errors.attr,
870 	&dev_attr_tx_heartbeat_errors.attr,
871 	&dev_attr_tx_window_errors.attr,
872 	&dev_attr_rx_compressed.attr,
873 	&dev_attr_tx_compressed.attr,
874 	&dev_attr_rx_nohandler.attr,
875 	NULL
876 };
877 
878 static const struct attribute_group netstat_group = {
879 	.name  = "statistics",
880 	.attrs  = netstat_attrs,
881 };
882 
883 static struct attribute *wireless_attrs[] = {
884 	NULL
885 };
886 
887 static const struct attribute_group wireless_group = {
888 	.name = "wireless",
889 	.attrs = wireless_attrs,
890 };
891 
892 static bool wireless_group_needed(struct net_device *ndev)
893 {
894 #if IS_ENABLED(CONFIG_CFG80211)
895 	if (ndev->ieee80211_ptr)
896 		return true;
897 #endif
898 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
899 	if (ndev->wireless_handlers)
900 		return true;
901 #endif
902 	return false;
903 }
904 
905 #else /* CONFIG_SYSFS */
906 #define net_class_groups	NULL
907 #endif /* CONFIG_SYSFS */
908 
909 #ifdef CONFIG_SYSFS
910 #define to_rx_queue_attr(_attr) \
911 	container_of(_attr, struct rx_queue_attribute, attr)
912 
913 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
914 
915 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
916 				  char *buf)
917 {
918 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
919 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
920 
921 	if (!attribute->show)
922 		return -EIO;
923 
924 	return attribute->show(queue, buf);
925 }
926 
927 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
928 				   const char *buf, size_t count)
929 {
930 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
931 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
932 
933 	if (!attribute->store)
934 		return -EIO;
935 
936 	return attribute->store(queue, buf, count);
937 }
938 
939 static const struct sysfs_ops rx_queue_sysfs_ops = {
940 	.show = rx_queue_attr_show,
941 	.store = rx_queue_attr_store,
942 };
943 
944 #ifdef CONFIG_RPS
945 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
946 {
947 	struct rps_map *map;
948 	cpumask_var_t mask;
949 	int i, len;
950 
951 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
952 		return -ENOMEM;
953 
954 	rcu_read_lock();
955 	map = rcu_dereference(queue->rps_map);
956 	if (map)
957 		for (i = 0; i < map->len; i++)
958 			cpumask_set_cpu(map->cpus[i], mask);
959 
960 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
961 	rcu_read_unlock();
962 	free_cpumask_var(mask);
963 
964 	return len < PAGE_SIZE ? len : -EINVAL;
965 }
966 
967 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
968 					cpumask_var_t mask)
969 {
970 	static DEFINE_MUTEX(rps_map_mutex);
971 	struct rps_map *old_map, *map;
972 	int cpu, i;
973 
974 	map = kzalloc(max_t(unsigned int,
975 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
976 		      GFP_KERNEL);
977 	if (!map)
978 		return -ENOMEM;
979 
980 	i = 0;
981 	for_each_cpu_and(cpu, mask, cpu_online_mask)
982 		map->cpus[i++] = cpu;
983 
984 	if (i) {
985 		map->len = i;
986 	} else {
987 		kfree(map);
988 		map = NULL;
989 	}
990 
991 	mutex_lock(&rps_map_mutex);
992 	old_map = rcu_dereference_protected(queue->rps_map,
993 					    mutex_is_locked(&rps_map_mutex));
994 	rcu_assign_pointer(queue->rps_map, map);
995 
996 	if (map)
997 		static_branch_inc(&rps_needed);
998 	if (old_map)
999 		static_branch_dec(&rps_needed);
1000 
1001 	mutex_unlock(&rps_map_mutex);
1002 
1003 	if (old_map)
1004 		kfree_rcu(old_map, rcu);
1005 	return 0;
1006 }
1007 
1008 int rps_cpumask_housekeeping(struct cpumask *mask)
1009 {
1010 	if (!cpumask_empty(mask)) {
1011 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
1012 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
1013 		if (cpumask_empty(mask))
1014 			return -EINVAL;
1015 	}
1016 	return 0;
1017 }
1018 
1019 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
1020 			     const char *buf, size_t len)
1021 {
1022 	cpumask_var_t mask;
1023 	int err;
1024 
1025 	if (!capable(CAP_NET_ADMIN))
1026 		return -EPERM;
1027 
1028 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1029 		return -ENOMEM;
1030 
1031 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1032 	if (err)
1033 		goto out;
1034 
1035 	err = rps_cpumask_housekeeping(mask);
1036 	if (err)
1037 		goto out;
1038 
1039 	err = netdev_rx_queue_set_rps_mask(queue, mask);
1040 
1041 out:
1042 	free_cpumask_var(mask);
1043 	return err ? : len;
1044 }
1045 
1046 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1047 					   char *buf)
1048 {
1049 	struct rps_dev_flow_table *flow_table;
1050 	unsigned long val = 0;
1051 
1052 	rcu_read_lock();
1053 	flow_table = rcu_dereference(queue->rps_flow_table);
1054 	if (flow_table)
1055 		val = (unsigned long)flow_table->mask + 1;
1056 	rcu_read_unlock();
1057 
1058 	return sysfs_emit(buf, "%lu\n", val);
1059 }
1060 
1061 static void rps_dev_flow_table_release(struct rcu_head *rcu)
1062 {
1063 	struct rps_dev_flow_table *table = container_of(rcu,
1064 	    struct rps_dev_flow_table, rcu);
1065 	vfree(table);
1066 }
1067 
1068 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1069 					    const char *buf, size_t len)
1070 {
1071 	unsigned long mask, count;
1072 	struct rps_dev_flow_table *table, *old_table;
1073 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
1074 	int rc;
1075 
1076 	if (!capable(CAP_NET_ADMIN))
1077 		return -EPERM;
1078 
1079 	rc = kstrtoul(buf, 0, &count);
1080 	if (rc < 0)
1081 		return rc;
1082 
1083 	if (count) {
1084 		mask = count - 1;
1085 		/* mask = roundup_pow_of_two(count) - 1;
1086 		 * without overflows...
1087 		 */
1088 		while ((mask | (mask >> 1)) != mask)
1089 			mask |= (mask >> 1);
1090 		/* On 64 bit arches, must check mask fits in table->mask (u32),
1091 		 * and on 32bit arches, must check
1092 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
1093 		 */
1094 #if BITS_PER_LONG > 32
1095 		if (mask > (unsigned long)(u32)mask)
1096 			return -EINVAL;
1097 #else
1098 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
1099 				/ sizeof(struct rps_dev_flow)) {
1100 			/* Enforce a limit to prevent overflow */
1101 			return -EINVAL;
1102 		}
1103 #endif
1104 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
1105 		if (!table)
1106 			return -ENOMEM;
1107 
1108 		table->mask = mask;
1109 		for (count = 0; count <= mask; count++)
1110 			table->flows[count].cpu = RPS_NO_CPU;
1111 	} else {
1112 		table = NULL;
1113 	}
1114 
1115 	spin_lock(&rps_dev_flow_lock);
1116 	old_table = rcu_dereference_protected(queue->rps_flow_table,
1117 					      lockdep_is_held(&rps_dev_flow_lock));
1118 	rcu_assign_pointer(queue->rps_flow_table, table);
1119 	spin_unlock(&rps_dev_flow_lock);
1120 
1121 	if (old_table)
1122 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1123 
1124 	return len;
1125 }
1126 
1127 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1128 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1129 
1130 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1131 	= __ATTR(rps_flow_cnt, 0644,
1132 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1133 #endif /* CONFIG_RPS */
1134 
1135 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1136 #ifdef CONFIG_RPS
1137 	&rps_cpus_attribute.attr,
1138 	&rps_dev_flow_table_cnt_attribute.attr,
1139 #endif
1140 	NULL
1141 };
1142 ATTRIBUTE_GROUPS(rx_queue_default);
1143 
1144 static void rx_queue_release(struct kobject *kobj)
1145 {
1146 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1147 #ifdef CONFIG_RPS
1148 	struct rps_map *map;
1149 	struct rps_dev_flow_table *flow_table;
1150 
1151 	map = rcu_dereference_protected(queue->rps_map, 1);
1152 	if (map) {
1153 		RCU_INIT_POINTER(queue->rps_map, NULL);
1154 		kfree_rcu(map, rcu);
1155 	}
1156 
1157 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1158 	if (flow_table) {
1159 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1160 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1161 	}
1162 #endif
1163 
1164 	memset(kobj, 0, sizeof(*kobj));
1165 	netdev_put(queue->dev, &queue->dev_tracker);
1166 }
1167 
1168 static const void *rx_queue_namespace(const struct kobject *kobj)
1169 {
1170 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1171 	struct device *dev = &queue->dev->dev;
1172 	const void *ns = NULL;
1173 
1174 	if (dev->class && dev->class->namespace)
1175 		ns = dev->class->namespace(dev);
1176 
1177 	return ns;
1178 }
1179 
1180 static void rx_queue_get_ownership(const struct kobject *kobj,
1181 				   kuid_t *uid, kgid_t *gid)
1182 {
1183 	const struct net *net = rx_queue_namespace(kobj);
1184 
1185 	net_ns_get_ownership(net, uid, gid);
1186 }
1187 
1188 static const struct kobj_type rx_queue_ktype = {
1189 	.sysfs_ops = &rx_queue_sysfs_ops,
1190 	.release = rx_queue_release,
1191 	.namespace = rx_queue_namespace,
1192 	.get_ownership = rx_queue_get_ownership,
1193 };
1194 
1195 static int rx_queue_default_mask(struct net_device *dev,
1196 				 struct netdev_rx_queue *queue)
1197 {
1198 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1199 	struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1200 
1201 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1202 		return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1203 #endif
1204 	return 0;
1205 }
1206 
1207 static int rx_queue_add_kobject(struct net_device *dev, int index)
1208 {
1209 	struct netdev_rx_queue *queue = dev->_rx + index;
1210 	struct kobject *kobj = &queue->kobj;
1211 	int error = 0;
1212 
1213 	/* Rx queues are cleared in rx_queue_release to allow later
1214 	 * re-registration. This is triggered when their kobj refcount is
1215 	 * dropped.
1216 	 *
1217 	 * If a queue is removed while both a read (or write) operation and a
1218 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1219 	 * it might happen that the re-addition will execute before the read,
1220 	 * making the initial removal to never happen (queue's kobj refcount
1221 	 * won't drop enough because of the pending read). In such rare case,
1222 	 * return to allow the removal operation to complete.
1223 	 */
1224 	if (unlikely(kobj->state_initialized)) {
1225 		netdev_warn_once(dev, "Cannot re-add rx queues before their removal completed");
1226 		return -EAGAIN;
1227 	}
1228 
1229 	/* Kobject_put later will trigger rx_queue_release call which
1230 	 * decreases dev refcount: Take that reference here
1231 	 */
1232 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1233 
1234 	kobj->kset = dev->queues_kset;
1235 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1236 				     "rx-%u", index);
1237 	if (error)
1238 		goto err;
1239 
1240 	queue->groups = rx_queue_default_groups;
1241 	error = sysfs_create_groups(kobj, queue->groups);
1242 	if (error)
1243 		goto err;
1244 
1245 	if (dev->sysfs_rx_queue_group) {
1246 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1247 		if (error)
1248 			goto err_default_groups;
1249 	}
1250 
1251 	error = rx_queue_default_mask(dev, queue);
1252 	if (error)
1253 		goto err_default_groups;
1254 
1255 	kobject_uevent(kobj, KOBJ_ADD);
1256 
1257 	return error;
1258 
1259 err_default_groups:
1260 	sysfs_remove_groups(kobj, queue->groups);
1261 err:
1262 	kobject_put(kobj);
1263 	return error;
1264 }
1265 
1266 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1267 				 kgid_t kgid)
1268 {
1269 	struct netdev_rx_queue *queue = dev->_rx + index;
1270 	struct kobject *kobj = &queue->kobj;
1271 	int error;
1272 
1273 	error = sysfs_change_owner(kobj, kuid, kgid);
1274 	if (error)
1275 		return error;
1276 
1277 	if (dev->sysfs_rx_queue_group)
1278 		error = sysfs_group_change_owner(
1279 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1280 
1281 	return error;
1282 }
1283 #endif /* CONFIG_SYSFS */
1284 
1285 int
1286 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1287 {
1288 #ifdef CONFIG_SYSFS
1289 	int i;
1290 	int error = 0;
1291 
1292 #ifndef CONFIG_RPS
1293 	if (!dev->sysfs_rx_queue_group)
1294 		return 0;
1295 #endif
1296 	for (i = old_num; i < new_num; i++) {
1297 		error = rx_queue_add_kobject(dev, i);
1298 		if (error) {
1299 			new_num = old_num;
1300 			break;
1301 		}
1302 	}
1303 
1304 	while (--i >= new_num) {
1305 		struct netdev_rx_queue *queue = &dev->_rx[i];
1306 		struct kobject *kobj = &queue->kobj;
1307 
1308 		if (!refcount_read(&dev_net(dev)->ns.count))
1309 			kobj->uevent_suppress = 1;
1310 		if (dev->sysfs_rx_queue_group)
1311 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1312 		sysfs_remove_groups(kobj, queue->groups);
1313 		kobject_put(kobj);
1314 	}
1315 
1316 	return error;
1317 #else
1318 	return 0;
1319 #endif
1320 }
1321 
1322 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1323 				     kuid_t kuid, kgid_t kgid)
1324 {
1325 #ifdef CONFIG_SYSFS
1326 	int error = 0;
1327 	int i;
1328 
1329 #ifndef CONFIG_RPS
1330 	if (!dev->sysfs_rx_queue_group)
1331 		return 0;
1332 #endif
1333 	for (i = 0; i < num; i++) {
1334 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1335 		if (error)
1336 			break;
1337 	}
1338 
1339 	return error;
1340 #else
1341 	return 0;
1342 #endif
1343 }
1344 
1345 #ifdef CONFIG_SYSFS
1346 /*
1347  * netdev_queue sysfs structures and functions.
1348  */
1349 struct netdev_queue_attribute {
1350 	struct attribute attr;
1351 	ssize_t (*show)(struct kobject *kobj, struct attribute *attr,
1352 			struct netdev_queue *queue, char *buf);
1353 	ssize_t (*store)(struct kobject *kobj, struct attribute *attr,
1354 			 struct netdev_queue *queue, const char *buf,
1355 			 size_t len);
1356 };
1357 #define to_netdev_queue_attr(_attr) \
1358 	container_of(_attr, struct netdev_queue_attribute, attr)
1359 
1360 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1361 
1362 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1363 				      struct attribute *attr, char *buf)
1364 {
1365 	const struct netdev_queue_attribute *attribute
1366 		= to_netdev_queue_attr(attr);
1367 	struct netdev_queue *queue = to_netdev_queue(kobj);
1368 
1369 	if (!attribute->show)
1370 		return -EIO;
1371 
1372 	return attribute->show(kobj, attr, queue, buf);
1373 }
1374 
1375 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1376 				       struct attribute *attr,
1377 				       const char *buf, size_t count)
1378 {
1379 	const struct netdev_queue_attribute *attribute
1380 		= to_netdev_queue_attr(attr);
1381 	struct netdev_queue *queue = to_netdev_queue(kobj);
1382 
1383 	if (!attribute->store)
1384 		return -EIO;
1385 
1386 	return attribute->store(kobj, attr, queue, buf, count);
1387 }
1388 
1389 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1390 	.show = netdev_queue_attr_show,
1391 	.store = netdev_queue_attr_store,
1392 };
1393 
1394 static ssize_t tx_timeout_show(struct kobject *kobj, struct attribute *attr,
1395 			       struct netdev_queue *queue, char *buf)
1396 {
1397 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1398 
1399 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1400 }
1401 
1402 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1403 {
1404 	struct net_device *dev = queue->dev;
1405 	unsigned int i;
1406 
1407 	i = queue - dev->_tx;
1408 	BUG_ON(i >= dev->num_tx_queues);
1409 
1410 	return i;
1411 }
1412 
1413 static ssize_t traffic_class_show(struct kobject *kobj, struct attribute *attr,
1414 				  struct netdev_queue *queue, char *buf)
1415 {
1416 	struct net_device *dev = queue->dev;
1417 	int num_tc, tc, index, ret;
1418 
1419 	if (!netif_is_multiqueue(dev))
1420 		return -ENOENT;
1421 
1422 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1423 	if (ret)
1424 		return ret;
1425 
1426 	index = get_netdev_queue_index(queue);
1427 
1428 	/* If queue belongs to subordinate dev use its TC mapping */
1429 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1430 
1431 	num_tc = dev->num_tc;
1432 	tc = netdev_txq_to_tc(dev, index);
1433 
1434 	rtnl_unlock();
1435 
1436 	if (tc < 0)
1437 		return -EINVAL;
1438 
1439 	/* We can report the traffic class one of two ways:
1440 	 * Subordinate device traffic classes are reported with the traffic
1441 	 * class first, and then the subordinate class so for example TC0 on
1442 	 * subordinate device 2 will be reported as "0-2". If the queue
1443 	 * belongs to the root device it will be reported with just the
1444 	 * traffic class, so just "0" for TC 0 for example.
1445 	 */
1446 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1447 			    sysfs_emit(buf, "%d\n", tc);
1448 }
1449 
1450 #ifdef CONFIG_XPS
1451 static ssize_t tx_maxrate_show(struct kobject *kobj, struct attribute *attr,
1452 			       struct netdev_queue *queue, char *buf)
1453 {
1454 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1455 }
1456 
1457 static ssize_t tx_maxrate_store(struct kobject *kobj, struct attribute *attr,
1458 				struct netdev_queue *queue, const char *buf,
1459 				size_t len)
1460 {
1461 	int err, index = get_netdev_queue_index(queue);
1462 	struct net_device *dev = queue->dev;
1463 	u32 rate = 0;
1464 
1465 	if (!capable(CAP_NET_ADMIN))
1466 		return -EPERM;
1467 
1468 	/* The check is also done later; this helps returning early without
1469 	 * hitting the locking section below.
1470 	 */
1471 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1472 		return -EOPNOTSUPP;
1473 
1474 	err = kstrtou32(buf, 10, &rate);
1475 	if (err < 0)
1476 		return err;
1477 
1478 	err = sysfs_rtnl_lock(kobj, attr, dev);
1479 	if (err)
1480 		return err;
1481 
1482 	err = -EOPNOTSUPP;
1483 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1484 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1485 
1486 	if (!err) {
1487 		queue->tx_maxrate = rate;
1488 		rtnl_unlock();
1489 		return len;
1490 	}
1491 
1492 	rtnl_unlock();
1493 	return err;
1494 }
1495 
1496 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1497 	= __ATTR_RW(tx_maxrate);
1498 #endif
1499 
1500 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1501 	= __ATTR_RO(tx_timeout);
1502 
1503 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1504 	= __ATTR_RO(traffic_class);
1505 
1506 #ifdef CONFIG_BQL
1507 /*
1508  * Byte queue limits sysfs structures and functions.
1509  */
1510 static ssize_t bql_show(char *buf, unsigned int value)
1511 {
1512 	return sysfs_emit(buf, "%u\n", value);
1513 }
1514 
1515 static ssize_t bql_set(const char *buf, const size_t count,
1516 		       unsigned int *pvalue)
1517 {
1518 	unsigned int value;
1519 	int err;
1520 
1521 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1522 		value = DQL_MAX_LIMIT;
1523 	} else {
1524 		err = kstrtouint(buf, 10, &value);
1525 		if (err < 0)
1526 			return err;
1527 		if (value > DQL_MAX_LIMIT)
1528 			return -EINVAL;
1529 	}
1530 
1531 	*pvalue = value;
1532 
1533 	return count;
1534 }
1535 
1536 static ssize_t bql_show_hold_time(struct kobject *kobj, struct attribute *attr,
1537 				  struct netdev_queue *queue, char *buf)
1538 {
1539 	struct dql *dql = &queue->dql;
1540 
1541 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1542 }
1543 
1544 static ssize_t bql_set_hold_time(struct kobject *kobj, struct attribute *attr,
1545 				 struct netdev_queue *queue, const char *buf,
1546 				 size_t len)
1547 {
1548 	struct dql *dql = &queue->dql;
1549 	unsigned int value;
1550 	int err;
1551 
1552 	err = kstrtouint(buf, 10, &value);
1553 	if (err < 0)
1554 		return err;
1555 
1556 	dql->slack_hold_time = msecs_to_jiffies(value);
1557 
1558 	return len;
1559 }
1560 
1561 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1562 	= __ATTR(hold_time, 0644,
1563 		 bql_show_hold_time, bql_set_hold_time);
1564 
1565 static ssize_t bql_show_stall_thrs(struct kobject *kobj, struct attribute *attr,
1566 				   struct netdev_queue *queue, char *buf)
1567 {
1568 	struct dql *dql = &queue->dql;
1569 
1570 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1571 }
1572 
1573 static ssize_t bql_set_stall_thrs(struct kobject *kobj, struct attribute *attr,
1574 				  struct netdev_queue *queue, const char *buf,
1575 				  size_t len)
1576 {
1577 	struct dql *dql = &queue->dql;
1578 	unsigned int value;
1579 	int err;
1580 
1581 	err = kstrtouint(buf, 10, &value);
1582 	if (err < 0)
1583 		return err;
1584 
1585 	value = msecs_to_jiffies(value);
1586 	if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1587 		return -ERANGE;
1588 
1589 	if (!dql->stall_thrs && value)
1590 		dql->last_reap = jiffies;
1591 	/* Force last_reap to be live */
1592 	smp_wmb();
1593 	dql->stall_thrs = value;
1594 
1595 	return len;
1596 }
1597 
1598 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1599 	__ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1600 
1601 static ssize_t bql_show_stall_max(struct kobject *kobj, struct attribute *attr,
1602 				  struct netdev_queue *queue, char *buf)
1603 {
1604 	return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1605 }
1606 
1607 static ssize_t bql_set_stall_max(struct kobject *kobj, struct attribute *attr,
1608 				 struct netdev_queue *queue, const char *buf,
1609 				 size_t len)
1610 {
1611 	WRITE_ONCE(queue->dql.stall_max, 0);
1612 	return len;
1613 }
1614 
1615 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1616 	__ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1617 
1618 static ssize_t bql_show_stall_cnt(struct kobject *kobj, struct attribute *attr,
1619 				  struct netdev_queue *queue, char *buf)
1620 {
1621 	struct dql *dql = &queue->dql;
1622 
1623 	return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1624 }
1625 
1626 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1627 	__ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1628 
1629 static ssize_t bql_show_inflight(struct kobject *kobj, struct attribute *attr,
1630 				 struct netdev_queue *queue, char *buf)
1631 {
1632 	struct dql *dql = &queue->dql;
1633 
1634 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1635 }
1636 
1637 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1638 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1639 
1640 #define BQL_ATTR(NAME, FIELD)						\
1641 static ssize_t bql_show_ ## NAME(struct kobject *kobj,			\
1642 				 struct attribute *attr,		\
1643 				 struct netdev_queue *queue, char *buf)	\
1644 {									\
1645 	return bql_show(buf, queue->dql.FIELD);				\
1646 }									\
1647 									\
1648 static ssize_t bql_set_ ## NAME(struct kobject *kobj,			\
1649 				struct attribute *attr,			\
1650 				struct netdev_queue *queue,		\
1651 				const char *buf, size_t len)		\
1652 {									\
1653 	return bql_set(buf, len, &queue->dql.FIELD);			\
1654 }									\
1655 									\
1656 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1657 	= __ATTR(NAME, 0644,				\
1658 		 bql_show_ ## NAME, bql_set_ ## NAME)
1659 
1660 BQL_ATTR(limit, limit);
1661 BQL_ATTR(limit_max, max_limit);
1662 BQL_ATTR(limit_min, min_limit);
1663 
1664 static struct attribute *dql_attrs[] __ro_after_init = {
1665 	&bql_limit_attribute.attr,
1666 	&bql_limit_max_attribute.attr,
1667 	&bql_limit_min_attribute.attr,
1668 	&bql_hold_time_attribute.attr,
1669 	&bql_inflight_attribute.attr,
1670 	&bql_stall_thrs_attribute.attr,
1671 	&bql_stall_cnt_attribute.attr,
1672 	&bql_stall_max_attribute.attr,
1673 	NULL
1674 };
1675 
1676 static const struct attribute_group dql_group = {
1677 	.name  = "byte_queue_limits",
1678 	.attrs  = dql_attrs,
1679 };
1680 #else
1681 /* Fake declaration, all the code using it should be dead */
1682 static const struct attribute_group dql_group = {};
1683 #endif /* CONFIG_BQL */
1684 
1685 #ifdef CONFIG_XPS
1686 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1687 			      int tc, char *buf, enum xps_map_type type)
1688 {
1689 	struct xps_dev_maps *dev_maps;
1690 	unsigned long *mask;
1691 	unsigned int nr_ids;
1692 	int j, len;
1693 
1694 	rcu_read_lock();
1695 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1696 
1697 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1698 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1699 	 */
1700 	nr_ids = dev_maps ? dev_maps->nr_ids :
1701 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1702 
1703 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1704 	if (!mask) {
1705 		rcu_read_unlock();
1706 		return -ENOMEM;
1707 	}
1708 
1709 	if (!dev_maps || tc >= dev_maps->num_tc)
1710 		goto out_no_maps;
1711 
1712 	for (j = 0; j < nr_ids; j++) {
1713 		int i, tci = j * dev_maps->num_tc + tc;
1714 		struct xps_map *map;
1715 
1716 		map = rcu_dereference(dev_maps->attr_map[tci]);
1717 		if (!map)
1718 			continue;
1719 
1720 		for (i = map->len; i--;) {
1721 			if (map->queues[i] == index) {
1722 				__set_bit(j, mask);
1723 				break;
1724 			}
1725 		}
1726 	}
1727 out_no_maps:
1728 	rcu_read_unlock();
1729 
1730 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1731 	bitmap_free(mask);
1732 
1733 	return len < PAGE_SIZE ? len : -EINVAL;
1734 }
1735 
1736 static ssize_t xps_cpus_show(struct kobject *kobj, struct attribute *attr,
1737 			     struct netdev_queue *queue, char *buf)
1738 {
1739 	struct net_device *dev = queue->dev;
1740 	unsigned int index;
1741 	int len, tc, ret;
1742 
1743 	if (!netif_is_multiqueue(dev))
1744 		return -ENOENT;
1745 
1746 	index = get_netdev_queue_index(queue);
1747 
1748 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1749 	if (ret)
1750 		return ret;
1751 
1752 	/* If queue belongs to subordinate dev use its map */
1753 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1754 
1755 	tc = netdev_txq_to_tc(dev, index);
1756 	if (tc < 0) {
1757 		rtnl_unlock();
1758 		return -EINVAL;
1759 	}
1760 
1761 	/* Increase the net device refcnt to make sure it won't be freed while
1762 	 * xps_queue_show is running.
1763 	 */
1764 	dev_hold(dev);
1765 	rtnl_unlock();
1766 
1767 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1768 
1769 	dev_put(dev);
1770 	return len;
1771 }
1772 
1773 static ssize_t xps_cpus_store(struct kobject *kobj, struct attribute *attr,
1774 			      struct netdev_queue *queue, const char *buf,
1775 			      size_t len)
1776 {
1777 	struct net_device *dev = queue->dev;
1778 	unsigned int index;
1779 	cpumask_var_t mask;
1780 	int err;
1781 
1782 	if (!netif_is_multiqueue(dev))
1783 		return -ENOENT;
1784 
1785 	if (!capable(CAP_NET_ADMIN))
1786 		return -EPERM;
1787 
1788 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1789 		return -ENOMEM;
1790 
1791 	index = get_netdev_queue_index(queue);
1792 
1793 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1794 	if (err) {
1795 		free_cpumask_var(mask);
1796 		return err;
1797 	}
1798 
1799 	err = sysfs_rtnl_lock(kobj, attr, dev);
1800 	if (err) {
1801 		free_cpumask_var(mask);
1802 		return err;
1803 	}
1804 
1805 	err = netif_set_xps_queue(dev, mask, index);
1806 	rtnl_unlock();
1807 
1808 	free_cpumask_var(mask);
1809 
1810 	return err ? : len;
1811 }
1812 
1813 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1814 	= __ATTR_RW(xps_cpus);
1815 
1816 static ssize_t xps_rxqs_show(struct kobject *kobj, struct attribute *attr,
1817 			     struct netdev_queue *queue, char *buf)
1818 {
1819 	struct net_device *dev = queue->dev;
1820 	unsigned int index;
1821 	int tc, ret;
1822 
1823 	index = get_netdev_queue_index(queue);
1824 
1825 	ret = sysfs_rtnl_lock(kobj, attr, dev);
1826 	if (ret)
1827 		return ret;
1828 
1829 	tc = netdev_txq_to_tc(dev, index);
1830 
1831 	/* Increase the net device refcnt to make sure it won't be freed while
1832 	 * xps_queue_show is running.
1833 	 */
1834 	dev_hold(dev);
1835 	rtnl_unlock();
1836 
1837 	ret = tc >= 0 ? xps_queue_show(dev, index, tc, buf, XPS_RXQS) : -EINVAL;
1838 	dev_put(dev);
1839 	return ret;
1840 }
1841 
1842 static ssize_t xps_rxqs_store(struct kobject *kobj, struct attribute *attr,
1843 			      struct netdev_queue *queue, const char *buf,
1844 			      size_t len)
1845 {
1846 	struct net_device *dev = queue->dev;
1847 	struct net *net = dev_net(dev);
1848 	unsigned long *mask;
1849 	unsigned int index;
1850 	int err;
1851 
1852 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1853 		return -EPERM;
1854 
1855 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1856 	if (!mask)
1857 		return -ENOMEM;
1858 
1859 	index = get_netdev_queue_index(queue);
1860 
1861 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1862 	if (err) {
1863 		bitmap_free(mask);
1864 		return err;
1865 	}
1866 
1867 	err = sysfs_rtnl_lock(kobj, attr, dev);
1868 	if (err) {
1869 		bitmap_free(mask);
1870 		return err;
1871 	}
1872 
1873 	cpus_read_lock();
1874 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1875 	cpus_read_unlock();
1876 
1877 	rtnl_unlock();
1878 
1879 	bitmap_free(mask);
1880 	return err ? : len;
1881 }
1882 
1883 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1884 	= __ATTR_RW(xps_rxqs);
1885 #endif /* CONFIG_XPS */
1886 
1887 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1888 	&queue_trans_timeout.attr,
1889 	&queue_traffic_class.attr,
1890 #ifdef CONFIG_XPS
1891 	&xps_cpus_attribute.attr,
1892 	&xps_rxqs_attribute.attr,
1893 	&queue_tx_maxrate.attr,
1894 #endif
1895 	NULL
1896 };
1897 ATTRIBUTE_GROUPS(netdev_queue_default);
1898 
1899 static void netdev_queue_release(struct kobject *kobj)
1900 {
1901 	struct netdev_queue *queue = to_netdev_queue(kobj);
1902 
1903 	memset(kobj, 0, sizeof(*kobj));
1904 	netdev_put(queue->dev, &queue->dev_tracker);
1905 }
1906 
1907 static const void *netdev_queue_namespace(const struct kobject *kobj)
1908 {
1909 	struct netdev_queue *queue = to_netdev_queue(kobj);
1910 	struct device *dev = &queue->dev->dev;
1911 	const void *ns = NULL;
1912 
1913 	if (dev->class && dev->class->namespace)
1914 		ns = dev->class->namespace(dev);
1915 
1916 	return ns;
1917 }
1918 
1919 static void netdev_queue_get_ownership(const struct kobject *kobj,
1920 				       kuid_t *uid, kgid_t *gid)
1921 {
1922 	const struct net *net = netdev_queue_namespace(kobj);
1923 
1924 	net_ns_get_ownership(net, uid, gid);
1925 }
1926 
1927 static const struct kobj_type netdev_queue_ktype = {
1928 	.sysfs_ops = &netdev_queue_sysfs_ops,
1929 	.release = netdev_queue_release,
1930 	.namespace = netdev_queue_namespace,
1931 	.get_ownership = netdev_queue_get_ownership,
1932 };
1933 
1934 static bool netdev_uses_bql(const struct net_device *dev)
1935 {
1936 	if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
1937 		return false;
1938 
1939 	return IS_ENABLED(CONFIG_BQL);
1940 }
1941 
1942 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1943 {
1944 	struct netdev_queue *queue = dev->_tx + index;
1945 	struct kobject *kobj = &queue->kobj;
1946 	int error = 0;
1947 
1948 	/* Tx queues are cleared in netdev_queue_release to allow later
1949 	 * re-registration. This is triggered when their kobj refcount is
1950 	 * dropped.
1951 	 *
1952 	 * If a queue is removed while both a read (or write) operation and a
1953 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1954 	 * it might happen that the re-addition will execute before the read,
1955 	 * making the initial removal to never happen (queue's kobj refcount
1956 	 * won't drop enough because of the pending read). In such rare case,
1957 	 * return to allow the removal operation to complete.
1958 	 */
1959 	if (unlikely(kobj->state_initialized)) {
1960 		netdev_warn_once(dev, "Cannot re-add tx queues before their removal completed");
1961 		return -EAGAIN;
1962 	}
1963 
1964 	/* Kobject_put later will trigger netdev_queue_release call
1965 	 * which decreases dev refcount: Take that reference here
1966 	 */
1967 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1968 
1969 	kobj->kset = dev->queues_kset;
1970 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1971 				     "tx-%u", index);
1972 	if (error)
1973 		goto err;
1974 
1975 	queue->groups = netdev_queue_default_groups;
1976 	error = sysfs_create_groups(kobj, queue->groups);
1977 	if (error)
1978 		goto err;
1979 
1980 	if (netdev_uses_bql(dev)) {
1981 		error = sysfs_create_group(kobj, &dql_group);
1982 		if (error)
1983 			goto err_default_groups;
1984 	}
1985 
1986 	kobject_uevent(kobj, KOBJ_ADD);
1987 	return 0;
1988 
1989 err_default_groups:
1990 	sysfs_remove_groups(kobj, queue->groups);
1991 err:
1992 	kobject_put(kobj);
1993 	return error;
1994 }
1995 
1996 static int tx_queue_change_owner(struct net_device *ndev, int index,
1997 				 kuid_t kuid, kgid_t kgid)
1998 {
1999 	struct netdev_queue *queue = ndev->_tx + index;
2000 	struct kobject *kobj = &queue->kobj;
2001 	int error;
2002 
2003 	error = sysfs_change_owner(kobj, kuid, kgid);
2004 	if (error)
2005 		return error;
2006 
2007 	if (netdev_uses_bql(ndev))
2008 		error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
2009 
2010 	return error;
2011 }
2012 #endif /* CONFIG_SYSFS */
2013 
2014 int
2015 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
2016 {
2017 #ifdef CONFIG_SYSFS
2018 	int i;
2019 	int error = 0;
2020 
2021 	/* Tx queue kobjects are allowed to be updated when a device is being
2022 	 * unregistered, but solely to remove queues from qdiscs. Any path
2023 	 * adding queues should be fixed.
2024 	 */
2025 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
2026 	     "New queues can't be registered after device unregistration.");
2027 
2028 	for (i = old_num; i < new_num; i++) {
2029 		error = netdev_queue_add_kobject(dev, i);
2030 		if (error) {
2031 			new_num = old_num;
2032 			break;
2033 		}
2034 	}
2035 
2036 	while (--i >= new_num) {
2037 		struct netdev_queue *queue = dev->_tx + i;
2038 
2039 		if (!refcount_read(&dev_net(dev)->ns.count))
2040 			queue->kobj.uevent_suppress = 1;
2041 
2042 		if (netdev_uses_bql(dev))
2043 			sysfs_remove_group(&queue->kobj, &dql_group);
2044 
2045 		sysfs_remove_groups(&queue->kobj, queue->groups);
2046 		kobject_put(&queue->kobj);
2047 	}
2048 
2049 	return error;
2050 #else
2051 	return 0;
2052 #endif /* CONFIG_SYSFS */
2053 }
2054 
2055 static int net_tx_queue_change_owner(struct net_device *dev, int num,
2056 				     kuid_t kuid, kgid_t kgid)
2057 {
2058 #ifdef CONFIG_SYSFS
2059 	int error = 0;
2060 	int i;
2061 
2062 	for (i = 0; i < num; i++) {
2063 		error = tx_queue_change_owner(dev, i, kuid, kgid);
2064 		if (error)
2065 			break;
2066 	}
2067 
2068 	return error;
2069 #else
2070 	return 0;
2071 #endif /* CONFIG_SYSFS */
2072 }
2073 
2074 static int register_queue_kobjects(struct net_device *dev)
2075 {
2076 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
2077 
2078 #ifdef CONFIG_SYSFS
2079 	dev->queues_kset = kset_create_and_add("queues",
2080 					       NULL, &dev->dev.kobj);
2081 	if (!dev->queues_kset)
2082 		return -ENOMEM;
2083 	real_rx = dev->real_num_rx_queues;
2084 #endif
2085 	real_tx = dev->real_num_tx_queues;
2086 
2087 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
2088 	if (error)
2089 		goto error;
2090 	rxq = real_rx;
2091 
2092 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
2093 	if (error)
2094 		goto error;
2095 	txq = real_tx;
2096 
2097 	return 0;
2098 
2099 error:
2100 	netdev_queue_update_kobjects(dev, txq, 0);
2101 	net_rx_queue_update_kobjects(dev, rxq, 0);
2102 #ifdef CONFIG_SYSFS
2103 	kset_unregister(dev->queues_kset);
2104 #endif
2105 	return error;
2106 }
2107 
2108 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
2109 {
2110 	int error = 0, real_rx = 0, real_tx = 0;
2111 
2112 #ifdef CONFIG_SYSFS
2113 	if (ndev->queues_kset) {
2114 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
2115 		if (error)
2116 			return error;
2117 	}
2118 	real_rx = ndev->real_num_rx_queues;
2119 #endif
2120 	real_tx = ndev->real_num_tx_queues;
2121 
2122 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
2123 	if (error)
2124 		return error;
2125 
2126 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
2127 	if (error)
2128 		return error;
2129 
2130 	return 0;
2131 }
2132 
2133 static void remove_queue_kobjects(struct net_device *dev)
2134 {
2135 	int real_rx = 0, real_tx = 0;
2136 
2137 #ifdef CONFIG_SYSFS
2138 	real_rx = dev->real_num_rx_queues;
2139 #endif
2140 	real_tx = dev->real_num_tx_queues;
2141 
2142 	net_rx_queue_update_kobjects(dev, real_rx, 0);
2143 	netdev_queue_update_kobjects(dev, real_tx, 0);
2144 
2145 	dev->real_num_rx_queues = 0;
2146 	dev->real_num_tx_queues = 0;
2147 #ifdef CONFIG_SYSFS
2148 	kset_unregister(dev->queues_kset);
2149 #endif
2150 }
2151 
2152 static bool net_current_may_mount(void)
2153 {
2154 	struct net *net = current->nsproxy->net_ns;
2155 
2156 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
2157 }
2158 
2159 static void *net_grab_current_ns(void)
2160 {
2161 	struct net *ns = current->nsproxy->net_ns;
2162 #ifdef CONFIG_NET_NS
2163 	if (ns)
2164 		refcount_inc(&ns->passive);
2165 #endif
2166 	return ns;
2167 }
2168 
2169 static const void *net_initial_ns(void)
2170 {
2171 	return &init_net;
2172 }
2173 
2174 static const void *net_netlink_ns(struct sock *sk)
2175 {
2176 	return sock_net(sk);
2177 }
2178 
2179 const struct kobj_ns_type_operations net_ns_type_operations = {
2180 	.type = KOBJ_NS_TYPE_NET,
2181 	.current_may_mount = net_current_may_mount,
2182 	.grab_current_ns = net_grab_current_ns,
2183 	.netlink_ns = net_netlink_ns,
2184 	.initial_ns = net_initial_ns,
2185 	.drop_ns = net_drop_ns,
2186 };
2187 EXPORT_SYMBOL_GPL(net_ns_type_operations);
2188 
2189 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
2190 {
2191 	const struct net_device *dev = to_net_dev(d);
2192 	int retval;
2193 
2194 	/* pass interface to uevent. */
2195 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2196 	if (retval)
2197 		goto exit;
2198 
2199 	/* pass ifindex to uevent.
2200 	 * ifindex is useful as it won't change (interface name may change)
2201 	 * and is what RtNetlink uses natively.
2202 	 */
2203 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2204 
2205 exit:
2206 	return retval;
2207 }
2208 
2209 /*
2210  *	netdev_release -- destroy and free a dead device.
2211  *	Called when last reference to device kobject is gone.
2212  */
2213 static void netdev_release(struct device *d)
2214 {
2215 	struct net_device *dev = to_net_dev(d);
2216 
2217 	BUG_ON(dev->reg_state != NETREG_RELEASED);
2218 
2219 	/* no need to wait for rcu grace period:
2220 	 * device is dead and about to be freed.
2221 	 */
2222 	kfree(rcu_access_pointer(dev->ifalias));
2223 	kvfree(dev);
2224 }
2225 
2226 static const void *net_namespace(const struct device *d)
2227 {
2228 	const struct net_device *dev = to_net_dev(d);
2229 
2230 	return dev_net(dev);
2231 }
2232 
2233 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2234 {
2235 	const struct net_device *dev = to_net_dev(d);
2236 	const struct net *net = dev_net(dev);
2237 
2238 	net_ns_get_ownership(net, uid, gid);
2239 }
2240 
2241 static const struct class net_class = {
2242 	.name = "net",
2243 	.dev_release = netdev_release,
2244 	.dev_groups = net_class_groups,
2245 	.dev_uevent = netdev_uevent,
2246 	.ns_type = &net_ns_type_operations,
2247 	.namespace = net_namespace,
2248 	.get_ownership = net_get_ownership,
2249 };
2250 
2251 #ifdef CONFIG_OF
2252 static int of_dev_node_match(struct device *dev, const void *data)
2253 {
2254 	for (; dev; dev = dev->parent) {
2255 		if (dev->of_node == data)
2256 			return 1;
2257 	}
2258 
2259 	return 0;
2260 }
2261 
2262 /*
2263  * of_find_net_device_by_node - lookup the net device for the device node
2264  * @np: OF device node
2265  *
2266  * Looks up the net_device structure corresponding with the device node.
2267  * If successful, returns a pointer to the net_device with the embedded
2268  * struct device refcount incremented by one, or NULL on failure. The
2269  * refcount must be dropped when done with the net_device.
2270  */
2271 struct net_device *of_find_net_device_by_node(struct device_node *np)
2272 {
2273 	struct device *dev;
2274 
2275 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2276 	if (!dev)
2277 		return NULL;
2278 
2279 	return to_net_dev(dev);
2280 }
2281 EXPORT_SYMBOL(of_find_net_device_by_node);
2282 #endif
2283 
2284 /* Delete sysfs entries but hold kobject reference until after all
2285  * netdev references are gone.
2286  */
2287 void netdev_unregister_kobject(struct net_device *ndev)
2288 {
2289 	struct device *dev = &ndev->dev;
2290 
2291 	if (!refcount_read(&dev_net(ndev)->ns.count))
2292 		dev_set_uevent_suppress(dev, 1);
2293 
2294 	kobject_get(&dev->kobj);
2295 
2296 	remove_queue_kobjects(ndev);
2297 
2298 	pm_runtime_set_memalloc_noio(dev, false);
2299 
2300 	device_del(dev);
2301 }
2302 
2303 /* Create sysfs entries for network device. */
2304 int netdev_register_kobject(struct net_device *ndev)
2305 {
2306 	struct device *dev = &ndev->dev;
2307 	const struct attribute_group **groups = ndev->sysfs_groups;
2308 	int error = 0;
2309 
2310 	device_initialize(dev);
2311 	dev->class = &net_class;
2312 	dev->platform_data = ndev;
2313 	dev->groups = groups;
2314 
2315 	dev_set_name(dev, "%s", ndev->name);
2316 
2317 #ifdef CONFIG_SYSFS
2318 	/* Allow for a device specific group */
2319 	if (*groups)
2320 		groups++;
2321 
2322 	*groups++ = &netstat_group;
2323 
2324 	if (wireless_group_needed(ndev))
2325 		*groups++ = &wireless_group;
2326 #endif /* CONFIG_SYSFS */
2327 
2328 	error = device_add(dev);
2329 	if (error)
2330 		return error;
2331 
2332 	error = register_queue_kobjects(ndev);
2333 	if (error) {
2334 		device_del(dev);
2335 		return error;
2336 	}
2337 
2338 	pm_runtime_set_memalloc_noio(dev, true);
2339 
2340 	return error;
2341 }
2342 
2343 /* Change owner for sysfs entries when moving network devices across network
2344  * namespaces owned by different user namespaces.
2345  */
2346 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2347 			const struct net *net_new)
2348 {
2349 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2350 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2351 	struct device *dev = &ndev->dev;
2352 	int error;
2353 
2354 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2355 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2356 
2357 	/* The network namespace was changed but the owning user namespace is
2358 	 * identical so there's no need to change the owner of sysfs entries.
2359 	 */
2360 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2361 		return 0;
2362 
2363 	error = device_change_owner(dev, new_uid, new_gid);
2364 	if (error)
2365 		return error;
2366 
2367 	error = queue_change_owner(ndev, new_uid, new_gid);
2368 	if (error)
2369 		return error;
2370 
2371 	return 0;
2372 }
2373 
2374 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2375 				const void *ns)
2376 {
2377 	return class_create_file_ns(&net_class, class_attr, ns);
2378 }
2379 EXPORT_SYMBOL(netdev_class_create_file_ns);
2380 
2381 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2382 				 const void *ns)
2383 {
2384 	class_remove_file_ns(&net_class, class_attr, ns);
2385 }
2386 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2387 
2388 int __init netdev_kobject_init(void)
2389 {
2390 	kobj_ns_type_register(&net_ns_type_operations);
2391 	return class_register(&net_class);
2392 }
2393