xref: /linux/net/core/net-sysfs.c (revision 19b707c3f23a7923ab40732521123d9b59965cc4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_rx_queue.h>
27 
28 #include "dev.h"
29 #include "net-sysfs.h"
30 
31 #ifdef CONFIG_SYSFS
32 static const char fmt_hex[] = "%#x\n";
33 static const char fmt_dec[] = "%d\n";
34 static const char fmt_ulong[] = "%lu\n";
35 static const char fmt_u64[] = "%llu\n";
36 
37 /* Caller holds RTNL or dev_base_lock */
38 static inline int dev_isalive(const struct net_device *dev)
39 {
40 	return dev->reg_state <= NETREG_REGISTERED;
41 }
42 
43 /* use same locking rules as GIF* ioctl's */
44 static ssize_t netdev_show(const struct device *dev,
45 			   struct device_attribute *attr, char *buf,
46 			   ssize_t (*format)(const struct net_device *, char *))
47 {
48 	struct net_device *ndev = to_net_dev(dev);
49 	ssize_t ret = -EINVAL;
50 
51 	read_lock(&dev_base_lock);
52 	if (dev_isalive(ndev))
53 		ret = (*format)(ndev, buf);
54 	read_unlock(&dev_base_lock);
55 
56 	return ret;
57 }
58 
59 /* generate a show function for simple field */
60 #define NETDEVICE_SHOW(field, format_string)				\
61 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
62 {									\
63 	return sysfs_emit(buf, format_string, dev->field);		\
64 }									\
65 static ssize_t field##_show(struct device *dev,				\
66 			    struct device_attribute *attr, char *buf)	\
67 {									\
68 	return netdev_show(dev, attr, buf, format_##field);		\
69 }									\
70 
71 #define NETDEVICE_SHOW_RO(field, format_string)				\
72 NETDEVICE_SHOW(field, format_string);					\
73 static DEVICE_ATTR_RO(field)
74 
75 #define NETDEVICE_SHOW_RW(field, format_string)				\
76 NETDEVICE_SHOW(field, format_string);					\
77 static DEVICE_ATTR_RW(field)
78 
79 /* use same locking and permission rules as SIF* ioctl's */
80 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
81 			    const char *buf, size_t len,
82 			    int (*set)(struct net_device *, unsigned long))
83 {
84 	struct net_device *netdev = to_net_dev(dev);
85 	struct net *net = dev_net(netdev);
86 	unsigned long new;
87 	int ret;
88 
89 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
90 		return -EPERM;
91 
92 	ret = kstrtoul(buf, 0, &new);
93 	if (ret)
94 		goto err;
95 
96 	if (!rtnl_trylock())
97 		return restart_syscall();
98 
99 	if (dev_isalive(netdev)) {
100 		ret = (*set)(netdev, new);
101 		if (ret == 0)
102 			ret = len;
103 	}
104 	rtnl_unlock();
105  err:
106 	return ret;
107 }
108 
109 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
110 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
111 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
112 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
113 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
114 NETDEVICE_SHOW_RO(type, fmt_dec);
115 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
116 
117 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
118 			   char *buf)
119 {
120 	struct net_device *ndev = to_net_dev(dev);
121 
122 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
123 }
124 static DEVICE_ATTR_RO(iflink);
125 
126 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
127 {
128 	return sysfs_emit(buf, fmt_dec, dev->name_assign_type);
129 }
130 
131 static ssize_t name_assign_type_show(struct device *dev,
132 				     struct device_attribute *attr,
133 				     char *buf)
134 {
135 	struct net_device *ndev = to_net_dev(dev);
136 	ssize_t ret = -EINVAL;
137 
138 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
139 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
140 
141 	return ret;
142 }
143 static DEVICE_ATTR_RO(name_assign_type);
144 
145 /* use same locking rules as GIFHWADDR ioctl's */
146 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
147 			    char *buf)
148 {
149 	struct net_device *ndev = to_net_dev(dev);
150 	ssize_t ret = -EINVAL;
151 
152 	read_lock(&dev_base_lock);
153 	if (dev_isalive(ndev))
154 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
155 	read_unlock(&dev_base_lock);
156 	return ret;
157 }
158 static DEVICE_ATTR_RO(address);
159 
160 static ssize_t broadcast_show(struct device *dev,
161 			      struct device_attribute *attr, char *buf)
162 {
163 	struct net_device *ndev = to_net_dev(dev);
164 
165 	if (dev_isalive(ndev))
166 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
167 	return -EINVAL;
168 }
169 static DEVICE_ATTR_RO(broadcast);
170 
171 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
172 {
173 	if (!netif_running(dev))
174 		return -EINVAL;
175 	return dev_change_carrier(dev, (bool)new_carrier);
176 }
177 
178 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
179 			     const char *buf, size_t len)
180 {
181 	struct net_device *netdev = to_net_dev(dev);
182 
183 	/* The check is also done in change_carrier; this helps returning early
184 	 * without hitting the trylock/restart in netdev_store.
185 	 */
186 	if (!netdev->netdev_ops->ndo_change_carrier)
187 		return -EOPNOTSUPP;
188 
189 	return netdev_store(dev, attr, buf, len, change_carrier);
190 }
191 
192 static ssize_t carrier_show(struct device *dev,
193 			    struct device_attribute *attr, char *buf)
194 {
195 	struct net_device *netdev = to_net_dev(dev);
196 
197 	if (netif_running(netdev)) {
198 		/* Synchronize carrier state with link watch,
199 		 * see also rtnl_getlink().
200 		 */
201 		linkwatch_sync_dev(netdev);
202 
203 		return sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
204 	}
205 
206 	return -EINVAL;
207 }
208 static DEVICE_ATTR_RW(carrier);
209 
210 static ssize_t speed_show(struct device *dev,
211 			  struct device_attribute *attr, char *buf)
212 {
213 	struct net_device *netdev = to_net_dev(dev);
214 	int ret = -EINVAL;
215 
216 	/* The check is also done in __ethtool_get_link_ksettings; this helps
217 	 * returning early without hitting the trylock/restart below.
218 	 */
219 	if (!netdev->ethtool_ops->get_link_ksettings)
220 		return ret;
221 
222 	if (!rtnl_trylock())
223 		return restart_syscall();
224 
225 	if (netif_running(netdev) && netif_device_present(netdev)) {
226 		struct ethtool_link_ksettings cmd;
227 
228 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
229 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
230 	}
231 	rtnl_unlock();
232 	return ret;
233 }
234 static DEVICE_ATTR_RO(speed);
235 
236 static ssize_t duplex_show(struct device *dev,
237 			   struct device_attribute *attr, char *buf)
238 {
239 	struct net_device *netdev = to_net_dev(dev);
240 	int ret = -EINVAL;
241 
242 	/* The check is also done in __ethtool_get_link_ksettings; this helps
243 	 * returning early without hitting the trylock/restart below.
244 	 */
245 	if (!netdev->ethtool_ops->get_link_ksettings)
246 		return ret;
247 
248 	if (!rtnl_trylock())
249 		return restart_syscall();
250 
251 	if (netif_running(netdev)) {
252 		struct ethtool_link_ksettings cmd;
253 
254 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
255 			const char *duplex;
256 
257 			switch (cmd.base.duplex) {
258 			case DUPLEX_HALF:
259 				duplex = "half";
260 				break;
261 			case DUPLEX_FULL:
262 				duplex = "full";
263 				break;
264 			default:
265 				duplex = "unknown";
266 				break;
267 			}
268 			ret = sysfs_emit(buf, "%s\n", duplex);
269 		}
270 	}
271 	rtnl_unlock();
272 	return ret;
273 }
274 static DEVICE_ATTR_RO(duplex);
275 
276 static ssize_t testing_show(struct device *dev,
277 			    struct device_attribute *attr, char *buf)
278 {
279 	struct net_device *netdev = to_net_dev(dev);
280 
281 	if (netif_running(netdev))
282 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
283 
284 	return -EINVAL;
285 }
286 static DEVICE_ATTR_RO(testing);
287 
288 static ssize_t dormant_show(struct device *dev,
289 			    struct device_attribute *attr, char *buf)
290 {
291 	struct net_device *netdev = to_net_dev(dev);
292 
293 	if (netif_running(netdev))
294 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
295 
296 	return -EINVAL;
297 }
298 static DEVICE_ATTR_RO(dormant);
299 
300 static const char *const operstates[] = {
301 	"unknown",
302 	"notpresent", /* currently unused */
303 	"down",
304 	"lowerlayerdown",
305 	"testing",
306 	"dormant",
307 	"up"
308 };
309 
310 static ssize_t operstate_show(struct device *dev,
311 			      struct device_attribute *attr, char *buf)
312 {
313 	const struct net_device *netdev = to_net_dev(dev);
314 	unsigned char operstate;
315 
316 	read_lock(&dev_base_lock);
317 	operstate = netdev->operstate;
318 	if (!netif_running(netdev))
319 		operstate = IF_OPER_DOWN;
320 	read_unlock(&dev_base_lock);
321 
322 	if (operstate >= ARRAY_SIZE(operstates))
323 		return -EINVAL; /* should not happen */
324 
325 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
326 }
327 static DEVICE_ATTR_RO(operstate);
328 
329 static ssize_t carrier_changes_show(struct device *dev,
330 				    struct device_attribute *attr,
331 				    char *buf)
332 {
333 	struct net_device *netdev = to_net_dev(dev);
334 
335 	return sysfs_emit(buf, fmt_dec,
336 			  atomic_read(&netdev->carrier_up_count) +
337 			  atomic_read(&netdev->carrier_down_count));
338 }
339 static DEVICE_ATTR_RO(carrier_changes);
340 
341 static ssize_t carrier_up_count_show(struct device *dev,
342 				     struct device_attribute *attr,
343 				     char *buf)
344 {
345 	struct net_device *netdev = to_net_dev(dev);
346 
347 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
348 }
349 static DEVICE_ATTR_RO(carrier_up_count);
350 
351 static ssize_t carrier_down_count_show(struct device *dev,
352 				       struct device_attribute *attr,
353 				       char *buf)
354 {
355 	struct net_device *netdev = to_net_dev(dev);
356 
357 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
358 }
359 static DEVICE_ATTR_RO(carrier_down_count);
360 
361 /* read-write attributes */
362 
363 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
364 {
365 	return dev_set_mtu(dev, (int)new_mtu);
366 }
367 
368 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
369 			 const char *buf, size_t len)
370 {
371 	return netdev_store(dev, attr, buf, len, change_mtu);
372 }
373 NETDEVICE_SHOW_RW(mtu, fmt_dec);
374 
375 static int change_flags(struct net_device *dev, unsigned long new_flags)
376 {
377 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
378 }
379 
380 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
381 			   const char *buf, size_t len)
382 {
383 	return netdev_store(dev, attr, buf, len, change_flags);
384 }
385 NETDEVICE_SHOW_RW(flags, fmt_hex);
386 
387 static ssize_t tx_queue_len_store(struct device *dev,
388 				  struct device_attribute *attr,
389 				  const char *buf, size_t len)
390 {
391 	if (!capable(CAP_NET_ADMIN))
392 		return -EPERM;
393 
394 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
395 }
396 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
397 
398 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
399 {
400 	WRITE_ONCE(dev->gro_flush_timeout, val);
401 	return 0;
402 }
403 
404 static ssize_t gro_flush_timeout_store(struct device *dev,
405 				       struct device_attribute *attr,
406 				       const char *buf, size_t len)
407 {
408 	if (!capable(CAP_NET_ADMIN))
409 		return -EPERM;
410 
411 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
412 }
413 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
414 
415 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
416 {
417 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
418 	return 0;
419 }
420 
421 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
422 					  struct device_attribute *attr,
423 					  const char *buf, size_t len)
424 {
425 	if (!capable(CAP_NET_ADMIN))
426 		return -EPERM;
427 
428 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
429 }
430 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
431 
432 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
433 			     const char *buf, size_t len)
434 {
435 	struct net_device *netdev = to_net_dev(dev);
436 	struct net *net = dev_net(netdev);
437 	size_t count = len;
438 	ssize_t ret = 0;
439 
440 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
441 		return -EPERM;
442 
443 	/* ignore trailing newline */
444 	if (len >  0 && buf[len - 1] == '\n')
445 		--count;
446 
447 	if (!rtnl_trylock())
448 		return restart_syscall();
449 
450 	if (dev_isalive(netdev)) {
451 		ret = dev_set_alias(netdev, buf, count);
452 		if (ret < 0)
453 			goto err;
454 		ret = len;
455 		netdev_state_change(netdev);
456 	}
457 err:
458 	rtnl_unlock();
459 
460 	return ret;
461 }
462 
463 static ssize_t ifalias_show(struct device *dev,
464 			    struct device_attribute *attr, char *buf)
465 {
466 	const struct net_device *netdev = to_net_dev(dev);
467 	char tmp[IFALIASZ];
468 	ssize_t ret = 0;
469 
470 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
471 	if (ret > 0)
472 		ret = sysfs_emit(buf, "%s\n", tmp);
473 	return ret;
474 }
475 static DEVICE_ATTR_RW(ifalias);
476 
477 static int change_group(struct net_device *dev, unsigned long new_group)
478 {
479 	dev_set_group(dev, (int)new_group);
480 	return 0;
481 }
482 
483 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
484 			   const char *buf, size_t len)
485 {
486 	return netdev_store(dev, attr, buf, len, change_group);
487 }
488 NETDEVICE_SHOW(group, fmt_dec);
489 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
490 
491 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
492 {
493 	return dev_change_proto_down(dev, (bool)proto_down);
494 }
495 
496 static ssize_t proto_down_store(struct device *dev,
497 				struct device_attribute *attr,
498 				const char *buf, size_t len)
499 {
500 	return netdev_store(dev, attr, buf, len, change_proto_down);
501 }
502 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
503 
504 static ssize_t phys_port_id_show(struct device *dev,
505 				 struct device_attribute *attr, char *buf)
506 {
507 	struct net_device *netdev = to_net_dev(dev);
508 	ssize_t ret = -EINVAL;
509 
510 	/* The check is also done in dev_get_phys_port_id; this helps returning
511 	 * early without hitting the trylock/restart below.
512 	 */
513 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
514 		return -EOPNOTSUPP;
515 
516 	if (!rtnl_trylock())
517 		return restart_syscall();
518 
519 	if (dev_isalive(netdev)) {
520 		struct netdev_phys_item_id ppid;
521 
522 		ret = dev_get_phys_port_id(netdev, &ppid);
523 		if (!ret)
524 			ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
525 	}
526 	rtnl_unlock();
527 
528 	return ret;
529 }
530 static DEVICE_ATTR_RO(phys_port_id);
531 
532 static ssize_t phys_port_name_show(struct device *dev,
533 				   struct device_attribute *attr, char *buf)
534 {
535 	struct net_device *netdev = to_net_dev(dev);
536 	ssize_t ret = -EINVAL;
537 
538 	/* The checks are also done in dev_get_phys_port_name; this helps
539 	 * returning early without hitting the trylock/restart below.
540 	 */
541 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
542 	    !netdev->devlink_port)
543 		return -EOPNOTSUPP;
544 
545 	if (!rtnl_trylock())
546 		return restart_syscall();
547 
548 	if (dev_isalive(netdev)) {
549 		char name[IFNAMSIZ];
550 
551 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
552 		if (!ret)
553 			ret = sysfs_emit(buf, "%s\n", name);
554 	}
555 	rtnl_unlock();
556 
557 	return ret;
558 }
559 static DEVICE_ATTR_RO(phys_port_name);
560 
561 static ssize_t phys_switch_id_show(struct device *dev,
562 				   struct device_attribute *attr, char *buf)
563 {
564 	struct net_device *netdev = to_net_dev(dev);
565 	ssize_t ret = -EINVAL;
566 
567 	/* The checks are also done in dev_get_phys_port_name; this helps
568 	 * returning early without hitting the trylock/restart below. This works
569 	 * because recurse is false when calling dev_get_port_parent_id.
570 	 */
571 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
572 	    !netdev->devlink_port)
573 		return -EOPNOTSUPP;
574 
575 	if (!rtnl_trylock())
576 		return restart_syscall();
577 
578 	if (dev_isalive(netdev)) {
579 		struct netdev_phys_item_id ppid = { };
580 
581 		ret = dev_get_port_parent_id(netdev, &ppid, false);
582 		if (!ret)
583 			ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
584 	}
585 	rtnl_unlock();
586 
587 	return ret;
588 }
589 static DEVICE_ATTR_RO(phys_switch_id);
590 
591 static ssize_t threaded_show(struct device *dev,
592 			     struct device_attribute *attr, char *buf)
593 {
594 	struct net_device *netdev = to_net_dev(dev);
595 	ssize_t ret = -EINVAL;
596 
597 	if (!rtnl_trylock())
598 		return restart_syscall();
599 
600 	if (dev_isalive(netdev))
601 		ret = sysfs_emit(buf, fmt_dec, netdev->threaded);
602 
603 	rtnl_unlock();
604 	return ret;
605 }
606 
607 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
608 {
609 	int ret;
610 
611 	if (list_empty(&dev->napi_list))
612 		return -EOPNOTSUPP;
613 
614 	if (val != 0 && val != 1)
615 		return -EOPNOTSUPP;
616 
617 	ret = dev_set_threaded(dev, val);
618 
619 	return ret;
620 }
621 
622 static ssize_t threaded_store(struct device *dev,
623 			      struct device_attribute *attr,
624 			      const char *buf, size_t len)
625 {
626 	return netdev_store(dev, attr, buf, len, modify_napi_threaded);
627 }
628 static DEVICE_ATTR_RW(threaded);
629 
630 static struct attribute *net_class_attrs[] __ro_after_init = {
631 	&dev_attr_netdev_group.attr,
632 	&dev_attr_type.attr,
633 	&dev_attr_dev_id.attr,
634 	&dev_attr_dev_port.attr,
635 	&dev_attr_iflink.attr,
636 	&dev_attr_ifindex.attr,
637 	&dev_attr_name_assign_type.attr,
638 	&dev_attr_addr_assign_type.attr,
639 	&dev_attr_addr_len.attr,
640 	&dev_attr_link_mode.attr,
641 	&dev_attr_address.attr,
642 	&dev_attr_broadcast.attr,
643 	&dev_attr_speed.attr,
644 	&dev_attr_duplex.attr,
645 	&dev_attr_dormant.attr,
646 	&dev_attr_testing.attr,
647 	&dev_attr_operstate.attr,
648 	&dev_attr_carrier_changes.attr,
649 	&dev_attr_ifalias.attr,
650 	&dev_attr_carrier.attr,
651 	&dev_attr_mtu.attr,
652 	&dev_attr_flags.attr,
653 	&dev_attr_tx_queue_len.attr,
654 	&dev_attr_gro_flush_timeout.attr,
655 	&dev_attr_napi_defer_hard_irqs.attr,
656 	&dev_attr_phys_port_id.attr,
657 	&dev_attr_phys_port_name.attr,
658 	&dev_attr_phys_switch_id.attr,
659 	&dev_attr_proto_down.attr,
660 	&dev_attr_carrier_up_count.attr,
661 	&dev_attr_carrier_down_count.attr,
662 	&dev_attr_threaded.attr,
663 	NULL,
664 };
665 ATTRIBUTE_GROUPS(net_class);
666 
667 /* Show a given an attribute in the statistics group */
668 static ssize_t netstat_show(const struct device *d,
669 			    struct device_attribute *attr, char *buf,
670 			    unsigned long offset)
671 {
672 	struct net_device *dev = to_net_dev(d);
673 	ssize_t ret = -EINVAL;
674 
675 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
676 		offset % sizeof(u64) != 0);
677 
678 	read_lock(&dev_base_lock);
679 	if (dev_isalive(dev)) {
680 		struct rtnl_link_stats64 temp;
681 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
682 
683 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
684 	}
685 	read_unlock(&dev_base_lock);
686 	return ret;
687 }
688 
689 /* generate a read-only statistics attribute */
690 #define NETSTAT_ENTRY(name)						\
691 static ssize_t name##_show(struct device *d,				\
692 			   struct device_attribute *attr, char *buf)	\
693 {									\
694 	return netstat_show(d, attr, buf,				\
695 			    offsetof(struct rtnl_link_stats64, name));	\
696 }									\
697 static DEVICE_ATTR_RO(name)
698 
699 NETSTAT_ENTRY(rx_packets);
700 NETSTAT_ENTRY(tx_packets);
701 NETSTAT_ENTRY(rx_bytes);
702 NETSTAT_ENTRY(tx_bytes);
703 NETSTAT_ENTRY(rx_errors);
704 NETSTAT_ENTRY(tx_errors);
705 NETSTAT_ENTRY(rx_dropped);
706 NETSTAT_ENTRY(tx_dropped);
707 NETSTAT_ENTRY(multicast);
708 NETSTAT_ENTRY(collisions);
709 NETSTAT_ENTRY(rx_length_errors);
710 NETSTAT_ENTRY(rx_over_errors);
711 NETSTAT_ENTRY(rx_crc_errors);
712 NETSTAT_ENTRY(rx_frame_errors);
713 NETSTAT_ENTRY(rx_fifo_errors);
714 NETSTAT_ENTRY(rx_missed_errors);
715 NETSTAT_ENTRY(tx_aborted_errors);
716 NETSTAT_ENTRY(tx_carrier_errors);
717 NETSTAT_ENTRY(tx_fifo_errors);
718 NETSTAT_ENTRY(tx_heartbeat_errors);
719 NETSTAT_ENTRY(tx_window_errors);
720 NETSTAT_ENTRY(rx_compressed);
721 NETSTAT_ENTRY(tx_compressed);
722 NETSTAT_ENTRY(rx_nohandler);
723 
724 static struct attribute *netstat_attrs[] __ro_after_init = {
725 	&dev_attr_rx_packets.attr,
726 	&dev_attr_tx_packets.attr,
727 	&dev_attr_rx_bytes.attr,
728 	&dev_attr_tx_bytes.attr,
729 	&dev_attr_rx_errors.attr,
730 	&dev_attr_tx_errors.attr,
731 	&dev_attr_rx_dropped.attr,
732 	&dev_attr_tx_dropped.attr,
733 	&dev_attr_multicast.attr,
734 	&dev_attr_collisions.attr,
735 	&dev_attr_rx_length_errors.attr,
736 	&dev_attr_rx_over_errors.attr,
737 	&dev_attr_rx_crc_errors.attr,
738 	&dev_attr_rx_frame_errors.attr,
739 	&dev_attr_rx_fifo_errors.attr,
740 	&dev_attr_rx_missed_errors.attr,
741 	&dev_attr_tx_aborted_errors.attr,
742 	&dev_attr_tx_carrier_errors.attr,
743 	&dev_attr_tx_fifo_errors.attr,
744 	&dev_attr_tx_heartbeat_errors.attr,
745 	&dev_attr_tx_window_errors.attr,
746 	&dev_attr_rx_compressed.attr,
747 	&dev_attr_tx_compressed.attr,
748 	&dev_attr_rx_nohandler.attr,
749 	NULL
750 };
751 
752 static const struct attribute_group netstat_group = {
753 	.name  = "statistics",
754 	.attrs  = netstat_attrs,
755 };
756 
757 static struct attribute *wireless_attrs[] = {
758 	NULL
759 };
760 
761 static const struct attribute_group wireless_group = {
762 	.name = "wireless",
763 	.attrs = wireless_attrs,
764 };
765 
766 static bool wireless_group_needed(struct net_device *ndev)
767 {
768 #if IS_ENABLED(CONFIG_CFG80211)
769 	if (ndev->ieee80211_ptr)
770 		return true;
771 #endif
772 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
773 	if (ndev->wireless_handlers)
774 		return true;
775 #endif
776 	return false;
777 }
778 
779 #else /* CONFIG_SYSFS */
780 #define net_class_groups	NULL
781 #endif /* CONFIG_SYSFS */
782 
783 #ifdef CONFIG_SYSFS
784 #define to_rx_queue_attr(_attr) \
785 	container_of(_attr, struct rx_queue_attribute, attr)
786 
787 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
788 
789 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
790 				  char *buf)
791 {
792 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
793 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
794 
795 	if (!attribute->show)
796 		return -EIO;
797 
798 	return attribute->show(queue, buf);
799 }
800 
801 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
802 				   const char *buf, size_t count)
803 {
804 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
805 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
806 
807 	if (!attribute->store)
808 		return -EIO;
809 
810 	return attribute->store(queue, buf, count);
811 }
812 
813 static const struct sysfs_ops rx_queue_sysfs_ops = {
814 	.show = rx_queue_attr_show,
815 	.store = rx_queue_attr_store,
816 };
817 
818 #ifdef CONFIG_RPS
819 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
820 {
821 	struct rps_map *map;
822 	cpumask_var_t mask;
823 	int i, len;
824 
825 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
826 		return -ENOMEM;
827 
828 	rcu_read_lock();
829 	map = rcu_dereference(queue->rps_map);
830 	if (map)
831 		for (i = 0; i < map->len; i++)
832 			cpumask_set_cpu(map->cpus[i], mask);
833 
834 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
835 	rcu_read_unlock();
836 	free_cpumask_var(mask);
837 
838 	return len < PAGE_SIZE ? len : -EINVAL;
839 }
840 
841 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
842 					cpumask_var_t mask)
843 {
844 	static DEFINE_MUTEX(rps_map_mutex);
845 	struct rps_map *old_map, *map;
846 	int cpu, i;
847 
848 	map = kzalloc(max_t(unsigned int,
849 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
850 		      GFP_KERNEL);
851 	if (!map)
852 		return -ENOMEM;
853 
854 	i = 0;
855 	for_each_cpu_and(cpu, mask, cpu_online_mask)
856 		map->cpus[i++] = cpu;
857 
858 	if (i) {
859 		map->len = i;
860 	} else {
861 		kfree(map);
862 		map = NULL;
863 	}
864 
865 	mutex_lock(&rps_map_mutex);
866 	old_map = rcu_dereference_protected(queue->rps_map,
867 					    mutex_is_locked(&rps_map_mutex));
868 	rcu_assign_pointer(queue->rps_map, map);
869 
870 	if (map)
871 		static_branch_inc(&rps_needed);
872 	if (old_map)
873 		static_branch_dec(&rps_needed);
874 
875 	mutex_unlock(&rps_map_mutex);
876 
877 	if (old_map)
878 		kfree_rcu(old_map, rcu);
879 	return 0;
880 }
881 
882 int rps_cpumask_housekeeping(struct cpumask *mask)
883 {
884 	if (!cpumask_empty(mask)) {
885 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
886 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
887 		if (cpumask_empty(mask))
888 			return -EINVAL;
889 	}
890 	return 0;
891 }
892 
893 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
894 			     const char *buf, size_t len)
895 {
896 	cpumask_var_t mask;
897 	int err;
898 
899 	if (!capable(CAP_NET_ADMIN))
900 		return -EPERM;
901 
902 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
903 		return -ENOMEM;
904 
905 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
906 	if (err)
907 		goto out;
908 
909 	err = rps_cpumask_housekeeping(mask);
910 	if (err)
911 		goto out;
912 
913 	err = netdev_rx_queue_set_rps_mask(queue, mask);
914 
915 out:
916 	free_cpumask_var(mask);
917 	return err ? : len;
918 }
919 
920 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
921 					   char *buf)
922 {
923 	struct rps_dev_flow_table *flow_table;
924 	unsigned long val = 0;
925 
926 	rcu_read_lock();
927 	flow_table = rcu_dereference(queue->rps_flow_table);
928 	if (flow_table)
929 		val = (unsigned long)flow_table->mask + 1;
930 	rcu_read_unlock();
931 
932 	return sysfs_emit(buf, "%lu\n", val);
933 }
934 
935 static void rps_dev_flow_table_release(struct rcu_head *rcu)
936 {
937 	struct rps_dev_flow_table *table = container_of(rcu,
938 	    struct rps_dev_flow_table, rcu);
939 	vfree(table);
940 }
941 
942 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
943 					    const char *buf, size_t len)
944 {
945 	unsigned long mask, count;
946 	struct rps_dev_flow_table *table, *old_table;
947 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
948 	int rc;
949 
950 	if (!capable(CAP_NET_ADMIN))
951 		return -EPERM;
952 
953 	rc = kstrtoul(buf, 0, &count);
954 	if (rc < 0)
955 		return rc;
956 
957 	if (count) {
958 		mask = count - 1;
959 		/* mask = roundup_pow_of_two(count) - 1;
960 		 * without overflows...
961 		 */
962 		while ((mask | (mask >> 1)) != mask)
963 			mask |= (mask >> 1);
964 		/* On 64 bit arches, must check mask fits in table->mask (u32),
965 		 * and on 32bit arches, must check
966 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
967 		 */
968 #if BITS_PER_LONG > 32
969 		if (mask > (unsigned long)(u32)mask)
970 			return -EINVAL;
971 #else
972 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
973 				/ sizeof(struct rps_dev_flow)) {
974 			/* Enforce a limit to prevent overflow */
975 			return -EINVAL;
976 		}
977 #endif
978 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
979 		if (!table)
980 			return -ENOMEM;
981 
982 		table->mask = mask;
983 		for (count = 0; count <= mask; count++)
984 			table->flows[count].cpu = RPS_NO_CPU;
985 	} else {
986 		table = NULL;
987 	}
988 
989 	spin_lock(&rps_dev_flow_lock);
990 	old_table = rcu_dereference_protected(queue->rps_flow_table,
991 					      lockdep_is_held(&rps_dev_flow_lock));
992 	rcu_assign_pointer(queue->rps_flow_table, table);
993 	spin_unlock(&rps_dev_flow_lock);
994 
995 	if (old_table)
996 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
997 
998 	return len;
999 }
1000 
1001 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1002 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1003 
1004 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1005 	= __ATTR(rps_flow_cnt, 0644,
1006 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1007 #endif /* CONFIG_RPS */
1008 
1009 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1010 #ifdef CONFIG_RPS
1011 	&rps_cpus_attribute.attr,
1012 	&rps_dev_flow_table_cnt_attribute.attr,
1013 #endif
1014 	NULL
1015 };
1016 ATTRIBUTE_GROUPS(rx_queue_default);
1017 
1018 static void rx_queue_release(struct kobject *kobj)
1019 {
1020 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1021 #ifdef CONFIG_RPS
1022 	struct rps_map *map;
1023 	struct rps_dev_flow_table *flow_table;
1024 
1025 	map = rcu_dereference_protected(queue->rps_map, 1);
1026 	if (map) {
1027 		RCU_INIT_POINTER(queue->rps_map, NULL);
1028 		kfree_rcu(map, rcu);
1029 	}
1030 
1031 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1032 	if (flow_table) {
1033 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1034 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1035 	}
1036 #endif
1037 
1038 	memset(kobj, 0, sizeof(*kobj));
1039 	netdev_put(queue->dev, &queue->dev_tracker);
1040 }
1041 
1042 static const void *rx_queue_namespace(const struct kobject *kobj)
1043 {
1044 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1045 	struct device *dev = &queue->dev->dev;
1046 	const void *ns = NULL;
1047 
1048 	if (dev->class && dev->class->ns_type)
1049 		ns = dev->class->namespace(dev);
1050 
1051 	return ns;
1052 }
1053 
1054 static void rx_queue_get_ownership(const struct kobject *kobj,
1055 				   kuid_t *uid, kgid_t *gid)
1056 {
1057 	const struct net *net = rx_queue_namespace(kobj);
1058 
1059 	net_ns_get_ownership(net, uid, gid);
1060 }
1061 
1062 static const struct kobj_type rx_queue_ktype = {
1063 	.sysfs_ops = &rx_queue_sysfs_ops,
1064 	.release = rx_queue_release,
1065 	.default_groups = rx_queue_default_groups,
1066 	.namespace = rx_queue_namespace,
1067 	.get_ownership = rx_queue_get_ownership,
1068 };
1069 
1070 static int rx_queue_default_mask(struct net_device *dev,
1071 				 struct netdev_rx_queue *queue)
1072 {
1073 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1074 	struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1075 
1076 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1077 		return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1078 #endif
1079 	return 0;
1080 }
1081 
1082 static int rx_queue_add_kobject(struct net_device *dev, int index)
1083 {
1084 	struct netdev_rx_queue *queue = dev->_rx + index;
1085 	struct kobject *kobj = &queue->kobj;
1086 	int error = 0;
1087 
1088 	/* Kobject_put later will trigger rx_queue_release call which
1089 	 * decreases dev refcount: Take that reference here
1090 	 */
1091 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1092 
1093 	kobj->kset = dev->queues_kset;
1094 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1095 				     "rx-%u", index);
1096 	if (error)
1097 		goto err;
1098 
1099 	if (dev->sysfs_rx_queue_group) {
1100 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1101 		if (error)
1102 			goto err;
1103 	}
1104 
1105 	error = rx_queue_default_mask(dev, queue);
1106 	if (error)
1107 		goto err;
1108 
1109 	kobject_uevent(kobj, KOBJ_ADD);
1110 
1111 	return error;
1112 
1113 err:
1114 	kobject_put(kobj);
1115 	return error;
1116 }
1117 
1118 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1119 				 kgid_t kgid)
1120 {
1121 	struct netdev_rx_queue *queue = dev->_rx + index;
1122 	struct kobject *kobj = &queue->kobj;
1123 	int error;
1124 
1125 	error = sysfs_change_owner(kobj, kuid, kgid);
1126 	if (error)
1127 		return error;
1128 
1129 	if (dev->sysfs_rx_queue_group)
1130 		error = sysfs_group_change_owner(
1131 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1132 
1133 	return error;
1134 }
1135 #endif /* CONFIG_SYSFS */
1136 
1137 int
1138 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1139 {
1140 #ifdef CONFIG_SYSFS
1141 	int i;
1142 	int error = 0;
1143 
1144 #ifndef CONFIG_RPS
1145 	if (!dev->sysfs_rx_queue_group)
1146 		return 0;
1147 #endif
1148 	for (i = old_num; i < new_num; i++) {
1149 		error = rx_queue_add_kobject(dev, i);
1150 		if (error) {
1151 			new_num = old_num;
1152 			break;
1153 		}
1154 	}
1155 
1156 	while (--i >= new_num) {
1157 		struct kobject *kobj = &dev->_rx[i].kobj;
1158 
1159 		if (!refcount_read(&dev_net(dev)->ns.count))
1160 			kobj->uevent_suppress = 1;
1161 		if (dev->sysfs_rx_queue_group)
1162 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1163 		kobject_put(kobj);
1164 	}
1165 
1166 	return error;
1167 #else
1168 	return 0;
1169 #endif
1170 }
1171 
1172 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1173 				     kuid_t kuid, kgid_t kgid)
1174 {
1175 #ifdef CONFIG_SYSFS
1176 	int error = 0;
1177 	int i;
1178 
1179 #ifndef CONFIG_RPS
1180 	if (!dev->sysfs_rx_queue_group)
1181 		return 0;
1182 #endif
1183 	for (i = 0; i < num; i++) {
1184 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1185 		if (error)
1186 			break;
1187 	}
1188 
1189 	return error;
1190 #else
1191 	return 0;
1192 #endif
1193 }
1194 
1195 #ifdef CONFIG_SYSFS
1196 /*
1197  * netdev_queue sysfs structures and functions.
1198  */
1199 struct netdev_queue_attribute {
1200 	struct attribute attr;
1201 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1202 	ssize_t (*store)(struct netdev_queue *queue,
1203 			 const char *buf, size_t len);
1204 };
1205 #define to_netdev_queue_attr(_attr) \
1206 	container_of(_attr, struct netdev_queue_attribute, attr)
1207 
1208 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1209 
1210 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1211 				      struct attribute *attr, char *buf)
1212 {
1213 	const struct netdev_queue_attribute *attribute
1214 		= to_netdev_queue_attr(attr);
1215 	struct netdev_queue *queue = to_netdev_queue(kobj);
1216 
1217 	if (!attribute->show)
1218 		return -EIO;
1219 
1220 	return attribute->show(queue, buf);
1221 }
1222 
1223 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1224 				       struct attribute *attr,
1225 				       const char *buf, size_t count)
1226 {
1227 	const struct netdev_queue_attribute *attribute
1228 		= to_netdev_queue_attr(attr);
1229 	struct netdev_queue *queue = to_netdev_queue(kobj);
1230 
1231 	if (!attribute->store)
1232 		return -EIO;
1233 
1234 	return attribute->store(queue, buf, count);
1235 }
1236 
1237 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1238 	.show = netdev_queue_attr_show,
1239 	.store = netdev_queue_attr_store,
1240 };
1241 
1242 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1243 {
1244 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1245 
1246 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1247 }
1248 
1249 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1250 {
1251 	struct net_device *dev = queue->dev;
1252 	unsigned int i;
1253 
1254 	i = queue - dev->_tx;
1255 	BUG_ON(i >= dev->num_tx_queues);
1256 
1257 	return i;
1258 }
1259 
1260 static ssize_t traffic_class_show(struct netdev_queue *queue,
1261 				  char *buf)
1262 {
1263 	struct net_device *dev = queue->dev;
1264 	int num_tc, tc;
1265 	int index;
1266 
1267 	if (!netif_is_multiqueue(dev))
1268 		return -ENOENT;
1269 
1270 	if (!rtnl_trylock())
1271 		return restart_syscall();
1272 
1273 	index = get_netdev_queue_index(queue);
1274 
1275 	/* If queue belongs to subordinate dev use its TC mapping */
1276 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1277 
1278 	num_tc = dev->num_tc;
1279 	tc = netdev_txq_to_tc(dev, index);
1280 
1281 	rtnl_unlock();
1282 
1283 	if (tc < 0)
1284 		return -EINVAL;
1285 
1286 	/* We can report the traffic class one of two ways:
1287 	 * Subordinate device traffic classes are reported with the traffic
1288 	 * class first, and then the subordinate class so for example TC0 on
1289 	 * subordinate device 2 will be reported as "0-2". If the queue
1290 	 * belongs to the root device it will be reported with just the
1291 	 * traffic class, so just "0" for TC 0 for example.
1292 	 */
1293 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1294 			    sysfs_emit(buf, "%d\n", tc);
1295 }
1296 
1297 #ifdef CONFIG_XPS
1298 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1299 			       char *buf)
1300 {
1301 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1302 }
1303 
1304 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1305 				const char *buf, size_t len)
1306 {
1307 	struct net_device *dev = queue->dev;
1308 	int err, index = get_netdev_queue_index(queue);
1309 	u32 rate = 0;
1310 
1311 	if (!capable(CAP_NET_ADMIN))
1312 		return -EPERM;
1313 
1314 	/* The check is also done later; this helps returning early without
1315 	 * hitting the trylock/restart below.
1316 	 */
1317 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1318 		return -EOPNOTSUPP;
1319 
1320 	err = kstrtou32(buf, 10, &rate);
1321 	if (err < 0)
1322 		return err;
1323 
1324 	if (!rtnl_trylock())
1325 		return restart_syscall();
1326 
1327 	err = -EOPNOTSUPP;
1328 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1329 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1330 
1331 	rtnl_unlock();
1332 	if (!err) {
1333 		queue->tx_maxrate = rate;
1334 		return len;
1335 	}
1336 	return err;
1337 }
1338 
1339 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1340 	= __ATTR_RW(tx_maxrate);
1341 #endif
1342 
1343 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1344 	= __ATTR_RO(tx_timeout);
1345 
1346 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1347 	= __ATTR_RO(traffic_class);
1348 
1349 #ifdef CONFIG_BQL
1350 /*
1351  * Byte queue limits sysfs structures and functions.
1352  */
1353 static ssize_t bql_show(char *buf, unsigned int value)
1354 {
1355 	return sysfs_emit(buf, "%u\n", value);
1356 }
1357 
1358 static ssize_t bql_set(const char *buf, const size_t count,
1359 		       unsigned int *pvalue)
1360 {
1361 	unsigned int value;
1362 	int err;
1363 
1364 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1365 		value = DQL_MAX_LIMIT;
1366 	} else {
1367 		err = kstrtouint(buf, 10, &value);
1368 		if (err < 0)
1369 			return err;
1370 		if (value > DQL_MAX_LIMIT)
1371 			return -EINVAL;
1372 	}
1373 
1374 	*pvalue = value;
1375 
1376 	return count;
1377 }
1378 
1379 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1380 				  char *buf)
1381 {
1382 	struct dql *dql = &queue->dql;
1383 
1384 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1385 }
1386 
1387 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1388 				 const char *buf, size_t len)
1389 {
1390 	struct dql *dql = &queue->dql;
1391 	unsigned int value;
1392 	int err;
1393 
1394 	err = kstrtouint(buf, 10, &value);
1395 	if (err < 0)
1396 		return err;
1397 
1398 	dql->slack_hold_time = msecs_to_jiffies(value);
1399 
1400 	return len;
1401 }
1402 
1403 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1404 	= __ATTR(hold_time, 0644,
1405 		 bql_show_hold_time, bql_set_hold_time);
1406 
1407 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1408 				 char *buf)
1409 {
1410 	struct dql *dql = &queue->dql;
1411 
1412 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1413 }
1414 
1415 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1416 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1417 
1418 #define BQL_ATTR(NAME, FIELD)						\
1419 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1420 				 char *buf)				\
1421 {									\
1422 	return bql_show(buf, queue->dql.FIELD);				\
1423 }									\
1424 									\
1425 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1426 				const char *buf, size_t len)		\
1427 {									\
1428 	return bql_set(buf, len, &queue->dql.FIELD);			\
1429 }									\
1430 									\
1431 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1432 	= __ATTR(NAME, 0644,				\
1433 		 bql_show_ ## NAME, bql_set_ ## NAME)
1434 
1435 BQL_ATTR(limit, limit);
1436 BQL_ATTR(limit_max, max_limit);
1437 BQL_ATTR(limit_min, min_limit);
1438 
1439 static struct attribute *dql_attrs[] __ro_after_init = {
1440 	&bql_limit_attribute.attr,
1441 	&bql_limit_max_attribute.attr,
1442 	&bql_limit_min_attribute.attr,
1443 	&bql_hold_time_attribute.attr,
1444 	&bql_inflight_attribute.attr,
1445 	NULL
1446 };
1447 
1448 static const struct attribute_group dql_group = {
1449 	.name  = "byte_queue_limits",
1450 	.attrs  = dql_attrs,
1451 };
1452 #endif /* CONFIG_BQL */
1453 
1454 #ifdef CONFIG_XPS
1455 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1456 			      int tc, char *buf, enum xps_map_type type)
1457 {
1458 	struct xps_dev_maps *dev_maps;
1459 	unsigned long *mask;
1460 	unsigned int nr_ids;
1461 	int j, len;
1462 
1463 	rcu_read_lock();
1464 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1465 
1466 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1467 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1468 	 */
1469 	nr_ids = dev_maps ? dev_maps->nr_ids :
1470 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1471 
1472 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1473 	if (!mask) {
1474 		rcu_read_unlock();
1475 		return -ENOMEM;
1476 	}
1477 
1478 	if (!dev_maps || tc >= dev_maps->num_tc)
1479 		goto out_no_maps;
1480 
1481 	for (j = 0; j < nr_ids; j++) {
1482 		int i, tci = j * dev_maps->num_tc + tc;
1483 		struct xps_map *map;
1484 
1485 		map = rcu_dereference(dev_maps->attr_map[tci]);
1486 		if (!map)
1487 			continue;
1488 
1489 		for (i = map->len; i--;) {
1490 			if (map->queues[i] == index) {
1491 				__set_bit(j, mask);
1492 				break;
1493 			}
1494 		}
1495 	}
1496 out_no_maps:
1497 	rcu_read_unlock();
1498 
1499 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1500 	bitmap_free(mask);
1501 
1502 	return len < PAGE_SIZE ? len : -EINVAL;
1503 }
1504 
1505 static ssize_t xps_cpus_show(struct netdev_queue *queue, char *buf)
1506 {
1507 	struct net_device *dev = queue->dev;
1508 	unsigned int index;
1509 	int len, tc;
1510 
1511 	if (!netif_is_multiqueue(dev))
1512 		return -ENOENT;
1513 
1514 	index = get_netdev_queue_index(queue);
1515 
1516 	if (!rtnl_trylock())
1517 		return restart_syscall();
1518 
1519 	/* If queue belongs to subordinate dev use its map */
1520 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1521 
1522 	tc = netdev_txq_to_tc(dev, index);
1523 	if (tc < 0) {
1524 		rtnl_unlock();
1525 		return -EINVAL;
1526 	}
1527 
1528 	/* Make sure the subordinate device can't be freed */
1529 	get_device(&dev->dev);
1530 	rtnl_unlock();
1531 
1532 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1533 
1534 	put_device(&dev->dev);
1535 	return len;
1536 }
1537 
1538 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1539 			      const char *buf, size_t len)
1540 {
1541 	struct net_device *dev = queue->dev;
1542 	unsigned int index;
1543 	cpumask_var_t mask;
1544 	int err;
1545 
1546 	if (!netif_is_multiqueue(dev))
1547 		return -ENOENT;
1548 
1549 	if (!capable(CAP_NET_ADMIN))
1550 		return -EPERM;
1551 
1552 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1553 		return -ENOMEM;
1554 
1555 	index = get_netdev_queue_index(queue);
1556 
1557 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1558 	if (err) {
1559 		free_cpumask_var(mask);
1560 		return err;
1561 	}
1562 
1563 	if (!rtnl_trylock()) {
1564 		free_cpumask_var(mask);
1565 		return restart_syscall();
1566 	}
1567 
1568 	err = netif_set_xps_queue(dev, mask, index);
1569 	rtnl_unlock();
1570 
1571 	free_cpumask_var(mask);
1572 
1573 	return err ? : len;
1574 }
1575 
1576 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1577 	= __ATTR_RW(xps_cpus);
1578 
1579 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1580 {
1581 	struct net_device *dev = queue->dev;
1582 	unsigned int index;
1583 	int tc;
1584 
1585 	index = get_netdev_queue_index(queue);
1586 
1587 	if (!rtnl_trylock())
1588 		return restart_syscall();
1589 
1590 	tc = netdev_txq_to_tc(dev, index);
1591 	rtnl_unlock();
1592 	if (tc < 0)
1593 		return -EINVAL;
1594 
1595 	return xps_queue_show(dev, index, tc, buf, XPS_RXQS);
1596 }
1597 
1598 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1599 			      size_t len)
1600 {
1601 	struct net_device *dev = queue->dev;
1602 	struct net *net = dev_net(dev);
1603 	unsigned long *mask;
1604 	unsigned int index;
1605 	int err;
1606 
1607 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1608 		return -EPERM;
1609 
1610 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1611 	if (!mask)
1612 		return -ENOMEM;
1613 
1614 	index = get_netdev_queue_index(queue);
1615 
1616 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1617 	if (err) {
1618 		bitmap_free(mask);
1619 		return err;
1620 	}
1621 
1622 	if (!rtnl_trylock()) {
1623 		bitmap_free(mask);
1624 		return restart_syscall();
1625 	}
1626 
1627 	cpus_read_lock();
1628 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1629 	cpus_read_unlock();
1630 
1631 	rtnl_unlock();
1632 
1633 	bitmap_free(mask);
1634 	return err ? : len;
1635 }
1636 
1637 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1638 	= __ATTR_RW(xps_rxqs);
1639 #endif /* CONFIG_XPS */
1640 
1641 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1642 	&queue_trans_timeout.attr,
1643 	&queue_traffic_class.attr,
1644 #ifdef CONFIG_XPS
1645 	&xps_cpus_attribute.attr,
1646 	&xps_rxqs_attribute.attr,
1647 	&queue_tx_maxrate.attr,
1648 #endif
1649 	NULL
1650 };
1651 ATTRIBUTE_GROUPS(netdev_queue_default);
1652 
1653 static void netdev_queue_release(struct kobject *kobj)
1654 {
1655 	struct netdev_queue *queue = to_netdev_queue(kobj);
1656 
1657 	memset(kobj, 0, sizeof(*kobj));
1658 	netdev_put(queue->dev, &queue->dev_tracker);
1659 }
1660 
1661 static const void *netdev_queue_namespace(const struct kobject *kobj)
1662 {
1663 	struct netdev_queue *queue = to_netdev_queue(kobj);
1664 	struct device *dev = &queue->dev->dev;
1665 	const void *ns = NULL;
1666 
1667 	if (dev->class && dev->class->ns_type)
1668 		ns = dev->class->namespace(dev);
1669 
1670 	return ns;
1671 }
1672 
1673 static void netdev_queue_get_ownership(const struct kobject *kobj,
1674 				       kuid_t *uid, kgid_t *gid)
1675 {
1676 	const struct net *net = netdev_queue_namespace(kobj);
1677 
1678 	net_ns_get_ownership(net, uid, gid);
1679 }
1680 
1681 static const struct kobj_type netdev_queue_ktype = {
1682 	.sysfs_ops = &netdev_queue_sysfs_ops,
1683 	.release = netdev_queue_release,
1684 	.default_groups = netdev_queue_default_groups,
1685 	.namespace = netdev_queue_namespace,
1686 	.get_ownership = netdev_queue_get_ownership,
1687 };
1688 
1689 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1690 {
1691 	struct netdev_queue *queue = dev->_tx + index;
1692 	struct kobject *kobj = &queue->kobj;
1693 	int error = 0;
1694 
1695 	/* Kobject_put later will trigger netdev_queue_release call
1696 	 * which decreases dev refcount: Take that reference here
1697 	 */
1698 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1699 
1700 	kobj->kset = dev->queues_kset;
1701 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1702 				     "tx-%u", index);
1703 	if (error)
1704 		goto err;
1705 
1706 #ifdef CONFIG_BQL
1707 	error = sysfs_create_group(kobj, &dql_group);
1708 	if (error)
1709 		goto err;
1710 #endif
1711 
1712 	kobject_uevent(kobj, KOBJ_ADD);
1713 	return 0;
1714 
1715 err:
1716 	kobject_put(kobj);
1717 	return error;
1718 }
1719 
1720 static int tx_queue_change_owner(struct net_device *ndev, int index,
1721 				 kuid_t kuid, kgid_t kgid)
1722 {
1723 	struct netdev_queue *queue = ndev->_tx + index;
1724 	struct kobject *kobj = &queue->kobj;
1725 	int error;
1726 
1727 	error = sysfs_change_owner(kobj, kuid, kgid);
1728 	if (error)
1729 		return error;
1730 
1731 #ifdef CONFIG_BQL
1732 	error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1733 #endif
1734 	return error;
1735 }
1736 #endif /* CONFIG_SYSFS */
1737 
1738 int
1739 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1740 {
1741 #ifdef CONFIG_SYSFS
1742 	int i;
1743 	int error = 0;
1744 
1745 	/* Tx queue kobjects are allowed to be updated when a device is being
1746 	 * unregistered, but solely to remove queues from qdiscs. Any path
1747 	 * adding queues should be fixed.
1748 	 */
1749 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
1750 	     "New queues can't be registered after device unregistration.");
1751 
1752 	for (i = old_num; i < new_num; i++) {
1753 		error = netdev_queue_add_kobject(dev, i);
1754 		if (error) {
1755 			new_num = old_num;
1756 			break;
1757 		}
1758 	}
1759 
1760 	while (--i >= new_num) {
1761 		struct netdev_queue *queue = dev->_tx + i;
1762 
1763 		if (!refcount_read(&dev_net(dev)->ns.count))
1764 			queue->kobj.uevent_suppress = 1;
1765 #ifdef CONFIG_BQL
1766 		sysfs_remove_group(&queue->kobj, &dql_group);
1767 #endif
1768 		kobject_put(&queue->kobj);
1769 	}
1770 
1771 	return error;
1772 #else
1773 	return 0;
1774 #endif /* CONFIG_SYSFS */
1775 }
1776 
1777 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1778 				     kuid_t kuid, kgid_t kgid)
1779 {
1780 #ifdef CONFIG_SYSFS
1781 	int error = 0;
1782 	int i;
1783 
1784 	for (i = 0; i < num; i++) {
1785 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1786 		if (error)
1787 			break;
1788 	}
1789 
1790 	return error;
1791 #else
1792 	return 0;
1793 #endif /* CONFIG_SYSFS */
1794 }
1795 
1796 static int register_queue_kobjects(struct net_device *dev)
1797 {
1798 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1799 
1800 #ifdef CONFIG_SYSFS
1801 	dev->queues_kset = kset_create_and_add("queues",
1802 					       NULL, &dev->dev.kobj);
1803 	if (!dev->queues_kset)
1804 		return -ENOMEM;
1805 	real_rx = dev->real_num_rx_queues;
1806 #endif
1807 	real_tx = dev->real_num_tx_queues;
1808 
1809 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1810 	if (error)
1811 		goto error;
1812 	rxq = real_rx;
1813 
1814 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1815 	if (error)
1816 		goto error;
1817 	txq = real_tx;
1818 
1819 	return 0;
1820 
1821 error:
1822 	netdev_queue_update_kobjects(dev, txq, 0);
1823 	net_rx_queue_update_kobjects(dev, rxq, 0);
1824 #ifdef CONFIG_SYSFS
1825 	kset_unregister(dev->queues_kset);
1826 #endif
1827 	return error;
1828 }
1829 
1830 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1831 {
1832 	int error = 0, real_rx = 0, real_tx = 0;
1833 
1834 #ifdef CONFIG_SYSFS
1835 	if (ndev->queues_kset) {
1836 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1837 		if (error)
1838 			return error;
1839 	}
1840 	real_rx = ndev->real_num_rx_queues;
1841 #endif
1842 	real_tx = ndev->real_num_tx_queues;
1843 
1844 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1845 	if (error)
1846 		return error;
1847 
1848 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1849 	if (error)
1850 		return error;
1851 
1852 	return 0;
1853 }
1854 
1855 static void remove_queue_kobjects(struct net_device *dev)
1856 {
1857 	int real_rx = 0, real_tx = 0;
1858 
1859 #ifdef CONFIG_SYSFS
1860 	real_rx = dev->real_num_rx_queues;
1861 #endif
1862 	real_tx = dev->real_num_tx_queues;
1863 
1864 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1865 	netdev_queue_update_kobjects(dev, real_tx, 0);
1866 
1867 	dev->real_num_rx_queues = 0;
1868 	dev->real_num_tx_queues = 0;
1869 #ifdef CONFIG_SYSFS
1870 	kset_unregister(dev->queues_kset);
1871 #endif
1872 }
1873 
1874 static bool net_current_may_mount(void)
1875 {
1876 	struct net *net = current->nsproxy->net_ns;
1877 
1878 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1879 }
1880 
1881 static void *net_grab_current_ns(void)
1882 {
1883 	struct net *ns = current->nsproxy->net_ns;
1884 #ifdef CONFIG_NET_NS
1885 	if (ns)
1886 		refcount_inc(&ns->passive);
1887 #endif
1888 	return ns;
1889 }
1890 
1891 static const void *net_initial_ns(void)
1892 {
1893 	return &init_net;
1894 }
1895 
1896 static const void *net_netlink_ns(struct sock *sk)
1897 {
1898 	return sock_net(sk);
1899 }
1900 
1901 const struct kobj_ns_type_operations net_ns_type_operations = {
1902 	.type = KOBJ_NS_TYPE_NET,
1903 	.current_may_mount = net_current_may_mount,
1904 	.grab_current_ns = net_grab_current_ns,
1905 	.netlink_ns = net_netlink_ns,
1906 	.initial_ns = net_initial_ns,
1907 	.drop_ns = net_drop_ns,
1908 };
1909 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1910 
1911 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
1912 {
1913 	const struct net_device *dev = to_net_dev(d);
1914 	int retval;
1915 
1916 	/* pass interface to uevent. */
1917 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1918 	if (retval)
1919 		goto exit;
1920 
1921 	/* pass ifindex to uevent.
1922 	 * ifindex is useful as it won't change (interface name may change)
1923 	 * and is what RtNetlink uses natively.
1924 	 */
1925 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1926 
1927 exit:
1928 	return retval;
1929 }
1930 
1931 /*
1932  *	netdev_release -- destroy and free a dead device.
1933  *	Called when last reference to device kobject is gone.
1934  */
1935 static void netdev_release(struct device *d)
1936 {
1937 	struct net_device *dev = to_net_dev(d);
1938 
1939 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1940 
1941 	/* no need to wait for rcu grace period:
1942 	 * device is dead and about to be freed.
1943 	 */
1944 	kfree(rcu_access_pointer(dev->ifalias));
1945 	netdev_freemem(dev);
1946 }
1947 
1948 static const void *net_namespace(const struct device *d)
1949 {
1950 	const struct net_device *dev = to_net_dev(d);
1951 
1952 	return dev_net(dev);
1953 }
1954 
1955 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
1956 {
1957 	const struct net_device *dev = to_net_dev(d);
1958 	const struct net *net = dev_net(dev);
1959 
1960 	net_ns_get_ownership(net, uid, gid);
1961 }
1962 
1963 static struct class net_class __ro_after_init = {
1964 	.name = "net",
1965 	.dev_release = netdev_release,
1966 	.dev_groups = net_class_groups,
1967 	.dev_uevent = netdev_uevent,
1968 	.ns_type = &net_ns_type_operations,
1969 	.namespace = net_namespace,
1970 	.get_ownership = net_get_ownership,
1971 };
1972 
1973 #ifdef CONFIG_OF
1974 static int of_dev_node_match(struct device *dev, const void *data)
1975 {
1976 	for (; dev; dev = dev->parent) {
1977 		if (dev->of_node == data)
1978 			return 1;
1979 	}
1980 
1981 	return 0;
1982 }
1983 
1984 /*
1985  * of_find_net_device_by_node - lookup the net device for the device node
1986  * @np: OF device node
1987  *
1988  * Looks up the net_device structure corresponding with the device node.
1989  * If successful, returns a pointer to the net_device with the embedded
1990  * struct device refcount incremented by one, or NULL on failure. The
1991  * refcount must be dropped when done with the net_device.
1992  */
1993 struct net_device *of_find_net_device_by_node(struct device_node *np)
1994 {
1995 	struct device *dev;
1996 
1997 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1998 	if (!dev)
1999 		return NULL;
2000 
2001 	return to_net_dev(dev);
2002 }
2003 EXPORT_SYMBOL(of_find_net_device_by_node);
2004 #endif
2005 
2006 /* Delete sysfs entries but hold kobject reference until after all
2007  * netdev references are gone.
2008  */
2009 void netdev_unregister_kobject(struct net_device *ndev)
2010 {
2011 	struct device *dev = &ndev->dev;
2012 
2013 	if (!refcount_read(&dev_net(ndev)->ns.count))
2014 		dev_set_uevent_suppress(dev, 1);
2015 
2016 	kobject_get(&dev->kobj);
2017 
2018 	remove_queue_kobjects(ndev);
2019 
2020 	pm_runtime_set_memalloc_noio(dev, false);
2021 
2022 	device_del(dev);
2023 }
2024 
2025 /* Create sysfs entries for network device. */
2026 int netdev_register_kobject(struct net_device *ndev)
2027 {
2028 	struct device *dev = &ndev->dev;
2029 	const struct attribute_group **groups = ndev->sysfs_groups;
2030 	int error = 0;
2031 
2032 	device_initialize(dev);
2033 	dev->class = &net_class;
2034 	dev->platform_data = ndev;
2035 	dev->groups = groups;
2036 
2037 	dev_set_name(dev, "%s", ndev->name);
2038 
2039 #ifdef CONFIG_SYSFS
2040 	/* Allow for a device specific group */
2041 	if (*groups)
2042 		groups++;
2043 
2044 	*groups++ = &netstat_group;
2045 
2046 	if (wireless_group_needed(ndev))
2047 		*groups++ = &wireless_group;
2048 #endif /* CONFIG_SYSFS */
2049 
2050 	error = device_add(dev);
2051 	if (error)
2052 		return error;
2053 
2054 	error = register_queue_kobjects(ndev);
2055 	if (error) {
2056 		device_del(dev);
2057 		return error;
2058 	}
2059 
2060 	pm_runtime_set_memalloc_noio(dev, true);
2061 
2062 	return error;
2063 }
2064 
2065 /* Change owner for sysfs entries when moving network devices across network
2066  * namespaces owned by different user namespaces.
2067  */
2068 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2069 			const struct net *net_new)
2070 {
2071 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2072 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2073 	struct device *dev = &ndev->dev;
2074 	int error;
2075 
2076 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2077 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2078 
2079 	/* The network namespace was changed but the owning user namespace is
2080 	 * identical so there's no need to change the owner of sysfs entries.
2081 	 */
2082 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2083 		return 0;
2084 
2085 	error = device_change_owner(dev, new_uid, new_gid);
2086 	if (error)
2087 		return error;
2088 
2089 	error = queue_change_owner(ndev, new_uid, new_gid);
2090 	if (error)
2091 		return error;
2092 
2093 	return 0;
2094 }
2095 
2096 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2097 				const void *ns)
2098 {
2099 	return class_create_file_ns(&net_class, class_attr, ns);
2100 }
2101 EXPORT_SYMBOL(netdev_class_create_file_ns);
2102 
2103 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2104 				 const void *ns)
2105 {
2106 	class_remove_file_ns(&net_class, class_attr, ns);
2107 }
2108 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2109 
2110 int __init netdev_kobject_init(void)
2111 {
2112 	kobj_ns_type_register(&net_ns_type_operations);
2113 	return class_register(&net_class);
2114 }
2115