xref: /linux/net/core/net-sysfs.c (revision 09141ec0e4efede4fb5e2aa68cb819fba974325c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 
27 #include "net-sysfs.h"
28 
29 #ifdef CONFIG_SYSFS
30 static const char fmt_hex[] = "%#x\n";
31 static const char fmt_dec[] = "%d\n";
32 static const char fmt_ulong[] = "%lu\n";
33 static const char fmt_u64[] = "%llu\n";
34 
35 static inline int dev_isalive(const struct net_device *dev)
36 {
37 	return dev->reg_state <= NETREG_REGISTERED;
38 }
39 
40 /* use same locking rules as GIF* ioctl's */
41 static ssize_t netdev_show(const struct device *dev,
42 			   struct device_attribute *attr, char *buf,
43 			   ssize_t (*format)(const struct net_device *, char *))
44 {
45 	struct net_device *ndev = to_net_dev(dev);
46 	ssize_t ret = -EINVAL;
47 
48 	read_lock(&dev_base_lock);
49 	if (dev_isalive(ndev))
50 		ret = (*format)(ndev, buf);
51 	read_unlock(&dev_base_lock);
52 
53 	return ret;
54 }
55 
56 /* generate a show function for simple field */
57 #define NETDEVICE_SHOW(field, format_string)				\
58 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
59 {									\
60 	return sprintf(buf, format_string, dev->field);			\
61 }									\
62 static ssize_t field##_show(struct device *dev,				\
63 			    struct device_attribute *attr, char *buf)	\
64 {									\
65 	return netdev_show(dev, attr, buf, format_##field);		\
66 }									\
67 
68 #define NETDEVICE_SHOW_RO(field, format_string)				\
69 NETDEVICE_SHOW(field, format_string);					\
70 static DEVICE_ATTR_RO(field)
71 
72 #define NETDEVICE_SHOW_RW(field, format_string)				\
73 NETDEVICE_SHOW(field, format_string);					\
74 static DEVICE_ATTR_RW(field)
75 
76 /* use same locking and permission rules as SIF* ioctl's */
77 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
78 			    const char *buf, size_t len,
79 			    int (*set)(struct net_device *, unsigned long))
80 {
81 	struct net_device *netdev = to_net_dev(dev);
82 	struct net *net = dev_net(netdev);
83 	unsigned long new;
84 	int ret;
85 
86 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
87 		return -EPERM;
88 
89 	ret = kstrtoul(buf, 0, &new);
90 	if (ret)
91 		goto err;
92 
93 	if (!rtnl_trylock())
94 		return restart_syscall();
95 
96 	if (dev_isalive(netdev)) {
97 		ret = (*set)(netdev, new);
98 		if (ret == 0)
99 			ret = len;
100 	}
101 	rtnl_unlock();
102  err:
103 	return ret;
104 }
105 
106 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
107 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
108 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
109 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
110 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
111 NETDEVICE_SHOW_RO(type, fmt_dec);
112 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
113 
114 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
115 			   char *buf)
116 {
117 	struct net_device *ndev = to_net_dev(dev);
118 
119 	return sprintf(buf, fmt_dec, dev_get_iflink(ndev));
120 }
121 static DEVICE_ATTR_RO(iflink);
122 
123 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
124 {
125 	return sprintf(buf, fmt_dec, dev->name_assign_type);
126 }
127 
128 static ssize_t name_assign_type_show(struct device *dev,
129 				     struct device_attribute *attr,
130 				     char *buf)
131 {
132 	struct net_device *ndev = to_net_dev(dev);
133 	ssize_t ret = -EINVAL;
134 
135 	if (ndev->name_assign_type != NET_NAME_UNKNOWN)
136 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
137 
138 	return ret;
139 }
140 static DEVICE_ATTR_RO(name_assign_type);
141 
142 /* use same locking rules as GIFHWADDR ioctl's */
143 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
144 			    char *buf)
145 {
146 	struct net_device *ndev = to_net_dev(dev);
147 	ssize_t ret = -EINVAL;
148 
149 	read_lock(&dev_base_lock);
150 	if (dev_isalive(ndev))
151 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
152 	read_unlock(&dev_base_lock);
153 	return ret;
154 }
155 static DEVICE_ATTR_RO(address);
156 
157 static ssize_t broadcast_show(struct device *dev,
158 			      struct device_attribute *attr, char *buf)
159 {
160 	struct net_device *ndev = to_net_dev(dev);
161 
162 	if (dev_isalive(ndev))
163 		return sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
164 	return -EINVAL;
165 }
166 static DEVICE_ATTR_RO(broadcast);
167 
168 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
169 {
170 	if (!netif_running(dev))
171 		return -EINVAL;
172 	return dev_change_carrier(dev, (bool)new_carrier);
173 }
174 
175 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
176 			     const char *buf, size_t len)
177 {
178 	return netdev_store(dev, attr, buf, len, change_carrier);
179 }
180 
181 static ssize_t carrier_show(struct device *dev,
182 			    struct device_attribute *attr, char *buf)
183 {
184 	struct net_device *netdev = to_net_dev(dev);
185 
186 	if (netif_running(netdev))
187 		return sprintf(buf, fmt_dec, !!netif_carrier_ok(netdev));
188 
189 	return -EINVAL;
190 }
191 static DEVICE_ATTR_RW(carrier);
192 
193 static ssize_t speed_show(struct device *dev,
194 			  struct device_attribute *attr, char *buf)
195 {
196 	struct net_device *netdev = to_net_dev(dev);
197 	int ret = -EINVAL;
198 
199 	if (!rtnl_trylock())
200 		return restart_syscall();
201 
202 	if (netif_running(netdev)) {
203 		struct ethtool_link_ksettings cmd;
204 
205 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
206 			ret = sprintf(buf, fmt_dec, cmd.base.speed);
207 	}
208 	rtnl_unlock();
209 	return ret;
210 }
211 static DEVICE_ATTR_RO(speed);
212 
213 static ssize_t duplex_show(struct device *dev,
214 			   struct device_attribute *attr, char *buf)
215 {
216 	struct net_device *netdev = to_net_dev(dev);
217 	int ret = -EINVAL;
218 
219 	if (!rtnl_trylock())
220 		return restart_syscall();
221 
222 	if (netif_running(netdev)) {
223 		struct ethtool_link_ksettings cmd;
224 
225 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
226 			const char *duplex;
227 
228 			switch (cmd.base.duplex) {
229 			case DUPLEX_HALF:
230 				duplex = "half";
231 				break;
232 			case DUPLEX_FULL:
233 				duplex = "full";
234 				break;
235 			default:
236 				duplex = "unknown";
237 				break;
238 			}
239 			ret = sprintf(buf, "%s\n", duplex);
240 		}
241 	}
242 	rtnl_unlock();
243 	return ret;
244 }
245 static DEVICE_ATTR_RO(duplex);
246 
247 static ssize_t testing_show(struct device *dev,
248 			    struct device_attribute *attr, char *buf)
249 {
250 	struct net_device *netdev = to_net_dev(dev);
251 
252 	if (netif_running(netdev))
253 		return sprintf(buf, fmt_dec, !!netif_testing(netdev));
254 
255 	return -EINVAL;
256 }
257 static DEVICE_ATTR_RO(testing);
258 
259 static ssize_t dormant_show(struct device *dev,
260 			    struct device_attribute *attr, char *buf)
261 {
262 	struct net_device *netdev = to_net_dev(dev);
263 
264 	if (netif_running(netdev))
265 		return sprintf(buf, fmt_dec, !!netif_dormant(netdev));
266 
267 	return -EINVAL;
268 }
269 static DEVICE_ATTR_RO(dormant);
270 
271 static const char *const operstates[] = {
272 	"unknown",
273 	"notpresent", /* currently unused */
274 	"down",
275 	"lowerlayerdown",
276 	"testing",
277 	"dormant",
278 	"up"
279 };
280 
281 static ssize_t operstate_show(struct device *dev,
282 			      struct device_attribute *attr, char *buf)
283 {
284 	const struct net_device *netdev = to_net_dev(dev);
285 	unsigned char operstate;
286 
287 	read_lock(&dev_base_lock);
288 	operstate = netdev->operstate;
289 	if (!netif_running(netdev))
290 		operstate = IF_OPER_DOWN;
291 	read_unlock(&dev_base_lock);
292 
293 	if (operstate >= ARRAY_SIZE(operstates))
294 		return -EINVAL; /* should not happen */
295 
296 	return sprintf(buf, "%s\n", operstates[operstate]);
297 }
298 static DEVICE_ATTR_RO(operstate);
299 
300 static ssize_t carrier_changes_show(struct device *dev,
301 				    struct device_attribute *attr,
302 				    char *buf)
303 {
304 	struct net_device *netdev = to_net_dev(dev);
305 
306 	return sprintf(buf, fmt_dec,
307 		       atomic_read(&netdev->carrier_up_count) +
308 		       atomic_read(&netdev->carrier_down_count));
309 }
310 static DEVICE_ATTR_RO(carrier_changes);
311 
312 static ssize_t carrier_up_count_show(struct device *dev,
313 				     struct device_attribute *attr,
314 				     char *buf)
315 {
316 	struct net_device *netdev = to_net_dev(dev);
317 
318 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
319 }
320 static DEVICE_ATTR_RO(carrier_up_count);
321 
322 static ssize_t carrier_down_count_show(struct device *dev,
323 				       struct device_attribute *attr,
324 				       char *buf)
325 {
326 	struct net_device *netdev = to_net_dev(dev);
327 
328 	return sprintf(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
329 }
330 static DEVICE_ATTR_RO(carrier_down_count);
331 
332 /* read-write attributes */
333 
334 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
335 {
336 	return dev_set_mtu(dev, (int)new_mtu);
337 }
338 
339 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
340 			 const char *buf, size_t len)
341 {
342 	return netdev_store(dev, attr, buf, len, change_mtu);
343 }
344 NETDEVICE_SHOW_RW(mtu, fmt_dec);
345 
346 static int change_flags(struct net_device *dev, unsigned long new_flags)
347 {
348 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
349 }
350 
351 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
352 			   const char *buf, size_t len)
353 {
354 	return netdev_store(dev, attr, buf, len, change_flags);
355 }
356 NETDEVICE_SHOW_RW(flags, fmt_hex);
357 
358 static ssize_t tx_queue_len_store(struct device *dev,
359 				  struct device_attribute *attr,
360 				  const char *buf, size_t len)
361 {
362 	if (!capable(CAP_NET_ADMIN))
363 		return -EPERM;
364 
365 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
366 }
367 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
368 
369 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
370 {
371 	WRITE_ONCE(dev->gro_flush_timeout, val);
372 	return 0;
373 }
374 
375 static ssize_t gro_flush_timeout_store(struct device *dev,
376 				       struct device_attribute *attr,
377 				       const char *buf, size_t len)
378 {
379 	if (!capable(CAP_NET_ADMIN))
380 		return -EPERM;
381 
382 	return netdev_store(dev, attr, buf, len, change_gro_flush_timeout);
383 }
384 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
385 
386 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
387 {
388 	WRITE_ONCE(dev->napi_defer_hard_irqs, val);
389 	return 0;
390 }
391 
392 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
393 					  struct device_attribute *attr,
394 					  const char *buf, size_t len)
395 {
396 	if (!capable(CAP_NET_ADMIN))
397 		return -EPERM;
398 
399 	return netdev_store(dev, attr, buf, len, change_napi_defer_hard_irqs);
400 }
401 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_dec);
402 
403 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
404 			     const char *buf, size_t len)
405 {
406 	struct net_device *netdev = to_net_dev(dev);
407 	struct net *net = dev_net(netdev);
408 	size_t count = len;
409 	ssize_t ret = 0;
410 
411 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
412 		return -EPERM;
413 
414 	/* ignore trailing newline */
415 	if (len >  0 && buf[len - 1] == '\n')
416 		--count;
417 
418 	if (!rtnl_trylock())
419 		return restart_syscall();
420 
421 	if (dev_isalive(netdev)) {
422 		ret = dev_set_alias(netdev, buf, count);
423 		if (ret < 0)
424 			goto err;
425 		ret = len;
426 		netdev_state_change(netdev);
427 	}
428 err:
429 	rtnl_unlock();
430 
431 	return ret;
432 }
433 
434 static ssize_t ifalias_show(struct device *dev,
435 			    struct device_attribute *attr, char *buf)
436 {
437 	const struct net_device *netdev = to_net_dev(dev);
438 	char tmp[IFALIASZ];
439 	ssize_t ret = 0;
440 
441 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
442 	if (ret > 0)
443 		ret = sprintf(buf, "%s\n", tmp);
444 	return ret;
445 }
446 static DEVICE_ATTR_RW(ifalias);
447 
448 static int change_group(struct net_device *dev, unsigned long new_group)
449 {
450 	dev_set_group(dev, (int)new_group);
451 	return 0;
452 }
453 
454 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
455 			   const char *buf, size_t len)
456 {
457 	return netdev_store(dev, attr, buf, len, change_group);
458 }
459 NETDEVICE_SHOW(group, fmt_dec);
460 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
461 
462 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
463 {
464 	return dev_change_proto_down(dev, (bool)proto_down);
465 }
466 
467 static ssize_t proto_down_store(struct device *dev,
468 				struct device_attribute *attr,
469 				const char *buf, size_t len)
470 {
471 	return netdev_store(dev, attr, buf, len, change_proto_down);
472 }
473 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
474 
475 static ssize_t phys_port_id_show(struct device *dev,
476 				 struct device_attribute *attr, char *buf)
477 {
478 	struct net_device *netdev = to_net_dev(dev);
479 	ssize_t ret = -EINVAL;
480 
481 	if (!rtnl_trylock())
482 		return restart_syscall();
483 
484 	if (dev_isalive(netdev)) {
485 		struct netdev_phys_item_id ppid;
486 
487 		ret = dev_get_phys_port_id(netdev, &ppid);
488 		if (!ret)
489 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
490 	}
491 	rtnl_unlock();
492 
493 	return ret;
494 }
495 static DEVICE_ATTR_RO(phys_port_id);
496 
497 static ssize_t phys_port_name_show(struct device *dev,
498 				   struct device_attribute *attr, char *buf)
499 {
500 	struct net_device *netdev = to_net_dev(dev);
501 	ssize_t ret = -EINVAL;
502 
503 	if (!rtnl_trylock())
504 		return restart_syscall();
505 
506 	if (dev_isalive(netdev)) {
507 		char name[IFNAMSIZ];
508 
509 		ret = dev_get_phys_port_name(netdev, name, sizeof(name));
510 		if (!ret)
511 			ret = sprintf(buf, "%s\n", name);
512 	}
513 	rtnl_unlock();
514 
515 	return ret;
516 }
517 static DEVICE_ATTR_RO(phys_port_name);
518 
519 static ssize_t phys_switch_id_show(struct device *dev,
520 				   struct device_attribute *attr, char *buf)
521 {
522 	struct net_device *netdev = to_net_dev(dev);
523 	ssize_t ret = -EINVAL;
524 
525 	if (!rtnl_trylock())
526 		return restart_syscall();
527 
528 	if (dev_isalive(netdev)) {
529 		struct netdev_phys_item_id ppid = { };
530 
531 		ret = dev_get_port_parent_id(netdev, &ppid, false);
532 		if (!ret)
533 			ret = sprintf(buf, "%*phN\n", ppid.id_len, ppid.id);
534 	}
535 	rtnl_unlock();
536 
537 	return ret;
538 }
539 static DEVICE_ATTR_RO(phys_switch_id);
540 
541 static ssize_t threaded_show(struct device *dev,
542 			     struct device_attribute *attr, char *buf)
543 {
544 	struct net_device *netdev = to_net_dev(dev);
545 	ssize_t ret = -EINVAL;
546 
547 	if (!rtnl_trylock())
548 		return restart_syscall();
549 
550 	if (dev_isalive(netdev))
551 		ret = sprintf(buf, fmt_dec, netdev->threaded);
552 
553 	rtnl_unlock();
554 	return ret;
555 }
556 
557 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
558 {
559 	int ret;
560 
561 	if (list_empty(&dev->napi_list))
562 		return -EOPNOTSUPP;
563 
564 	if (val != 0 && val != 1)
565 		return -EOPNOTSUPP;
566 
567 	ret = dev_set_threaded(dev, val);
568 
569 	return ret;
570 }
571 
572 static ssize_t threaded_store(struct device *dev,
573 			      struct device_attribute *attr,
574 			      const char *buf, size_t len)
575 {
576 	return netdev_store(dev, attr, buf, len, modify_napi_threaded);
577 }
578 static DEVICE_ATTR_RW(threaded);
579 
580 static struct attribute *net_class_attrs[] __ro_after_init = {
581 	&dev_attr_netdev_group.attr,
582 	&dev_attr_type.attr,
583 	&dev_attr_dev_id.attr,
584 	&dev_attr_dev_port.attr,
585 	&dev_attr_iflink.attr,
586 	&dev_attr_ifindex.attr,
587 	&dev_attr_name_assign_type.attr,
588 	&dev_attr_addr_assign_type.attr,
589 	&dev_attr_addr_len.attr,
590 	&dev_attr_link_mode.attr,
591 	&dev_attr_address.attr,
592 	&dev_attr_broadcast.attr,
593 	&dev_attr_speed.attr,
594 	&dev_attr_duplex.attr,
595 	&dev_attr_dormant.attr,
596 	&dev_attr_testing.attr,
597 	&dev_attr_operstate.attr,
598 	&dev_attr_carrier_changes.attr,
599 	&dev_attr_ifalias.attr,
600 	&dev_attr_carrier.attr,
601 	&dev_attr_mtu.attr,
602 	&dev_attr_flags.attr,
603 	&dev_attr_tx_queue_len.attr,
604 	&dev_attr_gro_flush_timeout.attr,
605 	&dev_attr_napi_defer_hard_irqs.attr,
606 	&dev_attr_phys_port_id.attr,
607 	&dev_attr_phys_port_name.attr,
608 	&dev_attr_phys_switch_id.attr,
609 	&dev_attr_proto_down.attr,
610 	&dev_attr_carrier_up_count.attr,
611 	&dev_attr_carrier_down_count.attr,
612 	&dev_attr_threaded.attr,
613 	NULL,
614 };
615 ATTRIBUTE_GROUPS(net_class);
616 
617 /* Show a given an attribute in the statistics group */
618 static ssize_t netstat_show(const struct device *d,
619 			    struct device_attribute *attr, char *buf,
620 			    unsigned long offset)
621 {
622 	struct net_device *dev = to_net_dev(d);
623 	ssize_t ret = -EINVAL;
624 
625 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
626 		offset % sizeof(u64) != 0);
627 
628 	read_lock(&dev_base_lock);
629 	if (dev_isalive(dev)) {
630 		struct rtnl_link_stats64 temp;
631 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
632 
633 		ret = sprintf(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
634 	}
635 	read_unlock(&dev_base_lock);
636 	return ret;
637 }
638 
639 /* generate a read-only statistics attribute */
640 #define NETSTAT_ENTRY(name)						\
641 static ssize_t name##_show(struct device *d,				\
642 			   struct device_attribute *attr, char *buf)	\
643 {									\
644 	return netstat_show(d, attr, buf,				\
645 			    offsetof(struct rtnl_link_stats64, name));	\
646 }									\
647 static DEVICE_ATTR_RO(name)
648 
649 NETSTAT_ENTRY(rx_packets);
650 NETSTAT_ENTRY(tx_packets);
651 NETSTAT_ENTRY(rx_bytes);
652 NETSTAT_ENTRY(tx_bytes);
653 NETSTAT_ENTRY(rx_errors);
654 NETSTAT_ENTRY(tx_errors);
655 NETSTAT_ENTRY(rx_dropped);
656 NETSTAT_ENTRY(tx_dropped);
657 NETSTAT_ENTRY(multicast);
658 NETSTAT_ENTRY(collisions);
659 NETSTAT_ENTRY(rx_length_errors);
660 NETSTAT_ENTRY(rx_over_errors);
661 NETSTAT_ENTRY(rx_crc_errors);
662 NETSTAT_ENTRY(rx_frame_errors);
663 NETSTAT_ENTRY(rx_fifo_errors);
664 NETSTAT_ENTRY(rx_missed_errors);
665 NETSTAT_ENTRY(tx_aborted_errors);
666 NETSTAT_ENTRY(tx_carrier_errors);
667 NETSTAT_ENTRY(tx_fifo_errors);
668 NETSTAT_ENTRY(tx_heartbeat_errors);
669 NETSTAT_ENTRY(tx_window_errors);
670 NETSTAT_ENTRY(rx_compressed);
671 NETSTAT_ENTRY(tx_compressed);
672 NETSTAT_ENTRY(rx_nohandler);
673 
674 static struct attribute *netstat_attrs[] __ro_after_init = {
675 	&dev_attr_rx_packets.attr,
676 	&dev_attr_tx_packets.attr,
677 	&dev_attr_rx_bytes.attr,
678 	&dev_attr_tx_bytes.attr,
679 	&dev_attr_rx_errors.attr,
680 	&dev_attr_tx_errors.attr,
681 	&dev_attr_rx_dropped.attr,
682 	&dev_attr_tx_dropped.attr,
683 	&dev_attr_multicast.attr,
684 	&dev_attr_collisions.attr,
685 	&dev_attr_rx_length_errors.attr,
686 	&dev_attr_rx_over_errors.attr,
687 	&dev_attr_rx_crc_errors.attr,
688 	&dev_attr_rx_frame_errors.attr,
689 	&dev_attr_rx_fifo_errors.attr,
690 	&dev_attr_rx_missed_errors.attr,
691 	&dev_attr_tx_aborted_errors.attr,
692 	&dev_attr_tx_carrier_errors.attr,
693 	&dev_attr_tx_fifo_errors.attr,
694 	&dev_attr_tx_heartbeat_errors.attr,
695 	&dev_attr_tx_window_errors.attr,
696 	&dev_attr_rx_compressed.attr,
697 	&dev_attr_tx_compressed.attr,
698 	&dev_attr_rx_nohandler.attr,
699 	NULL
700 };
701 
702 static const struct attribute_group netstat_group = {
703 	.name  = "statistics",
704 	.attrs  = netstat_attrs,
705 };
706 
707 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
708 static struct attribute *wireless_attrs[] = {
709 	NULL
710 };
711 
712 static const struct attribute_group wireless_group = {
713 	.name = "wireless",
714 	.attrs = wireless_attrs,
715 };
716 #endif
717 
718 #else /* CONFIG_SYSFS */
719 #define net_class_groups	NULL
720 #endif /* CONFIG_SYSFS */
721 
722 #ifdef CONFIG_SYSFS
723 #define to_rx_queue_attr(_attr) \
724 	container_of(_attr, struct rx_queue_attribute, attr)
725 
726 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
727 
728 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
729 				  char *buf)
730 {
731 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
732 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
733 
734 	if (!attribute->show)
735 		return -EIO;
736 
737 	return attribute->show(queue, buf);
738 }
739 
740 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
741 				   const char *buf, size_t count)
742 {
743 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
744 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
745 
746 	if (!attribute->store)
747 		return -EIO;
748 
749 	return attribute->store(queue, buf, count);
750 }
751 
752 static const struct sysfs_ops rx_queue_sysfs_ops = {
753 	.show = rx_queue_attr_show,
754 	.store = rx_queue_attr_store,
755 };
756 
757 #ifdef CONFIG_RPS
758 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
759 {
760 	struct rps_map *map;
761 	cpumask_var_t mask;
762 	int i, len;
763 
764 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
765 		return -ENOMEM;
766 
767 	rcu_read_lock();
768 	map = rcu_dereference(queue->rps_map);
769 	if (map)
770 		for (i = 0; i < map->len; i++)
771 			cpumask_set_cpu(map->cpus[i], mask);
772 
773 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
774 	rcu_read_unlock();
775 	free_cpumask_var(mask);
776 
777 	return len < PAGE_SIZE ? len : -EINVAL;
778 }
779 
780 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
781 			     const char *buf, size_t len)
782 {
783 	struct rps_map *old_map, *map;
784 	cpumask_var_t mask;
785 	int err, cpu, i, hk_flags;
786 	static DEFINE_MUTEX(rps_map_mutex);
787 
788 	if (!capable(CAP_NET_ADMIN))
789 		return -EPERM;
790 
791 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
792 		return -ENOMEM;
793 
794 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
795 	if (err) {
796 		free_cpumask_var(mask);
797 		return err;
798 	}
799 
800 	if (!cpumask_empty(mask)) {
801 		hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
802 		cpumask_and(mask, mask, housekeeping_cpumask(hk_flags));
803 		if (cpumask_empty(mask)) {
804 			free_cpumask_var(mask);
805 			return -EINVAL;
806 		}
807 	}
808 
809 	map = kzalloc(max_t(unsigned int,
810 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
811 		      GFP_KERNEL);
812 	if (!map) {
813 		free_cpumask_var(mask);
814 		return -ENOMEM;
815 	}
816 
817 	i = 0;
818 	for_each_cpu_and(cpu, mask, cpu_online_mask)
819 		map->cpus[i++] = cpu;
820 
821 	if (i) {
822 		map->len = i;
823 	} else {
824 		kfree(map);
825 		map = NULL;
826 	}
827 
828 	mutex_lock(&rps_map_mutex);
829 	old_map = rcu_dereference_protected(queue->rps_map,
830 					    mutex_is_locked(&rps_map_mutex));
831 	rcu_assign_pointer(queue->rps_map, map);
832 
833 	if (map)
834 		static_branch_inc(&rps_needed);
835 	if (old_map)
836 		static_branch_dec(&rps_needed);
837 
838 	mutex_unlock(&rps_map_mutex);
839 
840 	if (old_map)
841 		kfree_rcu(old_map, rcu);
842 
843 	free_cpumask_var(mask);
844 	return len;
845 }
846 
847 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
848 					   char *buf)
849 {
850 	struct rps_dev_flow_table *flow_table;
851 	unsigned long val = 0;
852 
853 	rcu_read_lock();
854 	flow_table = rcu_dereference(queue->rps_flow_table);
855 	if (flow_table)
856 		val = (unsigned long)flow_table->mask + 1;
857 	rcu_read_unlock();
858 
859 	return sprintf(buf, "%lu\n", val);
860 }
861 
862 static void rps_dev_flow_table_release(struct rcu_head *rcu)
863 {
864 	struct rps_dev_flow_table *table = container_of(rcu,
865 	    struct rps_dev_flow_table, rcu);
866 	vfree(table);
867 }
868 
869 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
870 					    const char *buf, size_t len)
871 {
872 	unsigned long mask, count;
873 	struct rps_dev_flow_table *table, *old_table;
874 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
875 	int rc;
876 
877 	if (!capable(CAP_NET_ADMIN))
878 		return -EPERM;
879 
880 	rc = kstrtoul(buf, 0, &count);
881 	if (rc < 0)
882 		return rc;
883 
884 	if (count) {
885 		mask = count - 1;
886 		/* mask = roundup_pow_of_two(count) - 1;
887 		 * without overflows...
888 		 */
889 		while ((mask | (mask >> 1)) != mask)
890 			mask |= (mask >> 1);
891 		/* On 64 bit arches, must check mask fits in table->mask (u32),
892 		 * and on 32bit arches, must check
893 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
894 		 */
895 #if BITS_PER_LONG > 32
896 		if (mask > (unsigned long)(u32)mask)
897 			return -EINVAL;
898 #else
899 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
900 				/ sizeof(struct rps_dev_flow)) {
901 			/* Enforce a limit to prevent overflow */
902 			return -EINVAL;
903 		}
904 #endif
905 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
906 		if (!table)
907 			return -ENOMEM;
908 
909 		table->mask = mask;
910 		for (count = 0; count <= mask; count++)
911 			table->flows[count].cpu = RPS_NO_CPU;
912 	} else {
913 		table = NULL;
914 	}
915 
916 	spin_lock(&rps_dev_flow_lock);
917 	old_table = rcu_dereference_protected(queue->rps_flow_table,
918 					      lockdep_is_held(&rps_dev_flow_lock));
919 	rcu_assign_pointer(queue->rps_flow_table, table);
920 	spin_unlock(&rps_dev_flow_lock);
921 
922 	if (old_table)
923 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
924 
925 	return len;
926 }
927 
928 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
929 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
930 
931 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
932 	= __ATTR(rps_flow_cnt, 0644,
933 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
934 #endif /* CONFIG_RPS */
935 
936 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
937 #ifdef CONFIG_RPS
938 	&rps_cpus_attribute.attr,
939 	&rps_dev_flow_table_cnt_attribute.attr,
940 #endif
941 	NULL
942 };
943 ATTRIBUTE_GROUPS(rx_queue_default);
944 
945 static void rx_queue_release(struct kobject *kobj)
946 {
947 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
948 #ifdef CONFIG_RPS
949 	struct rps_map *map;
950 	struct rps_dev_flow_table *flow_table;
951 
952 	map = rcu_dereference_protected(queue->rps_map, 1);
953 	if (map) {
954 		RCU_INIT_POINTER(queue->rps_map, NULL);
955 		kfree_rcu(map, rcu);
956 	}
957 
958 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
959 	if (flow_table) {
960 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
961 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
962 	}
963 #endif
964 
965 	memset(kobj, 0, sizeof(*kobj));
966 	dev_put(queue->dev);
967 }
968 
969 static const void *rx_queue_namespace(struct kobject *kobj)
970 {
971 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
972 	struct device *dev = &queue->dev->dev;
973 	const void *ns = NULL;
974 
975 	if (dev->class && dev->class->ns_type)
976 		ns = dev->class->namespace(dev);
977 
978 	return ns;
979 }
980 
981 static void rx_queue_get_ownership(struct kobject *kobj,
982 				   kuid_t *uid, kgid_t *gid)
983 {
984 	const struct net *net = rx_queue_namespace(kobj);
985 
986 	net_ns_get_ownership(net, uid, gid);
987 }
988 
989 static struct kobj_type rx_queue_ktype __ro_after_init = {
990 	.sysfs_ops = &rx_queue_sysfs_ops,
991 	.release = rx_queue_release,
992 	.default_groups = rx_queue_default_groups,
993 	.namespace = rx_queue_namespace,
994 	.get_ownership = rx_queue_get_ownership,
995 };
996 
997 static int rx_queue_add_kobject(struct net_device *dev, int index)
998 {
999 	struct netdev_rx_queue *queue = dev->_rx + index;
1000 	struct kobject *kobj = &queue->kobj;
1001 	int error = 0;
1002 
1003 	/* Kobject_put later will trigger rx_queue_release call which
1004 	 * decreases dev refcount: Take that reference here
1005 	 */
1006 	dev_hold(queue->dev);
1007 
1008 	kobj->kset = dev->queues_kset;
1009 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1010 				     "rx-%u", index);
1011 	if (error)
1012 		goto err;
1013 
1014 	if (dev->sysfs_rx_queue_group) {
1015 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1016 		if (error)
1017 			goto err;
1018 	}
1019 
1020 	kobject_uevent(kobj, KOBJ_ADD);
1021 
1022 	return error;
1023 
1024 err:
1025 	kobject_put(kobj);
1026 	return error;
1027 }
1028 
1029 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1030 				 kgid_t kgid)
1031 {
1032 	struct netdev_rx_queue *queue = dev->_rx + index;
1033 	struct kobject *kobj = &queue->kobj;
1034 	int error;
1035 
1036 	error = sysfs_change_owner(kobj, kuid, kgid);
1037 	if (error)
1038 		return error;
1039 
1040 	if (dev->sysfs_rx_queue_group)
1041 		error = sysfs_group_change_owner(
1042 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1043 
1044 	return error;
1045 }
1046 #endif /* CONFIG_SYSFS */
1047 
1048 int
1049 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1050 {
1051 #ifdef CONFIG_SYSFS
1052 	int i;
1053 	int error = 0;
1054 
1055 #ifndef CONFIG_RPS
1056 	if (!dev->sysfs_rx_queue_group)
1057 		return 0;
1058 #endif
1059 	for (i = old_num; i < new_num; i++) {
1060 		error = rx_queue_add_kobject(dev, i);
1061 		if (error) {
1062 			new_num = old_num;
1063 			break;
1064 		}
1065 	}
1066 
1067 	while (--i >= new_num) {
1068 		struct kobject *kobj = &dev->_rx[i].kobj;
1069 
1070 		if (!refcount_read(&dev_net(dev)->ns.count))
1071 			kobj->uevent_suppress = 1;
1072 		if (dev->sysfs_rx_queue_group)
1073 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1074 		kobject_put(kobj);
1075 	}
1076 
1077 	return error;
1078 #else
1079 	return 0;
1080 #endif
1081 }
1082 
1083 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1084 				     kuid_t kuid, kgid_t kgid)
1085 {
1086 #ifdef CONFIG_SYSFS
1087 	int error = 0;
1088 	int i;
1089 
1090 #ifndef CONFIG_RPS
1091 	if (!dev->sysfs_rx_queue_group)
1092 		return 0;
1093 #endif
1094 	for (i = 0; i < num; i++) {
1095 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1096 		if (error)
1097 			break;
1098 	}
1099 
1100 	return error;
1101 #else
1102 	return 0;
1103 #endif
1104 }
1105 
1106 #ifdef CONFIG_SYSFS
1107 /*
1108  * netdev_queue sysfs structures and functions.
1109  */
1110 struct netdev_queue_attribute {
1111 	struct attribute attr;
1112 	ssize_t (*show)(struct netdev_queue *queue, char *buf);
1113 	ssize_t (*store)(struct netdev_queue *queue,
1114 			 const char *buf, size_t len);
1115 };
1116 #define to_netdev_queue_attr(_attr) \
1117 	container_of(_attr, struct netdev_queue_attribute, attr)
1118 
1119 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1120 
1121 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1122 				      struct attribute *attr, char *buf)
1123 {
1124 	const struct netdev_queue_attribute *attribute
1125 		= to_netdev_queue_attr(attr);
1126 	struct netdev_queue *queue = to_netdev_queue(kobj);
1127 
1128 	if (!attribute->show)
1129 		return -EIO;
1130 
1131 	return attribute->show(queue, buf);
1132 }
1133 
1134 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1135 				       struct attribute *attr,
1136 				       const char *buf, size_t count)
1137 {
1138 	const struct netdev_queue_attribute *attribute
1139 		= to_netdev_queue_attr(attr);
1140 	struct netdev_queue *queue = to_netdev_queue(kobj);
1141 
1142 	if (!attribute->store)
1143 		return -EIO;
1144 
1145 	return attribute->store(queue, buf, count);
1146 }
1147 
1148 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1149 	.show = netdev_queue_attr_show,
1150 	.store = netdev_queue_attr_store,
1151 };
1152 
1153 static ssize_t tx_timeout_show(struct netdev_queue *queue, char *buf)
1154 {
1155 	unsigned long trans_timeout;
1156 
1157 	spin_lock_irq(&queue->_xmit_lock);
1158 	trans_timeout = queue->trans_timeout;
1159 	spin_unlock_irq(&queue->_xmit_lock);
1160 
1161 	return sprintf(buf, fmt_ulong, trans_timeout);
1162 }
1163 
1164 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1165 {
1166 	struct net_device *dev = queue->dev;
1167 	unsigned int i;
1168 
1169 	i = queue - dev->_tx;
1170 	BUG_ON(i >= dev->num_tx_queues);
1171 
1172 	return i;
1173 }
1174 
1175 static ssize_t traffic_class_show(struct netdev_queue *queue,
1176 				  char *buf)
1177 {
1178 	struct net_device *dev = queue->dev;
1179 	int num_tc, tc;
1180 	int index;
1181 
1182 	if (!netif_is_multiqueue(dev))
1183 		return -ENOENT;
1184 
1185 	if (!rtnl_trylock())
1186 		return restart_syscall();
1187 
1188 	index = get_netdev_queue_index(queue);
1189 
1190 	/* If queue belongs to subordinate dev use its TC mapping */
1191 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1192 
1193 	num_tc = dev->num_tc;
1194 	tc = netdev_txq_to_tc(dev, index);
1195 
1196 	rtnl_unlock();
1197 
1198 	if (tc < 0)
1199 		return -EINVAL;
1200 
1201 	/* We can report the traffic class one of two ways:
1202 	 * Subordinate device traffic classes are reported with the traffic
1203 	 * class first, and then the subordinate class so for example TC0 on
1204 	 * subordinate device 2 will be reported as "0-2". If the queue
1205 	 * belongs to the root device it will be reported with just the
1206 	 * traffic class, so just "0" for TC 0 for example.
1207 	 */
1208 	return num_tc < 0 ? sprintf(buf, "%d%d\n", tc, num_tc) :
1209 			    sprintf(buf, "%d\n", tc);
1210 }
1211 
1212 #ifdef CONFIG_XPS
1213 static ssize_t tx_maxrate_show(struct netdev_queue *queue,
1214 			       char *buf)
1215 {
1216 	return sprintf(buf, "%lu\n", queue->tx_maxrate);
1217 }
1218 
1219 static ssize_t tx_maxrate_store(struct netdev_queue *queue,
1220 				const char *buf, size_t len)
1221 {
1222 	struct net_device *dev = queue->dev;
1223 	int err, index = get_netdev_queue_index(queue);
1224 	u32 rate = 0;
1225 
1226 	if (!capable(CAP_NET_ADMIN))
1227 		return -EPERM;
1228 
1229 	err = kstrtou32(buf, 10, &rate);
1230 	if (err < 0)
1231 		return err;
1232 
1233 	if (!rtnl_trylock())
1234 		return restart_syscall();
1235 
1236 	err = -EOPNOTSUPP;
1237 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1238 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1239 
1240 	rtnl_unlock();
1241 	if (!err) {
1242 		queue->tx_maxrate = rate;
1243 		return len;
1244 	}
1245 	return err;
1246 }
1247 
1248 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1249 	= __ATTR_RW(tx_maxrate);
1250 #endif
1251 
1252 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1253 	= __ATTR_RO(tx_timeout);
1254 
1255 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1256 	= __ATTR_RO(traffic_class);
1257 
1258 #ifdef CONFIG_BQL
1259 /*
1260  * Byte queue limits sysfs structures and functions.
1261  */
1262 static ssize_t bql_show(char *buf, unsigned int value)
1263 {
1264 	return sprintf(buf, "%u\n", value);
1265 }
1266 
1267 static ssize_t bql_set(const char *buf, const size_t count,
1268 		       unsigned int *pvalue)
1269 {
1270 	unsigned int value;
1271 	int err;
1272 
1273 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1274 		value = DQL_MAX_LIMIT;
1275 	} else {
1276 		err = kstrtouint(buf, 10, &value);
1277 		if (err < 0)
1278 			return err;
1279 		if (value > DQL_MAX_LIMIT)
1280 			return -EINVAL;
1281 	}
1282 
1283 	*pvalue = value;
1284 
1285 	return count;
1286 }
1287 
1288 static ssize_t bql_show_hold_time(struct netdev_queue *queue,
1289 				  char *buf)
1290 {
1291 	struct dql *dql = &queue->dql;
1292 
1293 	return sprintf(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1294 }
1295 
1296 static ssize_t bql_set_hold_time(struct netdev_queue *queue,
1297 				 const char *buf, size_t len)
1298 {
1299 	struct dql *dql = &queue->dql;
1300 	unsigned int value;
1301 	int err;
1302 
1303 	err = kstrtouint(buf, 10, &value);
1304 	if (err < 0)
1305 		return err;
1306 
1307 	dql->slack_hold_time = msecs_to_jiffies(value);
1308 
1309 	return len;
1310 }
1311 
1312 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1313 	= __ATTR(hold_time, 0644,
1314 		 bql_show_hold_time, bql_set_hold_time);
1315 
1316 static ssize_t bql_show_inflight(struct netdev_queue *queue,
1317 				 char *buf)
1318 {
1319 	struct dql *dql = &queue->dql;
1320 
1321 	return sprintf(buf, "%u\n", dql->num_queued - dql->num_completed);
1322 }
1323 
1324 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1325 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1326 
1327 #define BQL_ATTR(NAME, FIELD)						\
1328 static ssize_t bql_show_ ## NAME(struct netdev_queue *queue,		\
1329 				 char *buf)				\
1330 {									\
1331 	return bql_show(buf, queue->dql.FIELD);				\
1332 }									\
1333 									\
1334 static ssize_t bql_set_ ## NAME(struct netdev_queue *queue,		\
1335 				const char *buf, size_t len)		\
1336 {									\
1337 	return bql_set(buf, len, &queue->dql.FIELD);			\
1338 }									\
1339 									\
1340 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1341 	= __ATTR(NAME, 0644,				\
1342 		 bql_show_ ## NAME, bql_set_ ## NAME)
1343 
1344 BQL_ATTR(limit, limit);
1345 BQL_ATTR(limit_max, max_limit);
1346 BQL_ATTR(limit_min, min_limit);
1347 
1348 static struct attribute *dql_attrs[] __ro_after_init = {
1349 	&bql_limit_attribute.attr,
1350 	&bql_limit_max_attribute.attr,
1351 	&bql_limit_min_attribute.attr,
1352 	&bql_hold_time_attribute.attr,
1353 	&bql_inflight_attribute.attr,
1354 	NULL
1355 };
1356 
1357 static const struct attribute_group dql_group = {
1358 	.name  = "byte_queue_limits",
1359 	.attrs  = dql_attrs,
1360 };
1361 #endif /* CONFIG_BQL */
1362 
1363 #ifdef CONFIG_XPS
1364 static ssize_t xps_cpus_show(struct netdev_queue *queue,
1365 			     char *buf)
1366 {
1367 	int cpu, len, ret, num_tc = 1, tc = 0;
1368 	struct net_device *dev = queue->dev;
1369 	struct xps_dev_maps *dev_maps;
1370 	cpumask_var_t mask;
1371 	unsigned long index;
1372 
1373 	if (!netif_is_multiqueue(dev))
1374 		return -ENOENT;
1375 
1376 	index = get_netdev_queue_index(queue);
1377 
1378 	if (!rtnl_trylock())
1379 		return restart_syscall();
1380 
1381 	if (dev->num_tc) {
1382 		/* Do not allow XPS on subordinate device directly */
1383 		num_tc = dev->num_tc;
1384 		if (num_tc < 0) {
1385 			ret = -EINVAL;
1386 			goto err_rtnl_unlock;
1387 		}
1388 
1389 		/* If queue belongs to subordinate dev use its map */
1390 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1391 
1392 		tc = netdev_txq_to_tc(dev, index);
1393 		if (tc < 0) {
1394 			ret = -EINVAL;
1395 			goto err_rtnl_unlock;
1396 		}
1397 	}
1398 
1399 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
1400 		ret = -ENOMEM;
1401 		goto err_rtnl_unlock;
1402 	}
1403 
1404 	rcu_read_lock();
1405 	dev_maps = rcu_dereference(dev->xps_cpus_map);
1406 	if (dev_maps) {
1407 		for_each_possible_cpu(cpu) {
1408 			int i, tci = cpu * num_tc + tc;
1409 			struct xps_map *map;
1410 
1411 			map = rcu_dereference(dev_maps->attr_map[tci]);
1412 			if (!map)
1413 				continue;
1414 
1415 			for (i = map->len; i--;) {
1416 				if (map->queues[i] == index) {
1417 					cpumask_set_cpu(cpu, mask);
1418 					break;
1419 				}
1420 			}
1421 		}
1422 	}
1423 	rcu_read_unlock();
1424 
1425 	rtnl_unlock();
1426 
1427 	len = snprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
1428 	free_cpumask_var(mask);
1429 	return len < PAGE_SIZE ? len : -EINVAL;
1430 
1431 err_rtnl_unlock:
1432 	rtnl_unlock();
1433 	return ret;
1434 }
1435 
1436 static ssize_t xps_cpus_store(struct netdev_queue *queue,
1437 			      const char *buf, size_t len)
1438 {
1439 	struct net_device *dev = queue->dev;
1440 	unsigned long index;
1441 	cpumask_var_t mask;
1442 	int err;
1443 
1444 	if (!netif_is_multiqueue(dev))
1445 		return -ENOENT;
1446 
1447 	if (!capable(CAP_NET_ADMIN))
1448 		return -EPERM;
1449 
1450 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1451 		return -ENOMEM;
1452 
1453 	index = get_netdev_queue_index(queue);
1454 
1455 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1456 	if (err) {
1457 		free_cpumask_var(mask);
1458 		return err;
1459 	}
1460 
1461 	if (!rtnl_trylock()) {
1462 		free_cpumask_var(mask);
1463 		return restart_syscall();
1464 	}
1465 
1466 	err = netif_set_xps_queue(dev, mask, index);
1467 	rtnl_unlock();
1468 
1469 	free_cpumask_var(mask);
1470 
1471 	return err ? : len;
1472 }
1473 
1474 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1475 	= __ATTR_RW(xps_cpus);
1476 
1477 static ssize_t xps_rxqs_show(struct netdev_queue *queue, char *buf)
1478 {
1479 	int j, len, ret, num_tc = 1, tc = 0;
1480 	struct net_device *dev = queue->dev;
1481 	struct xps_dev_maps *dev_maps;
1482 	unsigned long *mask, index;
1483 
1484 	index = get_netdev_queue_index(queue);
1485 
1486 	if (!rtnl_trylock())
1487 		return restart_syscall();
1488 
1489 	if (dev->num_tc) {
1490 		num_tc = dev->num_tc;
1491 		tc = netdev_txq_to_tc(dev, index);
1492 		if (tc < 0) {
1493 			ret = -EINVAL;
1494 			goto err_rtnl_unlock;
1495 		}
1496 	}
1497 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1498 	if (!mask) {
1499 		ret = -ENOMEM;
1500 		goto err_rtnl_unlock;
1501 	}
1502 
1503 	rcu_read_lock();
1504 	dev_maps = rcu_dereference(dev->xps_rxqs_map);
1505 	if (!dev_maps)
1506 		goto out_no_maps;
1507 
1508 	for (j = -1; j = netif_attrmask_next(j, NULL, dev->num_rx_queues),
1509 	     j < dev->num_rx_queues;) {
1510 		int i, tci = j * num_tc + tc;
1511 		struct xps_map *map;
1512 
1513 		map = rcu_dereference(dev_maps->attr_map[tci]);
1514 		if (!map)
1515 			continue;
1516 
1517 		for (i = map->len; i--;) {
1518 			if (map->queues[i] == index) {
1519 				set_bit(j, mask);
1520 				break;
1521 			}
1522 		}
1523 	}
1524 out_no_maps:
1525 	rcu_read_unlock();
1526 
1527 	rtnl_unlock();
1528 
1529 	len = bitmap_print_to_pagebuf(false, buf, mask, dev->num_rx_queues);
1530 	bitmap_free(mask);
1531 
1532 	return len < PAGE_SIZE ? len : -EINVAL;
1533 
1534 err_rtnl_unlock:
1535 	rtnl_unlock();
1536 	return ret;
1537 }
1538 
1539 static ssize_t xps_rxqs_store(struct netdev_queue *queue, const char *buf,
1540 			      size_t len)
1541 {
1542 	struct net_device *dev = queue->dev;
1543 	struct net *net = dev_net(dev);
1544 	unsigned long *mask, index;
1545 	int err;
1546 
1547 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1548 		return -EPERM;
1549 
1550 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1551 	if (!mask)
1552 		return -ENOMEM;
1553 
1554 	index = get_netdev_queue_index(queue);
1555 
1556 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1557 	if (err) {
1558 		bitmap_free(mask);
1559 		return err;
1560 	}
1561 
1562 	if (!rtnl_trylock()) {
1563 		bitmap_free(mask);
1564 		return restart_syscall();
1565 	}
1566 
1567 	cpus_read_lock();
1568 	err = __netif_set_xps_queue(dev, mask, index, true);
1569 	cpus_read_unlock();
1570 
1571 	rtnl_unlock();
1572 
1573 	bitmap_free(mask);
1574 	return err ? : len;
1575 }
1576 
1577 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1578 	= __ATTR_RW(xps_rxqs);
1579 #endif /* CONFIG_XPS */
1580 
1581 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1582 	&queue_trans_timeout.attr,
1583 	&queue_traffic_class.attr,
1584 #ifdef CONFIG_XPS
1585 	&xps_cpus_attribute.attr,
1586 	&xps_rxqs_attribute.attr,
1587 	&queue_tx_maxrate.attr,
1588 #endif
1589 	NULL
1590 };
1591 ATTRIBUTE_GROUPS(netdev_queue_default);
1592 
1593 static void netdev_queue_release(struct kobject *kobj)
1594 {
1595 	struct netdev_queue *queue = to_netdev_queue(kobj);
1596 
1597 	memset(kobj, 0, sizeof(*kobj));
1598 	dev_put(queue->dev);
1599 }
1600 
1601 static const void *netdev_queue_namespace(struct kobject *kobj)
1602 {
1603 	struct netdev_queue *queue = to_netdev_queue(kobj);
1604 	struct device *dev = &queue->dev->dev;
1605 	const void *ns = NULL;
1606 
1607 	if (dev->class && dev->class->ns_type)
1608 		ns = dev->class->namespace(dev);
1609 
1610 	return ns;
1611 }
1612 
1613 static void netdev_queue_get_ownership(struct kobject *kobj,
1614 				       kuid_t *uid, kgid_t *gid)
1615 {
1616 	const struct net *net = netdev_queue_namespace(kobj);
1617 
1618 	net_ns_get_ownership(net, uid, gid);
1619 }
1620 
1621 static struct kobj_type netdev_queue_ktype __ro_after_init = {
1622 	.sysfs_ops = &netdev_queue_sysfs_ops,
1623 	.release = netdev_queue_release,
1624 	.default_groups = netdev_queue_default_groups,
1625 	.namespace = netdev_queue_namespace,
1626 	.get_ownership = netdev_queue_get_ownership,
1627 };
1628 
1629 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1630 {
1631 	struct netdev_queue *queue = dev->_tx + index;
1632 	struct kobject *kobj = &queue->kobj;
1633 	int error = 0;
1634 
1635 	/* Kobject_put later will trigger netdev_queue_release call
1636 	 * which decreases dev refcount: Take that reference here
1637 	 */
1638 	dev_hold(queue->dev);
1639 
1640 	kobj->kset = dev->queues_kset;
1641 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1642 				     "tx-%u", index);
1643 	if (error)
1644 		goto err;
1645 
1646 #ifdef CONFIG_BQL
1647 	error = sysfs_create_group(kobj, &dql_group);
1648 	if (error)
1649 		goto err;
1650 #endif
1651 
1652 	kobject_uevent(kobj, KOBJ_ADD);
1653 	return 0;
1654 
1655 err:
1656 	kobject_put(kobj);
1657 	return error;
1658 }
1659 
1660 static int tx_queue_change_owner(struct net_device *ndev, int index,
1661 				 kuid_t kuid, kgid_t kgid)
1662 {
1663 	struct netdev_queue *queue = ndev->_tx + index;
1664 	struct kobject *kobj = &queue->kobj;
1665 	int error;
1666 
1667 	error = sysfs_change_owner(kobj, kuid, kgid);
1668 	if (error)
1669 		return error;
1670 
1671 #ifdef CONFIG_BQL
1672 	error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
1673 #endif
1674 	return error;
1675 }
1676 #endif /* CONFIG_SYSFS */
1677 
1678 int
1679 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1680 {
1681 #ifdef CONFIG_SYSFS
1682 	int i;
1683 	int error = 0;
1684 
1685 	for (i = old_num; i < new_num; i++) {
1686 		error = netdev_queue_add_kobject(dev, i);
1687 		if (error) {
1688 			new_num = old_num;
1689 			break;
1690 		}
1691 	}
1692 
1693 	while (--i >= new_num) {
1694 		struct netdev_queue *queue = dev->_tx + i;
1695 
1696 		if (!refcount_read(&dev_net(dev)->ns.count))
1697 			queue->kobj.uevent_suppress = 1;
1698 #ifdef CONFIG_BQL
1699 		sysfs_remove_group(&queue->kobj, &dql_group);
1700 #endif
1701 		kobject_put(&queue->kobj);
1702 	}
1703 
1704 	return error;
1705 #else
1706 	return 0;
1707 #endif /* CONFIG_SYSFS */
1708 }
1709 
1710 static int net_tx_queue_change_owner(struct net_device *dev, int num,
1711 				     kuid_t kuid, kgid_t kgid)
1712 {
1713 #ifdef CONFIG_SYSFS
1714 	int error = 0;
1715 	int i;
1716 
1717 	for (i = 0; i < num; i++) {
1718 		error = tx_queue_change_owner(dev, i, kuid, kgid);
1719 		if (error)
1720 			break;
1721 	}
1722 
1723 	return error;
1724 #else
1725 	return 0;
1726 #endif /* CONFIG_SYSFS */
1727 }
1728 
1729 static int register_queue_kobjects(struct net_device *dev)
1730 {
1731 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
1732 
1733 #ifdef CONFIG_SYSFS
1734 	dev->queues_kset = kset_create_and_add("queues",
1735 					       NULL, &dev->dev.kobj);
1736 	if (!dev->queues_kset)
1737 		return -ENOMEM;
1738 	real_rx = dev->real_num_rx_queues;
1739 #endif
1740 	real_tx = dev->real_num_tx_queues;
1741 
1742 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
1743 	if (error)
1744 		goto error;
1745 	rxq = real_rx;
1746 
1747 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
1748 	if (error)
1749 		goto error;
1750 	txq = real_tx;
1751 
1752 	return 0;
1753 
1754 error:
1755 	netdev_queue_update_kobjects(dev, txq, 0);
1756 	net_rx_queue_update_kobjects(dev, rxq, 0);
1757 #ifdef CONFIG_SYSFS
1758 	kset_unregister(dev->queues_kset);
1759 #endif
1760 	return error;
1761 }
1762 
1763 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
1764 {
1765 	int error = 0, real_rx = 0, real_tx = 0;
1766 
1767 #ifdef CONFIG_SYSFS
1768 	if (ndev->queues_kset) {
1769 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
1770 		if (error)
1771 			return error;
1772 	}
1773 	real_rx = ndev->real_num_rx_queues;
1774 #endif
1775 	real_tx = ndev->real_num_tx_queues;
1776 
1777 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
1778 	if (error)
1779 		return error;
1780 
1781 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
1782 	if (error)
1783 		return error;
1784 
1785 	return 0;
1786 }
1787 
1788 static void remove_queue_kobjects(struct net_device *dev)
1789 {
1790 	int real_rx = 0, real_tx = 0;
1791 
1792 #ifdef CONFIG_SYSFS
1793 	real_rx = dev->real_num_rx_queues;
1794 #endif
1795 	real_tx = dev->real_num_tx_queues;
1796 
1797 	net_rx_queue_update_kobjects(dev, real_rx, 0);
1798 	netdev_queue_update_kobjects(dev, real_tx, 0);
1799 #ifdef CONFIG_SYSFS
1800 	kset_unregister(dev->queues_kset);
1801 #endif
1802 }
1803 
1804 static bool net_current_may_mount(void)
1805 {
1806 	struct net *net = current->nsproxy->net_ns;
1807 
1808 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
1809 }
1810 
1811 static void *net_grab_current_ns(void)
1812 {
1813 	struct net *ns = current->nsproxy->net_ns;
1814 #ifdef CONFIG_NET_NS
1815 	if (ns)
1816 		refcount_inc(&ns->passive);
1817 #endif
1818 	return ns;
1819 }
1820 
1821 static const void *net_initial_ns(void)
1822 {
1823 	return &init_net;
1824 }
1825 
1826 static const void *net_netlink_ns(struct sock *sk)
1827 {
1828 	return sock_net(sk);
1829 }
1830 
1831 const struct kobj_ns_type_operations net_ns_type_operations = {
1832 	.type = KOBJ_NS_TYPE_NET,
1833 	.current_may_mount = net_current_may_mount,
1834 	.grab_current_ns = net_grab_current_ns,
1835 	.netlink_ns = net_netlink_ns,
1836 	.initial_ns = net_initial_ns,
1837 	.drop_ns = net_drop_ns,
1838 };
1839 EXPORT_SYMBOL_GPL(net_ns_type_operations);
1840 
1841 static int netdev_uevent(struct device *d, struct kobj_uevent_env *env)
1842 {
1843 	struct net_device *dev = to_net_dev(d);
1844 	int retval;
1845 
1846 	/* pass interface to uevent. */
1847 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
1848 	if (retval)
1849 		goto exit;
1850 
1851 	/* pass ifindex to uevent.
1852 	 * ifindex is useful as it won't change (interface name may change)
1853 	 * and is what RtNetlink uses natively.
1854 	 */
1855 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
1856 
1857 exit:
1858 	return retval;
1859 }
1860 
1861 /*
1862  *	netdev_release -- destroy and free a dead device.
1863  *	Called when last reference to device kobject is gone.
1864  */
1865 static void netdev_release(struct device *d)
1866 {
1867 	struct net_device *dev = to_net_dev(d);
1868 
1869 	BUG_ON(dev->reg_state != NETREG_RELEASED);
1870 
1871 	/* no need to wait for rcu grace period:
1872 	 * device is dead and about to be freed.
1873 	 */
1874 	kfree(rcu_access_pointer(dev->ifalias));
1875 	netdev_freemem(dev);
1876 }
1877 
1878 static const void *net_namespace(struct device *d)
1879 {
1880 	struct net_device *dev = to_net_dev(d);
1881 
1882 	return dev_net(dev);
1883 }
1884 
1885 static void net_get_ownership(struct device *d, kuid_t *uid, kgid_t *gid)
1886 {
1887 	struct net_device *dev = to_net_dev(d);
1888 	const struct net *net = dev_net(dev);
1889 
1890 	net_ns_get_ownership(net, uid, gid);
1891 }
1892 
1893 static struct class net_class __ro_after_init = {
1894 	.name = "net",
1895 	.dev_release = netdev_release,
1896 	.dev_groups = net_class_groups,
1897 	.dev_uevent = netdev_uevent,
1898 	.ns_type = &net_ns_type_operations,
1899 	.namespace = net_namespace,
1900 	.get_ownership = net_get_ownership,
1901 };
1902 
1903 #ifdef CONFIG_OF_NET
1904 static int of_dev_node_match(struct device *dev, const void *data)
1905 {
1906 	for (; dev; dev = dev->parent) {
1907 		if (dev->of_node == data)
1908 			return 1;
1909 	}
1910 
1911 	return 0;
1912 }
1913 
1914 /*
1915  * of_find_net_device_by_node - lookup the net device for the device node
1916  * @np: OF device node
1917  *
1918  * Looks up the net_device structure corresponding with the device node.
1919  * If successful, returns a pointer to the net_device with the embedded
1920  * struct device refcount incremented by one, or NULL on failure. The
1921  * refcount must be dropped when done with the net_device.
1922  */
1923 struct net_device *of_find_net_device_by_node(struct device_node *np)
1924 {
1925 	struct device *dev;
1926 
1927 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
1928 	if (!dev)
1929 		return NULL;
1930 
1931 	return to_net_dev(dev);
1932 }
1933 EXPORT_SYMBOL(of_find_net_device_by_node);
1934 #endif
1935 
1936 /* Delete sysfs entries but hold kobject reference until after all
1937  * netdev references are gone.
1938  */
1939 void netdev_unregister_kobject(struct net_device *ndev)
1940 {
1941 	struct device *dev = &ndev->dev;
1942 
1943 	if (!refcount_read(&dev_net(ndev)->ns.count))
1944 		dev_set_uevent_suppress(dev, 1);
1945 
1946 	kobject_get(&dev->kobj);
1947 
1948 	remove_queue_kobjects(ndev);
1949 
1950 	pm_runtime_set_memalloc_noio(dev, false);
1951 
1952 	device_del(dev);
1953 }
1954 
1955 /* Create sysfs entries for network device. */
1956 int netdev_register_kobject(struct net_device *ndev)
1957 {
1958 	struct device *dev = &ndev->dev;
1959 	const struct attribute_group **groups = ndev->sysfs_groups;
1960 	int error = 0;
1961 
1962 	device_initialize(dev);
1963 	dev->class = &net_class;
1964 	dev->platform_data = ndev;
1965 	dev->groups = groups;
1966 
1967 	dev_set_name(dev, "%s", ndev->name);
1968 
1969 #ifdef CONFIG_SYSFS
1970 	/* Allow for a device specific group */
1971 	if (*groups)
1972 		groups++;
1973 
1974 	*groups++ = &netstat_group;
1975 
1976 #if IS_ENABLED(CONFIG_WIRELESS_EXT) || IS_ENABLED(CONFIG_CFG80211)
1977 	if (ndev->ieee80211_ptr)
1978 		*groups++ = &wireless_group;
1979 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
1980 	else if (ndev->wireless_handlers)
1981 		*groups++ = &wireless_group;
1982 #endif
1983 #endif
1984 #endif /* CONFIG_SYSFS */
1985 
1986 	error = device_add(dev);
1987 	if (error)
1988 		return error;
1989 
1990 	error = register_queue_kobjects(ndev);
1991 	if (error) {
1992 		device_del(dev);
1993 		return error;
1994 	}
1995 
1996 	pm_runtime_set_memalloc_noio(dev, true);
1997 
1998 	return error;
1999 }
2000 
2001 /* Change owner for sysfs entries when moving network devices across network
2002  * namespaces owned by different user namespaces.
2003  */
2004 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2005 			const struct net *net_new)
2006 {
2007 	struct device *dev = &ndev->dev;
2008 	kuid_t old_uid, new_uid;
2009 	kgid_t old_gid, new_gid;
2010 	int error;
2011 
2012 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2013 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2014 
2015 	/* The network namespace was changed but the owning user namespace is
2016 	 * identical so there's no need to change the owner of sysfs entries.
2017 	 */
2018 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2019 		return 0;
2020 
2021 	error = device_change_owner(dev, new_uid, new_gid);
2022 	if (error)
2023 		return error;
2024 
2025 	error = queue_change_owner(ndev, new_uid, new_gid);
2026 	if (error)
2027 		return error;
2028 
2029 	return 0;
2030 }
2031 
2032 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2033 				const void *ns)
2034 {
2035 	return class_create_file_ns(&net_class, class_attr, ns);
2036 }
2037 EXPORT_SYMBOL(netdev_class_create_file_ns);
2038 
2039 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2040 				 const void *ns)
2041 {
2042 	class_remove_file_ns(&net_class, class_attr, ns);
2043 }
2044 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2045 
2046 int __init netdev_kobject_init(void)
2047 {
2048 	kobj_ns_type_register(&net_ns_type_operations);
2049 	return class_register(&net_class);
2050 }
2051