xref: /linux/net/core/neighbour.c (revision a0c04a3243f1db6cb47b04ba05b65af97f75a278)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Generic address resolution entity
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
8  *
9  *	Fixes:
10  *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
11  *	Harald Welte		Add neighbour cache statistics like rtstat
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/slab.h>
17 #include <linux/kmemleak.h>
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/arp.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39 #include <linux/inetdevice.h>
40 #include <net/addrconf.h>
41 
42 #include <trace/events/neigh.h>
43 
44 #define NEIGH_DEBUG 1
45 #define neigh_dbg(level, fmt, ...)		\
46 do {						\
47 	if (level <= NEIGH_DEBUG)		\
48 		pr_debug(fmt, ##__VA_ARGS__);	\
49 } while (0)
50 
51 #define PNEIGH_HASHMASK		0xF
52 
53 static void neigh_timer_handler(struct timer_list *t);
54 static void __neigh_notify(struct neighbour *n, int type, int flags,
55 			   u32 pid);
56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
58 				    struct net_device *dev);
59 
60 #ifdef CONFIG_PROC_FS
61 static const struct seq_operations neigh_stat_seq_ops;
62 #endif
63 
64 /*
65    Neighbour hash table buckets are protected with rwlock tbl->lock.
66 
67    - All the scans/updates to hash buckets MUST be made under this lock.
68    - NOTHING clever should be made under this lock: no callbacks
69      to protocol backends, no attempts to send something to network.
70      It will result in deadlocks, if backend/driver wants to use neighbour
71      cache.
72    - If the entry requires some non-trivial actions, increase
73      its reference count and release table lock.
74 
75    Neighbour entries are protected:
76    - with reference count.
77    - with rwlock neigh->lock
78 
79    Reference count prevents destruction.
80 
81    neigh->lock mainly serializes ll address data and its validity state.
82    However, the same lock is used to protect another entry fields:
83     - timer
84     - resolution queue
85 
86    Again, nothing clever shall be made under neigh->lock,
87    the most complicated procedure, which we allow is dev->hard_header.
88    It is supposed, that dev->hard_header is simplistic and does
89    not make callbacks to neighbour tables.
90  */
91 
92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
93 {
94 	kfree_skb(skb);
95 	return -ENETDOWN;
96 }
97 
98 static void neigh_cleanup_and_release(struct neighbour *neigh)
99 {
100 	trace_neigh_cleanup_and_release(neigh, 0);
101 	__neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
102 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
103 	neigh_release(neigh);
104 }
105 
106 /*
107  * It is random distribution in the interval (1/2)*base...(3/2)*base.
108  * It corresponds to default IPv6 settings and is not overridable,
109  * because it is really reasonable choice.
110  */
111 
112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114 	return base ? get_random_u32_below(base) + (base >> 1) : 0;
115 }
116 EXPORT_SYMBOL(neigh_rand_reach_time);
117 
118 static void neigh_mark_dead(struct neighbour *n)
119 {
120 	n->dead = 1;
121 	if (!list_empty(&n->gc_list)) {
122 		list_del_init(&n->gc_list);
123 		atomic_dec(&n->tbl->gc_entries);
124 	}
125 	if (!list_empty(&n->managed_list))
126 		list_del_init(&n->managed_list);
127 }
128 
129 static void neigh_update_gc_list(struct neighbour *n)
130 {
131 	bool on_gc_list, exempt_from_gc;
132 
133 	write_lock_bh(&n->tbl->lock);
134 	write_lock(&n->lock);
135 	if (n->dead)
136 		goto out;
137 
138 	/* remove from the gc list if new state is permanent or if neighbor
139 	 * is externally learned; otherwise entry should be on the gc list
140 	 */
141 	exempt_from_gc = n->nud_state & NUD_PERMANENT ||
142 			 n->flags & NTF_EXT_LEARNED;
143 	on_gc_list = !list_empty(&n->gc_list);
144 
145 	if (exempt_from_gc && on_gc_list) {
146 		list_del_init(&n->gc_list);
147 		atomic_dec(&n->tbl->gc_entries);
148 	} else if (!exempt_from_gc && !on_gc_list) {
149 		/* add entries to the tail; cleaning removes from the front */
150 		list_add_tail(&n->gc_list, &n->tbl->gc_list);
151 		atomic_inc(&n->tbl->gc_entries);
152 	}
153 out:
154 	write_unlock(&n->lock);
155 	write_unlock_bh(&n->tbl->lock);
156 }
157 
158 static void neigh_update_managed_list(struct neighbour *n)
159 {
160 	bool on_managed_list, add_to_managed;
161 
162 	write_lock_bh(&n->tbl->lock);
163 	write_lock(&n->lock);
164 	if (n->dead)
165 		goto out;
166 
167 	add_to_managed = n->flags & NTF_MANAGED;
168 	on_managed_list = !list_empty(&n->managed_list);
169 
170 	if (!add_to_managed && on_managed_list)
171 		list_del_init(&n->managed_list);
172 	else if (add_to_managed && !on_managed_list)
173 		list_add_tail(&n->managed_list, &n->tbl->managed_list);
174 out:
175 	write_unlock(&n->lock);
176 	write_unlock_bh(&n->tbl->lock);
177 }
178 
179 static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify,
180 			       bool *gc_update, bool *managed_update)
181 {
182 	u32 ndm_flags, old_flags = neigh->flags;
183 
184 	if (!(flags & NEIGH_UPDATE_F_ADMIN))
185 		return;
186 
187 	ndm_flags  = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0;
188 	ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0;
189 
190 	if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) {
191 		if (ndm_flags & NTF_EXT_LEARNED)
192 			neigh->flags |= NTF_EXT_LEARNED;
193 		else
194 			neigh->flags &= ~NTF_EXT_LEARNED;
195 		*notify = 1;
196 		*gc_update = true;
197 	}
198 	if ((old_flags ^ ndm_flags) & NTF_MANAGED) {
199 		if (ndm_flags & NTF_MANAGED)
200 			neigh->flags |= NTF_MANAGED;
201 		else
202 			neigh->flags &= ~NTF_MANAGED;
203 		*notify = 1;
204 		*managed_update = true;
205 	}
206 }
207 
208 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np,
209 		      struct neigh_table *tbl)
210 {
211 	bool retval = false;
212 
213 	write_lock(&n->lock);
214 	if (refcount_read(&n->refcnt) == 1) {
215 		struct neighbour *neigh;
216 
217 		neigh = rcu_dereference_protected(n->next,
218 						  lockdep_is_held(&tbl->lock));
219 		rcu_assign_pointer(*np, neigh);
220 		neigh_mark_dead(n);
221 		retval = true;
222 	}
223 	write_unlock(&n->lock);
224 	if (retval)
225 		neigh_cleanup_and_release(n);
226 	return retval;
227 }
228 
229 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl)
230 {
231 	struct neigh_hash_table *nht;
232 	void *pkey = ndel->primary_key;
233 	u32 hash_val;
234 	struct neighbour *n;
235 	struct neighbour __rcu **np;
236 
237 	nht = rcu_dereference_protected(tbl->nht,
238 					lockdep_is_held(&tbl->lock));
239 	hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd);
240 	hash_val = hash_val >> (32 - nht->hash_shift);
241 
242 	np = &nht->hash_buckets[hash_val];
243 	while ((n = rcu_dereference_protected(*np,
244 					      lockdep_is_held(&tbl->lock)))) {
245 		if (n == ndel)
246 			return neigh_del(n, np, tbl);
247 		np = &n->next;
248 	}
249 	return false;
250 }
251 
252 static int neigh_forced_gc(struct neigh_table *tbl)
253 {
254 	int max_clean = atomic_read(&tbl->gc_entries) -
255 			READ_ONCE(tbl->gc_thresh2);
256 	unsigned long tref = jiffies - 5 * HZ;
257 	struct neighbour *n, *tmp;
258 	int shrunk = 0;
259 
260 	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
261 
262 	write_lock_bh(&tbl->lock);
263 
264 	list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) {
265 		if (refcount_read(&n->refcnt) == 1) {
266 			bool remove = false;
267 
268 			write_lock(&n->lock);
269 			if ((n->nud_state == NUD_FAILED) ||
270 			    (n->nud_state == NUD_NOARP) ||
271 			    (tbl->is_multicast &&
272 			     tbl->is_multicast(n->primary_key)) ||
273 			    !time_in_range(n->updated, tref, jiffies))
274 				remove = true;
275 			write_unlock(&n->lock);
276 
277 			if (remove && neigh_remove_one(n, tbl))
278 				shrunk++;
279 			if (shrunk >= max_clean)
280 				break;
281 		}
282 	}
283 
284 	WRITE_ONCE(tbl->last_flush, jiffies);
285 
286 	write_unlock_bh(&tbl->lock);
287 
288 	return shrunk;
289 }
290 
291 static void neigh_add_timer(struct neighbour *n, unsigned long when)
292 {
293 	/* Use safe distance from the jiffies - LONG_MAX point while timer
294 	 * is running in DELAY/PROBE state but still show to user space
295 	 * large times in the past.
296 	 */
297 	unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ);
298 
299 	neigh_hold(n);
300 	if (!time_in_range(n->confirmed, mint, jiffies))
301 		n->confirmed = mint;
302 	if (time_before(n->used, n->confirmed))
303 		n->used = n->confirmed;
304 	if (unlikely(mod_timer(&n->timer, when))) {
305 		printk("NEIGH: BUG, double timer add, state is %x\n",
306 		       n->nud_state);
307 		dump_stack();
308 	}
309 }
310 
311 static int neigh_del_timer(struct neighbour *n)
312 {
313 	if ((n->nud_state & NUD_IN_TIMER) &&
314 	    del_timer(&n->timer)) {
315 		neigh_release(n);
316 		return 1;
317 	}
318 	return 0;
319 }
320 
321 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
322 						   int family)
323 {
324 	switch (family) {
325 	case AF_INET:
326 		return __in_dev_arp_parms_get_rcu(dev);
327 	case AF_INET6:
328 		return __in6_dev_nd_parms_get_rcu(dev);
329 	}
330 	return NULL;
331 }
332 
333 static void neigh_parms_qlen_dec(struct net_device *dev, int family)
334 {
335 	struct neigh_parms *p;
336 
337 	rcu_read_lock();
338 	p = neigh_get_dev_parms_rcu(dev, family);
339 	if (p)
340 		p->qlen--;
341 	rcu_read_unlock();
342 }
343 
344 static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net,
345 			       int family)
346 {
347 	struct sk_buff_head tmp;
348 	unsigned long flags;
349 	struct sk_buff *skb;
350 
351 	skb_queue_head_init(&tmp);
352 	spin_lock_irqsave(&list->lock, flags);
353 	skb = skb_peek(list);
354 	while (skb != NULL) {
355 		struct sk_buff *skb_next = skb_peek_next(skb, list);
356 		struct net_device *dev = skb->dev;
357 
358 		if (net == NULL || net_eq(dev_net(dev), net)) {
359 			neigh_parms_qlen_dec(dev, family);
360 			__skb_unlink(skb, list);
361 			__skb_queue_tail(&tmp, skb);
362 		}
363 		skb = skb_next;
364 	}
365 	spin_unlock_irqrestore(&list->lock, flags);
366 
367 	while ((skb = __skb_dequeue(&tmp))) {
368 		dev_put(skb->dev);
369 		kfree_skb(skb);
370 	}
371 }
372 
373 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev,
374 			    bool skip_perm)
375 {
376 	int i;
377 	struct neigh_hash_table *nht;
378 
379 	nht = rcu_dereference_protected(tbl->nht,
380 					lockdep_is_held(&tbl->lock));
381 
382 	for (i = 0; i < (1 << nht->hash_shift); i++) {
383 		struct neighbour *n;
384 		struct neighbour __rcu **np = &nht->hash_buckets[i];
385 
386 		while ((n = rcu_dereference_protected(*np,
387 					lockdep_is_held(&tbl->lock))) != NULL) {
388 			if (dev && n->dev != dev) {
389 				np = &n->next;
390 				continue;
391 			}
392 			if (skip_perm && n->nud_state & NUD_PERMANENT) {
393 				np = &n->next;
394 				continue;
395 			}
396 			rcu_assign_pointer(*np,
397 				   rcu_dereference_protected(n->next,
398 						lockdep_is_held(&tbl->lock)));
399 			write_lock(&n->lock);
400 			neigh_del_timer(n);
401 			neigh_mark_dead(n);
402 			if (refcount_read(&n->refcnt) != 1) {
403 				/* The most unpleasant situation.
404 				   We must destroy neighbour entry,
405 				   but someone still uses it.
406 
407 				   The destroy will be delayed until
408 				   the last user releases us, but
409 				   we must kill timers etc. and move
410 				   it to safe state.
411 				 */
412 				__skb_queue_purge(&n->arp_queue);
413 				n->arp_queue_len_bytes = 0;
414 				WRITE_ONCE(n->output, neigh_blackhole);
415 				if (n->nud_state & NUD_VALID)
416 					n->nud_state = NUD_NOARP;
417 				else
418 					n->nud_state = NUD_NONE;
419 				neigh_dbg(2, "neigh %p is stray\n", n);
420 			}
421 			write_unlock(&n->lock);
422 			neigh_cleanup_and_release(n);
423 		}
424 	}
425 }
426 
427 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
428 {
429 	write_lock_bh(&tbl->lock);
430 	neigh_flush_dev(tbl, dev, false);
431 	write_unlock_bh(&tbl->lock);
432 }
433 EXPORT_SYMBOL(neigh_changeaddr);
434 
435 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev,
436 			  bool skip_perm)
437 {
438 	write_lock_bh(&tbl->lock);
439 	neigh_flush_dev(tbl, dev, skip_perm);
440 	pneigh_ifdown_and_unlock(tbl, dev);
441 	pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL,
442 			   tbl->family);
443 	if (skb_queue_empty_lockless(&tbl->proxy_queue))
444 		del_timer_sync(&tbl->proxy_timer);
445 	return 0;
446 }
447 
448 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev)
449 {
450 	__neigh_ifdown(tbl, dev, true);
451 	return 0;
452 }
453 EXPORT_SYMBOL(neigh_carrier_down);
454 
455 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
456 {
457 	__neigh_ifdown(tbl, dev, false);
458 	return 0;
459 }
460 EXPORT_SYMBOL(neigh_ifdown);
461 
462 static struct neighbour *neigh_alloc(struct neigh_table *tbl,
463 				     struct net_device *dev,
464 				     u32 flags, bool exempt_from_gc)
465 {
466 	struct neighbour *n = NULL;
467 	unsigned long now = jiffies;
468 	int entries, gc_thresh3;
469 
470 	if (exempt_from_gc)
471 		goto do_alloc;
472 
473 	entries = atomic_inc_return(&tbl->gc_entries) - 1;
474 	gc_thresh3 = READ_ONCE(tbl->gc_thresh3);
475 	if (entries >= gc_thresh3 ||
476 	    (entries >= READ_ONCE(tbl->gc_thresh2) &&
477 	     time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) {
478 		if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) {
479 			net_info_ratelimited("%s: neighbor table overflow!\n",
480 					     tbl->id);
481 			NEIGH_CACHE_STAT_INC(tbl, table_fulls);
482 			goto out_entries;
483 		}
484 	}
485 
486 do_alloc:
487 	n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
488 	if (!n)
489 		goto out_entries;
490 
491 	__skb_queue_head_init(&n->arp_queue);
492 	rwlock_init(&n->lock);
493 	seqlock_init(&n->ha_lock);
494 	n->updated	  = n->used = now;
495 	n->nud_state	  = NUD_NONE;
496 	n->output	  = neigh_blackhole;
497 	n->flags	  = flags;
498 	seqlock_init(&n->hh.hh_lock);
499 	n->parms	  = neigh_parms_clone(&tbl->parms);
500 	timer_setup(&n->timer, neigh_timer_handler, 0);
501 
502 	NEIGH_CACHE_STAT_INC(tbl, allocs);
503 	n->tbl		  = tbl;
504 	refcount_set(&n->refcnt, 1);
505 	n->dead		  = 1;
506 	INIT_LIST_HEAD(&n->gc_list);
507 	INIT_LIST_HEAD(&n->managed_list);
508 
509 	atomic_inc(&tbl->entries);
510 out:
511 	return n;
512 
513 out_entries:
514 	if (!exempt_from_gc)
515 		atomic_dec(&tbl->gc_entries);
516 	goto out;
517 }
518 
519 static void neigh_get_hash_rnd(u32 *x)
520 {
521 	*x = get_random_u32() | 1;
522 }
523 
524 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
525 {
526 	size_t size = (1 << shift) * sizeof(struct neighbour *);
527 	struct neigh_hash_table *ret;
528 	struct neighbour __rcu **buckets;
529 	int i;
530 
531 	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
532 	if (!ret)
533 		return NULL;
534 	if (size <= PAGE_SIZE) {
535 		buckets = kzalloc(size, GFP_ATOMIC);
536 	} else {
537 		buckets = (struct neighbour __rcu **)
538 			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
539 					   get_order(size));
540 		kmemleak_alloc(buckets, size, 1, GFP_ATOMIC);
541 	}
542 	if (!buckets) {
543 		kfree(ret);
544 		return NULL;
545 	}
546 	ret->hash_buckets = buckets;
547 	ret->hash_shift = shift;
548 	for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
549 		neigh_get_hash_rnd(&ret->hash_rnd[i]);
550 	return ret;
551 }
552 
553 static void neigh_hash_free_rcu(struct rcu_head *head)
554 {
555 	struct neigh_hash_table *nht = container_of(head,
556 						    struct neigh_hash_table,
557 						    rcu);
558 	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
559 	struct neighbour __rcu **buckets = nht->hash_buckets;
560 
561 	if (size <= PAGE_SIZE) {
562 		kfree(buckets);
563 	} else {
564 		kmemleak_free(buckets);
565 		free_pages((unsigned long)buckets, get_order(size));
566 	}
567 	kfree(nht);
568 }
569 
570 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
571 						unsigned long new_shift)
572 {
573 	unsigned int i, hash;
574 	struct neigh_hash_table *new_nht, *old_nht;
575 
576 	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
577 
578 	old_nht = rcu_dereference_protected(tbl->nht,
579 					    lockdep_is_held(&tbl->lock));
580 	new_nht = neigh_hash_alloc(new_shift);
581 	if (!new_nht)
582 		return old_nht;
583 
584 	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
585 		struct neighbour *n, *next;
586 
587 		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
588 						   lockdep_is_held(&tbl->lock));
589 		     n != NULL;
590 		     n = next) {
591 			hash = tbl->hash(n->primary_key, n->dev,
592 					 new_nht->hash_rnd);
593 
594 			hash >>= (32 - new_nht->hash_shift);
595 			next = rcu_dereference_protected(n->next,
596 						lockdep_is_held(&tbl->lock));
597 
598 			rcu_assign_pointer(n->next,
599 					   rcu_dereference_protected(
600 						new_nht->hash_buckets[hash],
601 						lockdep_is_held(&tbl->lock)));
602 			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
603 		}
604 	}
605 
606 	rcu_assign_pointer(tbl->nht, new_nht);
607 	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
608 	return new_nht;
609 }
610 
611 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
612 			       struct net_device *dev)
613 {
614 	struct neighbour *n;
615 
616 	NEIGH_CACHE_STAT_INC(tbl, lookups);
617 
618 	rcu_read_lock();
619 	n = __neigh_lookup_noref(tbl, pkey, dev);
620 	if (n) {
621 		if (!refcount_inc_not_zero(&n->refcnt))
622 			n = NULL;
623 		NEIGH_CACHE_STAT_INC(tbl, hits);
624 	}
625 
626 	rcu_read_unlock();
627 	return n;
628 }
629 EXPORT_SYMBOL(neigh_lookup);
630 
631 static struct neighbour *
632 ___neigh_create(struct neigh_table *tbl, const void *pkey,
633 		struct net_device *dev, u32 flags,
634 		bool exempt_from_gc, bool want_ref)
635 {
636 	u32 hash_val, key_len = tbl->key_len;
637 	struct neighbour *n1, *rc, *n;
638 	struct neigh_hash_table *nht;
639 	int error;
640 
641 	n = neigh_alloc(tbl, dev, flags, exempt_from_gc);
642 	trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc);
643 	if (!n) {
644 		rc = ERR_PTR(-ENOBUFS);
645 		goto out;
646 	}
647 
648 	memcpy(n->primary_key, pkey, key_len);
649 	n->dev = dev;
650 	netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC);
651 
652 	/* Protocol specific setup. */
653 	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
654 		rc = ERR_PTR(error);
655 		goto out_neigh_release;
656 	}
657 
658 	if (dev->netdev_ops->ndo_neigh_construct) {
659 		error = dev->netdev_ops->ndo_neigh_construct(dev, n);
660 		if (error < 0) {
661 			rc = ERR_PTR(error);
662 			goto out_neigh_release;
663 		}
664 	}
665 
666 	/* Device specific setup. */
667 	if (n->parms->neigh_setup &&
668 	    (error = n->parms->neigh_setup(n)) < 0) {
669 		rc = ERR_PTR(error);
670 		goto out_neigh_release;
671 	}
672 
673 	n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
674 
675 	write_lock_bh(&tbl->lock);
676 	nht = rcu_dereference_protected(tbl->nht,
677 					lockdep_is_held(&tbl->lock));
678 
679 	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
680 		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
681 
682 	hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
683 
684 	if (n->parms->dead) {
685 		rc = ERR_PTR(-EINVAL);
686 		goto out_tbl_unlock;
687 	}
688 
689 	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
690 					    lockdep_is_held(&tbl->lock));
691 	     n1 != NULL;
692 	     n1 = rcu_dereference_protected(n1->next,
693 			lockdep_is_held(&tbl->lock))) {
694 		if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) {
695 			if (want_ref)
696 				neigh_hold(n1);
697 			rc = n1;
698 			goto out_tbl_unlock;
699 		}
700 	}
701 
702 	n->dead = 0;
703 	if (!exempt_from_gc)
704 		list_add_tail(&n->gc_list, &n->tbl->gc_list);
705 	if (n->flags & NTF_MANAGED)
706 		list_add_tail(&n->managed_list, &n->tbl->managed_list);
707 	if (want_ref)
708 		neigh_hold(n);
709 	rcu_assign_pointer(n->next,
710 			   rcu_dereference_protected(nht->hash_buckets[hash_val],
711 						     lockdep_is_held(&tbl->lock)));
712 	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
713 	write_unlock_bh(&tbl->lock);
714 	neigh_dbg(2, "neigh %p is created\n", n);
715 	rc = n;
716 out:
717 	return rc;
718 out_tbl_unlock:
719 	write_unlock_bh(&tbl->lock);
720 out_neigh_release:
721 	if (!exempt_from_gc)
722 		atomic_dec(&tbl->gc_entries);
723 	neigh_release(n);
724 	goto out;
725 }
726 
727 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
728 				 struct net_device *dev, bool want_ref)
729 {
730 	return ___neigh_create(tbl, pkey, dev, 0, false, want_ref);
731 }
732 EXPORT_SYMBOL(__neigh_create);
733 
734 static u32 pneigh_hash(const void *pkey, unsigned int key_len)
735 {
736 	u32 hash_val = *(u32 *)(pkey + key_len - 4);
737 	hash_val ^= (hash_val >> 16);
738 	hash_val ^= hash_val >> 8;
739 	hash_val ^= hash_val >> 4;
740 	hash_val &= PNEIGH_HASHMASK;
741 	return hash_val;
742 }
743 
744 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
745 					      struct net *net,
746 					      const void *pkey,
747 					      unsigned int key_len,
748 					      struct net_device *dev)
749 {
750 	while (n) {
751 		if (!memcmp(n->key, pkey, key_len) &&
752 		    net_eq(pneigh_net(n), net) &&
753 		    (n->dev == dev || !n->dev))
754 			return n;
755 		n = n->next;
756 	}
757 	return NULL;
758 }
759 
760 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
761 		struct net *net, const void *pkey, struct net_device *dev)
762 {
763 	unsigned int key_len = tbl->key_len;
764 	u32 hash_val = pneigh_hash(pkey, key_len);
765 
766 	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
767 				 net, pkey, key_len, dev);
768 }
769 EXPORT_SYMBOL_GPL(__pneigh_lookup);
770 
771 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
772 				    struct net *net, const void *pkey,
773 				    struct net_device *dev, int creat)
774 {
775 	struct pneigh_entry *n;
776 	unsigned int key_len = tbl->key_len;
777 	u32 hash_val = pneigh_hash(pkey, key_len);
778 
779 	read_lock_bh(&tbl->lock);
780 	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
781 			      net, pkey, key_len, dev);
782 	read_unlock_bh(&tbl->lock);
783 
784 	if (n || !creat)
785 		goto out;
786 
787 	ASSERT_RTNL();
788 
789 	n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL);
790 	if (!n)
791 		goto out;
792 
793 	write_pnet(&n->net, net);
794 	memcpy(n->key, pkey, key_len);
795 	n->dev = dev;
796 	netdev_hold(dev, &n->dev_tracker, GFP_KERNEL);
797 
798 	if (tbl->pconstructor && tbl->pconstructor(n)) {
799 		netdev_put(dev, &n->dev_tracker);
800 		kfree(n);
801 		n = NULL;
802 		goto out;
803 	}
804 
805 	write_lock_bh(&tbl->lock);
806 	n->next = tbl->phash_buckets[hash_val];
807 	tbl->phash_buckets[hash_val] = n;
808 	write_unlock_bh(&tbl->lock);
809 out:
810 	return n;
811 }
812 EXPORT_SYMBOL(pneigh_lookup);
813 
814 
815 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
816 		  struct net_device *dev)
817 {
818 	struct pneigh_entry *n, **np;
819 	unsigned int key_len = tbl->key_len;
820 	u32 hash_val = pneigh_hash(pkey, key_len);
821 
822 	write_lock_bh(&tbl->lock);
823 	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
824 	     np = &n->next) {
825 		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
826 		    net_eq(pneigh_net(n), net)) {
827 			*np = n->next;
828 			write_unlock_bh(&tbl->lock);
829 			if (tbl->pdestructor)
830 				tbl->pdestructor(n);
831 			netdev_put(n->dev, &n->dev_tracker);
832 			kfree(n);
833 			return 0;
834 		}
835 	}
836 	write_unlock_bh(&tbl->lock);
837 	return -ENOENT;
838 }
839 
840 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
841 				    struct net_device *dev)
842 {
843 	struct pneigh_entry *n, **np, *freelist = NULL;
844 	u32 h;
845 
846 	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
847 		np = &tbl->phash_buckets[h];
848 		while ((n = *np) != NULL) {
849 			if (!dev || n->dev == dev) {
850 				*np = n->next;
851 				n->next = freelist;
852 				freelist = n;
853 				continue;
854 			}
855 			np = &n->next;
856 		}
857 	}
858 	write_unlock_bh(&tbl->lock);
859 	while ((n = freelist)) {
860 		freelist = n->next;
861 		n->next = NULL;
862 		if (tbl->pdestructor)
863 			tbl->pdestructor(n);
864 		netdev_put(n->dev, &n->dev_tracker);
865 		kfree(n);
866 	}
867 	return -ENOENT;
868 }
869 
870 static void neigh_parms_destroy(struct neigh_parms *parms);
871 
872 static inline void neigh_parms_put(struct neigh_parms *parms)
873 {
874 	if (refcount_dec_and_test(&parms->refcnt))
875 		neigh_parms_destroy(parms);
876 }
877 
878 /*
879  *	neighbour must already be out of the table;
880  *
881  */
882 void neigh_destroy(struct neighbour *neigh)
883 {
884 	struct net_device *dev = neigh->dev;
885 
886 	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
887 
888 	if (!neigh->dead) {
889 		pr_warn("Destroying alive neighbour %p\n", neigh);
890 		dump_stack();
891 		return;
892 	}
893 
894 	if (neigh_del_timer(neigh))
895 		pr_warn("Impossible event\n");
896 
897 	write_lock_bh(&neigh->lock);
898 	__skb_queue_purge(&neigh->arp_queue);
899 	write_unlock_bh(&neigh->lock);
900 	neigh->arp_queue_len_bytes = 0;
901 
902 	if (dev->netdev_ops->ndo_neigh_destroy)
903 		dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
904 
905 	netdev_put(dev, &neigh->dev_tracker);
906 	neigh_parms_put(neigh->parms);
907 
908 	neigh_dbg(2, "neigh %p is destroyed\n", neigh);
909 
910 	atomic_dec(&neigh->tbl->entries);
911 	kfree_rcu(neigh, rcu);
912 }
913 EXPORT_SYMBOL(neigh_destroy);
914 
915 /* Neighbour state is suspicious;
916    disable fast path.
917 
918    Called with write_locked neigh.
919  */
920 static void neigh_suspect(struct neighbour *neigh)
921 {
922 	neigh_dbg(2, "neigh %p is suspected\n", neigh);
923 
924 	WRITE_ONCE(neigh->output, neigh->ops->output);
925 }
926 
927 /* Neighbour state is OK;
928    enable fast path.
929 
930    Called with write_locked neigh.
931  */
932 static void neigh_connect(struct neighbour *neigh)
933 {
934 	neigh_dbg(2, "neigh %p is connected\n", neigh);
935 
936 	WRITE_ONCE(neigh->output, neigh->ops->connected_output);
937 }
938 
939 static void neigh_periodic_work(struct work_struct *work)
940 {
941 	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
942 	struct neighbour *n;
943 	struct neighbour __rcu **np;
944 	unsigned int i;
945 	struct neigh_hash_table *nht;
946 
947 	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
948 
949 	write_lock_bh(&tbl->lock);
950 	nht = rcu_dereference_protected(tbl->nht,
951 					lockdep_is_held(&tbl->lock));
952 
953 	/*
954 	 *	periodically recompute ReachableTime from random function
955 	 */
956 
957 	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
958 		struct neigh_parms *p;
959 
960 		WRITE_ONCE(tbl->last_rand, jiffies);
961 		list_for_each_entry(p, &tbl->parms_list, list)
962 			p->reachable_time =
963 				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
964 	}
965 
966 	if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1))
967 		goto out;
968 
969 	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
970 		np = &nht->hash_buckets[i];
971 
972 		while ((n = rcu_dereference_protected(*np,
973 				lockdep_is_held(&tbl->lock))) != NULL) {
974 			unsigned int state;
975 
976 			write_lock(&n->lock);
977 
978 			state = n->nud_state;
979 			if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) ||
980 			    (n->flags & NTF_EXT_LEARNED)) {
981 				write_unlock(&n->lock);
982 				goto next_elt;
983 			}
984 
985 			if (time_before(n->used, n->confirmed) &&
986 			    time_is_before_eq_jiffies(n->confirmed))
987 				n->used = n->confirmed;
988 
989 			if (refcount_read(&n->refcnt) == 1 &&
990 			    (state == NUD_FAILED ||
991 			     !time_in_range_open(jiffies, n->used,
992 						 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
993 				rcu_assign_pointer(*np,
994 					rcu_dereference_protected(n->next,
995 						lockdep_is_held(&tbl->lock)));
996 				neigh_mark_dead(n);
997 				write_unlock(&n->lock);
998 				neigh_cleanup_and_release(n);
999 				continue;
1000 			}
1001 			write_unlock(&n->lock);
1002 
1003 next_elt:
1004 			np = &n->next;
1005 		}
1006 		/*
1007 		 * It's fine to release lock here, even if hash table
1008 		 * grows while we are preempted.
1009 		 */
1010 		write_unlock_bh(&tbl->lock);
1011 		cond_resched();
1012 		write_lock_bh(&tbl->lock);
1013 		nht = rcu_dereference_protected(tbl->nht,
1014 						lockdep_is_held(&tbl->lock));
1015 	}
1016 out:
1017 	/* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
1018 	 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
1019 	 * BASE_REACHABLE_TIME.
1020 	 */
1021 	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1022 			      NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
1023 	write_unlock_bh(&tbl->lock);
1024 }
1025 
1026 static __inline__ int neigh_max_probes(struct neighbour *n)
1027 {
1028 	struct neigh_parms *p = n->parms;
1029 	return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
1030 	       (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
1031 	        NEIGH_VAR(p, MCAST_PROBES));
1032 }
1033 
1034 static void neigh_invalidate(struct neighbour *neigh)
1035 	__releases(neigh->lock)
1036 	__acquires(neigh->lock)
1037 {
1038 	struct sk_buff *skb;
1039 
1040 	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
1041 	neigh_dbg(2, "neigh %p is failed\n", neigh);
1042 	neigh->updated = jiffies;
1043 
1044 	/* It is very thin place. report_unreachable is very complicated
1045 	   routine. Particularly, it can hit the same neighbour entry!
1046 
1047 	   So that, we try to be accurate and avoid dead loop. --ANK
1048 	 */
1049 	while (neigh->nud_state == NUD_FAILED &&
1050 	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1051 		write_unlock(&neigh->lock);
1052 		neigh->ops->error_report(neigh, skb);
1053 		write_lock(&neigh->lock);
1054 	}
1055 	__skb_queue_purge(&neigh->arp_queue);
1056 	neigh->arp_queue_len_bytes = 0;
1057 }
1058 
1059 static void neigh_probe(struct neighbour *neigh)
1060 	__releases(neigh->lock)
1061 {
1062 	struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
1063 	/* keep skb alive even if arp_queue overflows */
1064 	if (skb)
1065 		skb = skb_clone(skb, GFP_ATOMIC);
1066 	write_unlock(&neigh->lock);
1067 	if (neigh->ops->solicit)
1068 		neigh->ops->solicit(neigh, skb);
1069 	atomic_inc(&neigh->probes);
1070 	consume_skb(skb);
1071 }
1072 
1073 /* Called when a timer expires for a neighbour entry. */
1074 
1075 static void neigh_timer_handler(struct timer_list *t)
1076 {
1077 	unsigned long now, next;
1078 	struct neighbour *neigh = from_timer(neigh, t, timer);
1079 	unsigned int state;
1080 	int notify = 0;
1081 
1082 	write_lock(&neigh->lock);
1083 
1084 	state = neigh->nud_state;
1085 	now = jiffies;
1086 	next = now + HZ;
1087 
1088 	if (!(state & NUD_IN_TIMER))
1089 		goto out;
1090 
1091 	if (state & NUD_REACHABLE) {
1092 		if (time_before_eq(now,
1093 				   neigh->confirmed + neigh->parms->reachable_time)) {
1094 			neigh_dbg(2, "neigh %p is still alive\n", neigh);
1095 			next = neigh->confirmed + neigh->parms->reachable_time;
1096 		} else if (time_before_eq(now,
1097 					  neigh->used +
1098 					  NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1099 			neigh_dbg(2, "neigh %p is delayed\n", neigh);
1100 			WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1101 			neigh->updated = jiffies;
1102 			neigh_suspect(neigh);
1103 			next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
1104 		} else {
1105 			neigh_dbg(2, "neigh %p is suspected\n", neigh);
1106 			WRITE_ONCE(neigh->nud_state, NUD_STALE);
1107 			neigh->updated = jiffies;
1108 			neigh_suspect(neigh);
1109 			notify = 1;
1110 		}
1111 	} else if (state & NUD_DELAY) {
1112 		if (time_before_eq(now,
1113 				   neigh->confirmed +
1114 				   NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1115 			neigh_dbg(2, "neigh %p is now reachable\n", neigh);
1116 			WRITE_ONCE(neigh->nud_state, NUD_REACHABLE);
1117 			neigh->updated = jiffies;
1118 			neigh_connect(neigh);
1119 			notify = 1;
1120 			next = neigh->confirmed + neigh->parms->reachable_time;
1121 		} else {
1122 			neigh_dbg(2, "neigh %p is probed\n", neigh);
1123 			WRITE_ONCE(neigh->nud_state, NUD_PROBE);
1124 			neigh->updated = jiffies;
1125 			atomic_set(&neigh->probes, 0);
1126 			notify = 1;
1127 			next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1128 					 HZ/100);
1129 		}
1130 	} else {
1131 		/* NUD_PROBE|NUD_INCOMPLETE */
1132 		next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100);
1133 	}
1134 
1135 	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
1136 	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
1137 		WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1138 		notify = 1;
1139 		neigh_invalidate(neigh);
1140 		goto out;
1141 	}
1142 
1143 	if (neigh->nud_state & NUD_IN_TIMER) {
1144 		if (time_before(next, jiffies + HZ/100))
1145 			next = jiffies + HZ/100;
1146 		if (!mod_timer(&neigh->timer, next))
1147 			neigh_hold(neigh);
1148 	}
1149 	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
1150 		neigh_probe(neigh);
1151 	} else {
1152 out:
1153 		write_unlock(&neigh->lock);
1154 	}
1155 
1156 	if (notify)
1157 		neigh_update_notify(neigh, 0);
1158 
1159 	trace_neigh_timer_handler(neigh, 0);
1160 
1161 	neigh_release(neigh);
1162 }
1163 
1164 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb,
1165 		       const bool immediate_ok)
1166 {
1167 	int rc;
1168 	bool immediate_probe = false;
1169 
1170 	write_lock_bh(&neigh->lock);
1171 
1172 	rc = 0;
1173 	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
1174 		goto out_unlock_bh;
1175 	if (neigh->dead)
1176 		goto out_dead;
1177 
1178 	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
1179 		if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
1180 		    NEIGH_VAR(neigh->parms, APP_PROBES)) {
1181 			unsigned long next, now = jiffies;
1182 
1183 			atomic_set(&neigh->probes,
1184 				   NEIGH_VAR(neigh->parms, UCAST_PROBES));
1185 			neigh_del_timer(neigh);
1186 			WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1187 			neigh->updated = now;
1188 			if (!immediate_ok) {
1189 				next = now + 1;
1190 			} else {
1191 				immediate_probe = true;
1192 				next = now + max(NEIGH_VAR(neigh->parms,
1193 							   RETRANS_TIME),
1194 						 HZ / 100);
1195 			}
1196 			neigh_add_timer(neigh, next);
1197 		} else {
1198 			WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1199 			neigh->updated = jiffies;
1200 			write_unlock_bh(&neigh->lock);
1201 
1202 			kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
1203 			return 1;
1204 		}
1205 	} else if (neigh->nud_state & NUD_STALE) {
1206 		neigh_dbg(2, "neigh %p is delayed\n", neigh);
1207 		neigh_del_timer(neigh);
1208 		WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1209 		neigh->updated = jiffies;
1210 		neigh_add_timer(neigh, jiffies +
1211 				NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1212 	}
1213 
1214 	if (neigh->nud_state == NUD_INCOMPLETE) {
1215 		if (skb) {
1216 			while (neigh->arp_queue_len_bytes + skb->truesize >
1217 			       NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1218 				struct sk_buff *buff;
1219 
1220 				buff = __skb_dequeue(&neigh->arp_queue);
1221 				if (!buff)
1222 					break;
1223 				neigh->arp_queue_len_bytes -= buff->truesize;
1224 				kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL);
1225 				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1226 			}
1227 			skb_dst_force(skb);
1228 			__skb_queue_tail(&neigh->arp_queue, skb);
1229 			neigh->arp_queue_len_bytes += skb->truesize;
1230 		}
1231 		rc = 1;
1232 	}
1233 out_unlock_bh:
1234 	if (immediate_probe)
1235 		neigh_probe(neigh);
1236 	else
1237 		write_unlock(&neigh->lock);
1238 	local_bh_enable();
1239 	trace_neigh_event_send_done(neigh, rc);
1240 	return rc;
1241 
1242 out_dead:
1243 	if (neigh->nud_state & NUD_STALE)
1244 		goto out_unlock_bh;
1245 	write_unlock_bh(&neigh->lock);
1246 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD);
1247 	trace_neigh_event_send_dead(neigh, 1);
1248 	return 1;
1249 }
1250 EXPORT_SYMBOL(__neigh_event_send);
1251 
1252 static void neigh_update_hhs(struct neighbour *neigh)
1253 {
1254 	struct hh_cache *hh;
1255 	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1256 		= NULL;
1257 
1258 	if (neigh->dev->header_ops)
1259 		update = neigh->dev->header_ops->cache_update;
1260 
1261 	if (update) {
1262 		hh = &neigh->hh;
1263 		if (READ_ONCE(hh->hh_len)) {
1264 			write_seqlock_bh(&hh->hh_lock);
1265 			update(hh, neigh->dev, neigh->ha);
1266 			write_sequnlock_bh(&hh->hh_lock);
1267 		}
1268 	}
1269 }
1270 
1271 /* Generic update routine.
1272    -- lladdr is new lladdr or NULL, if it is not supplied.
1273    -- new    is new state.
1274    -- flags
1275 	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1276 				if it is different.
1277 	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1278 				lladdr instead of overriding it
1279 				if it is different.
1280 	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1281 	NEIGH_UPDATE_F_USE	means that the entry is user triggered.
1282 	NEIGH_UPDATE_F_MANAGED	means that the entry will be auto-refreshed.
1283 	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1284 				NTF_ROUTER flag.
1285 	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1286 				a router.
1287 
1288    Caller MUST hold reference count on the entry.
1289  */
1290 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr,
1291 			  u8 new, u32 flags, u32 nlmsg_pid,
1292 			  struct netlink_ext_ack *extack)
1293 {
1294 	bool gc_update = false, managed_update = false;
1295 	int update_isrouter = 0;
1296 	struct net_device *dev;
1297 	int err, notify = 0;
1298 	u8 old;
1299 
1300 	trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid);
1301 
1302 	write_lock_bh(&neigh->lock);
1303 
1304 	dev    = neigh->dev;
1305 	old    = neigh->nud_state;
1306 	err    = -EPERM;
1307 
1308 	if (neigh->dead) {
1309 		NL_SET_ERR_MSG(extack, "Neighbor entry is now dead");
1310 		new = old;
1311 		goto out;
1312 	}
1313 	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1314 	    (old & (NUD_NOARP | NUD_PERMANENT)))
1315 		goto out;
1316 
1317 	neigh_update_flags(neigh, flags, &notify, &gc_update, &managed_update);
1318 	if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) {
1319 		new = old & ~NUD_PERMANENT;
1320 		WRITE_ONCE(neigh->nud_state, new);
1321 		err = 0;
1322 		goto out;
1323 	}
1324 
1325 	if (!(new & NUD_VALID)) {
1326 		neigh_del_timer(neigh);
1327 		if (old & NUD_CONNECTED)
1328 			neigh_suspect(neigh);
1329 		WRITE_ONCE(neigh->nud_state, new);
1330 		err = 0;
1331 		notify = old & NUD_VALID;
1332 		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1333 		    (new & NUD_FAILED)) {
1334 			neigh_invalidate(neigh);
1335 			notify = 1;
1336 		}
1337 		goto out;
1338 	}
1339 
1340 	/* Compare new lladdr with cached one */
1341 	if (!dev->addr_len) {
1342 		/* First case: device needs no address. */
1343 		lladdr = neigh->ha;
1344 	} else if (lladdr) {
1345 		/* The second case: if something is already cached
1346 		   and a new address is proposed:
1347 		   - compare new & old
1348 		   - if they are different, check override flag
1349 		 */
1350 		if ((old & NUD_VALID) &&
1351 		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1352 			lladdr = neigh->ha;
1353 	} else {
1354 		/* No address is supplied; if we know something,
1355 		   use it, otherwise discard the request.
1356 		 */
1357 		err = -EINVAL;
1358 		if (!(old & NUD_VALID)) {
1359 			NL_SET_ERR_MSG(extack, "No link layer address given");
1360 			goto out;
1361 		}
1362 		lladdr = neigh->ha;
1363 	}
1364 
1365 	/* Update confirmed timestamp for neighbour entry after we
1366 	 * received ARP packet even if it doesn't change IP to MAC binding.
1367 	 */
1368 	if (new & NUD_CONNECTED)
1369 		neigh->confirmed = jiffies;
1370 
1371 	/* If entry was valid and address is not changed,
1372 	   do not change entry state, if new one is STALE.
1373 	 */
1374 	err = 0;
1375 	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1376 	if (old & NUD_VALID) {
1377 		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1378 			update_isrouter = 0;
1379 			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1380 			    (old & NUD_CONNECTED)) {
1381 				lladdr = neigh->ha;
1382 				new = NUD_STALE;
1383 			} else
1384 				goto out;
1385 		} else {
1386 			if (lladdr == neigh->ha && new == NUD_STALE &&
1387 			    !(flags & NEIGH_UPDATE_F_ADMIN))
1388 				new = old;
1389 		}
1390 	}
1391 
1392 	/* Update timestamp only once we know we will make a change to the
1393 	 * neighbour entry. Otherwise we risk to move the locktime window with
1394 	 * noop updates and ignore relevant ARP updates.
1395 	 */
1396 	if (new != old || lladdr != neigh->ha)
1397 		neigh->updated = jiffies;
1398 
1399 	if (new != old) {
1400 		neigh_del_timer(neigh);
1401 		if (new & NUD_PROBE)
1402 			atomic_set(&neigh->probes, 0);
1403 		if (new & NUD_IN_TIMER)
1404 			neigh_add_timer(neigh, (jiffies +
1405 						((new & NUD_REACHABLE) ?
1406 						 neigh->parms->reachable_time :
1407 						 0)));
1408 		WRITE_ONCE(neigh->nud_state, new);
1409 		notify = 1;
1410 	}
1411 
1412 	if (lladdr != neigh->ha) {
1413 		write_seqlock(&neigh->ha_lock);
1414 		memcpy(&neigh->ha, lladdr, dev->addr_len);
1415 		write_sequnlock(&neigh->ha_lock);
1416 		neigh_update_hhs(neigh);
1417 		if (!(new & NUD_CONNECTED))
1418 			neigh->confirmed = jiffies -
1419 				      (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1420 		notify = 1;
1421 	}
1422 	if (new == old)
1423 		goto out;
1424 	if (new & NUD_CONNECTED)
1425 		neigh_connect(neigh);
1426 	else
1427 		neigh_suspect(neigh);
1428 	if (!(old & NUD_VALID)) {
1429 		struct sk_buff *skb;
1430 
1431 		/* Again: avoid dead loop if something went wrong */
1432 
1433 		while (neigh->nud_state & NUD_VALID &&
1434 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1435 			struct dst_entry *dst = skb_dst(skb);
1436 			struct neighbour *n2, *n1 = neigh;
1437 			write_unlock_bh(&neigh->lock);
1438 
1439 			rcu_read_lock();
1440 
1441 			/* Why not just use 'neigh' as-is?  The problem is that
1442 			 * things such as shaper, eql, and sch_teql can end up
1443 			 * using alternative, different, neigh objects to output
1444 			 * the packet in the output path.  So what we need to do
1445 			 * here is re-lookup the top-level neigh in the path so
1446 			 * we can reinject the packet there.
1447 			 */
1448 			n2 = NULL;
1449 			if (dst && dst->obsolete != DST_OBSOLETE_DEAD) {
1450 				n2 = dst_neigh_lookup_skb(dst, skb);
1451 				if (n2)
1452 					n1 = n2;
1453 			}
1454 			READ_ONCE(n1->output)(n1, skb);
1455 			if (n2)
1456 				neigh_release(n2);
1457 			rcu_read_unlock();
1458 
1459 			write_lock_bh(&neigh->lock);
1460 		}
1461 		__skb_queue_purge(&neigh->arp_queue);
1462 		neigh->arp_queue_len_bytes = 0;
1463 	}
1464 out:
1465 	if (update_isrouter)
1466 		neigh_update_is_router(neigh, flags, &notify);
1467 	write_unlock_bh(&neigh->lock);
1468 	if (((new ^ old) & NUD_PERMANENT) || gc_update)
1469 		neigh_update_gc_list(neigh);
1470 	if (managed_update)
1471 		neigh_update_managed_list(neigh);
1472 	if (notify)
1473 		neigh_update_notify(neigh, nlmsg_pid);
1474 	trace_neigh_update_done(neigh, err);
1475 	return err;
1476 }
1477 
1478 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1479 		 u32 flags, u32 nlmsg_pid)
1480 {
1481 	return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL);
1482 }
1483 EXPORT_SYMBOL(neigh_update);
1484 
1485 /* Update the neigh to listen temporarily for probe responses, even if it is
1486  * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1487  */
1488 void __neigh_set_probe_once(struct neighbour *neigh)
1489 {
1490 	if (neigh->dead)
1491 		return;
1492 	neigh->updated = jiffies;
1493 	if (!(neigh->nud_state & NUD_FAILED))
1494 		return;
1495 	WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1496 	atomic_set(&neigh->probes, neigh_max_probes(neigh));
1497 	neigh_add_timer(neigh,
1498 			jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1499 				      HZ/100));
1500 }
1501 EXPORT_SYMBOL(__neigh_set_probe_once);
1502 
1503 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1504 				 u8 *lladdr, void *saddr,
1505 				 struct net_device *dev)
1506 {
1507 	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1508 						 lladdr || !dev->addr_len);
1509 	if (neigh)
1510 		neigh_update(neigh, lladdr, NUD_STALE,
1511 			     NEIGH_UPDATE_F_OVERRIDE, 0);
1512 	return neigh;
1513 }
1514 EXPORT_SYMBOL(neigh_event_ns);
1515 
1516 /* called with read_lock_bh(&n->lock); */
1517 static void neigh_hh_init(struct neighbour *n)
1518 {
1519 	struct net_device *dev = n->dev;
1520 	__be16 prot = n->tbl->protocol;
1521 	struct hh_cache	*hh = &n->hh;
1522 
1523 	write_lock_bh(&n->lock);
1524 
1525 	/* Only one thread can come in here and initialize the
1526 	 * hh_cache entry.
1527 	 */
1528 	if (!hh->hh_len)
1529 		dev->header_ops->cache(n, hh, prot);
1530 
1531 	write_unlock_bh(&n->lock);
1532 }
1533 
1534 /* Slow and careful. */
1535 
1536 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1537 {
1538 	int rc = 0;
1539 
1540 	if (!neigh_event_send(neigh, skb)) {
1541 		int err;
1542 		struct net_device *dev = neigh->dev;
1543 		unsigned int seq;
1544 
1545 		if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len))
1546 			neigh_hh_init(neigh);
1547 
1548 		do {
1549 			__skb_pull(skb, skb_network_offset(skb));
1550 			seq = read_seqbegin(&neigh->ha_lock);
1551 			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1552 					      neigh->ha, NULL, skb->len);
1553 		} while (read_seqretry(&neigh->ha_lock, seq));
1554 
1555 		if (err >= 0)
1556 			rc = dev_queue_xmit(skb);
1557 		else
1558 			goto out_kfree_skb;
1559 	}
1560 out:
1561 	return rc;
1562 out_kfree_skb:
1563 	rc = -EINVAL;
1564 	kfree_skb(skb);
1565 	goto out;
1566 }
1567 EXPORT_SYMBOL(neigh_resolve_output);
1568 
1569 /* As fast as possible without hh cache */
1570 
1571 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1572 {
1573 	struct net_device *dev = neigh->dev;
1574 	unsigned int seq;
1575 	int err;
1576 
1577 	do {
1578 		__skb_pull(skb, skb_network_offset(skb));
1579 		seq = read_seqbegin(&neigh->ha_lock);
1580 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1581 				      neigh->ha, NULL, skb->len);
1582 	} while (read_seqretry(&neigh->ha_lock, seq));
1583 
1584 	if (err >= 0)
1585 		err = dev_queue_xmit(skb);
1586 	else {
1587 		err = -EINVAL;
1588 		kfree_skb(skb);
1589 	}
1590 	return err;
1591 }
1592 EXPORT_SYMBOL(neigh_connected_output);
1593 
1594 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1595 {
1596 	return dev_queue_xmit(skb);
1597 }
1598 EXPORT_SYMBOL(neigh_direct_output);
1599 
1600 static void neigh_managed_work(struct work_struct *work)
1601 {
1602 	struct neigh_table *tbl = container_of(work, struct neigh_table,
1603 					       managed_work.work);
1604 	struct neighbour *neigh;
1605 
1606 	write_lock_bh(&tbl->lock);
1607 	list_for_each_entry(neigh, &tbl->managed_list, managed_list)
1608 		neigh_event_send_probe(neigh, NULL, false);
1609 	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work,
1610 			   NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS));
1611 	write_unlock_bh(&tbl->lock);
1612 }
1613 
1614 static void neigh_proxy_process(struct timer_list *t)
1615 {
1616 	struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
1617 	long sched_next = 0;
1618 	unsigned long now = jiffies;
1619 	struct sk_buff *skb, *n;
1620 
1621 	spin_lock(&tbl->proxy_queue.lock);
1622 
1623 	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1624 		long tdif = NEIGH_CB(skb)->sched_next - now;
1625 
1626 		if (tdif <= 0) {
1627 			struct net_device *dev = skb->dev;
1628 
1629 			neigh_parms_qlen_dec(dev, tbl->family);
1630 			__skb_unlink(skb, &tbl->proxy_queue);
1631 
1632 			if (tbl->proxy_redo && netif_running(dev)) {
1633 				rcu_read_lock();
1634 				tbl->proxy_redo(skb);
1635 				rcu_read_unlock();
1636 			} else {
1637 				kfree_skb(skb);
1638 			}
1639 
1640 			dev_put(dev);
1641 		} else if (!sched_next || tdif < sched_next)
1642 			sched_next = tdif;
1643 	}
1644 	del_timer(&tbl->proxy_timer);
1645 	if (sched_next)
1646 		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1647 	spin_unlock(&tbl->proxy_queue.lock);
1648 }
1649 
1650 static unsigned long neigh_proxy_delay(struct neigh_parms *p)
1651 {
1652 	/* If proxy_delay is zero, do not call get_random_u32_below()
1653 	 * as it is undefined behavior.
1654 	 */
1655 	unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY);
1656 
1657 	return proxy_delay ?
1658 	       jiffies + get_random_u32_below(proxy_delay) : jiffies;
1659 }
1660 
1661 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1662 		    struct sk_buff *skb)
1663 {
1664 	unsigned long sched_next = neigh_proxy_delay(p);
1665 
1666 	if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1667 		kfree_skb(skb);
1668 		return;
1669 	}
1670 
1671 	NEIGH_CB(skb)->sched_next = sched_next;
1672 	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1673 
1674 	spin_lock(&tbl->proxy_queue.lock);
1675 	if (del_timer(&tbl->proxy_timer)) {
1676 		if (time_before(tbl->proxy_timer.expires, sched_next))
1677 			sched_next = tbl->proxy_timer.expires;
1678 	}
1679 	skb_dst_drop(skb);
1680 	dev_hold(skb->dev);
1681 	__skb_queue_tail(&tbl->proxy_queue, skb);
1682 	p->qlen++;
1683 	mod_timer(&tbl->proxy_timer, sched_next);
1684 	spin_unlock(&tbl->proxy_queue.lock);
1685 }
1686 EXPORT_SYMBOL(pneigh_enqueue);
1687 
1688 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1689 						      struct net *net, int ifindex)
1690 {
1691 	struct neigh_parms *p;
1692 
1693 	list_for_each_entry(p, &tbl->parms_list, list) {
1694 		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1695 		    (!p->dev && !ifindex && net_eq(net, &init_net)))
1696 			return p;
1697 	}
1698 
1699 	return NULL;
1700 }
1701 
1702 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1703 				      struct neigh_table *tbl)
1704 {
1705 	struct neigh_parms *p;
1706 	struct net *net = dev_net(dev);
1707 	const struct net_device_ops *ops = dev->netdev_ops;
1708 
1709 	p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1710 	if (p) {
1711 		p->tbl		  = tbl;
1712 		refcount_set(&p->refcnt, 1);
1713 		p->reachable_time =
1714 				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1715 		p->qlen = 0;
1716 		netdev_hold(dev, &p->dev_tracker, GFP_KERNEL);
1717 		p->dev = dev;
1718 		write_pnet(&p->net, net);
1719 		p->sysctl_table = NULL;
1720 
1721 		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1722 			netdev_put(dev, &p->dev_tracker);
1723 			kfree(p);
1724 			return NULL;
1725 		}
1726 
1727 		write_lock_bh(&tbl->lock);
1728 		list_add(&p->list, &tbl->parms.list);
1729 		write_unlock_bh(&tbl->lock);
1730 
1731 		neigh_parms_data_state_cleanall(p);
1732 	}
1733 	return p;
1734 }
1735 EXPORT_SYMBOL(neigh_parms_alloc);
1736 
1737 static void neigh_rcu_free_parms(struct rcu_head *head)
1738 {
1739 	struct neigh_parms *parms =
1740 		container_of(head, struct neigh_parms, rcu_head);
1741 
1742 	neigh_parms_put(parms);
1743 }
1744 
1745 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1746 {
1747 	if (!parms || parms == &tbl->parms)
1748 		return;
1749 	write_lock_bh(&tbl->lock);
1750 	list_del(&parms->list);
1751 	parms->dead = 1;
1752 	write_unlock_bh(&tbl->lock);
1753 	netdev_put(parms->dev, &parms->dev_tracker);
1754 	call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1755 }
1756 EXPORT_SYMBOL(neigh_parms_release);
1757 
1758 static void neigh_parms_destroy(struct neigh_parms *parms)
1759 {
1760 	kfree(parms);
1761 }
1762 
1763 static struct lock_class_key neigh_table_proxy_queue_class;
1764 
1765 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1766 
1767 void neigh_table_init(int index, struct neigh_table *tbl)
1768 {
1769 	unsigned long now = jiffies;
1770 	unsigned long phsize;
1771 
1772 	INIT_LIST_HEAD(&tbl->parms_list);
1773 	INIT_LIST_HEAD(&tbl->gc_list);
1774 	INIT_LIST_HEAD(&tbl->managed_list);
1775 
1776 	list_add(&tbl->parms.list, &tbl->parms_list);
1777 	write_pnet(&tbl->parms.net, &init_net);
1778 	refcount_set(&tbl->parms.refcnt, 1);
1779 	tbl->parms.reachable_time =
1780 			  neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1781 	tbl->parms.qlen = 0;
1782 
1783 	tbl->stats = alloc_percpu(struct neigh_statistics);
1784 	if (!tbl->stats)
1785 		panic("cannot create neighbour cache statistics");
1786 
1787 #ifdef CONFIG_PROC_FS
1788 	if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat,
1789 			      &neigh_stat_seq_ops, tbl))
1790 		panic("cannot create neighbour proc dir entry");
1791 #endif
1792 
1793 	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1794 
1795 	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1796 	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1797 
1798 	if (!tbl->nht || !tbl->phash_buckets)
1799 		panic("cannot allocate neighbour cache hashes");
1800 
1801 	if (!tbl->entry_size)
1802 		tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1803 					tbl->key_len, NEIGH_PRIV_ALIGN);
1804 	else
1805 		WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1806 
1807 	rwlock_init(&tbl->lock);
1808 
1809 	INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1810 	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1811 			tbl->parms.reachable_time);
1812 	INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work);
1813 	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0);
1814 
1815 	timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
1816 	skb_queue_head_init_class(&tbl->proxy_queue,
1817 			&neigh_table_proxy_queue_class);
1818 
1819 	tbl->last_flush = now;
1820 	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1821 
1822 	neigh_tables[index] = tbl;
1823 }
1824 EXPORT_SYMBOL(neigh_table_init);
1825 
1826 int neigh_table_clear(int index, struct neigh_table *tbl)
1827 {
1828 	neigh_tables[index] = NULL;
1829 	/* It is not clean... Fix it to unload IPv6 module safely */
1830 	cancel_delayed_work_sync(&tbl->managed_work);
1831 	cancel_delayed_work_sync(&tbl->gc_work);
1832 	del_timer_sync(&tbl->proxy_timer);
1833 	pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family);
1834 	neigh_ifdown(tbl, NULL);
1835 	if (atomic_read(&tbl->entries))
1836 		pr_crit("neighbour leakage\n");
1837 
1838 	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1839 		 neigh_hash_free_rcu);
1840 	tbl->nht = NULL;
1841 
1842 	kfree(tbl->phash_buckets);
1843 	tbl->phash_buckets = NULL;
1844 
1845 	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1846 
1847 	free_percpu(tbl->stats);
1848 	tbl->stats = NULL;
1849 
1850 	return 0;
1851 }
1852 EXPORT_SYMBOL(neigh_table_clear);
1853 
1854 static struct neigh_table *neigh_find_table(int family)
1855 {
1856 	struct neigh_table *tbl = NULL;
1857 
1858 	switch (family) {
1859 	case AF_INET:
1860 		tbl = neigh_tables[NEIGH_ARP_TABLE];
1861 		break;
1862 	case AF_INET6:
1863 		tbl = neigh_tables[NEIGH_ND_TABLE];
1864 		break;
1865 	}
1866 
1867 	return tbl;
1868 }
1869 
1870 const struct nla_policy nda_policy[NDA_MAX+1] = {
1871 	[NDA_UNSPEC]		= { .strict_start_type = NDA_NH_ID },
1872 	[NDA_DST]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1873 	[NDA_LLADDR]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1874 	[NDA_CACHEINFO]		= { .len = sizeof(struct nda_cacheinfo) },
1875 	[NDA_PROBES]		= { .type = NLA_U32 },
1876 	[NDA_VLAN]		= { .type = NLA_U16 },
1877 	[NDA_PORT]		= { .type = NLA_U16 },
1878 	[NDA_VNI]		= { .type = NLA_U32 },
1879 	[NDA_IFINDEX]		= { .type = NLA_U32 },
1880 	[NDA_MASTER]		= { .type = NLA_U32 },
1881 	[NDA_PROTOCOL]		= { .type = NLA_U8 },
1882 	[NDA_NH_ID]		= { .type = NLA_U32 },
1883 	[NDA_FLAGS_EXT]		= NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK),
1884 	[NDA_FDB_EXT_ATTRS]	= { .type = NLA_NESTED },
1885 };
1886 
1887 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
1888 			struct netlink_ext_ack *extack)
1889 {
1890 	struct net *net = sock_net(skb->sk);
1891 	struct ndmsg *ndm;
1892 	struct nlattr *dst_attr;
1893 	struct neigh_table *tbl;
1894 	struct neighbour *neigh;
1895 	struct net_device *dev = NULL;
1896 	int err = -EINVAL;
1897 
1898 	ASSERT_RTNL();
1899 	if (nlmsg_len(nlh) < sizeof(*ndm))
1900 		goto out;
1901 
1902 	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1903 	if (!dst_attr) {
1904 		NL_SET_ERR_MSG(extack, "Network address not specified");
1905 		goto out;
1906 	}
1907 
1908 	ndm = nlmsg_data(nlh);
1909 	if (ndm->ndm_ifindex) {
1910 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1911 		if (dev == NULL) {
1912 			err = -ENODEV;
1913 			goto out;
1914 		}
1915 	}
1916 
1917 	tbl = neigh_find_table(ndm->ndm_family);
1918 	if (tbl == NULL)
1919 		return -EAFNOSUPPORT;
1920 
1921 	if (nla_len(dst_attr) < (int)tbl->key_len) {
1922 		NL_SET_ERR_MSG(extack, "Invalid network address");
1923 		goto out;
1924 	}
1925 
1926 	if (ndm->ndm_flags & NTF_PROXY) {
1927 		err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1928 		goto out;
1929 	}
1930 
1931 	if (dev == NULL)
1932 		goto out;
1933 
1934 	neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1935 	if (neigh == NULL) {
1936 		err = -ENOENT;
1937 		goto out;
1938 	}
1939 
1940 	err = __neigh_update(neigh, NULL, NUD_FAILED,
1941 			     NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN,
1942 			     NETLINK_CB(skb).portid, extack);
1943 	write_lock_bh(&tbl->lock);
1944 	neigh_release(neigh);
1945 	neigh_remove_one(neigh, tbl);
1946 	write_unlock_bh(&tbl->lock);
1947 
1948 out:
1949 	return err;
1950 }
1951 
1952 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
1953 		     struct netlink_ext_ack *extack)
1954 {
1955 	int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE |
1956 		    NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1957 	struct net *net = sock_net(skb->sk);
1958 	struct ndmsg *ndm;
1959 	struct nlattr *tb[NDA_MAX+1];
1960 	struct neigh_table *tbl;
1961 	struct net_device *dev = NULL;
1962 	struct neighbour *neigh;
1963 	void *dst, *lladdr;
1964 	u8 protocol = 0;
1965 	u32 ndm_flags;
1966 	int err;
1967 
1968 	ASSERT_RTNL();
1969 	err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX,
1970 				     nda_policy, extack);
1971 	if (err < 0)
1972 		goto out;
1973 
1974 	err = -EINVAL;
1975 	if (!tb[NDA_DST]) {
1976 		NL_SET_ERR_MSG(extack, "Network address not specified");
1977 		goto out;
1978 	}
1979 
1980 	ndm = nlmsg_data(nlh);
1981 	ndm_flags = ndm->ndm_flags;
1982 	if (tb[NDA_FLAGS_EXT]) {
1983 		u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]);
1984 
1985 		BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE <
1986 			     (sizeof(ndm->ndm_flags) * BITS_PER_BYTE +
1987 			      hweight32(NTF_EXT_MASK)));
1988 		ndm_flags |= (ext << NTF_EXT_SHIFT);
1989 	}
1990 	if (ndm->ndm_ifindex) {
1991 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1992 		if (dev == NULL) {
1993 			err = -ENODEV;
1994 			goto out;
1995 		}
1996 
1997 		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) {
1998 			NL_SET_ERR_MSG(extack, "Invalid link address");
1999 			goto out;
2000 		}
2001 	}
2002 
2003 	tbl = neigh_find_table(ndm->ndm_family);
2004 	if (tbl == NULL)
2005 		return -EAFNOSUPPORT;
2006 
2007 	if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) {
2008 		NL_SET_ERR_MSG(extack, "Invalid network address");
2009 		goto out;
2010 	}
2011 
2012 	dst = nla_data(tb[NDA_DST]);
2013 	lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
2014 
2015 	if (tb[NDA_PROTOCOL])
2016 		protocol = nla_get_u8(tb[NDA_PROTOCOL]);
2017 	if (ndm_flags & NTF_PROXY) {
2018 		struct pneigh_entry *pn;
2019 
2020 		if (ndm_flags & NTF_MANAGED) {
2021 			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination");
2022 			goto out;
2023 		}
2024 
2025 		err = -ENOBUFS;
2026 		pn = pneigh_lookup(tbl, net, dst, dev, 1);
2027 		if (pn) {
2028 			pn->flags = ndm_flags;
2029 			if (protocol)
2030 				pn->protocol = protocol;
2031 			err = 0;
2032 		}
2033 		goto out;
2034 	}
2035 
2036 	if (!dev) {
2037 		NL_SET_ERR_MSG(extack, "Device not specified");
2038 		goto out;
2039 	}
2040 
2041 	if (tbl->allow_add && !tbl->allow_add(dev, extack)) {
2042 		err = -EINVAL;
2043 		goto out;
2044 	}
2045 
2046 	neigh = neigh_lookup(tbl, dst, dev);
2047 	if (neigh == NULL) {
2048 		bool ndm_permanent  = ndm->ndm_state & NUD_PERMANENT;
2049 		bool exempt_from_gc = ndm_permanent ||
2050 				      ndm_flags & NTF_EXT_LEARNED;
2051 
2052 		if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
2053 			err = -ENOENT;
2054 			goto out;
2055 		}
2056 		if (ndm_permanent && (ndm_flags & NTF_MANAGED)) {
2057 			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry");
2058 			err = -EINVAL;
2059 			goto out;
2060 		}
2061 
2062 		neigh = ___neigh_create(tbl, dst, dev,
2063 					ndm_flags &
2064 					(NTF_EXT_LEARNED | NTF_MANAGED),
2065 					exempt_from_gc, true);
2066 		if (IS_ERR(neigh)) {
2067 			err = PTR_ERR(neigh);
2068 			goto out;
2069 		}
2070 	} else {
2071 		if (nlh->nlmsg_flags & NLM_F_EXCL) {
2072 			err = -EEXIST;
2073 			neigh_release(neigh);
2074 			goto out;
2075 		}
2076 
2077 		if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
2078 			flags &= ~(NEIGH_UPDATE_F_OVERRIDE |
2079 				   NEIGH_UPDATE_F_OVERRIDE_ISROUTER);
2080 	}
2081 
2082 	if (protocol)
2083 		neigh->protocol = protocol;
2084 	if (ndm_flags & NTF_EXT_LEARNED)
2085 		flags |= NEIGH_UPDATE_F_EXT_LEARNED;
2086 	if (ndm_flags & NTF_ROUTER)
2087 		flags |= NEIGH_UPDATE_F_ISROUTER;
2088 	if (ndm_flags & NTF_MANAGED)
2089 		flags |= NEIGH_UPDATE_F_MANAGED;
2090 	if (ndm_flags & NTF_USE)
2091 		flags |= NEIGH_UPDATE_F_USE;
2092 
2093 	err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags,
2094 			     NETLINK_CB(skb).portid, extack);
2095 	if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) {
2096 		neigh_event_send(neigh, NULL);
2097 		err = 0;
2098 	}
2099 	neigh_release(neigh);
2100 out:
2101 	return err;
2102 }
2103 
2104 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
2105 {
2106 	struct nlattr *nest;
2107 
2108 	nest = nla_nest_start_noflag(skb, NDTA_PARMS);
2109 	if (nest == NULL)
2110 		return -ENOBUFS;
2111 
2112 	if ((parms->dev &&
2113 	     nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
2114 	    nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
2115 	    nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
2116 			NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
2117 	    /* approximative value for deprecated QUEUE_LEN (in packets) */
2118 	    nla_put_u32(skb, NDTPA_QUEUE_LEN,
2119 			NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
2120 	    nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
2121 	    nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
2122 	    nla_put_u32(skb, NDTPA_UCAST_PROBES,
2123 			NEIGH_VAR(parms, UCAST_PROBES)) ||
2124 	    nla_put_u32(skb, NDTPA_MCAST_PROBES,
2125 			NEIGH_VAR(parms, MCAST_PROBES)) ||
2126 	    nla_put_u32(skb, NDTPA_MCAST_REPROBES,
2127 			NEIGH_VAR(parms, MCAST_REPROBES)) ||
2128 	    nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
2129 			  NDTPA_PAD) ||
2130 	    nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
2131 			  NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
2132 	    nla_put_msecs(skb, NDTPA_GC_STALETIME,
2133 			  NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
2134 	    nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
2135 			  NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
2136 	    nla_put_msecs(skb, NDTPA_RETRANS_TIME,
2137 			  NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
2138 	    nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
2139 			  NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
2140 	    nla_put_msecs(skb, NDTPA_PROXY_DELAY,
2141 			  NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
2142 	    nla_put_msecs(skb, NDTPA_LOCKTIME,
2143 			  NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) ||
2144 	    nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS,
2145 			  NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD))
2146 		goto nla_put_failure;
2147 	return nla_nest_end(skb, nest);
2148 
2149 nla_put_failure:
2150 	nla_nest_cancel(skb, nest);
2151 	return -EMSGSIZE;
2152 }
2153 
2154 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
2155 			      u32 pid, u32 seq, int type, int flags)
2156 {
2157 	struct nlmsghdr *nlh;
2158 	struct ndtmsg *ndtmsg;
2159 
2160 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2161 	if (nlh == NULL)
2162 		return -EMSGSIZE;
2163 
2164 	ndtmsg = nlmsg_data(nlh);
2165 
2166 	read_lock_bh(&tbl->lock);
2167 	ndtmsg->ndtm_family = tbl->family;
2168 	ndtmsg->ndtm_pad1   = 0;
2169 	ndtmsg->ndtm_pad2   = 0;
2170 
2171 	if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
2172 	    nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval),
2173 			  NDTA_PAD) ||
2174 	    nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) ||
2175 	    nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) ||
2176 	    nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3)))
2177 		goto nla_put_failure;
2178 	{
2179 		unsigned long now = jiffies;
2180 		long flush_delta = now - READ_ONCE(tbl->last_flush);
2181 		long rand_delta = now - READ_ONCE(tbl->last_rand);
2182 		struct neigh_hash_table *nht;
2183 		struct ndt_config ndc = {
2184 			.ndtc_key_len		= tbl->key_len,
2185 			.ndtc_entry_size	= tbl->entry_size,
2186 			.ndtc_entries		= atomic_read(&tbl->entries),
2187 			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
2188 			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
2189 			.ndtc_proxy_qlen	= READ_ONCE(tbl->proxy_queue.qlen),
2190 		};
2191 
2192 		rcu_read_lock();
2193 		nht = rcu_dereference(tbl->nht);
2194 		ndc.ndtc_hash_rnd = nht->hash_rnd[0];
2195 		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
2196 		rcu_read_unlock();
2197 
2198 		if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
2199 			goto nla_put_failure;
2200 	}
2201 
2202 	{
2203 		int cpu;
2204 		struct ndt_stats ndst;
2205 
2206 		memset(&ndst, 0, sizeof(ndst));
2207 
2208 		for_each_possible_cpu(cpu) {
2209 			struct neigh_statistics	*st;
2210 
2211 			st = per_cpu_ptr(tbl->stats, cpu);
2212 			ndst.ndts_allocs		+= READ_ONCE(st->allocs);
2213 			ndst.ndts_destroys		+= READ_ONCE(st->destroys);
2214 			ndst.ndts_hash_grows		+= READ_ONCE(st->hash_grows);
2215 			ndst.ndts_res_failed		+= READ_ONCE(st->res_failed);
2216 			ndst.ndts_lookups		+= READ_ONCE(st->lookups);
2217 			ndst.ndts_hits			+= READ_ONCE(st->hits);
2218 			ndst.ndts_rcv_probes_mcast	+= READ_ONCE(st->rcv_probes_mcast);
2219 			ndst.ndts_rcv_probes_ucast	+= READ_ONCE(st->rcv_probes_ucast);
2220 			ndst.ndts_periodic_gc_runs	+= READ_ONCE(st->periodic_gc_runs);
2221 			ndst.ndts_forced_gc_runs	+= READ_ONCE(st->forced_gc_runs);
2222 			ndst.ndts_table_fulls		+= READ_ONCE(st->table_fulls);
2223 		}
2224 
2225 		if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
2226 				  NDTA_PAD))
2227 			goto nla_put_failure;
2228 	}
2229 
2230 	BUG_ON(tbl->parms.dev);
2231 	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
2232 		goto nla_put_failure;
2233 
2234 	read_unlock_bh(&tbl->lock);
2235 	nlmsg_end(skb, nlh);
2236 	return 0;
2237 
2238 nla_put_failure:
2239 	read_unlock_bh(&tbl->lock);
2240 	nlmsg_cancel(skb, nlh);
2241 	return -EMSGSIZE;
2242 }
2243 
2244 static int neightbl_fill_param_info(struct sk_buff *skb,
2245 				    struct neigh_table *tbl,
2246 				    struct neigh_parms *parms,
2247 				    u32 pid, u32 seq, int type,
2248 				    unsigned int flags)
2249 {
2250 	struct ndtmsg *ndtmsg;
2251 	struct nlmsghdr *nlh;
2252 
2253 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2254 	if (nlh == NULL)
2255 		return -EMSGSIZE;
2256 
2257 	ndtmsg = nlmsg_data(nlh);
2258 
2259 	read_lock_bh(&tbl->lock);
2260 	ndtmsg->ndtm_family = tbl->family;
2261 	ndtmsg->ndtm_pad1   = 0;
2262 	ndtmsg->ndtm_pad2   = 0;
2263 
2264 	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
2265 	    neightbl_fill_parms(skb, parms) < 0)
2266 		goto errout;
2267 
2268 	read_unlock_bh(&tbl->lock);
2269 	nlmsg_end(skb, nlh);
2270 	return 0;
2271 errout:
2272 	read_unlock_bh(&tbl->lock);
2273 	nlmsg_cancel(skb, nlh);
2274 	return -EMSGSIZE;
2275 }
2276 
2277 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
2278 	[NDTA_NAME]		= { .type = NLA_STRING },
2279 	[NDTA_THRESH1]		= { .type = NLA_U32 },
2280 	[NDTA_THRESH2]		= { .type = NLA_U32 },
2281 	[NDTA_THRESH3]		= { .type = NLA_U32 },
2282 	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
2283 	[NDTA_PARMS]		= { .type = NLA_NESTED },
2284 };
2285 
2286 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
2287 	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
2288 	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
2289 	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
2290 	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
2291 	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
2292 	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
2293 	[NDTPA_MCAST_REPROBES]		= { .type = NLA_U32 },
2294 	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
2295 	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
2296 	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
2297 	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
2298 	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
2299 	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
2300 	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
2301 	[NDTPA_INTERVAL_PROBE_TIME_MS]	= { .type = NLA_U64, .min = 1 },
2302 };
2303 
2304 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
2305 			struct netlink_ext_ack *extack)
2306 {
2307 	struct net *net = sock_net(skb->sk);
2308 	struct neigh_table *tbl;
2309 	struct ndtmsg *ndtmsg;
2310 	struct nlattr *tb[NDTA_MAX+1];
2311 	bool found = false;
2312 	int err, tidx;
2313 
2314 	err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
2315 				     nl_neightbl_policy, extack);
2316 	if (err < 0)
2317 		goto errout;
2318 
2319 	if (tb[NDTA_NAME] == NULL) {
2320 		err = -EINVAL;
2321 		goto errout;
2322 	}
2323 
2324 	ndtmsg = nlmsg_data(nlh);
2325 
2326 	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2327 		tbl = neigh_tables[tidx];
2328 		if (!tbl)
2329 			continue;
2330 		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2331 			continue;
2332 		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
2333 			found = true;
2334 			break;
2335 		}
2336 	}
2337 
2338 	if (!found)
2339 		return -ENOENT;
2340 
2341 	/*
2342 	 * We acquire tbl->lock to be nice to the periodic timers and
2343 	 * make sure they always see a consistent set of values.
2344 	 */
2345 	write_lock_bh(&tbl->lock);
2346 
2347 	if (tb[NDTA_PARMS]) {
2348 		struct nlattr *tbp[NDTPA_MAX+1];
2349 		struct neigh_parms *p;
2350 		int i, ifindex = 0;
2351 
2352 		err = nla_parse_nested_deprecated(tbp, NDTPA_MAX,
2353 						  tb[NDTA_PARMS],
2354 						  nl_ntbl_parm_policy, extack);
2355 		if (err < 0)
2356 			goto errout_tbl_lock;
2357 
2358 		if (tbp[NDTPA_IFINDEX])
2359 			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2360 
2361 		p = lookup_neigh_parms(tbl, net, ifindex);
2362 		if (p == NULL) {
2363 			err = -ENOENT;
2364 			goto errout_tbl_lock;
2365 		}
2366 
2367 		for (i = 1; i <= NDTPA_MAX; i++) {
2368 			if (tbp[i] == NULL)
2369 				continue;
2370 
2371 			switch (i) {
2372 			case NDTPA_QUEUE_LEN:
2373 				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2374 					      nla_get_u32(tbp[i]) *
2375 					      SKB_TRUESIZE(ETH_FRAME_LEN));
2376 				break;
2377 			case NDTPA_QUEUE_LENBYTES:
2378 				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2379 					      nla_get_u32(tbp[i]));
2380 				break;
2381 			case NDTPA_PROXY_QLEN:
2382 				NEIGH_VAR_SET(p, PROXY_QLEN,
2383 					      nla_get_u32(tbp[i]));
2384 				break;
2385 			case NDTPA_APP_PROBES:
2386 				NEIGH_VAR_SET(p, APP_PROBES,
2387 					      nla_get_u32(tbp[i]));
2388 				break;
2389 			case NDTPA_UCAST_PROBES:
2390 				NEIGH_VAR_SET(p, UCAST_PROBES,
2391 					      nla_get_u32(tbp[i]));
2392 				break;
2393 			case NDTPA_MCAST_PROBES:
2394 				NEIGH_VAR_SET(p, MCAST_PROBES,
2395 					      nla_get_u32(tbp[i]));
2396 				break;
2397 			case NDTPA_MCAST_REPROBES:
2398 				NEIGH_VAR_SET(p, MCAST_REPROBES,
2399 					      nla_get_u32(tbp[i]));
2400 				break;
2401 			case NDTPA_BASE_REACHABLE_TIME:
2402 				NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2403 					      nla_get_msecs(tbp[i]));
2404 				/* update reachable_time as well, otherwise, the change will
2405 				 * only be effective after the next time neigh_periodic_work
2406 				 * decides to recompute it (can be multiple minutes)
2407 				 */
2408 				p->reachable_time =
2409 					neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2410 				break;
2411 			case NDTPA_GC_STALETIME:
2412 				NEIGH_VAR_SET(p, GC_STALETIME,
2413 					      nla_get_msecs(tbp[i]));
2414 				break;
2415 			case NDTPA_DELAY_PROBE_TIME:
2416 				NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2417 					      nla_get_msecs(tbp[i]));
2418 				call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2419 				break;
2420 			case NDTPA_INTERVAL_PROBE_TIME_MS:
2421 				NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS,
2422 					      nla_get_msecs(tbp[i]));
2423 				break;
2424 			case NDTPA_RETRANS_TIME:
2425 				NEIGH_VAR_SET(p, RETRANS_TIME,
2426 					      nla_get_msecs(tbp[i]));
2427 				break;
2428 			case NDTPA_ANYCAST_DELAY:
2429 				NEIGH_VAR_SET(p, ANYCAST_DELAY,
2430 					      nla_get_msecs(tbp[i]));
2431 				break;
2432 			case NDTPA_PROXY_DELAY:
2433 				NEIGH_VAR_SET(p, PROXY_DELAY,
2434 					      nla_get_msecs(tbp[i]));
2435 				break;
2436 			case NDTPA_LOCKTIME:
2437 				NEIGH_VAR_SET(p, LOCKTIME,
2438 					      nla_get_msecs(tbp[i]));
2439 				break;
2440 			}
2441 		}
2442 	}
2443 
2444 	err = -ENOENT;
2445 	if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2446 	     tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2447 	    !net_eq(net, &init_net))
2448 		goto errout_tbl_lock;
2449 
2450 	if (tb[NDTA_THRESH1])
2451 		WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1]));
2452 
2453 	if (tb[NDTA_THRESH2])
2454 		WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2]));
2455 
2456 	if (tb[NDTA_THRESH3])
2457 		WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3]));
2458 
2459 	if (tb[NDTA_GC_INTERVAL])
2460 		WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL]));
2461 
2462 	err = 0;
2463 
2464 errout_tbl_lock:
2465 	write_unlock_bh(&tbl->lock);
2466 errout:
2467 	return err;
2468 }
2469 
2470 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh,
2471 				    struct netlink_ext_ack *extack)
2472 {
2473 	struct ndtmsg *ndtm;
2474 
2475 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) {
2476 		NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request");
2477 		return -EINVAL;
2478 	}
2479 
2480 	ndtm = nlmsg_data(nlh);
2481 	if (ndtm->ndtm_pad1  || ndtm->ndtm_pad2) {
2482 		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request");
2483 		return -EINVAL;
2484 	}
2485 
2486 	if (nlmsg_attrlen(nlh, sizeof(*ndtm))) {
2487 		NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request");
2488 		return -EINVAL;
2489 	}
2490 
2491 	return 0;
2492 }
2493 
2494 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2495 {
2496 	const struct nlmsghdr *nlh = cb->nlh;
2497 	struct net *net = sock_net(skb->sk);
2498 	int family, tidx, nidx = 0;
2499 	int tbl_skip = cb->args[0];
2500 	int neigh_skip = cb->args[1];
2501 	struct neigh_table *tbl;
2502 
2503 	if (cb->strict_check) {
2504 		int err = neightbl_valid_dump_info(nlh, cb->extack);
2505 
2506 		if (err < 0)
2507 			return err;
2508 	}
2509 
2510 	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2511 
2512 	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2513 		struct neigh_parms *p;
2514 
2515 		tbl = neigh_tables[tidx];
2516 		if (!tbl)
2517 			continue;
2518 
2519 		if (tidx < tbl_skip || (family && tbl->family != family))
2520 			continue;
2521 
2522 		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2523 				       nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2524 				       NLM_F_MULTI) < 0)
2525 			break;
2526 
2527 		nidx = 0;
2528 		p = list_next_entry(&tbl->parms, list);
2529 		list_for_each_entry_from(p, &tbl->parms_list, list) {
2530 			if (!net_eq(neigh_parms_net(p), net))
2531 				continue;
2532 
2533 			if (nidx < neigh_skip)
2534 				goto next;
2535 
2536 			if (neightbl_fill_param_info(skb, tbl, p,
2537 						     NETLINK_CB(cb->skb).portid,
2538 						     nlh->nlmsg_seq,
2539 						     RTM_NEWNEIGHTBL,
2540 						     NLM_F_MULTI) < 0)
2541 				goto out;
2542 		next:
2543 			nidx++;
2544 		}
2545 
2546 		neigh_skip = 0;
2547 	}
2548 out:
2549 	cb->args[0] = tidx;
2550 	cb->args[1] = nidx;
2551 
2552 	return skb->len;
2553 }
2554 
2555 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2556 			   u32 pid, u32 seq, int type, unsigned int flags)
2557 {
2558 	u32 neigh_flags, neigh_flags_ext;
2559 	unsigned long now = jiffies;
2560 	struct nda_cacheinfo ci;
2561 	struct nlmsghdr *nlh;
2562 	struct ndmsg *ndm;
2563 
2564 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2565 	if (nlh == NULL)
2566 		return -EMSGSIZE;
2567 
2568 	neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT;
2569 	neigh_flags     = neigh->flags & NTF_OLD_MASK;
2570 
2571 	ndm = nlmsg_data(nlh);
2572 	ndm->ndm_family	 = neigh->ops->family;
2573 	ndm->ndm_pad1    = 0;
2574 	ndm->ndm_pad2    = 0;
2575 	ndm->ndm_flags	 = neigh_flags;
2576 	ndm->ndm_type	 = neigh->type;
2577 	ndm->ndm_ifindex = neigh->dev->ifindex;
2578 
2579 	if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2580 		goto nla_put_failure;
2581 
2582 	read_lock_bh(&neigh->lock);
2583 	ndm->ndm_state	 = neigh->nud_state;
2584 	if (neigh->nud_state & NUD_VALID) {
2585 		char haddr[MAX_ADDR_LEN];
2586 
2587 		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2588 		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2589 			read_unlock_bh(&neigh->lock);
2590 			goto nla_put_failure;
2591 		}
2592 	}
2593 
2594 	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2595 	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2596 	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2597 	ci.ndm_refcnt	 = refcount_read(&neigh->refcnt) - 1;
2598 	read_unlock_bh(&neigh->lock);
2599 
2600 	if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2601 	    nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2602 		goto nla_put_failure;
2603 
2604 	if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol))
2605 		goto nla_put_failure;
2606 	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2607 		goto nla_put_failure;
2608 
2609 	nlmsg_end(skb, nlh);
2610 	return 0;
2611 
2612 nla_put_failure:
2613 	nlmsg_cancel(skb, nlh);
2614 	return -EMSGSIZE;
2615 }
2616 
2617 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2618 			    u32 pid, u32 seq, int type, unsigned int flags,
2619 			    struct neigh_table *tbl)
2620 {
2621 	u32 neigh_flags, neigh_flags_ext;
2622 	struct nlmsghdr *nlh;
2623 	struct ndmsg *ndm;
2624 
2625 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2626 	if (nlh == NULL)
2627 		return -EMSGSIZE;
2628 
2629 	neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT;
2630 	neigh_flags     = pn->flags & NTF_OLD_MASK;
2631 
2632 	ndm = nlmsg_data(nlh);
2633 	ndm->ndm_family	 = tbl->family;
2634 	ndm->ndm_pad1    = 0;
2635 	ndm->ndm_pad2    = 0;
2636 	ndm->ndm_flags	 = neigh_flags | NTF_PROXY;
2637 	ndm->ndm_type	 = RTN_UNICAST;
2638 	ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2639 	ndm->ndm_state	 = NUD_NONE;
2640 
2641 	if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2642 		goto nla_put_failure;
2643 
2644 	if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol))
2645 		goto nla_put_failure;
2646 	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2647 		goto nla_put_failure;
2648 
2649 	nlmsg_end(skb, nlh);
2650 	return 0;
2651 
2652 nla_put_failure:
2653 	nlmsg_cancel(skb, nlh);
2654 	return -EMSGSIZE;
2655 }
2656 
2657 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
2658 {
2659 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2660 	__neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
2661 }
2662 
2663 static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2664 {
2665 	struct net_device *master;
2666 
2667 	if (!master_idx)
2668 		return false;
2669 
2670 	master = dev ? netdev_master_upper_dev_get(dev) : NULL;
2671 
2672 	/* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another
2673 	 * invalid value for ifindex to denote "no master".
2674 	 */
2675 	if (master_idx == -1)
2676 		return !!master;
2677 
2678 	if (!master || master->ifindex != master_idx)
2679 		return true;
2680 
2681 	return false;
2682 }
2683 
2684 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2685 {
2686 	if (filter_idx && (!dev || dev->ifindex != filter_idx))
2687 		return true;
2688 
2689 	return false;
2690 }
2691 
2692 struct neigh_dump_filter {
2693 	int master_idx;
2694 	int dev_idx;
2695 };
2696 
2697 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2698 			    struct netlink_callback *cb,
2699 			    struct neigh_dump_filter *filter)
2700 {
2701 	struct net *net = sock_net(skb->sk);
2702 	struct neighbour *n;
2703 	int rc, h, s_h = cb->args[1];
2704 	int idx, s_idx = idx = cb->args[2];
2705 	struct neigh_hash_table *nht;
2706 	unsigned int flags = NLM_F_MULTI;
2707 
2708 	if (filter->dev_idx || filter->master_idx)
2709 		flags |= NLM_F_DUMP_FILTERED;
2710 
2711 	rcu_read_lock();
2712 	nht = rcu_dereference(tbl->nht);
2713 
2714 	for (h = s_h; h < (1 << nht->hash_shift); h++) {
2715 		if (h > s_h)
2716 			s_idx = 0;
2717 		for (n = rcu_dereference(nht->hash_buckets[h]), idx = 0;
2718 		     n != NULL;
2719 		     n = rcu_dereference(n->next)) {
2720 			if (idx < s_idx || !net_eq(dev_net(n->dev), net))
2721 				goto next;
2722 			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2723 			    neigh_master_filtered(n->dev, filter->master_idx))
2724 				goto next;
2725 			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2726 					    cb->nlh->nlmsg_seq,
2727 					    RTM_NEWNEIGH,
2728 					    flags) < 0) {
2729 				rc = -1;
2730 				goto out;
2731 			}
2732 next:
2733 			idx++;
2734 		}
2735 	}
2736 	rc = skb->len;
2737 out:
2738 	rcu_read_unlock();
2739 	cb->args[1] = h;
2740 	cb->args[2] = idx;
2741 	return rc;
2742 }
2743 
2744 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2745 			     struct netlink_callback *cb,
2746 			     struct neigh_dump_filter *filter)
2747 {
2748 	struct pneigh_entry *n;
2749 	struct net *net = sock_net(skb->sk);
2750 	int rc, h, s_h = cb->args[3];
2751 	int idx, s_idx = idx = cb->args[4];
2752 	unsigned int flags = NLM_F_MULTI;
2753 
2754 	if (filter->dev_idx || filter->master_idx)
2755 		flags |= NLM_F_DUMP_FILTERED;
2756 
2757 	read_lock_bh(&tbl->lock);
2758 
2759 	for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2760 		if (h > s_h)
2761 			s_idx = 0;
2762 		for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2763 			if (idx < s_idx || pneigh_net(n) != net)
2764 				goto next;
2765 			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2766 			    neigh_master_filtered(n->dev, filter->master_idx))
2767 				goto next;
2768 			if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2769 					    cb->nlh->nlmsg_seq,
2770 					    RTM_NEWNEIGH, flags, tbl) < 0) {
2771 				read_unlock_bh(&tbl->lock);
2772 				rc = -1;
2773 				goto out;
2774 			}
2775 		next:
2776 			idx++;
2777 		}
2778 	}
2779 
2780 	read_unlock_bh(&tbl->lock);
2781 	rc = skb->len;
2782 out:
2783 	cb->args[3] = h;
2784 	cb->args[4] = idx;
2785 	return rc;
2786 
2787 }
2788 
2789 static int neigh_valid_dump_req(const struct nlmsghdr *nlh,
2790 				bool strict_check,
2791 				struct neigh_dump_filter *filter,
2792 				struct netlink_ext_ack *extack)
2793 {
2794 	struct nlattr *tb[NDA_MAX + 1];
2795 	int err, i;
2796 
2797 	if (strict_check) {
2798 		struct ndmsg *ndm;
2799 
2800 		if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2801 			NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request");
2802 			return -EINVAL;
2803 		}
2804 
2805 		ndm = nlmsg_data(nlh);
2806 		if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_ifindex ||
2807 		    ndm->ndm_state || ndm->ndm_type) {
2808 			NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request");
2809 			return -EINVAL;
2810 		}
2811 
2812 		if (ndm->ndm_flags & ~NTF_PROXY) {
2813 			NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request");
2814 			return -EINVAL;
2815 		}
2816 
2817 		err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg),
2818 						    tb, NDA_MAX, nda_policy,
2819 						    extack);
2820 	} else {
2821 		err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb,
2822 					     NDA_MAX, nda_policy, extack);
2823 	}
2824 	if (err < 0)
2825 		return err;
2826 
2827 	for (i = 0; i <= NDA_MAX; ++i) {
2828 		if (!tb[i])
2829 			continue;
2830 
2831 		/* all new attributes should require strict_check */
2832 		switch (i) {
2833 		case NDA_IFINDEX:
2834 			filter->dev_idx = nla_get_u32(tb[i]);
2835 			break;
2836 		case NDA_MASTER:
2837 			filter->master_idx = nla_get_u32(tb[i]);
2838 			break;
2839 		default:
2840 			if (strict_check) {
2841 				NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request");
2842 				return -EINVAL;
2843 			}
2844 		}
2845 	}
2846 
2847 	return 0;
2848 }
2849 
2850 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2851 {
2852 	const struct nlmsghdr *nlh = cb->nlh;
2853 	struct neigh_dump_filter filter = {};
2854 	struct neigh_table *tbl;
2855 	int t, family, s_t;
2856 	int proxy = 0;
2857 	int err;
2858 
2859 	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2860 
2861 	/* check for full ndmsg structure presence, family member is
2862 	 * the same for both structures
2863 	 */
2864 	if (nlmsg_len(nlh) >= sizeof(struct ndmsg) &&
2865 	    ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY)
2866 		proxy = 1;
2867 
2868 	err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack);
2869 	if (err < 0 && cb->strict_check)
2870 		return err;
2871 
2872 	s_t = cb->args[0];
2873 
2874 	for (t = 0; t < NEIGH_NR_TABLES; t++) {
2875 		tbl = neigh_tables[t];
2876 
2877 		if (!tbl)
2878 			continue;
2879 		if (t < s_t || (family && tbl->family != family))
2880 			continue;
2881 		if (t > s_t)
2882 			memset(&cb->args[1], 0, sizeof(cb->args) -
2883 						sizeof(cb->args[0]));
2884 		if (proxy)
2885 			err = pneigh_dump_table(tbl, skb, cb, &filter);
2886 		else
2887 			err = neigh_dump_table(tbl, skb, cb, &filter);
2888 		if (err < 0)
2889 			break;
2890 	}
2891 
2892 	cb->args[0] = t;
2893 	return skb->len;
2894 }
2895 
2896 static int neigh_valid_get_req(const struct nlmsghdr *nlh,
2897 			       struct neigh_table **tbl,
2898 			       void **dst, int *dev_idx, u8 *ndm_flags,
2899 			       struct netlink_ext_ack *extack)
2900 {
2901 	struct nlattr *tb[NDA_MAX + 1];
2902 	struct ndmsg *ndm;
2903 	int err, i;
2904 
2905 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2906 		NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request");
2907 		return -EINVAL;
2908 	}
2909 
2910 	ndm = nlmsg_data(nlh);
2911 	if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_state ||
2912 	    ndm->ndm_type) {
2913 		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request");
2914 		return -EINVAL;
2915 	}
2916 
2917 	if (ndm->ndm_flags & ~NTF_PROXY) {
2918 		NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request");
2919 		return -EINVAL;
2920 	}
2921 
2922 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb,
2923 					    NDA_MAX, nda_policy, extack);
2924 	if (err < 0)
2925 		return err;
2926 
2927 	*ndm_flags = ndm->ndm_flags;
2928 	*dev_idx = ndm->ndm_ifindex;
2929 	*tbl = neigh_find_table(ndm->ndm_family);
2930 	if (*tbl == NULL) {
2931 		NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request");
2932 		return -EAFNOSUPPORT;
2933 	}
2934 
2935 	for (i = 0; i <= NDA_MAX; ++i) {
2936 		if (!tb[i])
2937 			continue;
2938 
2939 		switch (i) {
2940 		case NDA_DST:
2941 			if (nla_len(tb[i]) != (int)(*tbl)->key_len) {
2942 				NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request");
2943 				return -EINVAL;
2944 			}
2945 			*dst = nla_data(tb[i]);
2946 			break;
2947 		default:
2948 			NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request");
2949 			return -EINVAL;
2950 		}
2951 	}
2952 
2953 	return 0;
2954 }
2955 
2956 static inline size_t neigh_nlmsg_size(void)
2957 {
2958 	return NLMSG_ALIGN(sizeof(struct ndmsg))
2959 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2960 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2961 	       + nla_total_size(sizeof(struct nda_cacheinfo))
2962 	       + nla_total_size(4)  /* NDA_PROBES */
2963 	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
2964 	       + nla_total_size(1); /* NDA_PROTOCOL */
2965 }
2966 
2967 static int neigh_get_reply(struct net *net, struct neighbour *neigh,
2968 			   u32 pid, u32 seq)
2969 {
2970 	struct sk_buff *skb;
2971 	int err = 0;
2972 
2973 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL);
2974 	if (!skb)
2975 		return -ENOBUFS;
2976 
2977 	err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0);
2978 	if (err) {
2979 		kfree_skb(skb);
2980 		goto errout;
2981 	}
2982 
2983 	err = rtnl_unicast(skb, net, pid);
2984 errout:
2985 	return err;
2986 }
2987 
2988 static inline size_t pneigh_nlmsg_size(void)
2989 {
2990 	return NLMSG_ALIGN(sizeof(struct ndmsg))
2991 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2992 	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
2993 	       + nla_total_size(1); /* NDA_PROTOCOL */
2994 }
2995 
2996 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh,
2997 			    u32 pid, u32 seq, struct neigh_table *tbl)
2998 {
2999 	struct sk_buff *skb;
3000 	int err = 0;
3001 
3002 	skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL);
3003 	if (!skb)
3004 		return -ENOBUFS;
3005 
3006 	err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl);
3007 	if (err) {
3008 		kfree_skb(skb);
3009 		goto errout;
3010 	}
3011 
3012 	err = rtnl_unicast(skb, net, pid);
3013 errout:
3014 	return err;
3015 }
3016 
3017 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh,
3018 		     struct netlink_ext_ack *extack)
3019 {
3020 	struct net *net = sock_net(in_skb->sk);
3021 	struct net_device *dev = NULL;
3022 	struct neigh_table *tbl = NULL;
3023 	struct neighbour *neigh;
3024 	void *dst = NULL;
3025 	u8 ndm_flags = 0;
3026 	int dev_idx = 0;
3027 	int err;
3028 
3029 	err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags,
3030 				  extack);
3031 	if (err < 0)
3032 		return err;
3033 
3034 	if (dev_idx) {
3035 		dev = __dev_get_by_index(net, dev_idx);
3036 		if (!dev) {
3037 			NL_SET_ERR_MSG(extack, "Unknown device ifindex");
3038 			return -ENODEV;
3039 		}
3040 	}
3041 
3042 	if (!dst) {
3043 		NL_SET_ERR_MSG(extack, "Network address not specified");
3044 		return -EINVAL;
3045 	}
3046 
3047 	if (ndm_flags & NTF_PROXY) {
3048 		struct pneigh_entry *pn;
3049 
3050 		pn = pneigh_lookup(tbl, net, dst, dev, 0);
3051 		if (!pn) {
3052 			NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found");
3053 			return -ENOENT;
3054 		}
3055 		return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid,
3056 					nlh->nlmsg_seq, tbl);
3057 	}
3058 
3059 	if (!dev) {
3060 		NL_SET_ERR_MSG(extack, "No device specified");
3061 		return -EINVAL;
3062 	}
3063 
3064 	neigh = neigh_lookup(tbl, dst, dev);
3065 	if (!neigh) {
3066 		NL_SET_ERR_MSG(extack, "Neighbour entry not found");
3067 		return -ENOENT;
3068 	}
3069 
3070 	err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid,
3071 			      nlh->nlmsg_seq);
3072 
3073 	neigh_release(neigh);
3074 
3075 	return err;
3076 }
3077 
3078 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
3079 {
3080 	int chain;
3081 	struct neigh_hash_table *nht;
3082 
3083 	rcu_read_lock();
3084 	nht = rcu_dereference(tbl->nht);
3085 
3086 	read_lock_bh(&tbl->lock); /* avoid resizes */
3087 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3088 		struct neighbour *n;
3089 
3090 		for (n = rcu_dereference(nht->hash_buckets[chain]);
3091 		     n != NULL;
3092 		     n = rcu_dereference(n->next))
3093 			cb(n, cookie);
3094 	}
3095 	read_unlock_bh(&tbl->lock);
3096 	rcu_read_unlock();
3097 }
3098 EXPORT_SYMBOL(neigh_for_each);
3099 
3100 /* The tbl->lock must be held as a writer and BH disabled. */
3101 void __neigh_for_each_release(struct neigh_table *tbl,
3102 			      int (*cb)(struct neighbour *))
3103 {
3104 	int chain;
3105 	struct neigh_hash_table *nht;
3106 
3107 	nht = rcu_dereference_protected(tbl->nht,
3108 					lockdep_is_held(&tbl->lock));
3109 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3110 		struct neighbour *n;
3111 		struct neighbour __rcu **np;
3112 
3113 		np = &nht->hash_buckets[chain];
3114 		while ((n = rcu_dereference_protected(*np,
3115 					lockdep_is_held(&tbl->lock))) != NULL) {
3116 			int release;
3117 
3118 			write_lock(&n->lock);
3119 			release = cb(n);
3120 			if (release) {
3121 				rcu_assign_pointer(*np,
3122 					rcu_dereference_protected(n->next,
3123 						lockdep_is_held(&tbl->lock)));
3124 				neigh_mark_dead(n);
3125 			} else
3126 				np = &n->next;
3127 			write_unlock(&n->lock);
3128 			if (release)
3129 				neigh_cleanup_and_release(n);
3130 		}
3131 	}
3132 }
3133 EXPORT_SYMBOL(__neigh_for_each_release);
3134 
3135 int neigh_xmit(int index, struct net_device *dev,
3136 	       const void *addr, struct sk_buff *skb)
3137 {
3138 	int err = -EAFNOSUPPORT;
3139 	if (likely(index < NEIGH_NR_TABLES)) {
3140 		struct neigh_table *tbl;
3141 		struct neighbour *neigh;
3142 
3143 		tbl = neigh_tables[index];
3144 		if (!tbl)
3145 			goto out;
3146 		rcu_read_lock();
3147 		if (index == NEIGH_ARP_TABLE) {
3148 			u32 key = *((u32 *)addr);
3149 
3150 			neigh = __ipv4_neigh_lookup_noref(dev, key);
3151 		} else {
3152 			neigh = __neigh_lookup_noref(tbl, addr, dev);
3153 		}
3154 		if (!neigh)
3155 			neigh = __neigh_create(tbl, addr, dev, false);
3156 		err = PTR_ERR(neigh);
3157 		if (IS_ERR(neigh)) {
3158 			rcu_read_unlock();
3159 			goto out_kfree_skb;
3160 		}
3161 		err = READ_ONCE(neigh->output)(neigh, skb);
3162 		rcu_read_unlock();
3163 	}
3164 	else if (index == NEIGH_LINK_TABLE) {
3165 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
3166 				      addr, NULL, skb->len);
3167 		if (err < 0)
3168 			goto out_kfree_skb;
3169 		err = dev_queue_xmit(skb);
3170 	}
3171 out:
3172 	return err;
3173 out_kfree_skb:
3174 	kfree_skb(skb);
3175 	goto out;
3176 }
3177 EXPORT_SYMBOL(neigh_xmit);
3178 
3179 #ifdef CONFIG_PROC_FS
3180 
3181 static struct neighbour *neigh_get_first(struct seq_file *seq)
3182 {
3183 	struct neigh_seq_state *state = seq->private;
3184 	struct net *net = seq_file_net(seq);
3185 	struct neigh_hash_table *nht = state->nht;
3186 	struct neighbour *n = NULL;
3187 	int bucket;
3188 
3189 	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
3190 	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
3191 		n = rcu_dereference(nht->hash_buckets[bucket]);
3192 
3193 		while (n) {
3194 			if (!net_eq(dev_net(n->dev), net))
3195 				goto next;
3196 			if (state->neigh_sub_iter) {
3197 				loff_t fakep = 0;
3198 				void *v;
3199 
3200 				v = state->neigh_sub_iter(state, n, &fakep);
3201 				if (!v)
3202 					goto next;
3203 			}
3204 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3205 				break;
3206 			if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3207 				break;
3208 next:
3209 			n = rcu_dereference(n->next);
3210 		}
3211 
3212 		if (n)
3213 			break;
3214 	}
3215 	state->bucket = bucket;
3216 
3217 	return n;
3218 }
3219 
3220 static struct neighbour *neigh_get_next(struct seq_file *seq,
3221 					struct neighbour *n,
3222 					loff_t *pos)
3223 {
3224 	struct neigh_seq_state *state = seq->private;
3225 	struct net *net = seq_file_net(seq);
3226 	struct neigh_hash_table *nht = state->nht;
3227 
3228 	if (state->neigh_sub_iter) {
3229 		void *v = state->neigh_sub_iter(state, n, pos);
3230 		if (v)
3231 			return n;
3232 	}
3233 	n = rcu_dereference(n->next);
3234 
3235 	while (1) {
3236 		while (n) {
3237 			if (!net_eq(dev_net(n->dev), net))
3238 				goto next;
3239 			if (state->neigh_sub_iter) {
3240 				void *v = state->neigh_sub_iter(state, n, pos);
3241 				if (v)
3242 					return n;
3243 				goto next;
3244 			}
3245 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3246 				break;
3247 
3248 			if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3249 				break;
3250 next:
3251 			n = rcu_dereference(n->next);
3252 		}
3253 
3254 		if (n)
3255 			break;
3256 
3257 		if (++state->bucket >= (1 << nht->hash_shift))
3258 			break;
3259 
3260 		n = rcu_dereference(nht->hash_buckets[state->bucket]);
3261 	}
3262 
3263 	if (n && pos)
3264 		--(*pos);
3265 	return n;
3266 }
3267 
3268 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
3269 {
3270 	struct neighbour *n = neigh_get_first(seq);
3271 
3272 	if (n) {
3273 		--(*pos);
3274 		while (*pos) {
3275 			n = neigh_get_next(seq, n, pos);
3276 			if (!n)
3277 				break;
3278 		}
3279 	}
3280 	return *pos ? NULL : n;
3281 }
3282 
3283 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
3284 {
3285 	struct neigh_seq_state *state = seq->private;
3286 	struct net *net = seq_file_net(seq);
3287 	struct neigh_table *tbl = state->tbl;
3288 	struct pneigh_entry *pn = NULL;
3289 	int bucket;
3290 
3291 	state->flags |= NEIGH_SEQ_IS_PNEIGH;
3292 	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
3293 		pn = tbl->phash_buckets[bucket];
3294 		while (pn && !net_eq(pneigh_net(pn), net))
3295 			pn = pn->next;
3296 		if (pn)
3297 			break;
3298 	}
3299 	state->bucket = bucket;
3300 
3301 	return pn;
3302 }
3303 
3304 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
3305 					    struct pneigh_entry *pn,
3306 					    loff_t *pos)
3307 {
3308 	struct neigh_seq_state *state = seq->private;
3309 	struct net *net = seq_file_net(seq);
3310 	struct neigh_table *tbl = state->tbl;
3311 
3312 	do {
3313 		pn = pn->next;
3314 	} while (pn && !net_eq(pneigh_net(pn), net));
3315 
3316 	while (!pn) {
3317 		if (++state->bucket > PNEIGH_HASHMASK)
3318 			break;
3319 		pn = tbl->phash_buckets[state->bucket];
3320 		while (pn && !net_eq(pneigh_net(pn), net))
3321 			pn = pn->next;
3322 		if (pn)
3323 			break;
3324 	}
3325 
3326 	if (pn && pos)
3327 		--(*pos);
3328 
3329 	return pn;
3330 }
3331 
3332 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
3333 {
3334 	struct pneigh_entry *pn = pneigh_get_first(seq);
3335 
3336 	if (pn) {
3337 		--(*pos);
3338 		while (*pos) {
3339 			pn = pneigh_get_next(seq, pn, pos);
3340 			if (!pn)
3341 				break;
3342 		}
3343 	}
3344 	return *pos ? NULL : pn;
3345 }
3346 
3347 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
3348 {
3349 	struct neigh_seq_state *state = seq->private;
3350 	void *rc;
3351 	loff_t idxpos = *pos;
3352 
3353 	rc = neigh_get_idx(seq, &idxpos);
3354 	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3355 		rc = pneigh_get_idx(seq, &idxpos);
3356 
3357 	return rc;
3358 }
3359 
3360 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
3361 	__acquires(tbl->lock)
3362 	__acquires(rcu)
3363 {
3364 	struct neigh_seq_state *state = seq->private;
3365 
3366 	state->tbl = tbl;
3367 	state->bucket = 0;
3368 	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
3369 
3370 	rcu_read_lock();
3371 	state->nht = rcu_dereference(tbl->nht);
3372 	read_lock_bh(&tbl->lock);
3373 
3374 	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
3375 }
3376 EXPORT_SYMBOL(neigh_seq_start);
3377 
3378 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3379 {
3380 	struct neigh_seq_state *state;
3381 	void *rc;
3382 
3383 	if (v == SEQ_START_TOKEN) {
3384 		rc = neigh_get_first(seq);
3385 		goto out;
3386 	}
3387 
3388 	state = seq->private;
3389 	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
3390 		rc = neigh_get_next(seq, v, NULL);
3391 		if (rc)
3392 			goto out;
3393 		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3394 			rc = pneigh_get_first(seq);
3395 	} else {
3396 		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
3397 		rc = pneigh_get_next(seq, v, NULL);
3398 	}
3399 out:
3400 	++(*pos);
3401 	return rc;
3402 }
3403 EXPORT_SYMBOL(neigh_seq_next);
3404 
3405 void neigh_seq_stop(struct seq_file *seq, void *v)
3406 	__releases(tbl->lock)
3407 	__releases(rcu)
3408 {
3409 	struct neigh_seq_state *state = seq->private;
3410 	struct neigh_table *tbl = state->tbl;
3411 
3412 	read_unlock_bh(&tbl->lock);
3413 	rcu_read_unlock();
3414 }
3415 EXPORT_SYMBOL(neigh_seq_stop);
3416 
3417 /* statistics via seq_file */
3418 
3419 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
3420 {
3421 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3422 	int cpu;
3423 
3424 	if (*pos == 0)
3425 		return SEQ_START_TOKEN;
3426 
3427 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
3428 		if (!cpu_possible(cpu))
3429 			continue;
3430 		*pos = cpu+1;
3431 		return per_cpu_ptr(tbl->stats, cpu);
3432 	}
3433 	return NULL;
3434 }
3435 
3436 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3437 {
3438 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3439 	int cpu;
3440 
3441 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
3442 		if (!cpu_possible(cpu))
3443 			continue;
3444 		*pos = cpu+1;
3445 		return per_cpu_ptr(tbl->stats, cpu);
3446 	}
3447 	(*pos)++;
3448 	return NULL;
3449 }
3450 
3451 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
3452 {
3453 
3454 }
3455 
3456 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
3457 {
3458 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3459 	struct neigh_statistics *st = v;
3460 
3461 	if (v == SEQ_START_TOKEN) {
3462 		seq_puts(seq, "entries  allocs   destroys hash_grows lookups  hits     res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
3463 		return 0;
3464 	}
3465 
3466 	seq_printf(seq, "%08x %08lx %08lx %08lx   %08lx %08lx %08lx   "
3467 			"%08lx         %08lx         %08lx         "
3468 			"%08lx       %08lx            %08lx\n",
3469 		   atomic_read(&tbl->entries),
3470 
3471 		   st->allocs,
3472 		   st->destroys,
3473 		   st->hash_grows,
3474 
3475 		   st->lookups,
3476 		   st->hits,
3477 
3478 		   st->res_failed,
3479 
3480 		   st->rcv_probes_mcast,
3481 		   st->rcv_probes_ucast,
3482 
3483 		   st->periodic_gc_runs,
3484 		   st->forced_gc_runs,
3485 		   st->unres_discards,
3486 		   st->table_fulls
3487 		   );
3488 
3489 	return 0;
3490 }
3491 
3492 static const struct seq_operations neigh_stat_seq_ops = {
3493 	.start	= neigh_stat_seq_start,
3494 	.next	= neigh_stat_seq_next,
3495 	.stop	= neigh_stat_seq_stop,
3496 	.show	= neigh_stat_seq_show,
3497 };
3498 #endif /* CONFIG_PROC_FS */
3499 
3500 static void __neigh_notify(struct neighbour *n, int type, int flags,
3501 			   u32 pid)
3502 {
3503 	struct net *net = dev_net(n->dev);
3504 	struct sk_buff *skb;
3505 	int err = -ENOBUFS;
3506 
3507 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
3508 	if (skb == NULL)
3509 		goto errout;
3510 
3511 	err = neigh_fill_info(skb, n, pid, 0, type, flags);
3512 	if (err < 0) {
3513 		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
3514 		WARN_ON(err == -EMSGSIZE);
3515 		kfree_skb(skb);
3516 		goto errout;
3517 	}
3518 	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
3519 	return;
3520 errout:
3521 	if (err < 0)
3522 		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
3523 }
3524 
3525 void neigh_app_ns(struct neighbour *n)
3526 {
3527 	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
3528 }
3529 EXPORT_SYMBOL(neigh_app_ns);
3530 
3531 #ifdef CONFIG_SYSCTL
3532 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
3533 
3534 static int proc_unres_qlen(struct ctl_table *ctl, int write,
3535 			   void *buffer, size_t *lenp, loff_t *ppos)
3536 {
3537 	int size, ret;
3538 	struct ctl_table tmp = *ctl;
3539 
3540 	tmp.extra1 = SYSCTL_ZERO;
3541 	tmp.extra2 = &unres_qlen_max;
3542 	tmp.data = &size;
3543 
3544 	size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
3545 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3546 
3547 	if (write && !ret)
3548 		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
3549 	return ret;
3550 }
3551 
3552 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
3553 				  int index)
3554 {
3555 	struct net_device *dev;
3556 	int family = neigh_parms_family(p);
3557 
3558 	rcu_read_lock();
3559 	for_each_netdev_rcu(net, dev) {
3560 		struct neigh_parms *dst_p =
3561 				neigh_get_dev_parms_rcu(dev, family);
3562 
3563 		if (dst_p && !test_bit(index, dst_p->data_state))
3564 			dst_p->data[index] = p->data[index];
3565 	}
3566 	rcu_read_unlock();
3567 }
3568 
3569 static void neigh_proc_update(struct ctl_table *ctl, int write)
3570 {
3571 	struct net_device *dev = ctl->extra1;
3572 	struct neigh_parms *p = ctl->extra2;
3573 	struct net *net = neigh_parms_net(p);
3574 	int index = (int *) ctl->data - p->data;
3575 
3576 	if (!write)
3577 		return;
3578 
3579 	set_bit(index, p->data_state);
3580 	if (index == NEIGH_VAR_DELAY_PROBE_TIME)
3581 		call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
3582 	if (!dev) /* NULL dev means this is default value */
3583 		neigh_copy_dflt_parms(net, p, index);
3584 }
3585 
3586 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
3587 					   void *buffer, size_t *lenp,
3588 					   loff_t *ppos)
3589 {
3590 	struct ctl_table tmp = *ctl;
3591 	int ret;
3592 
3593 	tmp.extra1 = SYSCTL_ZERO;
3594 	tmp.extra2 = SYSCTL_INT_MAX;
3595 
3596 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3597 	neigh_proc_update(ctl, write);
3598 	return ret;
3599 }
3600 
3601 static int neigh_proc_dointvec_ms_jiffies_positive(struct ctl_table *ctl, int write,
3602 						   void *buffer, size_t *lenp, loff_t *ppos)
3603 {
3604 	struct ctl_table tmp = *ctl;
3605 	int ret;
3606 
3607 	int min = msecs_to_jiffies(1);
3608 
3609 	tmp.extra1 = &min;
3610 	tmp.extra2 = NULL;
3611 
3612 	ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos);
3613 	neigh_proc_update(ctl, write);
3614 	return ret;
3615 }
3616 
3617 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer,
3618 			size_t *lenp, loff_t *ppos)
3619 {
3620 	int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
3621 
3622 	neigh_proc_update(ctl, write);
3623 	return ret;
3624 }
3625 EXPORT_SYMBOL(neigh_proc_dointvec);
3626 
3627 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer,
3628 				size_t *lenp, loff_t *ppos)
3629 {
3630 	int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3631 
3632 	neigh_proc_update(ctl, write);
3633 	return ret;
3634 }
3635 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
3636 
3637 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
3638 					      void *buffer, size_t *lenp,
3639 					      loff_t *ppos)
3640 {
3641 	int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
3642 
3643 	neigh_proc_update(ctl, write);
3644 	return ret;
3645 }
3646 
3647 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
3648 				   void *buffer, size_t *lenp, loff_t *ppos)
3649 {
3650 	int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3651 
3652 	neigh_proc_update(ctl, write);
3653 	return ret;
3654 }
3655 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
3656 
3657 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
3658 					  void *buffer, size_t *lenp,
3659 					  loff_t *ppos)
3660 {
3661 	int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
3662 
3663 	neigh_proc_update(ctl, write);
3664 	return ret;
3665 }
3666 
3667 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
3668 					  void *buffer, size_t *lenp,
3669 					  loff_t *ppos)
3670 {
3671 	struct neigh_parms *p = ctl->extra2;
3672 	int ret;
3673 
3674 	if (strcmp(ctl->procname, "base_reachable_time") == 0)
3675 		ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3676 	else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3677 		ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3678 	else
3679 		ret = -1;
3680 
3681 	if (write && ret == 0) {
3682 		/* update reachable_time as well, otherwise, the change will
3683 		 * only be effective after the next time neigh_periodic_work
3684 		 * decides to recompute it
3685 		 */
3686 		p->reachable_time =
3687 			neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3688 	}
3689 	return ret;
3690 }
3691 
3692 #define NEIGH_PARMS_DATA_OFFSET(index)	\
3693 	(&((struct neigh_parms *) 0)->data[index])
3694 
3695 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3696 	[NEIGH_VAR_ ## attr] = { \
3697 		.procname	= name, \
3698 		.data		= NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3699 		.maxlen		= sizeof(int), \
3700 		.mode		= mval, \
3701 		.proc_handler	= proc, \
3702 	}
3703 
3704 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3705 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3706 
3707 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3708 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3709 
3710 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3711 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3712 
3713 #define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \
3714 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive)
3715 
3716 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3717 	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3718 
3719 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3720 	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3721 
3722 static struct neigh_sysctl_table {
3723 	struct ctl_table_header *sysctl_header;
3724 	struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
3725 } neigh_sysctl_template __read_mostly = {
3726 	.neigh_vars = {
3727 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3728 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3729 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3730 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3731 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3732 		NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3733 		NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3734 		NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS,
3735 						       "interval_probe_time_ms"),
3736 		NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3737 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3738 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3739 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3740 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3741 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3742 		NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3743 		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3744 		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3745 		[NEIGH_VAR_GC_INTERVAL] = {
3746 			.procname	= "gc_interval",
3747 			.maxlen		= sizeof(int),
3748 			.mode		= 0644,
3749 			.proc_handler	= proc_dointvec_jiffies,
3750 		},
3751 		[NEIGH_VAR_GC_THRESH1] = {
3752 			.procname	= "gc_thresh1",
3753 			.maxlen		= sizeof(int),
3754 			.mode		= 0644,
3755 			.extra1		= SYSCTL_ZERO,
3756 			.extra2		= SYSCTL_INT_MAX,
3757 			.proc_handler	= proc_dointvec_minmax,
3758 		},
3759 		[NEIGH_VAR_GC_THRESH2] = {
3760 			.procname	= "gc_thresh2",
3761 			.maxlen		= sizeof(int),
3762 			.mode		= 0644,
3763 			.extra1		= SYSCTL_ZERO,
3764 			.extra2		= SYSCTL_INT_MAX,
3765 			.proc_handler	= proc_dointvec_minmax,
3766 		},
3767 		[NEIGH_VAR_GC_THRESH3] = {
3768 			.procname	= "gc_thresh3",
3769 			.maxlen		= sizeof(int),
3770 			.mode		= 0644,
3771 			.extra1		= SYSCTL_ZERO,
3772 			.extra2		= SYSCTL_INT_MAX,
3773 			.proc_handler	= proc_dointvec_minmax,
3774 		},
3775 		{},
3776 	},
3777 };
3778 
3779 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3780 			  proc_handler *handler)
3781 {
3782 	int i;
3783 	struct neigh_sysctl_table *t;
3784 	const char *dev_name_source;
3785 	char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3786 	char *p_name;
3787 	size_t neigh_vars_size;
3788 
3789 	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT);
3790 	if (!t)
3791 		goto err;
3792 
3793 	for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3794 		t->neigh_vars[i].data += (long) p;
3795 		t->neigh_vars[i].extra1 = dev;
3796 		t->neigh_vars[i].extra2 = p;
3797 	}
3798 
3799 	neigh_vars_size = ARRAY_SIZE(t->neigh_vars);
3800 	if (dev) {
3801 		dev_name_source = dev->name;
3802 		/* Terminate the table early */
3803 		memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3804 		       sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3805 		neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1;
3806 	} else {
3807 		struct neigh_table *tbl = p->tbl;
3808 		dev_name_source = "default";
3809 		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3810 		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3811 		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3812 		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3813 	}
3814 
3815 	if (handler) {
3816 		/* RetransTime */
3817 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3818 		/* ReachableTime */
3819 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3820 		/* RetransTime (in milliseconds)*/
3821 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3822 		/* ReachableTime (in milliseconds) */
3823 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3824 	} else {
3825 		/* Those handlers will update p->reachable_time after
3826 		 * base_reachable_time(_ms) is set to ensure the new timer starts being
3827 		 * applied after the next neighbour update instead of waiting for
3828 		 * neigh_periodic_work to update its value (can be multiple minutes)
3829 		 * So any handler that replaces them should do this as well
3830 		 */
3831 		/* ReachableTime */
3832 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3833 			neigh_proc_base_reachable_time;
3834 		/* ReachableTime (in milliseconds) */
3835 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3836 			neigh_proc_base_reachable_time;
3837 	}
3838 
3839 	switch (neigh_parms_family(p)) {
3840 	case AF_INET:
3841 	      p_name = "ipv4";
3842 	      break;
3843 	case AF_INET6:
3844 	      p_name = "ipv6";
3845 	      break;
3846 	default:
3847 	      BUG();
3848 	}
3849 
3850 	snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3851 		p_name, dev_name_source);
3852 	t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p),
3853 						  neigh_path, t->neigh_vars,
3854 						  neigh_vars_size);
3855 	if (!t->sysctl_header)
3856 		goto free;
3857 
3858 	p->sysctl_table = t;
3859 	return 0;
3860 
3861 free:
3862 	kfree(t);
3863 err:
3864 	return -ENOBUFS;
3865 }
3866 EXPORT_SYMBOL(neigh_sysctl_register);
3867 
3868 void neigh_sysctl_unregister(struct neigh_parms *p)
3869 {
3870 	if (p->sysctl_table) {
3871 		struct neigh_sysctl_table *t = p->sysctl_table;
3872 		p->sysctl_table = NULL;
3873 		unregister_net_sysctl_table(t->sysctl_header);
3874 		kfree(t);
3875 	}
3876 }
3877 EXPORT_SYMBOL(neigh_sysctl_unregister);
3878 
3879 #endif	/* CONFIG_SYSCTL */
3880 
3881 static int __init neigh_init(void)
3882 {
3883 	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0);
3884 	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0);
3885 	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0);
3886 
3887 	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3888 		      0);
3889 	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0);
3890 
3891 	return 0;
3892 }
3893 
3894 subsys_initcall(neigh_init);
3895