1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/slab.h> 19 #include <linux/types.h> 20 #include <linux/kernel.h> 21 #include <linux/module.h> 22 #include <linux/socket.h> 23 #include <linux/netdevice.h> 24 #include <linux/proc_fs.h> 25 #ifdef CONFIG_SYSCTL 26 #include <linux/sysctl.h> 27 #endif 28 #include <linux/times.h> 29 #include <net/net_namespace.h> 30 #include <net/neighbour.h> 31 #include <net/dst.h> 32 #include <net/sock.h> 33 #include <net/netevent.h> 34 #include <net/netlink.h> 35 #include <linux/rtnetlink.h> 36 #include <linux/random.h> 37 #include <linux/string.h> 38 #include <linux/log2.h> 39 40 #define NEIGH_DEBUG 1 41 42 #define NEIGH_PRINTK(x...) printk(x) 43 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 46 47 #if NEIGH_DEBUG >= 1 48 #undef NEIGH_PRINTK1 49 #define NEIGH_PRINTK1 NEIGH_PRINTK 50 #endif 51 #if NEIGH_DEBUG >= 2 52 #undef NEIGH_PRINTK2 53 #define NEIGH_PRINTK2 NEIGH_PRINTK 54 #endif 55 56 #define PNEIGH_HASHMASK 0xF 57 58 static void neigh_timer_handler(unsigned long arg); 59 static void __neigh_notify(struct neighbour *n, int type, int flags); 60 static void neigh_update_notify(struct neighbour *neigh); 61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 62 63 static struct neigh_table *neigh_tables; 64 #ifdef CONFIG_PROC_FS 65 static const struct file_operations neigh_stat_seq_fops; 66 #endif 67 68 /* 69 Neighbour hash table buckets are protected with rwlock tbl->lock. 70 71 - All the scans/updates to hash buckets MUST be made under this lock. 72 - NOTHING clever should be made under this lock: no callbacks 73 to protocol backends, no attempts to send something to network. 74 It will result in deadlocks, if backend/driver wants to use neighbour 75 cache. 76 - If the entry requires some non-trivial actions, increase 77 its reference count and release table lock. 78 79 Neighbour entries are protected: 80 - with reference count. 81 - with rwlock neigh->lock 82 83 Reference count prevents destruction. 84 85 neigh->lock mainly serializes ll address data and its validity state. 86 However, the same lock is used to protect another entry fields: 87 - timer 88 - resolution queue 89 90 Again, nothing clever shall be made under neigh->lock, 91 the most complicated procedure, which we allow is dev->hard_header. 92 It is supposed, that dev->hard_header is simplistic and does 93 not make callbacks to neighbour tables. 94 95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 96 list of neighbour tables. This list is used only in process context, 97 */ 98 99 static DEFINE_RWLOCK(neigh_tbl_lock); 100 101 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 102 { 103 kfree_skb(skb); 104 return -ENETDOWN; 105 } 106 107 static void neigh_cleanup_and_release(struct neighbour *neigh) 108 { 109 if (neigh->parms->neigh_cleanup) 110 neigh->parms->neigh_cleanup(neigh); 111 112 __neigh_notify(neigh, RTM_DELNEIGH, 0); 113 neigh_release(neigh); 114 } 115 116 /* 117 * It is random distribution in the interval (1/2)*base...(3/2)*base. 118 * It corresponds to default IPv6 settings and is not overridable, 119 * because it is really reasonable choice. 120 */ 121 122 unsigned long neigh_rand_reach_time(unsigned long base) 123 { 124 return base ? (net_random() % base) + (base >> 1) : 0; 125 } 126 EXPORT_SYMBOL(neigh_rand_reach_time); 127 128 129 static int neigh_forced_gc(struct neigh_table *tbl) 130 { 131 int shrunk = 0; 132 int i; 133 struct neigh_hash_table *nht; 134 135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 136 137 write_lock_bh(&tbl->lock); 138 nht = rcu_dereference_protected(tbl->nht, 139 lockdep_is_held(&tbl->lock)); 140 for (i = 0; i < (1 << nht->hash_shift); i++) { 141 struct neighbour *n; 142 struct neighbour __rcu **np; 143 144 np = &nht->hash_buckets[i]; 145 while ((n = rcu_dereference_protected(*np, 146 lockdep_is_held(&tbl->lock))) != NULL) { 147 /* Neighbour record may be discarded if: 148 * - nobody refers to it. 149 * - it is not permanent 150 */ 151 write_lock(&n->lock); 152 if (atomic_read(&n->refcnt) == 1 && 153 !(n->nud_state & NUD_PERMANENT)) { 154 rcu_assign_pointer(*np, 155 rcu_dereference_protected(n->next, 156 lockdep_is_held(&tbl->lock))); 157 n->dead = 1; 158 shrunk = 1; 159 write_unlock(&n->lock); 160 neigh_cleanup_and_release(n); 161 continue; 162 } 163 write_unlock(&n->lock); 164 np = &n->next; 165 } 166 } 167 168 tbl->last_flush = jiffies; 169 170 write_unlock_bh(&tbl->lock); 171 172 return shrunk; 173 } 174 175 static void neigh_add_timer(struct neighbour *n, unsigned long when) 176 { 177 neigh_hold(n); 178 if (unlikely(mod_timer(&n->timer, when))) { 179 printk("NEIGH: BUG, double timer add, state is %x\n", 180 n->nud_state); 181 dump_stack(); 182 } 183 } 184 185 static int neigh_del_timer(struct neighbour *n) 186 { 187 if ((n->nud_state & NUD_IN_TIMER) && 188 del_timer(&n->timer)) { 189 neigh_release(n); 190 return 1; 191 } 192 return 0; 193 } 194 195 static void pneigh_queue_purge(struct sk_buff_head *list) 196 { 197 struct sk_buff *skb; 198 199 while ((skb = skb_dequeue(list)) != NULL) { 200 dev_put(skb->dev); 201 kfree_skb(skb); 202 } 203 } 204 205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 206 { 207 int i; 208 struct neigh_hash_table *nht; 209 210 nht = rcu_dereference_protected(tbl->nht, 211 lockdep_is_held(&tbl->lock)); 212 213 for (i = 0; i < (1 << nht->hash_shift); i++) { 214 struct neighbour *n; 215 struct neighbour __rcu **np = &nht->hash_buckets[i]; 216 217 while ((n = rcu_dereference_protected(*np, 218 lockdep_is_held(&tbl->lock))) != NULL) { 219 if (dev && n->dev != dev) { 220 np = &n->next; 221 continue; 222 } 223 rcu_assign_pointer(*np, 224 rcu_dereference_protected(n->next, 225 lockdep_is_held(&tbl->lock))); 226 write_lock(&n->lock); 227 neigh_del_timer(n); 228 n->dead = 1; 229 230 if (atomic_read(&n->refcnt) != 1) { 231 /* The most unpleasant situation. 232 We must destroy neighbour entry, 233 but someone still uses it. 234 235 The destroy will be delayed until 236 the last user releases us, but 237 we must kill timers etc. and move 238 it to safe state. 239 */ 240 skb_queue_purge(&n->arp_queue); 241 n->output = neigh_blackhole; 242 if (n->nud_state & NUD_VALID) 243 n->nud_state = NUD_NOARP; 244 else 245 n->nud_state = NUD_NONE; 246 NEIGH_PRINTK2("neigh %p is stray.\n", n); 247 } 248 write_unlock(&n->lock); 249 neigh_cleanup_and_release(n); 250 } 251 } 252 } 253 254 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 255 { 256 write_lock_bh(&tbl->lock); 257 neigh_flush_dev(tbl, dev); 258 write_unlock_bh(&tbl->lock); 259 } 260 EXPORT_SYMBOL(neigh_changeaddr); 261 262 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 263 { 264 write_lock_bh(&tbl->lock); 265 neigh_flush_dev(tbl, dev); 266 pneigh_ifdown(tbl, dev); 267 write_unlock_bh(&tbl->lock); 268 269 del_timer_sync(&tbl->proxy_timer); 270 pneigh_queue_purge(&tbl->proxy_queue); 271 return 0; 272 } 273 EXPORT_SYMBOL(neigh_ifdown); 274 275 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 276 { 277 struct neighbour *n = NULL; 278 unsigned long now = jiffies; 279 int entries; 280 281 entries = atomic_inc_return(&tbl->entries) - 1; 282 if (entries >= tbl->gc_thresh3 || 283 (entries >= tbl->gc_thresh2 && 284 time_after(now, tbl->last_flush + 5 * HZ))) { 285 if (!neigh_forced_gc(tbl) && 286 entries >= tbl->gc_thresh3) 287 goto out_entries; 288 } 289 290 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC); 291 if (!n) 292 goto out_entries; 293 294 skb_queue_head_init(&n->arp_queue); 295 rwlock_init(&n->lock); 296 seqlock_init(&n->ha_lock); 297 n->updated = n->used = now; 298 n->nud_state = NUD_NONE; 299 n->output = neigh_blackhole; 300 seqlock_init(&n->hh.hh_lock); 301 n->parms = neigh_parms_clone(&tbl->parms); 302 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 303 304 NEIGH_CACHE_STAT_INC(tbl, allocs); 305 n->tbl = tbl; 306 atomic_set(&n->refcnt, 1); 307 n->dead = 1; 308 out: 309 return n; 310 311 out_entries: 312 atomic_dec(&tbl->entries); 313 goto out; 314 } 315 316 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 317 { 318 size_t size = (1 << shift) * sizeof(struct neighbour *); 319 struct neigh_hash_table *ret; 320 struct neighbour __rcu **buckets; 321 322 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 323 if (!ret) 324 return NULL; 325 if (size <= PAGE_SIZE) 326 buckets = kzalloc(size, GFP_ATOMIC); 327 else 328 buckets = (struct neighbour __rcu **) 329 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 330 get_order(size)); 331 if (!buckets) { 332 kfree(ret); 333 return NULL; 334 } 335 ret->hash_buckets = buckets; 336 ret->hash_shift = shift; 337 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd)); 338 ret->hash_rnd |= 1; 339 return ret; 340 } 341 342 static void neigh_hash_free_rcu(struct rcu_head *head) 343 { 344 struct neigh_hash_table *nht = container_of(head, 345 struct neigh_hash_table, 346 rcu); 347 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 348 struct neighbour __rcu **buckets = nht->hash_buckets; 349 350 if (size <= PAGE_SIZE) 351 kfree(buckets); 352 else 353 free_pages((unsigned long)buckets, get_order(size)); 354 kfree(nht); 355 } 356 357 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 358 unsigned long new_shift) 359 { 360 unsigned int i, hash; 361 struct neigh_hash_table *new_nht, *old_nht; 362 363 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 364 365 old_nht = rcu_dereference_protected(tbl->nht, 366 lockdep_is_held(&tbl->lock)); 367 new_nht = neigh_hash_alloc(new_shift); 368 if (!new_nht) 369 return old_nht; 370 371 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 372 struct neighbour *n, *next; 373 374 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 375 lockdep_is_held(&tbl->lock)); 376 n != NULL; 377 n = next) { 378 hash = tbl->hash(n->primary_key, n->dev, 379 new_nht->hash_rnd); 380 381 hash >>= (32 - new_nht->hash_shift); 382 next = rcu_dereference_protected(n->next, 383 lockdep_is_held(&tbl->lock)); 384 385 rcu_assign_pointer(n->next, 386 rcu_dereference_protected( 387 new_nht->hash_buckets[hash], 388 lockdep_is_held(&tbl->lock))); 389 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 390 } 391 } 392 393 rcu_assign_pointer(tbl->nht, new_nht); 394 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 395 return new_nht; 396 } 397 398 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 399 struct net_device *dev) 400 { 401 struct neighbour *n; 402 int key_len = tbl->key_len; 403 u32 hash_val; 404 struct neigh_hash_table *nht; 405 406 NEIGH_CACHE_STAT_INC(tbl, lookups); 407 408 rcu_read_lock_bh(); 409 nht = rcu_dereference_bh(tbl->nht); 410 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 411 412 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 413 n != NULL; 414 n = rcu_dereference_bh(n->next)) { 415 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 416 if (!atomic_inc_not_zero(&n->refcnt)) 417 n = NULL; 418 NEIGH_CACHE_STAT_INC(tbl, hits); 419 break; 420 } 421 } 422 423 rcu_read_unlock_bh(); 424 return n; 425 } 426 EXPORT_SYMBOL(neigh_lookup); 427 428 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 429 const void *pkey) 430 { 431 struct neighbour *n; 432 int key_len = tbl->key_len; 433 u32 hash_val; 434 struct neigh_hash_table *nht; 435 436 NEIGH_CACHE_STAT_INC(tbl, lookups); 437 438 rcu_read_lock_bh(); 439 nht = rcu_dereference_bh(tbl->nht); 440 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 441 442 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 443 n != NULL; 444 n = rcu_dereference_bh(n->next)) { 445 if (!memcmp(n->primary_key, pkey, key_len) && 446 net_eq(dev_net(n->dev), net)) { 447 if (!atomic_inc_not_zero(&n->refcnt)) 448 n = NULL; 449 NEIGH_CACHE_STAT_INC(tbl, hits); 450 break; 451 } 452 } 453 454 rcu_read_unlock_bh(); 455 return n; 456 } 457 EXPORT_SYMBOL(neigh_lookup_nodev); 458 459 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 460 struct net_device *dev) 461 { 462 u32 hash_val; 463 int key_len = tbl->key_len; 464 int error; 465 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 466 struct neigh_hash_table *nht; 467 468 if (!n) { 469 rc = ERR_PTR(-ENOBUFS); 470 goto out; 471 } 472 473 memcpy(n->primary_key, pkey, key_len); 474 n->dev = dev; 475 dev_hold(dev); 476 477 /* Protocol specific setup. */ 478 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 479 rc = ERR_PTR(error); 480 goto out_neigh_release; 481 } 482 483 /* Device specific setup. */ 484 if (n->parms->neigh_setup && 485 (error = n->parms->neigh_setup(n)) < 0) { 486 rc = ERR_PTR(error); 487 goto out_neigh_release; 488 } 489 490 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 491 492 write_lock_bh(&tbl->lock); 493 nht = rcu_dereference_protected(tbl->nht, 494 lockdep_is_held(&tbl->lock)); 495 496 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 497 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 498 499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 500 501 if (n->parms->dead) { 502 rc = ERR_PTR(-EINVAL); 503 goto out_tbl_unlock; 504 } 505 506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 507 lockdep_is_held(&tbl->lock)); 508 n1 != NULL; 509 n1 = rcu_dereference_protected(n1->next, 510 lockdep_is_held(&tbl->lock))) { 511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 512 neigh_hold(n1); 513 rc = n1; 514 goto out_tbl_unlock; 515 } 516 } 517 518 n->dead = 0; 519 neigh_hold(n); 520 rcu_assign_pointer(n->next, 521 rcu_dereference_protected(nht->hash_buckets[hash_val], 522 lockdep_is_held(&tbl->lock))); 523 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 524 write_unlock_bh(&tbl->lock); 525 NEIGH_PRINTK2("neigh %p is created.\n", n); 526 rc = n; 527 out: 528 return rc; 529 out_tbl_unlock: 530 write_unlock_bh(&tbl->lock); 531 out_neigh_release: 532 neigh_release(n); 533 goto out; 534 } 535 EXPORT_SYMBOL(neigh_create); 536 537 static u32 pneigh_hash(const void *pkey, int key_len) 538 { 539 u32 hash_val = *(u32 *)(pkey + key_len - 4); 540 hash_val ^= (hash_val >> 16); 541 hash_val ^= hash_val >> 8; 542 hash_val ^= hash_val >> 4; 543 hash_val &= PNEIGH_HASHMASK; 544 return hash_val; 545 } 546 547 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 548 struct net *net, 549 const void *pkey, 550 int key_len, 551 struct net_device *dev) 552 { 553 while (n) { 554 if (!memcmp(n->key, pkey, key_len) && 555 net_eq(pneigh_net(n), net) && 556 (n->dev == dev || !n->dev)) 557 return n; 558 n = n->next; 559 } 560 return NULL; 561 } 562 563 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 564 struct net *net, const void *pkey, struct net_device *dev) 565 { 566 int key_len = tbl->key_len; 567 u32 hash_val = pneigh_hash(pkey, key_len); 568 569 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 570 net, pkey, key_len, dev); 571 } 572 EXPORT_SYMBOL_GPL(__pneigh_lookup); 573 574 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 575 struct net *net, const void *pkey, 576 struct net_device *dev, int creat) 577 { 578 struct pneigh_entry *n; 579 int key_len = tbl->key_len; 580 u32 hash_val = pneigh_hash(pkey, key_len); 581 582 read_lock_bh(&tbl->lock); 583 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 584 net, pkey, key_len, dev); 585 read_unlock_bh(&tbl->lock); 586 587 if (n || !creat) 588 goto out; 589 590 ASSERT_RTNL(); 591 592 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 593 if (!n) 594 goto out; 595 596 write_pnet(&n->net, hold_net(net)); 597 memcpy(n->key, pkey, key_len); 598 n->dev = dev; 599 if (dev) 600 dev_hold(dev); 601 602 if (tbl->pconstructor && tbl->pconstructor(n)) { 603 if (dev) 604 dev_put(dev); 605 release_net(net); 606 kfree(n); 607 n = NULL; 608 goto out; 609 } 610 611 write_lock_bh(&tbl->lock); 612 n->next = tbl->phash_buckets[hash_val]; 613 tbl->phash_buckets[hash_val] = n; 614 write_unlock_bh(&tbl->lock); 615 out: 616 return n; 617 } 618 EXPORT_SYMBOL(pneigh_lookup); 619 620 621 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 622 struct net_device *dev) 623 { 624 struct pneigh_entry *n, **np; 625 int key_len = tbl->key_len; 626 u32 hash_val = pneigh_hash(pkey, key_len); 627 628 write_lock_bh(&tbl->lock); 629 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 630 np = &n->next) { 631 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 632 net_eq(pneigh_net(n), net)) { 633 *np = n->next; 634 write_unlock_bh(&tbl->lock); 635 if (tbl->pdestructor) 636 tbl->pdestructor(n); 637 if (n->dev) 638 dev_put(n->dev); 639 release_net(pneigh_net(n)); 640 kfree(n); 641 return 0; 642 } 643 } 644 write_unlock_bh(&tbl->lock); 645 return -ENOENT; 646 } 647 648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 649 { 650 struct pneigh_entry *n, **np; 651 u32 h; 652 653 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 654 np = &tbl->phash_buckets[h]; 655 while ((n = *np) != NULL) { 656 if (!dev || n->dev == dev) { 657 *np = n->next; 658 if (tbl->pdestructor) 659 tbl->pdestructor(n); 660 if (n->dev) 661 dev_put(n->dev); 662 release_net(pneigh_net(n)); 663 kfree(n); 664 continue; 665 } 666 np = &n->next; 667 } 668 } 669 return -ENOENT; 670 } 671 672 static void neigh_parms_destroy(struct neigh_parms *parms); 673 674 static inline void neigh_parms_put(struct neigh_parms *parms) 675 { 676 if (atomic_dec_and_test(&parms->refcnt)) 677 neigh_parms_destroy(parms); 678 } 679 680 static void neigh_destroy_rcu(struct rcu_head *head) 681 { 682 struct neighbour *neigh = container_of(head, struct neighbour, rcu); 683 684 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 685 } 686 /* 687 * neighbour must already be out of the table; 688 * 689 */ 690 void neigh_destroy(struct neighbour *neigh) 691 { 692 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 693 694 if (!neigh->dead) { 695 printk(KERN_WARNING 696 "Destroying alive neighbour %p\n", neigh); 697 dump_stack(); 698 return; 699 } 700 701 if (neigh_del_timer(neigh)) 702 printk(KERN_WARNING "Impossible event.\n"); 703 704 skb_queue_purge(&neigh->arp_queue); 705 706 dev_put(neigh->dev); 707 neigh_parms_put(neigh->parms); 708 709 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 710 711 atomic_dec(&neigh->tbl->entries); 712 call_rcu(&neigh->rcu, neigh_destroy_rcu); 713 } 714 EXPORT_SYMBOL(neigh_destroy); 715 716 /* Neighbour state is suspicious; 717 disable fast path. 718 719 Called with write_locked neigh. 720 */ 721 static void neigh_suspect(struct neighbour *neigh) 722 { 723 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 724 725 neigh->output = neigh->ops->output; 726 } 727 728 /* Neighbour state is OK; 729 enable fast path. 730 731 Called with write_locked neigh. 732 */ 733 static void neigh_connect(struct neighbour *neigh) 734 { 735 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 736 737 neigh->output = neigh->ops->connected_output; 738 } 739 740 static void neigh_periodic_work(struct work_struct *work) 741 { 742 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 743 struct neighbour *n; 744 struct neighbour __rcu **np; 745 unsigned int i; 746 struct neigh_hash_table *nht; 747 748 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 749 750 write_lock_bh(&tbl->lock); 751 nht = rcu_dereference_protected(tbl->nht, 752 lockdep_is_held(&tbl->lock)); 753 754 /* 755 * periodically recompute ReachableTime from random function 756 */ 757 758 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 759 struct neigh_parms *p; 760 tbl->last_rand = jiffies; 761 for (p = &tbl->parms; p; p = p->next) 762 p->reachable_time = 763 neigh_rand_reach_time(p->base_reachable_time); 764 } 765 766 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 767 np = &nht->hash_buckets[i]; 768 769 while ((n = rcu_dereference_protected(*np, 770 lockdep_is_held(&tbl->lock))) != NULL) { 771 unsigned int state; 772 773 write_lock(&n->lock); 774 775 state = n->nud_state; 776 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 777 write_unlock(&n->lock); 778 goto next_elt; 779 } 780 781 if (time_before(n->used, n->confirmed)) 782 n->used = n->confirmed; 783 784 if (atomic_read(&n->refcnt) == 1 && 785 (state == NUD_FAILED || 786 time_after(jiffies, n->used + n->parms->gc_staletime))) { 787 *np = n->next; 788 n->dead = 1; 789 write_unlock(&n->lock); 790 neigh_cleanup_and_release(n); 791 continue; 792 } 793 write_unlock(&n->lock); 794 795 next_elt: 796 np = &n->next; 797 } 798 /* 799 * It's fine to release lock here, even if hash table 800 * grows while we are preempted. 801 */ 802 write_unlock_bh(&tbl->lock); 803 cond_resched(); 804 write_lock_bh(&tbl->lock); 805 } 806 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 807 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 808 * base_reachable_time. 809 */ 810 schedule_delayed_work(&tbl->gc_work, 811 tbl->parms.base_reachable_time >> 1); 812 write_unlock_bh(&tbl->lock); 813 } 814 815 static __inline__ int neigh_max_probes(struct neighbour *n) 816 { 817 struct neigh_parms *p = n->parms; 818 return (n->nud_state & NUD_PROBE) ? 819 p->ucast_probes : 820 p->ucast_probes + p->app_probes + p->mcast_probes; 821 } 822 823 static void neigh_invalidate(struct neighbour *neigh) 824 __releases(neigh->lock) 825 __acquires(neigh->lock) 826 { 827 struct sk_buff *skb; 828 829 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 830 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 831 neigh->updated = jiffies; 832 833 /* It is very thin place. report_unreachable is very complicated 834 routine. Particularly, it can hit the same neighbour entry! 835 836 So that, we try to be accurate and avoid dead loop. --ANK 837 */ 838 while (neigh->nud_state == NUD_FAILED && 839 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 840 write_unlock(&neigh->lock); 841 neigh->ops->error_report(neigh, skb); 842 write_lock(&neigh->lock); 843 } 844 skb_queue_purge(&neigh->arp_queue); 845 } 846 847 static void neigh_probe(struct neighbour *neigh) 848 __releases(neigh->lock) 849 { 850 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 851 /* keep skb alive even if arp_queue overflows */ 852 if (skb) 853 skb = skb_copy(skb, GFP_ATOMIC); 854 write_unlock(&neigh->lock); 855 neigh->ops->solicit(neigh, skb); 856 atomic_inc(&neigh->probes); 857 kfree_skb(skb); 858 } 859 860 /* Called when a timer expires for a neighbour entry. */ 861 862 static void neigh_timer_handler(unsigned long arg) 863 { 864 unsigned long now, next; 865 struct neighbour *neigh = (struct neighbour *)arg; 866 unsigned state; 867 int notify = 0; 868 869 write_lock(&neigh->lock); 870 871 state = neigh->nud_state; 872 now = jiffies; 873 next = now + HZ; 874 875 if (!(state & NUD_IN_TIMER)) 876 goto out; 877 878 if (state & NUD_REACHABLE) { 879 if (time_before_eq(now, 880 neigh->confirmed + neigh->parms->reachable_time)) { 881 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 882 next = neigh->confirmed + neigh->parms->reachable_time; 883 } else if (time_before_eq(now, 884 neigh->used + neigh->parms->delay_probe_time)) { 885 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 886 neigh->nud_state = NUD_DELAY; 887 neigh->updated = jiffies; 888 neigh_suspect(neigh); 889 next = now + neigh->parms->delay_probe_time; 890 } else { 891 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 892 neigh->nud_state = NUD_STALE; 893 neigh->updated = jiffies; 894 neigh_suspect(neigh); 895 notify = 1; 896 } 897 } else if (state & NUD_DELAY) { 898 if (time_before_eq(now, 899 neigh->confirmed + neigh->parms->delay_probe_time)) { 900 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 901 neigh->nud_state = NUD_REACHABLE; 902 neigh->updated = jiffies; 903 neigh_connect(neigh); 904 notify = 1; 905 next = neigh->confirmed + neigh->parms->reachable_time; 906 } else { 907 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 908 neigh->nud_state = NUD_PROBE; 909 neigh->updated = jiffies; 910 atomic_set(&neigh->probes, 0); 911 next = now + neigh->parms->retrans_time; 912 } 913 } else { 914 /* NUD_PROBE|NUD_INCOMPLETE */ 915 next = now + neigh->parms->retrans_time; 916 } 917 918 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 919 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 920 neigh->nud_state = NUD_FAILED; 921 notify = 1; 922 neigh_invalidate(neigh); 923 } 924 925 if (neigh->nud_state & NUD_IN_TIMER) { 926 if (time_before(next, jiffies + HZ/2)) 927 next = jiffies + HZ/2; 928 if (!mod_timer(&neigh->timer, next)) 929 neigh_hold(neigh); 930 } 931 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 932 neigh_probe(neigh); 933 } else { 934 out: 935 write_unlock(&neigh->lock); 936 } 937 938 if (notify) 939 neigh_update_notify(neigh); 940 941 neigh_release(neigh); 942 } 943 944 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 945 { 946 int rc; 947 bool immediate_probe = false; 948 949 write_lock_bh(&neigh->lock); 950 951 rc = 0; 952 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 953 goto out_unlock_bh; 954 955 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 956 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 957 unsigned long next, now = jiffies; 958 959 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 960 neigh->nud_state = NUD_INCOMPLETE; 961 neigh->updated = now; 962 next = now + max(neigh->parms->retrans_time, HZ/2); 963 neigh_add_timer(neigh, next); 964 immediate_probe = true; 965 } else { 966 neigh->nud_state = NUD_FAILED; 967 neigh->updated = jiffies; 968 write_unlock_bh(&neigh->lock); 969 970 kfree_skb(skb); 971 return 1; 972 } 973 } else if (neigh->nud_state & NUD_STALE) { 974 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 975 neigh->nud_state = NUD_DELAY; 976 neigh->updated = jiffies; 977 neigh_add_timer(neigh, 978 jiffies + neigh->parms->delay_probe_time); 979 } 980 981 if (neigh->nud_state == NUD_INCOMPLETE) { 982 if (skb) { 983 if (skb_queue_len(&neigh->arp_queue) >= 984 neigh->parms->queue_len) { 985 struct sk_buff *buff; 986 buff = __skb_dequeue(&neigh->arp_queue); 987 kfree_skb(buff); 988 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 989 } 990 skb_dst_force(skb); 991 __skb_queue_tail(&neigh->arp_queue, skb); 992 } 993 rc = 1; 994 } 995 out_unlock_bh: 996 if (immediate_probe) 997 neigh_probe(neigh); 998 else 999 write_unlock(&neigh->lock); 1000 local_bh_enable(); 1001 return rc; 1002 } 1003 EXPORT_SYMBOL(__neigh_event_send); 1004 1005 static void neigh_update_hhs(struct neighbour *neigh) 1006 { 1007 struct hh_cache *hh; 1008 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1009 = NULL; 1010 1011 if (neigh->dev->header_ops) 1012 update = neigh->dev->header_ops->cache_update; 1013 1014 if (update) { 1015 hh = &neigh->hh; 1016 if (hh->hh_len) { 1017 write_seqlock_bh(&hh->hh_lock); 1018 update(hh, neigh->dev, neigh->ha); 1019 write_sequnlock_bh(&hh->hh_lock); 1020 } 1021 } 1022 } 1023 1024 1025 1026 /* Generic update routine. 1027 -- lladdr is new lladdr or NULL, if it is not supplied. 1028 -- new is new state. 1029 -- flags 1030 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1031 if it is different. 1032 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1033 lladdr instead of overriding it 1034 if it is different. 1035 It also allows to retain current state 1036 if lladdr is unchanged. 1037 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1038 1039 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1040 NTF_ROUTER flag. 1041 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1042 a router. 1043 1044 Caller MUST hold reference count on the entry. 1045 */ 1046 1047 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1048 u32 flags) 1049 { 1050 u8 old; 1051 int err; 1052 int notify = 0; 1053 struct net_device *dev; 1054 int update_isrouter = 0; 1055 1056 write_lock_bh(&neigh->lock); 1057 1058 dev = neigh->dev; 1059 old = neigh->nud_state; 1060 err = -EPERM; 1061 1062 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1063 (old & (NUD_NOARP | NUD_PERMANENT))) 1064 goto out; 1065 1066 if (!(new & NUD_VALID)) { 1067 neigh_del_timer(neigh); 1068 if (old & NUD_CONNECTED) 1069 neigh_suspect(neigh); 1070 neigh->nud_state = new; 1071 err = 0; 1072 notify = old & NUD_VALID; 1073 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1074 (new & NUD_FAILED)) { 1075 neigh_invalidate(neigh); 1076 notify = 1; 1077 } 1078 goto out; 1079 } 1080 1081 /* Compare new lladdr with cached one */ 1082 if (!dev->addr_len) { 1083 /* First case: device needs no address. */ 1084 lladdr = neigh->ha; 1085 } else if (lladdr) { 1086 /* The second case: if something is already cached 1087 and a new address is proposed: 1088 - compare new & old 1089 - if they are different, check override flag 1090 */ 1091 if ((old & NUD_VALID) && 1092 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1093 lladdr = neigh->ha; 1094 } else { 1095 /* No address is supplied; if we know something, 1096 use it, otherwise discard the request. 1097 */ 1098 err = -EINVAL; 1099 if (!(old & NUD_VALID)) 1100 goto out; 1101 lladdr = neigh->ha; 1102 } 1103 1104 if (new & NUD_CONNECTED) 1105 neigh->confirmed = jiffies; 1106 neigh->updated = jiffies; 1107 1108 /* If entry was valid and address is not changed, 1109 do not change entry state, if new one is STALE. 1110 */ 1111 err = 0; 1112 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1113 if (old & NUD_VALID) { 1114 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1115 update_isrouter = 0; 1116 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1117 (old & NUD_CONNECTED)) { 1118 lladdr = neigh->ha; 1119 new = NUD_STALE; 1120 } else 1121 goto out; 1122 } else { 1123 if (lladdr == neigh->ha && new == NUD_STALE && 1124 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1125 (old & NUD_CONNECTED)) 1126 ) 1127 new = old; 1128 } 1129 } 1130 1131 if (new != old) { 1132 neigh_del_timer(neigh); 1133 if (new & NUD_IN_TIMER) 1134 neigh_add_timer(neigh, (jiffies + 1135 ((new & NUD_REACHABLE) ? 1136 neigh->parms->reachable_time : 1137 0))); 1138 neigh->nud_state = new; 1139 } 1140 1141 if (lladdr != neigh->ha) { 1142 write_seqlock(&neigh->ha_lock); 1143 memcpy(&neigh->ha, lladdr, dev->addr_len); 1144 write_sequnlock(&neigh->ha_lock); 1145 neigh_update_hhs(neigh); 1146 if (!(new & NUD_CONNECTED)) 1147 neigh->confirmed = jiffies - 1148 (neigh->parms->base_reachable_time << 1); 1149 notify = 1; 1150 } 1151 if (new == old) 1152 goto out; 1153 if (new & NUD_CONNECTED) 1154 neigh_connect(neigh); 1155 else 1156 neigh_suspect(neigh); 1157 if (!(old & NUD_VALID)) { 1158 struct sk_buff *skb; 1159 1160 /* Again: avoid dead loop if something went wrong */ 1161 1162 while (neigh->nud_state & NUD_VALID && 1163 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1164 struct dst_entry *dst = skb_dst(skb); 1165 struct neighbour *n2, *n1 = neigh; 1166 write_unlock_bh(&neigh->lock); 1167 1168 rcu_read_lock(); 1169 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1170 if (dst && (n2 = dst_get_neighbour(dst)) != NULL) 1171 n1 = n2; 1172 n1->output(n1, skb); 1173 rcu_read_unlock(); 1174 1175 write_lock_bh(&neigh->lock); 1176 } 1177 skb_queue_purge(&neigh->arp_queue); 1178 } 1179 out: 1180 if (update_isrouter) { 1181 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1182 (neigh->flags | NTF_ROUTER) : 1183 (neigh->flags & ~NTF_ROUTER); 1184 } 1185 write_unlock_bh(&neigh->lock); 1186 1187 if (notify) 1188 neigh_update_notify(neigh); 1189 1190 return err; 1191 } 1192 EXPORT_SYMBOL(neigh_update); 1193 1194 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1195 u8 *lladdr, void *saddr, 1196 struct net_device *dev) 1197 { 1198 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1199 lladdr || !dev->addr_len); 1200 if (neigh) 1201 neigh_update(neigh, lladdr, NUD_STALE, 1202 NEIGH_UPDATE_F_OVERRIDE); 1203 return neigh; 1204 } 1205 EXPORT_SYMBOL(neigh_event_ns); 1206 1207 /* called with read_lock_bh(&n->lock); */ 1208 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst) 1209 { 1210 struct net_device *dev = dst->dev; 1211 __be16 prot = dst->ops->protocol; 1212 struct hh_cache *hh = &n->hh; 1213 1214 write_lock_bh(&n->lock); 1215 1216 /* Only one thread can come in here and initialize the 1217 * hh_cache entry. 1218 */ 1219 if (!hh->hh_len) 1220 dev->header_ops->cache(n, hh, prot); 1221 1222 write_unlock_bh(&n->lock); 1223 } 1224 1225 /* This function can be used in contexts, where only old dev_queue_xmit 1226 * worked, f.e. if you want to override normal output path (eql, shaper), 1227 * but resolution is not made yet. 1228 */ 1229 1230 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb) 1231 { 1232 struct net_device *dev = skb->dev; 1233 1234 __skb_pull(skb, skb_network_offset(skb)); 1235 1236 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1237 skb->len) < 0 && 1238 dev->header_ops->rebuild(skb)) 1239 return 0; 1240 1241 return dev_queue_xmit(skb); 1242 } 1243 EXPORT_SYMBOL(neigh_compat_output); 1244 1245 /* Slow and careful. */ 1246 1247 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1248 { 1249 struct dst_entry *dst = skb_dst(skb); 1250 int rc = 0; 1251 1252 if (!dst) 1253 goto discard; 1254 1255 __skb_pull(skb, skb_network_offset(skb)); 1256 1257 if (!neigh_event_send(neigh, skb)) { 1258 int err; 1259 struct net_device *dev = neigh->dev; 1260 unsigned int seq; 1261 1262 if (dev->header_ops->cache && !neigh->hh.hh_len) 1263 neigh_hh_init(neigh, dst); 1264 1265 do { 1266 seq = read_seqbegin(&neigh->ha_lock); 1267 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1268 neigh->ha, NULL, skb->len); 1269 } while (read_seqretry(&neigh->ha_lock, seq)); 1270 1271 if (err >= 0) 1272 rc = dev_queue_xmit(skb); 1273 else 1274 goto out_kfree_skb; 1275 } 1276 out: 1277 return rc; 1278 discard: 1279 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1280 dst, neigh); 1281 out_kfree_skb: 1282 rc = -EINVAL; 1283 kfree_skb(skb); 1284 goto out; 1285 } 1286 EXPORT_SYMBOL(neigh_resolve_output); 1287 1288 /* As fast as possible without hh cache */ 1289 1290 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1291 { 1292 struct net_device *dev = neigh->dev; 1293 unsigned int seq; 1294 int err; 1295 1296 __skb_pull(skb, skb_network_offset(skb)); 1297 1298 do { 1299 seq = read_seqbegin(&neigh->ha_lock); 1300 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1301 neigh->ha, NULL, skb->len); 1302 } while (read_seqretry(&neigh->ha_lock, seq)); 1303 1304 if (err >= 0) 1305 err = dev_queue_xmit(skb); 1306 else { 1307 err = -EINVAL; 1308 kfree_skb(skb); 1309 } 1310 return err; 1311 } 1312 EXPORT_SYMBOL(neigh_connected_output); 1313 1314 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1315 { 1316 return dev_queue_xmit(skb); 1317 } 1318 EXPORT_SYMBOL(neigh_direct_output); 1319 1320 static void neigh_proxy_process(unsigned long arg) 1321 { 1322 struct neigh_table *tbl = (struct neigh_table *)arg; 1323 long sched_next = 0; 1324 unsigned long now = jiffies; 1325 struct sk_buff *skb, *n; 1326 1327 spin_lock(&tbl->proxy_queue.lock); 1328 1329 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1330 long tdif = NEIGH_CB(skb)->sched_next - now; 1331 1332 if (tdif <= 0) { 1333 struct net_device *dev = skb->dev; 1334 1335 __skb_unlink(skb, &tbl->proxy_queue); 1336 if (tbl->proxy_redo && netif_running(dev)) { 1337 rcu_read_lock(); 1338 tbl->proxy_redo(skb); 1339 rcu_read_unlock(); 1340 } else { 1341 kfree_skb(skb); 1342 } 1343 1344 dev_put(dev); 1345 } else if (!sched_next || tdif < sched_next) 1346 sched_next = tdif; 1347 } 1348 del_timer(&tbl->proxy_timer); 1349 if (sched_next) 1350 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1351 spin_unlock(&tbl->proxy_queue.lock); 1352 } 1353 1354 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1355 struct sk_buff *skb) 1356 { 1357 unsigned long now = jiffies; 1358 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1359 1360 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1361 kfree_skb(skb); 1362 return; 1363 } 1364 1365 NEIGH_CB(skb)->sched_next = sched_next; 1366 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1367 1368 spin_lock(&tbl->proxy_queue.lock); 1369 if (del_timer(&tbl->proxy_timer)) { 1370 if (time_before(tbl->proxy_timer.expires, sched_next)) 1371 sched_next = tbl->proxy_timer.expires; 1372 } 1373 skb_dst_drop(skb); 1374 dev_hold(skb->dev); 1375 __skb_queue_tail(&tbl->proxy_queue, skb); 1376 mod_timer(&tbl->proxy_timer, sched_next); 1377 spin_unlock(&tbl->proxy_queue.lock); 1378 } 1379 EXPORT_SYMBOL(pneigh_enqueue); 1380 1381 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1382 struct net *net, int ifindex) 1383 { 1384 struct neigh_parms *p; 1385 1386 for (p = &tbl->parms; p; p = p->next) { 1387 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1388 (!p->dev && !ifindex)) 1389 return p; 1390 } 1391 1392 return NULL; 1393 } 1394 1395 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1396 struct neigh_table *tbl) 1397 { 1398 struct neigh_parms *p, *ref; 1399 struct net *net = dev_net(dev); 1400 const struct net_device_ops *ops = dev->netdev_ops; 1401 1402 ref = lookup_neigh_parms(tbl, net, 0); 1403 if (!ref) 1404 return NULL; 1405 1406 p = kmemdup(ref, sizeof(*p), GFP_KERNEL); 1407 if (p) { 1408 p->tbl = tbl; 1409 atomic_set(&p->refcnt, 1); 1410 p->reachable_time = 1411 neigh_rand_reach_time(p->base_reachable_time); 1412 1413 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1414 kfree(p); 1415 return NULL; 1416 } 1417 1418 dev_hold(dev); 1419 p->dev = dev; 1420 write_pnet(&p->net, hold_net(net)); 1421 p->sysctl_table = NULL; 1422 write_lock_bh(&tbl->lock); 1423 p->next = tbl->parms.next; 1424 tbl->parms.next = p; 1425 write_unlock_bh(&tbl->lock); 1426 } 1427 return p; 1428 } 1429 EXPORT_SYMBOL(neigh_parms_alloc); 1430 1431 static void neigh_rcu_free_parms(struct rcu_head *head) 1432 { 1433 struct neigh_parms *parms = 1434 container_of(head, struct neigh_parms, rcu_head); 1435 1436 neigh_parms_put(parms); 1437 } 1438 1439 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1440 { 1441 struct neigh_parms **p; 1442 1443 if (!parms || parms == &tbl->parms) 1444 return; 1445 write_lock_bh(&tbl->lock); 1446 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1447 if (*p == parms) { 1448 *p = parms->next; 1449 parms->dead = 1; 1450 write_unlock_bh(&tbl->lock); 1451 if (parms->dev) 1452 dev_put(parms->dev); 1453 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1454 return; 1455 } 1456 } 1457 write_unlock_bh(&tbl->lock); 1458 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1459 } 1460 EXPORT_SYMBOL(neigh_parms_release); 1461 1462 static void neigh_parms_destroy(struct neigh_parms *parms) 1463 { 1464 release_net(neigh_parms_net(parms)); 1465 kfree(parms); 1466 } 1467 1468 static struct lock_class_key neigh_table_proxy_queue_class; 1469 1470 void neigh_table_init_no_netlink(struct neigh_table *tbl) 1471 { 1472 unsigned long now = jiffies; 1473 unsigned long phsize; 1474 1475 write_pnet(&tbl->parms.net, &init_net); 1476 atomic_set(&tbl->parms.refcnt, 1); 1477 tbl->parms.reachable_time = 1478 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1479 1480 if (!tbl->kmem_cachep) 1481 tbl->kmem_cachep = 1482 kmem_cache_create(tbl->id, tbl->entry_size, 0, 1483 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1484 NULL); 1485 tbl->stats = alloc_percpu(struct neigh_statistics); 1486 if (!tbl->stats) 1487 panic("cannot create neighbour cache statistics"); 1488 1489 #ifdef CONFIG_PROC_FS 1490 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1491 &neigh_stat_seq_fops, tbl)) 1492 panic("cannot create neighbour proc dir entry"); 1493 #endif 1494 1495 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1496 1497 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1498 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1499 1500 if (!tbl->nht || !tbl->phash_buckets) 1501 panic("cannot allocate neighbour cache hashes"); 1502 1503 rwlock_init(&tbl->lock); 1504 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work); 1505 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time); 1506 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1507 skb_queue_head_init_class(&tbl->proxy_queue, 1508 &neigh_table_proxy_queue_class); 1509 1510 tbl->last_flush = now; 1511 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1512 } 1513 EXPORT_SYMBOL(neigh_table_init_no_netlink); 1514 1515 void neigh_table_init(struct neigh_table *tbl) 1516 { 1517 struct neigh_table *tmp; 1518 1519 neigh_table_init_no_netlink(tbl); 1520 write_lock(&neigh_tbl_lock); 1521 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1522 if (tmp->family == tbl->family) 1523 break; 1524 } 1525 tbl->next = neigh_tables; 1526 neigh_tables = tbl; 1527 write_unlock(&neigh_tbl_lock); 1528 1529 if (unlikely(tmp)) { 1530 printk(KERN_ERR "NEIGH: Registering multiple tables for " 1531 "family %d\n", tbl->family); 1532 dump_stack(); 1533 } 1534 } 1535 EXPORT_SYMBOL(neigh_table_init); 1536 1537 int neigh_table_clear(struct neigh_table *tbl) 1538 { 1539 struct neigh_table **tp; 1540 1541 /* It is not clean... Fix it to unload IPv6 module safely */ 1542 cancel_delayed_work_sync(&tbl->gc_work); 1543 del_timer_sync(&tbl->proxy_timer); 1544 pneigh_queue_purge(&tbl->proxy_queue); 1545 neigh_ifdown(tbl, NULL); 1546 if (atomic_read(&tbl->entries)) 1547 printk(KERN_CRIT "neighbour leakage\n"); 1548 write_lock(&neigh_tbl_lock); 1549 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1550 if (*tp == tbl) { 1551 *tp = tbl->next; 1552 break; 1553 } 1554 } 1555 write_unlock(&neigh_tbl_lock); 1556 1557 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1558 neigh_hash_free_rcu); 1559 tbl->nht = NULL; 1560 1561 kfree(tbl->phash_buckets); 1562 tbl->phash_buckets = NULL; 1563 1564 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1565 1566 free_percpu(tbl->stats); 1567 tbl->stats = NULL; 1568 1569 kmem_cache_destroy(tbl->kmem_cachep); 1570 tbl->kmem_cachep = NULL; 1571 1572 return 0; 1573 } 1574 EXPORT_SYMBOL(neigh_table_clear); 1575 1576 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1577 { 1578 struct net *net = sock_net(skb->sk); 1579 struct ndmsg *ndm; 1580 struct nlattr *dst_attr; 1581 struct neigh_table *tbl; 1582 struct net_device *dev = NULL; 1583 int err = -EINVAL; 1584 1585 ASSERT_RTNL(); 1586 if (nlmsg_len(nlh) < sizeof(*ndm)) 1587 goto out; 1588 1589 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1590 if (dst_attr == NULL) 1591 goto out; 1592 1593 ndm = nlmsg_data(nlh); 1594 if (ndm->ndm_ifindex) { 1595 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1596 if (dev == NULL) { 1597 err = -ENODEV; 1598 goto out; 1599 } 1600 } 1601 1602 read_lock(&neigh_tbl_lock); 1603 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1604 struct neighbour *neigh; 1605 1606 if (tbl->family != ndm->ndm_family) 1607 continue; 1608 read_unlock(&neigh_tbl_lock); 1609 1610 if (nla_len(dst_attr) < tbl->key_len) 1611 goto out; 1612 1613 if (ndm->ndm_flags & NTF_PROXY) { 1614 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1615 goto out; 1616 } 1617 1618 if (dev == NULL) 1619 goto out; 1620 1621 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1622 if (neigh == NULL) { 1623 err = -ENOENT; 1624 goto out; 1625 } 1626 1627 err = neigh_update(neigh, NULL, NUD_FAILED, 1628 NEIGH_UPDATE_F_OVERRIDE | 1629 NEIGH_UPDATE_F_ADMIN); 1630 neigh_release(neigh); 1631 goto out; 1632 } 1633 read_unlock(&neigh_tbl_lock); 1634 err = -EAFNOSUPPORT; 1635 1636 out: 1637 return err; 1638 } 1639 1640 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1641 { 1642 struct net *net = sock_net(skb->sk); 1643 struct ndmsg *ndm; 1644 struct nlattr *tb[NDA_MAX+1]; 1645 struct neigh_table *tbl; 1646 struct net_device *dev = NULL; 1647 int err; 1648 1649 ASSERT_RTNL(); 1650 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1651 if (err < 0) 1652 goto out; 1653 1654 err = -EINVAL; 1655 if (tb[NDA_DST] == NULL) 1656 goto out; 1657 1658 ndm = nlmsg_data(nlh); 1659 if (ndm->ndm_ifindex) { 1660 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1661 if (dev == NULL) { 1662 err = -ENODEV; 1663 goto out; 1664 } 1665 1666 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1667 goto out; 1668 } 1669 1670 read_lock(&neigh_tbl_lock); 1671 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1672 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1673 struct neighbour *neigh; 1674 void *dst, *lladdr; 1675 1676 if (tbl->family != ndm->ndm_family) 1677 continue; 1678 read_unlock(&neigh_tbl_lock); 1679 1680 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1681 goto out; 1682 dst = nla_data(tb[NDA_DST]); 1683 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1684 1685 if (ndm->ndm_flags & NTF_PROXY) { 1686 struct pneigh_entry *pn; 1687 1688 err = -ENOBUFS; 1689 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1690 if (pn) { 1691 pn->flags = ndm->ndm_flags; 1692 err = 0; 1693 } 1694 goto out; 1695 } 1696 1697 if (dev == NULL) 1698 goto out; 1699 1700 neigh = neigh_lookup(tbl, dst, dev); 1701 if (neigh == NULL) { 1702 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1703 err = -ENOENT; 1704 goto out; 1705 } 1706 1707 neigh = __neigh_lookup_errno(tbl, dst, dev); 1708 if (IS_ERR(neigh)) { 1709 err = PTR_ERR(neigh); 1710 goto out; 1711 } 1712 } else { 1713 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1714 err = -EEXIST; 1715 neigh_release(neigh); 1716 goto out; 1717 } 1718 1719 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1720 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1721 } 1722 1723 if (ndm->ndm_flags & NTF_USE) { 1724 neigh_event_send(neigh, NULL); 1725 err = 0; 1726 } else 1727 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1728 neigh_release(neigh); 1729 goto out; 1730 } 1731 1732 read_unlock(&neigh_tbl_lock); 1733 err = -EAFNOSUPPORT; 1734 out: 1735 return err; 1736 } 1737 1738 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1739 { 1740 struct nlattr *nest; 1741 1742 nest = nla_nest_start(skb, NDTA_PARMS); 1743 if (nest == NULL) 1744 return -ENOBUFS; 1745 1746 if (parms->dev) 1747 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1748 1749 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1750 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1751 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1752 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1753 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1754 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1755 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1756 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1757 parms->base_reachable_time); 1758 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1759 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1760 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1761 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1762 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1763 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1764 1765 return nla_nest_end(skb, nest); 1766 1767 nla_put_failure: 1768 nla_nest_cancel(skb, nest); 1769 return -EMSGSIZE; 1770 } 1771 1772 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1773 u32 pid, u32 seq, int type, int flags) 1774 { 1775 struct nlmsghdr *nlh; 1776 struct ndtmsg *ndtmsg; 1777 1778 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1779 if (nlh == NULL) 1780 return -EMSGSIZE; 1781 1782 ndtmsg = nlmsg_data(nlh); 1783 1784 read_lock_bh(&tbl->lock); 1785 ndtmsg->ndtm_family = tbl->family; 1786 ndtmsg->ndtm_pad1 = 0; 1787 ndtmsg->ndtm_pad2 = 0; 1788 1789 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1790 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1791 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1792 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1793 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1794 1795 { 1796 unsigned long now = jiffies; 1797 unsigned int flush_delta = now - tbl->last_flush; 1798 unsigned int rand_delta = now - tbl->last_rand; 1799 struct neigh_hash_table *nht; 1800 struct ndt_config ndc = { 1801 .ndtc_key_len = tbl->key_len, 1802 .ndtc_entry_size = tbl->entry_size, 1803 .ndtc_entries = atomic_read(&tbl->entries), 1804 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1805 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1806 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1807 }; 1808 1809 rcu_read_lock_bh(); 1810 nht = rcu_dereference_bh(tbl->nht); 1811 ndc.ndtc_hash_rnd = nht->hash_rnd; 1812 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 1813 rcu_read_unlock_bh(); 1814 1815 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1816 } 1817 1818 { 1819 int cpu; 1820 struct ndt_stats ndst; 1821 1822 memset(&ndst, 0, sizeof(ndst)); 1823 1824 for_each_possible_cpu(cpu) { 1825 struct neigh_statistics *st; 1826 1827 st = per_cpu_ptr(tbl->stats, cpu); 1828 ndst.ndts_allocs += st->allocs; 1829 ndst.ndts_destroys += st->destroys; 1830 ndst.ndts_hash_grows += st->hash_grows; 1831 ndst.ndts_res_failed += st->res_failed; 1832 ndst.ndts_lookups += st->lookups; 1833 ndst.ndts_hits += st->hits; 1834 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1835 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1836 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1837 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1838 } 1839 1840 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1841 } 1842 1843 BUG_ON(tbl->parms.dev); 1844 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1845 goto nla_put_failure; 1846 1847 read_unlock_bh(&tbl->lock); 1848 return nlmsg_end(skb, nlh); 1849 1850 nla_put_failure: 1851 read_unlock_bh(&tbl->lock); 1852 nlmsg_cancel(skb, nlh); 1853 return -EMSGSIZE; 1854 } 1855 1856 static int neightbl_fill_param_info(struct sk_buff *skb, 1857 struct neigh_table *tbl, 1858 struct neigh_parms *parms, 1859 u32 pid, u32 seq, int type, 1860 unsigned int flags) 1861 { 1862 struct ndtmsg *ndtmsg; 1863 struct nlmsghdr *nlh; 1864 1865 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1866 if (nlh == NULL) 1867 return -EMSGSIZE; 1868 1869 ndtmsg = nlmsg_data(nlh); 1870 1871 read_lock_bh(&tbl->lock); 1872 ndtmsg->ndtm_family = tbl->family; 1873 ndtmsg->ndtm_pad1 = 0; 1874 ndtmsg->ndtm_pad2 = 0; 1875 1876 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1877 neightbl_fill_parms(skb, parms) < 0) 1878 goto errout; 1879 1880 read_unlock_bh(&tbl->lock); 1881 return nlmsg_end(skb, nlh); 1882 errout: 1883 read_unlock_bh(&tbl->lock); 1884 nlmsg_cancel(skb, nlh); 1885 return -EMSGSIZE; 1886 } 1887 1888 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1889 [NDTA_NAME] = { .type = NLA_STRING }, 1890 [NDTA_THRESH1] = { .type = NLA_U32 }, 1891 [NDTA_THRESH2] = { .type = NLA_U32 }, 1892 [NDTA_THRESH3] = { .type = NLA_U32 }, 1893 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1894 [NDTA_PARMS] = { .type = NLA_NESTED }, 1895 }; 1896 1897 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1898 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1899 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1900 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1901 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1902 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1903 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1904 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1905 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1906 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1907 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1908 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1909 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1910 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1911 }; 1912 1913 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1914 { 1915 struct net *net = sock_net(skb->sk); 1916 struct neigh_table *tbl; 1917 struct ndtmsg *ndtmsg; 1918 struct nlattr *tb[NDTA_MAX+1]; 1919 int err; 1920 1921 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1922 nl_neightbl_policy); 1923 if (err < 0) 1924 goto errout; 1925 1926 if (tb[NDTA_NAME] == NULL) { 1927 err = -EINVAL; 1928 goto errout; 1929 } 1930 1931 ndtmsg = nlmsg_data(nlh); 1932 read_lock(&neigh_tbl_lock); 1933 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1934 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1935 continue; 1936 1937 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1938 break; 1939 } 1940 1941 if (tbl == NULL) { 1942 err = -ENOENT; 1943 goto errout_locked; 1944 } 1945 1946 /* 1947 * We acquire tbl->lock to be nice to the periodic timers and 1948 * make sure they always see a consistent set of values. 1949 */ 1950 write_lock_bh(&tbl->lock); 1951 1952 if (tb[NDTA_PARMS]) { 1953 struct nlattr *tbp[NDTPA_MAX+1]; 1954 struct neigh_parms *p; 1955 int i, ifindex = 0; 1956 1957 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1958 nl_ntbl_parm_policy); 1959 if (err < 0) 1960 goto errout_tbl_lock; 1961 1962 if (tbp[NDTPA_IFINDEX]) 1963 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1964 1965 p = lookup_neigh_parms(tbl, net, ifindex); 1966 if (p == NULL) { 1967 err = -ENOENT; 1968 goto errout_tbl_lock; 1969 } 1970 1971 for (i = 1; i <= NDTPA_MAX; i++) { 1972 if (tbp[i] == NULL) 1973 continue; 1974 1975 switch (i) { 1976 case NDTPA_QUEUE_LEN: 1977 p->queue_len = nla_get_u32(tbp[i]); 1978 break; 1979 case NDTPA_PROXY_QLEN: 1980 p->proxy_qlen = nla_get_u32(tbp[i]); 1981 break; 1982 case NDTPA_APP_PROBES: 1983 p->app_probes = nla_get_u32(tbp[i]); 1984 break; 1985 case NDTPA_UCAST_PROBES: 1986 p->ucast_probes = nla_get_u32(tbp[i]); 1987 break; 1988 case NDTPA_MCAST_PROBES: 1989 p->mcast_probes = nla_get_u32(tbp[i]); 1990 break; 1991 case NDTPA_BASE_REACHABLE_TIME: 1992 p->base_reachable_time = nla_get_msecs(tbp[i]); 1993 break; 1994 case NDTPA_GC_STALETIME: 1995 p->gc_staletime = nla_get_msecs(tbp[i]); 1996 break; 1997 case NDTPA_DELAY_PROBE_TIME: 1998 p->delay_probe_time = nla_get_msecs(tbp[i]); 1999 break; 2000 case NDTPA_RETRANS_TIME: 2001 p->retrans_time = nla_get_msecs(tbp[i]); 2002 break; 2003 case NDTPA_ANYCAST_DELAY: 2004 p->anycast_delay = nla_get_msecs(tbp[i]); 2005 break; 2006 case NDTPA_PROXY_DELAY: 2007 p->proxy_delay = nla_get_msecs(tbp[i]); 2008 break; 2009 case NDTPA_LOCKTIME: 2010 p->locktime = nla_get_msecs(tbp[i]); 2011 break; 2012 } 2013 } 2014 } 2015 2016 if (tb[NDTA_THRESH1]) 2017 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2018 2019 if (tb[NDTA_THRESH2]) 2020 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2021 2022 if (tb[NDTA_THRESH3]) 2023 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2024 2025 if (tb[NDTA_GC_INTERVAL]) 2026 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2027 2028 err = 0; 2029 2030 errout_tbl_lock: 2031 write_unlock_bh(&tbl->lock); 2032 errout_locked: 2033 read_unlock(&neigh_tbl_lock); 2034 errout: 2035 return err; 2036 } 2037 2038 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2039 { 2040 struct net *net = sock_net(skb->sk); 2041 int family, tidx, nidx = 0; 2042 int tbl_skip = cb->args[0]; 2043 int neigh_skip = cb->args[1]; 2044 struct neigh_table *tbl; 2045 2046 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2047 2048 read_lock(&neigh_tbl_lock); 2049 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 2050 struct neigh_parms *p; 2051 2052 if (tidx < tbl_skip || (family && tbl->family != family)) 2053 continue; 2054 2055 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 2056 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2057 NLM_F_MULTI) <= 0) 2058 break; 2059 2060 for (nidx = 0, p = tbl->parms.next; p; p = p->next) { 2061 if (!net_eq(neigh_parms_net(p), net)) 2062 continue; 2063 2064 if (nidx < neigh_skip) 2065 goto next; 2066 2067 if (neightbl_fill_param_info(skb, tbl, p, 2068 NETLINK_CB(cb->skb).pid, 2069 cb->nlh->nlmsg_seq, 2070 RTM_NEWNEIGHTBL, 2071 NLM_F_MULTI) <= 0) 2072 goto out; 2073 next: 2074 nidx++; 2075 } 2076 2077 neigh_skip = 0; 2078 } 2079 out: 2080 read_unlock(&neigh_tbl_lock); 2081 cb->args[0] = tidx; 2082 cb->args[1] = nidx; 2083 2084 return skb->len; 2085 } 2086 2087 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2088 u32 pid, u32 seq, int type, unsigned int flags) 2089 { 2090 unsigned long now = jiffies; 2091 struct nda_cacheinfo ci; 2092 struct nlmsghdr *nlh; 2093 struct ndmsg *ndm; 2094 2095 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2096 if (nlh == NULL) 2097 return -EMSGSIZE; 2098 2099 ndm = nlmsg_data(nlh); 2100 ndm->ndm_family = neigh->ops->family; 2101 ndm->ndm_pad1 = 0; 2102 ndm->ndm_pad2 = 0; 2103 ndm->ndm_flags = neigh->flags; 2104 ndm->ndm_type = neigh->type; 2105 ndm->ndm_ifindex = neigh->dev->ifindex; 2106 2107 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); 2108 2109 read_lock_bh(&neigh->lock); 2110 ndm->ndm_state = neigh->nud_state; 2111 if (neigh->nud_state & NUD_VALID) { 2112 char haddr[MAX_ADDR_LEN]; 2113 2114 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2115 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2116 read_unlock_bh(&neigh->lock); 2117 goto nla_put_failure; 2118 } 2119 } 2120 2121 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2122 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2123 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2124 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2125 read_unlock_bh(&neigh->lock); 2126 2127 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); 2128 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 2129 2130 return nlmsg_end(skb, nlh); 2131 2132 nla_put_failure: 2133 nlmsg_cancel(skb, nlh); 2134 return -EMSGSIZE; 2135 } 2136 2137 static void neigh_update_notify(struct neighbour *neigh) 2138 { 2139 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2140 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2141 } 2142 2143 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2144 struct netlink_callback *cb) 2145 { 2146 struct net *net = sock_net(skb->sk); 2147 struct neighbour *n; 2148 int rc, h, s_h = cb->args[1]; 2149 int idx, s_idx = idx = cb->args[2]; 2150 struct neigh_hash_table *nht; 2151 2152 rcu_read_lock_bh(); 2153 nht = rcu_dereference_bh(tbl->nht); 2154 2155 for (h = 0; h < (1 << nht->hash_shift); h++) { 2156 if (h < s_h) 2157 continue; 2158 if (h > s_h) 2159 s_idx = 0; 2160 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2161 n != NULL; 2162 n = rcu_dereference_bh(n->next)) { 2163 if (!net_eq(dev_net(n->dev), net)) 2164 continue; 2165 if (idx < s_idx) 2166 goto next; 2167 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2168 cb->nlh->nlmsg_seq, 2169 RTM_NEWNEIGH, 2170 NLM_F_MULTI) <= 0) { 2171 rc = -1; 2172 goto out; 2173 } 2174 next: 2175 idx++; 2176 } 2177 } 2178 rc = skb->len; 2179 out: 2180 rcu_read_unlock_bh(); 2181 cb->args[1] = h; 2182 cb->args[2] = idx; 2183 return rc; 2184 } 2185 2186 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2187 { 2188 struct neigh_table *tbl; 2189 int t, family, s_t; 2190 2191 read_lock(&neigh_tbl_lock); 2192 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2193 s_t = cb->args[0]; 2194 2195 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 2196 if (t < s_t || (family && tbl->family != family)) 2197 continue; 2198 if (t > s_t) 2199 memset(&cb->args[1], 0, sizeof(cb->args) - 2200 sizeof(cb->args[0])); 2201 if (neigh_dump_table(tbl, skb, cb) < 0) 2202 break; 2203 } 2204 read_unlock(&neigh_tbl_lock); 2205 2206 cb->args[0] = t; 2207 return skb->len; 2208 } 2209 2210 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2211 { 2212 int chain; 2213 struct neigh_hash_table *nht; 2214 2215 rcu_read_lock_bh(); 2216 nht = rcu_dereference_bh(tbl->nht); 2217 2218 read_lock(&tbl->lock); /* avoid resizes */ 2219 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2220 struct neighbour *n; 2221 2222 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2223 n != NULL; 2224 n = rcu_dereference_bh(n->next)) 2225 cb(n, cookie); 2226 } 2227 read_unlock(&tbl->lock); 2228 rcu_read_unlock_bh(); 2229 } 2230 EXPORT_SYMBOL(neigh_for_each); 2231 2232 /* The tbl->lock must be held as a writer and BH disabled. */ 2233 void __neigh_for_each_release(struct neigh_table *tbl, 2234 int (*cb)(struct neighbour *)) 2235 { 2236 int chain; 2237 struct neigh_hash_table *nht; 2238 2239 nht = rcu_dereference_protected(tbl->nht, 2240 lockdep_is_held(&tbl->lock)); 2241 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2242 struct neighbour *n; 2243 struct neighbour __rcu **np; 2244 2245 np = &nht->hash_buckets[chain]; 2246 while ((n = rcu_dereference_protected(*np, 2247 lockdep_is_held(&tbl->lock))) != NULL) { 2248 int release; 2249 2250 write_lock(&n->lock); 2251 release = cb(n); 2252 if (release) { 2253 rcu_assign_pointer(*np, 2254 rcu_dereference_protected(n->next, 2255 lockdep_is_held(&tbl->lock))); 2256 n->dead = 1; 2257 } else 2258 np = &n->next; 2259 write_unlock(&n->lock); 2260 if (release) 2261 neigh_cleanup_and_release(n); 2262 } 2263 } 2264 } 2265 EXPORT_SYMBOL(__neigh_for_each_release); 2266 2267 #ifdef CONFIG_PROC_FS 2268 2269 static struct neighbour *neigh_get_first(struct seq_file *seq) 2270 { 2271 struct neigh_seq_state *state = seq->private; 2272 struct net *net = seq_file_net(seq); 2273 struct neigh_hash_table *nht = state->nht; 2274 struct neighbour *n = NULL; 2275 int bucket = state->bucket; 2276 2277 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2278 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 2279 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 2280 2281 while (n) { 2282 if (!net_eq(dev_net(n->dev), net)) 2283 goto next; 2284 if (state->neigh_sub_iter) { 2285 loff_t fakep = 0; 2286 void *v; 2287 2288 v = state->neigh_sub_iter(state, n, &fakep); 2289 if (!v) 2290 goto next; 2291 } 2292 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2293 break; 2294 if (n->nud_state & ~NUD_NOARP) 2295 break; 2296 next: 2297 n = rcu_dereference_bh(n->next); 2298 } 2299 2300 if (n) 2301 break; 2302 } 2303 state->bucket = bucket; 2304 2305 return n; 2306 } 2307 2308 static struct neighbour *neigh_get_next(struct seq_file *seq, 2309 struct neighbour *n, 2310 loff_t *pos) 2311 { 2312 struct neigh_seq_state *state = seq->private; 2313 struct net *net = seq_file_net(seq); 2314 struct neigh_hash_table *nht = state->nht; 2315 2316 if (state->neigh_sub_iter) { 2317 void *v = state->neigh_sub_iter(state, n, pos); 2318 if (v) 2319 return n; 2320 } 2321 n = rcu_dereference_bh(n->next); 2322 2323 while (1) { 2324 while (n) { 2325 if (!net_eq(dev_net(n->dev), net)) 2326 goto next; 2327 if (state->neigh_sub_iter) { 2328 void *v = state->neigh_sub_iter(state, n, pos); 2329 if (v) 2330 return n; 2331 goto next; 2332 } 2333 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2334 break; 2335 2336 if (n->nud_state & ~NUD_NOARP) 2337 break; 2338 next: 2339 n = rcu_dereference_bh(n->next); 2340 } 2341 2342 if (n) 2343 break; 2344 2345 if (++state->bucket >= (1 << nht->hash_shift)) 2346 break; 2347 2348 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 2349 } 2350 2351 if (n && pos) 2352 --(*pos); 2353 return n; 2354 } 2355 2356 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2357 { 2358 struct neighbour *n = neigh_get_first(seq); 2359 2360 if (n) { 2361 --(*pos); 2362 while (*pos) { 2363 n = neigh_get_next(seq, n, pos); 2364 if (!n) 2365 break; 2366 } 2367 } 2368 return *pos ? NULL : n; 2369 } 2370 2371 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2372 { 2373 struct neigh_seq_state *state = seq->private; 2374 struct net *net = seq_file_net(seq); 2375 struct neigh_table *tbl = state->tbl; 2376 struct pneigh_entry *pn = NULL; 2377 int bucket = state->bucket; 2378 2379 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2380 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2381 pn = tbl->phash_buckets[bucket]; 2382 while (pn && !net_eq(pneigh_net(pn), net)) 2383 pn = pn->next; 2384 if (pn) 2385 break; 2386 } 2387 state->bucket = bucket; 2388 2389 return pn; 2390 } 2391 2392 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2393 struct pneigh_entry *pn, 2394 loff_t *pos) 2395 { 2396 struct neigh_seq_state *state = seq->private; 2397 struct net *net = seq_file_net(seq); 2398 struct neigh_table *tbl = state->tbl; 2399 2400 pn = pn->next; 2401 while (!pn) { 2402 if (++state->bucket > PNEIGH_HASHMASK) 2403 break; 2404 pn = tbl->phash_buckets[state->bucket]; 2405 while (pn && !net_eq(pneigh_net(pn), net)) 2406 pn = pn->next; 2407 if (pn) 2408 break; 2409 } 2410 2411 if (pn && pos) 2412 --(*pos); 2413 2414 return pn; 2415 } 2416 2417 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2418 { 2419 struct pneigh_entry *pn = pneigh_get_first(seq); 2420 2421 if (pn) { 2422 --(*pos); 2423 while (*pos) { 2424 pn = pneigh_get_next(seq, pn, pos); 2425 if (!pn) 2426 break; 2427 } 2428 } 2429 return *pos ? NULL : pn; 2430 } 2431 2432 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2433 { 2434 struct neigh_seq_state *state = seq->private; 2435 void *rc; 2436 loff_t idxpos = *pos; 2437 2438 rc = neigh_get_idx(seq, &idxpos); 2439 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2440 rc = pneigh_get_idx(seq, &idxpos); 2441 2442 return rc; 2443 } 2444 2445 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2446 __acquires(rcu_bh) 2447 { 2448 struct neigh_seq_state *state = seq->private; 2449 2450 state->tbl = tbl; 2451 state->bucket = 0; 2452 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2453 2454 rcu_read_lock_bh(); 2455 state->nht = rcu_dereference_bh(tbl->nht); 2456 2457 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 2458 } 2459 EXPORT_SYMBOL(neigh_seq_start); 2460 2461 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2462 { 2463 struct neigh_seq_state *state; 2464 void *rc; 2465 2466 if (v == SEQ_START_TOKEN) { 2467 rc = neigh_get_first(seq); 2468 goto out; 2469 } 2470 2471 state = seq->private; 2472 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2473 rc = neigh_get_next(seq, v, NULL); 2474 if (rc) 2475 goto out; 2476 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2477 rc = pneigh_get_first(seq); 2478 } else { 2479 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2480 rc = pneigh_get_next(seq, v, NULL); 2481 } 2482 out: 2483 ++(*pos); 2484 return rc; 2485 } 2486 EXPORT_SYMBOL(neigh_seq_next); 2487 2488 void neigh_seq_stop(struct seq_file *seq, void *v) 2489 __releases(rcu_bh) 2490 { 2491 rcu_read_unlock_bh(); 2492 } 2493 EXPORT_SYMBOL(neigh_seq_stop); 2494 2495 /* statistics via seq_file */ 2496 2497 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2498 { 2499 struct neigh_table *tbl = seq->private; 2500 int cpu; 2501 2502 if (*pos == 0) 2503 return SEQ_START_TOKEN; 2504 2505 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 2506 if (!cpu_possible(cpu)) 2507 continue; 2508 *pos = cpu+1; 2509 return per_cpu_ptr(tbl->stats, cpu); 2510 } 2511 return NULL; 2512 } 2513 2514 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2515 { 2516 struct neigh_table *tbl = seq->private; 2517 int cpu; 2518 2519 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 2520 if (!cpu_possible(cpu)) 2521 continue; 2522 *pos = cpu+1; 2523 return per_cpu_ptr(tbl->stats, cpu); 2524 } 2525 return NULL; 2526 } 2527 2528 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2529 { 2530 2531 } 2532 2533 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2534 { 2535 struct neigh_table *tbl = seq->private; 2536 struct neigh_statistics *st = v; 2537 2538 if (v == SEQ_START_TOKEN) { 2539 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n"); 2540 return 0; 2541 } 2542 2543 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2544 "%08lx %08lx %08lx %08lx %08lx\n", 2545 atomic_read(&tbl->entries), 2546 2547 st->allocs, 2548 st->destroys, 2549 st->hash_grows, 2550 2551 st->lookups, 2552 st->hits, 2553 2554 st->res_failed, 2555 2556 st->rcv_probes_mcast, 2557 st->rcv_probes_ucast, 2558 2559 st->periodic_gc_runs, 2560 st->forced_gc_runs, 2561 st->unres_discards 2562 ); 2563 2564 return 0; 2565 } 2566 2567 static const struct seq_operations neigh_stat_seq_ops = { 2568 .start = neigh_stat_seq_start, 2569 .next = neigh_stat_seq_next, 2570 .stop = neigh_stat_seq_stop, 2571 .show = neigh_stat_seq_show, 2572 }; 2573 2574 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2575 { 2576 int ret = seq_open(file, &neigh_stat_seq_ops); 2577 2578 if (!ret) { 2579 struct seq_file *sf = file->private_data; 2580 sf->private = PDE(inode)->data; 2581 } 2582 return ret; 2583 }; 2584 2585 static const struct file_operations neigh_stat_seq_fops = { 2586 .owner = THIS_MODULE, 2587 .open = neigh_stat_seq_open, 2588 .read = seq_read, 2589 .llseek = seq_lseek, 2590 .release = seq_release, 2591 }; 2592 2593 #endif /* CONFIG_PROC_FS */ 2594 2595 static inline size_t neigh_nlmsg_size(void) 2596 { 2597 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2598 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2599 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2600 + nla_total_size(sizeof(struct nda_cacheinfo)) 2601 + nla_total_size(4); /* NDA_PROBES */ 2602 } 2603 2604 static void __neigh_notify(struct neighbour *n, int type, int flags) 2605 { 2606 struct net *net = dev_net(n->dev); 2607 struct sk_buff *skb; 2608 int err = -ENOBUFS; 2609 2610 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2611 if (skb == NULL) 2612 goto errout; 2613 2614 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2615 if (err < 0) { 2616 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2617 WARN_ON(err == -EMSGSIZE); 2618 kfree_skb(skb); 2619 goto errout; 2620 } 2621 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2622 return; 2623 errout: 2624 if (err < 0) 2625 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2626 } 2627 2628 #ifdef CONFIG_ARPD 2629 void neigh_app_ns(struct neighbour *n) 2630 { 2631 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2632 } 2633 EXPORT_SYMBOL(neigh_app_ns); 2634 #endif /* CONFIG_ARPD */ 2635 2636 #ifdef CONFIG_SYSCTL 2637 2638 #define NEIGH_VARS_MAX 19 2639 2640 static struct neigh_sysctl_table { 2641 struct ctl_table_header *sysctl_header; 2642 struct ctl_table neigh_vars[NEIGH_VARS_MAX]; 2643 char *dev_name; 2644 } neigh_sysctl_template __read_mostly = { 2645 .neigh_vars = { 2646 { 2647 .procname = "mcast_solicit", 2648 .maxlen = sizeof(int), 2649 .mode = 0644, 2650 .proc_handler = proc_dointvec, 2651 }, 2652 { 2653 .procname = "ucast_solicit", 2654 .maxlen = sizeof(int), 2655 .mode = 0644, 2656 .proc_handler = proc_dointvec, 2657 }, 2658 { 2659 .procname = "app_solicit", 2660 .maxlen = sizeof(int), 2661 .mode = 0644, 2662 .proc_handler = proc_dointvec, 2663 }, 2664 { 2665 .procname = "retrans_time", 2666 .maxlen = sizeof(int), 2667 .mode = 0644, 2668 .proc_handler = proc_dointvec_userhz_jiffies, 2669 }, 2670 { 2671 .procname = "base_reachable_time", 2672 .maxlen = sizeof(int), 2673 .mode = 0644, 2674 .proc_handler = proc_dointvec_jiffies, 2675 }, 2676 { 2677 .procname = "delay_first_probe_time", 2678 .maxlen = sizeof(int), 2679 .mode = 0644, 2680 .proc_handler = proc_dointvec_jiffies, 2681 }, 2682 { 2683 .procname = "gc_stale_time", 2684 .maxlen = sizeof(int), 2685 .mode = 0644, 2686 .proc_handler = proc_dointvec_jiffies, 2687 }, 2688 { 2689 .procname = "unres_qlen", 2690 .maxlen = sizeof(int), 2691 .mode = 0644, 2692 .proc_handler = proc_dointvec, 2693 }, 2694 { 2695 .procname = "proxy_qlen", 2696 .maxlen = sizeof(int), 2697 .mode = 0644, 2698 .proc_handler = proc_dointvec, 2699 }, 2700 { 2701 .procname = "anycast_delay", 2702 .maxlen = sizeof(int), 2703 .mode = 0644, 2704 .proc_handler = proc_dointvec_userhz_jiffies, 2705 }, 2706 { 2707 .procname = "proxy_delay", 2708 .maxlen = sizeof(int), 2709 .mode = 0644, 2710 .proc_handler = proc_dointvec_userhz_jiffies, 2711 }, 2712 { 2713 .procname = "locktime", 2714 .maxlen = sizeof(int), 2715 .mode = 0644, 2716 .proc_handler = proc_dointvec_userhz_jiffies, 2717 }, 2718 { 2719 .procname = "retrans_time_ms", 2720 .maxlen = sizeof(int), 2721 .mode = 0644, 2722 .proc_handler = proc_dointvec_ms_jiffies, 2723 }, 2724 { 2725 .procname = "base_reachable_time_ms", 2726 .maxlen = sizeof(int), 2727 .mode = 0644, 2728 .proc_handler = proc_dointvec_ms_jiffies, 2729 }, 2730 { 2731 .procname = "gc_interval", 2732 .maxlen = sizeof(int), 2733 .mode = 0644, 2734 .proc_handler = proc_dointvec_jiffies, 2735 }, 2736 { 2737 .procname = "gc_thresh1", 2738 .maxlen = sizeof(int), 2739 .mode = 0644, 2740 .proc_handler = proc_dointvec, 2741 }, 2742 { 2743 .procname = "gc_thresh2", 2744 .maxlen = sizeof(int), 2745 .mode = 0644, 2746 .proc_handler = proc_dointvec, 2747 }, 2748 { 2749 .procname = "gc_thresh3", 2750 .maxlen = sizeof(int), 2751 .mode = 0644, 2752 .proc_handler = proc_dointvec, 2753 }, 2754 {}, 2755 }, 2756 }; 2757 2758 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2759 char *p_name, proc_handler *handler) 2760 { 2761 struct neigh_sysctl_table *t; 2762 const char *dev_name_source = NULL; 2763 2764 #define NEIGH_CTL_PATH_ROOT 0 2765 #define NEIGH_CTL_PATH_PROTO 1 2766 #define NEIGH_CTL_PATH_NEIGH 2 2767 #define NEIGH_CTL_PATH_DEV 3 2768 2769 struct ctl_path neigh_path[] = { 2770 { .procname = "net", }, 2771 { .procname = "proto", }, 2772 { .procname = "neigh", }, 2773 { .procname = "default", }, 2774 { }, 2775 }; 2776 2777 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 2778 if (!t) 2779 goto err; 2780 2781 t->neigh_vars[0].data = &p->mcast_probes; 2782 t->neigh_vars[1].data = &p->ucast_probes; 2783 t->neigh_vars[2].data = &p->app_probes; 2784 t->neigh_vars[3].data = &p->retrans_time; 2785 t->neigh_vars[4].data = &p->base_reachable_time; 2786 t->neigh_vars[5].data = &p->delay_probe_time; 2787 t->neigh_vars[6].data = &p->gc_staletime; 2788 t->neigh_vars[7].data = &p->queue_len; 2789 t->neigh_vars[8].data = &p->proxy_qlen; 2790 t->neigh_vars[9].data = &p->anycast_delay; 2791 t->neigh_vars[10].data = &p->proxy_delay; 2792 t->neigh_vars[11].data = &p->locktime; 2793 t->neigh_vars[12].data = &p->retrans_time; 2794 t->neigh_vars[13].data = &p->base_reachable_time; 2795 2796 if (dev) { 2797 dev_name_source = dev->name; 2798 /* Terminate the table early */ 2799 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14])); 2800 } else { 2801 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname; 2802 t->neigh_vars[14].data = (int *)(p + 1); 2803 t->neigh_vars[15].data = (int *)(p + 1) + 1; 2804 t->neigh_vars[16].data = (int *)(p + 1) + 2; 2805 t->neigh_vars[17].data = (int *)(p + 1) + 3; 2806 } 2807 2808 2809 if (handler) { 2810 /* RetransTime */ 2811 t->neigh_vars[3].proc_handler = handler; 2812 t->neigh_vars[3].extra1 = dev; 2813 /* ReachableTime */ 2814 t->neigh_vars[4].proc_handler = handler; 2815 t->neigh_vars[4].extra1 = dev; 2816 /* RetransTime (in milliseconds)*/ 2817 t->neigh_vars[12].proc_handler = handler; 2818 t->neigh_vars[12].extra1 = dev; 2819 /* ReachableTime (in milliseconds) */ 2820 t->neigh_vars[13].proc_handler = handler; 2821 t->neigh_vars[13].extra1 = dev; 2822 } 2823 2824 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2825 if (!t->dev_name) 2826 goto free; 2827 2828 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name; 2829 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name; 2830 2831 t->sysctl_header = 2832 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars); 2833 if (!t->sysctl_header) 2834 goto free_procname; 2835 2836 p->sysctl_table = t; 2837 return 0; 2838 2839 free_procname: 2840 kfree(t->dev_name); 2841 free: 2842 kfree(t); 2843 err: 2844 return -ENOBUFS; 2845 } 2846 EXPORT_SYMBOL(neigh_sysctl_register); 2847 2848 void neigh_sysctl_unregister(struct neigh_parms *p) 2849 { 2850 if (p->sysctl_table) { 2851 struct neigh_sysctl_table *t = p->sysctl_table; 2852 p->sysctl_table = NULL; 2853 unregister_sysctl_table(t->sysctl_header); 2854 kfree(t->dev_name); 2855 kfree(t); 2856 } 2857 } 2858 EXPORT_SYMBOL(neigh_sysctl_unregister); 2859 2860 #endif /* CONFIG_SYSCTL */ 2861 2862 static int __init neigh_init(void) 2863 { 2864 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL); 2865 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL); 2866 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL); 2867 2868 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 2869 NULL); 2870 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL); 2871 2872 return 0; 2873 } 2874 2875 subsys_initcall(neigh_init); 2876 2877