xref: /linux/net/core/neighbour.c (revision 9fc31a9251de4acaab2d0704450d70ddc99f5ea2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Generic address resolution entity
4  *
5  *	Authors:
6  *	Pedro Roque		<roque@di.fc.ul.pt>
7  *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
8  *
9  *	Fixes:
10  *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
11  *	Harald Welte		Add neighbour cache statistics like rtstat
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/slab.h>
17 #include <linux/kmemleak.h>
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/socket.h>
22 #include <linux/netdevice.h>
23 #include <linux/proc_fs.h>
24 #ifdef CONFIG_SYSCTL
25 #include <linux/sysctl.h>
26 #endif
27 #include <linux/times.h>
28 #include <net/net_namespace.h>
29 #include <net/neighbour.h>
30 #include <net/arp.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
39 #include <linux/inetdevice.h>
40 #include <net/addrconf.h>
41 
42 #include <trace/events/neigh.h>
43 
44 #define NEIGH_DEBUG 1
45 #define neigh_dbg(level, fmt, ...)		\
46 do {						\
47 	if (level <= NEIGH_DEBUG)		\
48 		pr_debug(fmt, ##__VA_ARGS__);	\
49 } while (0)
50 
51 #define PNEIGH_HASHMASK		0xF
52 
53 static void neigh_timer_handler(struct timer_list *t);
54 static void __neigh_notify(struct neighbour *n, int type, int flags,
55 			   u32 pid);
56 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid);
57 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
58 				    struct net_device *dev);
59 
60 #ifdef CONFIG_PROC_FS
61 static const struct seq_operations neigh_stat_seq_ops;
62 #endif
63 
64 /*
65    Neighbour hash table buckets are protected with rwlock tbl->lock.
66 
67    - All the scans/updates to hash buckets MUST be made under this lock.
68    - NOTHING clever should be made under this lock: no callbacks
69      to protocol backends, no attempts to send something to network.
70      It will result in deadlocks, if backend/driver wants to use neighbour
71      cache.
72    - If the entry requires some non-trivial actions, increase
73      its reference count and release table lock.
74 
75    Neighbour entries are protected:
76    - with reference count.
77    - with rwlock neigh->lock
78 
79    Reference count prevents destruction.
80 
81    neigh->lock mainly serializes ll address data and its validity state.
82    However, the same lock is used to protect another entry fields:
83     - timer
84     - resolution queue
85 
86    Again, nothing clever shall be made under neigh->lock,
87    the most complicated procedure, which we allow is dev->hard_header.
88    It is supposed, that dev->hard_header is simplistic and does
89    not make callbacks to neighbour tables.
90  */
91 
92 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
93 {
94 	kfree_skb(skb);
95 	return -ENETDOWN;
96 }
97 
98 static void neigh_cleanup_and_release(struct neighbour *neigh)
99 {
100 	trace_neigh_cleanup_and_release(neigh, 0);
101 	__neigh_notify(neigh, RTM_DELNEIGH, 0, 0);
102 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
103 	neigh_release(neigh);
104 }
105 
106 /*
107  * It is random distribution in the interval (1/2)*base...(3/2)*base.
108  * It corresponds to default IPv6 settings and is not overridable,
109  * because it is really reasonable choice.
110  */
111 
112 unsigned long neigh_rand_reach_time(unsigned long base)
113 {
114 	return base ? get_random_u32_below(base) + (base >> 1) : 0;
115 }
116 EXPORT_SYMBOL(neigh_rand_reach_time);
117 
118 static void neigh_mark_dead(struct neighbour *n)
119 {
120 	n->dead = 1;
121 	if (!list_empty(&n->gc_list)) {
122 		list_del_init(&n->gc_list);
123 		atomic_dec(&n->tbl->gc_entries);
124 	}
125 	if (!list_empty(&n->managed_list))
126 		list_del_init(&n->managed_list);
127 }
128 
129 static void neigh_update_gc_list(struct neighbour *n)
130 {
131 	bool on_gc_list, exempt_from_gc;
132 
133 	write_lock_bh(&n->tbl->lock);
134 	write_lock(&n->lock);
135 	if (n->dead)
136 		goto out;
137 
138 	/* remove from the gc list if new state is permanent or if neighbor
139 	 * is externally learned; otherwise entry should be on the gc list
140 	 */
141 	exempt_from_gc = n->nud_state & NUD_PERMANENT ||
142 			 n->flags & NTF_EXT_LEARNED;
143 	on_gc_list = !list_empty(&n->gc_list);
144 
145 	if (exempt_from_gc && on_gc_list) {
146 		list_del_init(&n->gc_list);
147 		atomic_dec(&n->tbl->gc_entries);
148 	} else if (!exempt_from_gc && !on_gc_list) {
149 		/* add entries to the tail; cleaning removes from the front */
150 		list_add_tail(&n->gc_list, &n->tbl->gc_list);
151 		atomic_inc(&n->tbl->gc_entries);
152 	}
153 out:
154 	write_unlock(&n->lock);
155 	write_unlock_bh(&n->tbl->lock);
156 }
157 
158 static void neigh_update_managed_list(struct neighbour *n)
159 {
160 	bool on_managed_list, add_to_managed;
161 
162 	write_lock_bh(&n->tbl->lock);
163 	write_lock(&n->lock);
164 	if (n->dead)
165 		goto out;
166 
167 	add_to_managed = n->flags & NTF_MANAGED;
168 	on_managed_list = !list_empty(&n->managed_list);
169 
170 	if (!add_to_managed && on_managed_list)
171 		list_del_init(&n->managed_list);
172 	else if (add_to_managed && !on_managed_list)
173 		list_add_tail(&n->managed_list, &n->tbl->managed_list);
174 out:
175 	write_unlock(&n->lock);
176 	write_unlock_bh(&n->tbl->lock);
177 }
178 
179 static void neigh_update_flags(struct neighbour *neigh, u32 flags, int *notify,
180 			       bool *gc_update, bool *managed_update)
181 {
182 	u32 ndm_flags, old_flags = neigh->flags;
183 
184 	if (!(flags & NEIGH_UPDATE_F_ADMIN))
185 		return;
186 
187 	ndm_flags  = (flags & NEIGH_UPDATE_F_EXT_LEARNED) ? NTF_EXT_LEARNED : 0;
188 	ndm_flags |= (flags & NEIGH_UPDATE_F_MANAGED) ? NTF_MANAGED : 0;
189 
190 	if ((old_flags ^ ndm_flags) & NTF_EXT_LEARNED) {
191 		if (ndm_flags & NTF_EXT_LEARNED)
192 			neigh->flags |= NTF_EXT_LEARNED;
193 		else
194 			neigh->flags &= ~NTF_EXT_LEARNED;
195 		*notify = 1;
196 		*gc_update = true;
197 	}
198 	if ((old_flags ^ ndm_flags) & NTF_MANAGED) {
199 		if (ndm_flags & NTF_MANAGED)
200 			neigh->flags |= NTF_MANAGED;
201 		else
202 			neigh->flags &= ~NTF_MANAGED;
203 		*notify = 1;
204 		*managed_update = true;
205 	}
206 }
207 
208 static bool neigh_del(struct neighbour *n, struct neighbour __rcu **np,
209 		      struct neigh_table *tbl)
210 {
211 	bool retval = false;
212 
213 	write_lock(&n->lock);
214 	if (refcount_read(&n->refcnt) == 1) {
215 		struct neighbour *neigh;
216 
217 		neigh = rcu_dereference_protected(n->next,
218 						  lockdep_is_held(&tbl->lock));
219 		rcu_assign_pointer(*np, neigh);
220 		neigh_mark_dead(n);
221 		retval = true;
222 	}
223 	write_unlock(&n->lock);
224 	if (retval)
225 		neigh_cleanup_and_release(n);
226 	return retval;
227 }
228 
229 bool neigh_remove_one(struct neighbour *ndel, struct neigh_table *tbl)
230 {
231 	struct neigh_hash_table *nht;
232 	void *pkey = ndel->primary_key;
233 	u32 hash_val;
234 	struct neighbour *n;
235 	struct neighbour __rcu **np;
236 
237 	nht = rcu_dereference_protected(tbl->nht,
238 					lockdep_is_held(&tbl->lock));
239 	hash_val = tbl->hash(pkey, ndel->dev, nht->hash_rnd);
240 	hash_val = hash_val >> (32 - nht->hash_shift);
241 
242 	np = &nht->hash_buckets[hash_val];
243 	while ((n = rcu_dereference_protected(*np,
244 					      lockdep_is_held(&tbl->lock)))) {
245 		if (n == ndel)
246 			return neigh_del(n, np, tbl);
247 		np = &n->next;
248 	}
249 	return false;
250 }
251 
252 static int neigh_forced_gc(struct neigh_table *tbl)
253 {
254 	int max_clean = atomic_read(&tbl->gc_entries) -
255 			READ_ONCE(tbl->gc_thresh2);
256 	u64 tmax = ktime_get_ns() + NSEC_PER_MSEC;
257 	unsigned long tref = jiffies - 5 * HZ;
258 	struct neighbour *n, *tmp;
259 	int shrunk = 0;
260 	int loop = 0;
261 
262 	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
263 
264 	write_lock_bh(&tbl->lock);
265 
266 	list_for_each_entry_safe(n, tmp, &tbl->gc_list, gc_list) {
267 		if (refcount_read(&n->refcnt) == 1) {
268 			bool remove = false;
269 
270 			write_lock(&n->lock);
271 			if ((n->nud_state == NUD_FAILED) ||
272 			    (n->nud_state == NUD_NOARP) ||
273 			    (tbl->is_multicast &&
274 			     tbl->is_multicast(n->primary_key)) ||
275 			    !time_in_range(n->updated, tref, jiffies))
276 				remove = true;
277 			write_unlock(&n->lock);
278 
279 			if (remove && neigh_remove_one(n, tbl))
280 				shrunk++;
281 			if (shrunk >= max_clean)
282 				break;
283 			if (++loop == 16) {
284 				if (ktime_get_ns() > tmax)
285 					goto unlock;
286 				loop = 0;
287 			}
288 		}
289 	}
290 
291 	WRITE_ONCE(tbl->last_flush, jiffies);
292 unlock:
293 	write_unlock_bh(&tbl->lock);
294 
295 	return shrunk;
296 }
297 
298 static void neigh_add_timer(struct neighbour *n, unsigned long when)
299 {
300 	/* Use safe distance from the jiffies - LONG_MAX point while timer
301 	 * is running in DELAY/PROBE state but still show to user space
302 	 * large times in the past.
303 	 */
304 	unsigned long mint = jiffies - (LONG_MAX - 86400 * HZ);
305 
306 	neigh_hold(n);
307 	if (!time_in_range(n->confirmed, mint, jiffies))
308 		n->confirmed = mint;
309 	if (time_before(n->used, n->confirmed))
310 		n->used = n->confirmed;
311 	if (unlikely(mod_timer(&n->timer, when))) {
312 		printk("NEIGH: BUG, double timer add, state is %x\n",
313 		       n->nud_state);
314 		dump_stack();
315 	}
316 }
317 
318 static int neigh_del_timer(struct neighbour *n)
319 {
320 	if ((n->nud_state & NUD_IN_TIMER) &&
321 	    del_timer(&n->timer)) {
322 		neigh_release(n);
323 		return 1;
324 	}
325 	return 0;
326 }
327 
328 static struct neigh_parms *neigh_get_dev_parms_rcu(struct net_device *dev,
329 						   int family)
330 {
331 	switch (family) {
332 	case AF_INET:
333 		return __in_dev_arp_parms_get_rcu(dev);
334 	case AF_INET6:
335 		return __in6_dev_nd_parms_get_rcu(dev);
336 	}
337 	return NULL;
338 }
339 
340 static void neigh_parms_qlen_dec(struct net_device *dev, int family)
341 {
342 	struct neigh_parms *p;
343 
344 	rcu_read_lock();
345 	p = neigh_get_dev_parms_rcu(dev, family);
346 	if (p)
347 		p->qlen--;
348 	rcu_read_unlock();
349 }
350 
351 static void pneigh_queue_purge(struct sk_buff_head *list, struct net *net,
352 			       int family)
353 {
354 	struct sk_buff_head tmp;
355 	unsigned long flags;
356 	struct sk_buff *skb;
357 
358 	skb_queue_head_init(&tmp);
359 	spin_lock_irqsave(&list->lock, flags);
360 	skb = skb_peek(list);
361 	while (skb != NULL) {
362 		struct sk_buff *skb_next = skb_peek_next(skb, list);
363 		struct net_device *dev = skb->dev;
364 
365 		if (net == NULL || net_eq(dev_net(dev), net)) {
366 			neigh_parms_qlen_dec(dev, family);
367 			__skb_unlink(skb, list);
368 			__skb_queue_tail(&tmp, skb);
369 		}
370 		skb = skb_next;
371 	}
372 	spin_unlock_irqrestore(&list->lock, flags);
373 
374 	while ((skb = __skb_dequeue(&tmp))) {
375 		dev_put(skb->dev);
376 		kfree_skb(skb);
377 	}
378 }
379 
380 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev,
381 			    bool skip_perm)
382 {
383 	int i;
384 	struct neigh_hash_table *nht;
385 
386 	nht = rcu_dereference_protected(tbl->nht,
387 					lockdep_is_held(&tbl->lock));
388 
389 	for (i = 0; i < (1 << nht->hash_shift); i++) {
390 		struct neighbour *n;
391 		struct neighbour __rcu **np = &nht->hash_buckets[i];
392 
393 		while ((n = rcu_dereference_protected(*np,
394 					lockdep_is_held(&tbl->lock))) != NULL) {
395 			if (dev && n->dev != dev) {
396 				np = &n->next;
397 				continue;
398 			}
399 			if (skip_perm && n->nud_state & NUD_PERMANENT) {
400 				np = &n->next;
401 				continue;
402 			}
403 			rcu_assign_pointer(*np,
404 				   rcu_dereference_protected(n->next,
405 						lockdep_is_held(&tbl->lock)));
406 			write_lock(&n->lock);
407 			neigh_del_timer(n);
408 			neigh_mark_dead(n);
409 			if (refcount_read(&n->refcnt) != 1) {
410 				/* The most unpleasant situation.
411 				   We must destroy neighbour entry,
412 				   but someone still uses it.
413 
414 				   The destroy will be delayed until
415 				   the last user releases us, but
416 				   we must kill timers etc. and move
417 				   it to safe state.
418 				 */
419 				__skb_queue_purge(&n->arp_queue);
420 				n->arp_queue_len_bytes = 0;
421 				WRITE_ONCE(n->output, neigh_blackhole);
422 				if (n->nud_state & NUD_VALID)
423 					n->nud_state = NUD_NOARP;
424 				else
425 					n->nud_state = NUD_NONE;
426 				neigh_dbg(2, "neigh %p is stray\n", n);
427 			}
428 			write_unlock(&n->lock);
429 			neigh_cleanup_and_release(n);
430 		}
431 	}
432 }
433 
434 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
435 {
436 	write_lock_bh(&tbl->lock);
437 	neigh_flush_dev(tbl, dev, false);
438 	write_unlock_bh(&tbl->lock);
439 }
440 EXPORT_SYMBOL(neigh_changeaddr);
441 
442 static int __neigh_ifdown(struct neigh_table *tbl, struct net_device *dev,
443 			  bool skip_perm)
444 {
445 	write_lock_bh(&tbl->lock);
446 	neigh_flush_dev(tbl, dev, skip_perm);
447 	pneigh_ifdown_and_unlock(tbl, dev);
448 	pneigh_queue_purge(&tbl->proxy_queue, dev ? dev_net(dev) : NULL,
449 			   tbl->family);
450 	if (skb_queue_empty_lockless(&tbl->proxy_queue))
451 		del_timer_sync(&tbl->proxy_timer);
452 	return 0;
453 }
454 
455 int neigh_carrier_down(struct neigh_table *tbl, struct net_device *dev)
456 {
457 	__neigh_ifdown(tbl, dev, true);
458 	return 0;
459 }
460 EXPORT_SYMBOL(neigh_carrier_down);
461 
462 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
463 {
464 	__neigh_ifdown(tbl, dev, false);
465 	return 0;
466 }
467 EXPORT_SYMBOL(neigh_ifdown);
468 
469 static struct neighbour *neigh_alloc(struct neigh_table *tbl,
470 				     struct net_device *dev,
471 				     u32 flags, bool exempt_from_gc)
472 {
473 	struct neighbour *n = NULL;
474 	unsigned long now = jiffies;
475 	int entries, gc_thresh3;
476 
477 	if (exempt_from_gc)
478 		goto do_alloc;
479 
480 	entries = atomic_inc_return(&tbl->gc_entries) - 1;
481 	gc_thresh3 = READ_ONCE(tbl->gc_thresh3);
482 	if (entries >= gc_thresh3 ||
483 	    (entries >= READ_ONCE(tbl->gc_thresh2) &&
484 	     time_after(now, READ_ONCE(tbl->last_flush) + 5 * HZ))) {
485 		if (!neigh_forced_gc(tbl) && entries >= gc_thresh3) {
486 			net_info_ratelimited("%s: neighbor table overflow!\n",
487 					     tbl->id);
488 			NEIGH_CACHE_STAT_INC(tbl, table_fulls);
489 			goto out_entries;
490 		}
491 	}
492 
493 do_alloc:
494 	n = kzalloc(tbl->entry_size + dev->neigh_priv_len, GFP_ATOMIC);
495 	if (!n)
496 		goto out_entries;
497 
498 	__skb_queue_head_init(&n->arp_queue);
499 	rwlock_init(&n->lock);
500 	seqlock_init(&n->ha_lock);
501 	n->updated	  = n->used = now;
502 	n->nud_state	  = NUD_NONE;
503 	n->output	  = neigh_blackhole;
504 	n->flags	  = flags;
505 	seqlock_init(&n->hh.hh_lock);
506 	n->parms	  = neigh_parms_clone(&tbl->parms);
507 	timer_setup(&n->timer, neigh_timer_handler, 0);
508 
509 	NEIGH_CACHE_STAT_INC(tbl, allocs);
510 	n->tbl		  = tbl;
511 	refcount_set(&n->refcnt, 1);
512 	n->dead		  = 1;
513 	INIT_LIST_HEAD(&n->gc_list);
514 	INIT_LIST_HEAD(&n->managed_list);
515 
516 	atomic_inc(&tbl->entries);
517 out:
518 	return n;
519 
520 out_entries:
521 	if (!exempt_from_gc)
522 		atomic_dec(&tbl->gc_entries);
523 	goto out;
524 }
525 
526 static void neigh_get_hash_rnd(u32 *x)
527 {
528 	*x = get_random_u32() | 1;
529 }
530 
531 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
532 {
533 	size_t size = (1 << shift) * sizeof(struct neighbour *);
534 	struct neigh_hash_table *ret;
535 	struct neighbour __rcu **buckets;
536 	int i;
537 
538 	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
539 	if (!ret)
540 		return NULL;
541 	if (size <= PAGE_SIZE) {
542 		buckets = kzalloc(size, GFP_ATOMIC);
543 	} else {
544 		buckets = (struct neighbour __rcu **)
545 			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
546 					   get_order(size));
547 		kmemleak_alloc(buckets, size, 1, GFP_ATOMIC);
548 	}
549 	if (!buckets) {
550 		kfree(ret);
551 		return NULL;
552 	}
553 	ret->hash_buckets = buckets;
554 	ret->hash_shift = shift;
555 	for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
556 		neigh_get_hash_rnd(&ret->hash_rnd[i]);
557 	return ret;
558 }
559 
560 static void neigh_hash_free_rcu(struct rcu_head *head)
561 {
562 	struct neigh_hash_table *nht = container_of(head,
563 						    struct neigh_hash_table,
564 						    rcu);
565 	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
566 	struct neighbour __rcu **buckets = nht->hash_buckets;
567 
568 	if (size <= PAGE_SIZE) {
569 		kfree(buckets);
570 	} else {
571 		kmemleak_free(buckets);
572 		free_pages((unsigned long)buckets, get_order(size));
573 	}
574 	kfree(nht);
575 }
576 
577 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
578 						unsigned long new_shift)
579 {
580 	unsigned int i, hash;
581 	struct neigh_hash_table *new_nht, *old_nht;
582 
583 	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
584 
585 	old_nht = rcu_dereference_protected(tbl->nht,
586 					    lockdep_is_held(&tbl->lock));
587 	new_nht = neigh_hash_alloc(new_shift);
588 	if (!new_nht)
589 		return old_nht;
590 
591 	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
592 		struct neighbour *n, *next;
593 
594 		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
595 						   lockdep_is_held(&tbl->lock));
596 		     n != NULL;
597 		     n = next) {
598 			hash = tbl->hash(n->primary_key, n->dev,
599 					 new_nht->hash_rnd);
600 
601 			hash >>= (32 - new_nht->hash_shift);
602 			next = rcu_dereference_protected(n->next,
603 						lockdep_is_held(&tbl->lock));
604 
605 			rcu_assign_pointer(n->next,
606 					   rcu_dereference_protected(
607 						new_nht->hash_buckets[hash],
608 						lockdep_is_held(&tbl->lock)));
609 			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
610 		}
611 	}
612 
613 	rcu_assign_pointer(tbl->nht, new_nht);
614 	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
615 	return new_nht;
616 }
617 
618 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
619 			       struct net_device *dev)
620 {
621 	struct neighbour *n;
622 
623 	NEIGH_CACHE_STAT_INC(tbl, lookups);
624 
625 	rcu_read_lock();
626 	n = __neigh_lookup_noref(tbl, pkey, dev);
627 	if (n) {
628 		if (!refcount_inc_not_zero(&n->refcnt))
629 			n = NULL;
630 		NEIGH_CACHE_STAT_INC(tbl, hits);
631 	}
632 
633 	rcu_read_unlock();
634 	return n;
635 }
636 EXPORT_SYMBOL(neigh_lookup);
637 
638 static struct neighbour *
639 ___neigh_create(struct neigh_table *tbl, const void *pkey,
640 		struct net_device *dev, u32 flags,
641 		bool exempt_from_gc, bool want_ref)
642 {
643 	u32 hash_val, key_len = tbl->key_len;
644 	struct neighbour *n1, *rc, *n;
645 	struct neigh_hash_table *nht;
646 	int error;
647 
648 	n = neigh_alloc(tbl, dev, flags, exempt_from_gc);
649 	trace_neigh_create(tbl, dev, pkey, n, exempt_from_gc);
650 	if (!n) {
651 		rc = ERR_PTR(-ENOBUFS);
652 		goto out;
653 	}
654 
655 	memcpy(n->primary_key, pkey, key_len);
656 	n->dev = dev;
657 	netdev_hold(dev, &n->dev_tracker, GFP_ATOMIC);
658 
659 	/* Protocol specific setup. */
660 	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
661 		rc = ERR_PTR(error);
662 		goto out_neigh_release;
663 	}
664 
665 	if (dev->netdev_ops->ndo_neigh_construct) {
666 		error = dev->netdev_ops->ndo_neigh_construct(dev, n);
667 		if (error < 0) {
668 			rc = ERR_PTR(error);
669 			goto out_neigh_release;
670 		}
671 	}
672 
673 	/* Device specific setup. */
674 	if (n->parms->neigh_setup &&
675 	    (error = n->parms->neigh_setup(n)) < 0) {
676 		rc = ERR_PTR(error);
677 		goto out_neigh_release;
678 	}
679 
680 	n->confirmed = jiffies - (NEIGH_VAR(n->parms, BASE_REACHABLE_TIME) << 1);
681 
682 	write_lock_bh(&tbl->lock);
683 	nht = rcu_dereference_protected(tbl->nht,
684 					lockdep_is_held(&tbl->lock));
685 
686 	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
687 		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
688 
689 	hash_val = tbl->hash(n->primary_key, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
690 
691 	if (n->parms->dead) {
692 		rc = ERR_PTR(-EINVAL);
693 		goto out_tbl_unlock;
694 	}
695 
696 	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
697 					    lockdep_is_held(&tbl->lock));
698 	     n1 != NULL;
699 	     n1 = rcu_dereference_protected(n1->next,
700 			lockdep_is_held(&tbl->lock))) {
701 		if (dev == n1->dev && !memcmp(n1->primary_key, n->primary_key, key_len)) {
702 			if (want_ref)
703 				neigh_hold(n1);
704 			rc = n1;
705 			goto out_tbl_unlock;
706 		}
707 	}
708 
709 	n->dead = 0;
710 	if (!exempt_from_gc)
711 		list_add_tail(&n->gc_list, &n->tbl->gc_list);
712 	if (n->flags & NTF_MANAGED)
713 		list_add_tail(&n->managed_list, &n->tbl->managed_list);
714 	if (want_ref)
715 		neigh_hold(n);
716 	rcu_assign_pointer(n->next,
717 			   rcu_dereference_protected(nht->hash_buckets[hash_val],
718 						     lockdep_is_held(&tbl->lock)));
719 	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
720 	write_unlock_bh(&tbl->lock);
721 	neigh_dbg(2, "neigh %p is created\n", n);
722 	rc = n;
723 out:
724 	return rc;
725 out_tbl_unlock:
726 	write_unlock_bh(&tbl->lock);
727 out_neigh_release:
728 	if (!exempt_from_gc)
729 		atomic_dec(&tbl->gc_entries);
730 	neigh_release(n);
731 	goto out;
732 }
733 
734 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
735 				 struct net_device *dev, bool want_ref)
736 {
737 	bool exempt_from_gc = !!(dev->flags & IFF_LOOPBACK);
738 
739 	return ___neigh_create(tbl, pkey, dev, 0, exempt_from_gc, want_ref);
740 }
741 EXPORT_SYMBOL(__neigh_create);
742 
743 static u32 pneigh_hash(const void *pkey, unsigned int key_len)
744 {
745 	u32 hash_val = *(u32 *)(pkey + key_len - 4);
746 	hash_val ^= (hash_val >> 16);
747 	hash_val ^= hash_val >> 8;
748 	hash_val ^= hash_val >> 4;
749 	hash_val &= PNEIGH_HASHMASK;
750 	return hash_val;
751 }
752 
753 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
754 					      struct net *net,
755 					      const void *pkey,
756 					      unsigned int key_len,
757 					      struct net_device *dev)
758 {
759 	while (n) {
760 		if (!memcmp(n->key, pkey, key_len) &&
761 		    net_eq(pneigh_net(n), net) &&
762 		    (n->dev == dev || !n->dev))
763 			return n;
764 		n = n->next;
765 	}
766 	return NULL;
767 }
768 
769 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
770 		struct net *net, const void *pkey, struct net_device *dev)
771 {
772 	unsigned int key_len = tbl->key_len;
773 	u32 hash_val = pneigh_hash(pkey, key_len);
774 
775 	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
776 				 net, pkey, key_len, dev);
777 }
778 EXPORT_SYMBOL_GPL(__pneigh_lookup);
779 
780 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
781 				    struct net *net, const void *pkey,
782 				    struct net_device *dev, int creat)
783 {
784 	struct pneigh_entry *n;
785 	unsigned int key_len = tbl->key_len;
786 	u32 hash_val = pneigh_hash(pkey, key_len);
787 
788 	read_lock_bh(&tbl->lock);
789 	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
790 			      net, pkey, key_len, dev);
791 	read_unlock_bh(&tbl->lock);
792 
793 	if (n || !creat)
794 		goto out;
795 
796 	ASSERT_RTNL();
797 
798 	n = kzalloc(sizeof(*n) + key_len, GFP_KERNEL);
799 	if (!n)
800 		goto out;
801 
802 	write_pnet(&n->net, net);
803 	memcpy(n->key, pkey, key_len);
804 	n->dev = dev;
805 	netdev_hold(dev, &n->dev_tracker, GFP_KERNEL);
806 
807 	if (tbl->pconstructor && tbl->pconstructor(n)) {
808 		netdev_put(dev, &n->dev_tracker);
809 		kfree(n);
810 		n = NULL;
811 		goto out;
812 	}
813 
814 	write_lock_bh(&tbl->lock);
815 	n->next = tbl->phash_buckets[hash_val];
816 	tbl->phash_buckets[hash_val] = n;
817 	write_unlock_bh(&tbl->lock);
818 out:
819 	return n;
820 }
821 EXPORT_SYMBOL(pneigh_lookup);
822 
823 
824 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
825 		  struct net_device *dev)
826 {
827 	struct pneigh_entry *n, **np;
828 	unsigned int key_len = tbl->key_len;
829 	u32 hash_val = pneigh_hash(pkey, key_len);
830 
831 	write_lock_bh(&tbl->lock);
832 	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
833 	     np = &n->next) {
834 		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
835 		    net_eq(pneigh_net(n), net)) {
836 			*np = n->next;
837 			write_unlock_bh(&tbl->lock);
838 			if (tbl->pdestructor)
839 				tbl->pdestructor(n);
840 			netdev_put(n->dev, &n->dev_tracker);
841 			kfree(n);
842 			return 0;
843 		}
844 	}
845 	write_unlock_bh(&tbl->lock);
846 	return -ENOENT;
847 }
848 
849 static int pneigh_ifdown_and_unlock(struct neigh_table *tbl,
850 				    struct net_device *dev)
851 {
852 	struct pneigh_entry *n, **np, *freelist = NULL;
853 	u32 h;
854 
855 	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
856 		np = &tbl->phash_buckets[h];
857 		while ((n = *np) != NULL) {
858 			if (!dev || n->dev == dev) {
859 				*np = n->next;
860 				n->next = freelist;
861 				freelist = n;
862 				continue;
863 			}
864 			np = &n->next;
865 		}
866 	}
867 	write_unlock_bh(&tbl->lock);
868 	while ((n = freelist)) {
869 		freelist = n->next;
870 		n->next = NULL;
871 		if (tbl->pdestructor)
872 			tbl->pdestructor(n);
873 		netdev_put(n->dev, &n->dev_tracker);
874 		kfree(n);
875 	}
876 	return -ENOENT;
877 }
878 
879 static void neigh_parms_destroy(struct neigh_parms *parms);
880 
881 static inline void neigh_parms_put(struct neigh_parms *parms)
882 {
883 	if (refcount_dec_and_test(&parms->refcnt))
884 		neigh_parms_destroy(parms);
885 }
886 
887 /*
888  *	neighbour must already be out of the table;
889  *
890  */
891 void neigh_destroy(struct neighbour *neigh)
892 {
893 	struct net_device *dev = neigh->dev;
894 
895 	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
896 
897 	if (!neigh->dead) {
898 		pr_warn("Destroying alive neighbour %p\n", neigh);
899 		dump_stack();
900 		return;
901 	}
902 
903 	if (neigh_del_timer(neigh))
904 		pr_warn("Impossible event\n");
905 
906 	write_lock_bh(&neigh->lock);
907 	__skb_queue_purge(&neigh->arp_queue);
908 	write_unlock_bh(&neigh->lock);
909 	neigh->arp_queue_len_bytes = 0;
910 
911 	if (dev->netdev_ops->ndo_neigh_destroy)
912 		dev->netdev_ops->ndo_neigh_destroy(dev, neigh);
913 
914 	netdev_put(dev, &neigh->dev_tracker);
915 	neigh_parms_put(neigh->parms);
916 
917 	neigh_dbg(2, "neigh %p is destroyed\n", neigh);
918 
919 	atomic_dec(&neigh->tbl->entries);
920 	kfree_rcu(neigh, rcu);
921 }
922 EXPORT_SYMBOL(neigh_destroy);
923 
924 /* Neighbour state is suspicious;
925    disable fast path.
926 
927    Called with write_locked neigh.
928  */
929 static void neigh_suspect(struct neighbour *neigh)
930 {
931 	neigh_dbg(2, "neigh %p is suspected\n", neigh);
932 
933 	WRITE_ONCE(neigh->output, neigh->ops->output);
934 }
935 
936 /* Neighbour state is OK;
937    enable fast path.
938 
939    Called with write_locked neigh.
940  */
941 static void neigh_connect(struct neighbour *neigh)
942 {
943 	neigh_dbg(2, "neigh %p is connected\n", neigh);
944 
945 	WRITE_ONCE(neigh->output, neigh->ops->connected_output);
946 }
947 
948 static void neigh_periodic_work(struct work_struct *work)
949 {
950 	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
951 	struct neighbour *n;
952 	struct neighbour __rcu **np;
953 	unsigned int i;
954 	struct neigh_hash_table *nht;
955 
956 	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
957 
958 	write_lock_bh(&tbl->lock);
959 	nht = rcu_dereference_protected(tbl->nht,
960 					lockdep_is_held(&tbl->lock));
961 
962 	/*
963 	 *	periodically recompute ReachableTime from random function
964 	 */
965 
966 	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
967 		struct neigh_parms *p;
968 
969 		WRITE_ONCE(tbl->last_rand, jiffies);
970 		list_for_each_entry(p, &tbl->parms_list, list)
971 			p->reachable_time =
972 				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
973 	}
974 
975 	if (atomic_read(&tbl->entries) < READ_ONCE(tbl->gc_thresh1))
976 		goto out;
977 
978 	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
979 		np = &nht->hash_buckets[i];
980 
981 		while ((n = rcu_dereference_protected(*np,
982 				lockdep_is_held(&tbl->lock))) != NULL) {
983 			unsigned int state;
984 
985 			write_lock(&n->lock);
986 
987 			state = n->nud_state;
988 			if ((state & (NUD_PERMANENT | NUD_IN_TIMER)) ||
989 			    (n->flags & NTF_EXT_LEARNED)) {
990 				write_unlock(&n->lock);
991 				goto next_elt;
992 			}
993 
994 			if (time_before(n->used, n->confirmed) &&
995 			    time_is_before_eq_jiffies(n->confirmed))
996 				n->used = n->confirmed;
997 
998 			if (refcount_read(&n->refcnt) == 1 &&
999 			    (state == NUD_FAILED ||
1000 			     !time_in_range_open(jiffies, n->used,
1001 						 n->used + NEIGH_VAR(n->parms, GC_STALETIME)))) {
1002 				rcu_assign_pointer(*np,
1003 					rcu_dereference_protected(n->next,
1004 						lockdep_is_held(&tbl->lock)));
1005 				neigh_mark_dead(n);
1006 				write_unlock(&n->lock);
1007 				neigh_cleanup_and_release(n);
1008 				continue;
1009 			}
1010 			write_unlock(&n->lock);
1011 
1012 next_elt:
1013 			np = &n->next;
1014 		}
1015 		/*
1016 		 * It's fine to release lock here, even if hash table
1017 		 * grows while we are preempted.
1018 		 */
1019 		write_unlock_bh(&tbl->lock);
1020 		cond_resched();
1021 		write_lock_bh(&tbl->lock);
1022 		nht = rcu_dereference_protected(tbl->nht,
1023 						lockdep_is_held(&tbl->lock));
1024 	}
1025 out:
1026 	/* Cycle through all hash buckets every BASE_REACHABLE_TIME/2 ticks.
1027 	 * ARP entry timeouts range from 1/2 BASE_REACHABLE_TIME to 3/2
1028 	 * BASE_REACHABLE_TIME.
1029 	 */
1030 	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1031 			      NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME) >> 1);
1032 	write_unlock_bh(&tbl->lock);
1033 }
1034 
1035 static __inline__ int neigh_max_probes(struct neighbour *n)
1036 {
1037 	struct neigh_parms *p = n->parms;
1038 	return NEIGH_VAR(p, UCAST_PROBES) + NEIGH_VAR(p, APP_PROBES) +
1039 	       (n->nud_state & NUD_PROBE ? NEIGH_VAR(p, MCAST_REPROBES) :
1040 	        NEIGH_VAR(p, MCAST_PROBES));
1041 }
1042 
1043 static void neigh_invalidate(struct neighbour *neigh)
1044 	__releases(neigh->lock)
1045 	__acquires(neigh->lock)
1046 {
1047 	struct sk_buff *skb;
1048 
1049 	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
1050 	neigh_dbg(2, "neigh %p is failed\n", neigh);
1051 	neigh->updated = jiffies;
1052 
1053 	/* It is very thin place. report_unreachable is very complicated
1054 	   routine. Particularly, it can hit the same neighbour entry!
1055 
1056 	   So that, we try to be accurate and avoid dead loop. --ANK
1057 	 */
1058 	while (neigh->nud_state == NUD_FAILED &&
1059 	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1060 		write_unlock(&neigh->lock);
1061 		neigh->ops->error_report(neigh, skb);
1062 		write_lock(&neigh->lock);
1063 	}
1064 	__skb_queue_purge(&neigh->arp_queue);
1065 	neigh->arp_queue_len_bytes = 0;
1066 }
1067 
1068 static void neigh_probe(struct neighbour *neigh)
1069 	__releases(neigh->lock)
1070 {
1071 	struct sk_buff *skb = skb_peek_tail(&neigh->arp_queue);
1072 	/* keep skb alive even if arp_queue overflows */
1073 	if (skb)
1074 		skb = skb_clone(skb, GFP_ATOMIC);
1075 	write_unlock(&neigh->lock);
1076 	if (neigh->ops->solicit)
1077 		neigh->ops->solicit(neigh, skb);
1078 	atomic_inc(&neigh->probes);
1079 	consume_skb(skb);
1080 }
1081 
1082 /* Called when a timer expires for a neighbour entry. */
1083 
1084 static void neigh_timer_handler(struct timer_list *t)
1085 {
1086 	unsigned long now, next;
1087 	struct neighbour *neigh = from_timer(neigh, t, timer);
1088 	unsigned int state;
1089 	int notify = 0;
1090 
1091 	write_lock(&neigh->lock);
1092 
1093 	state = neigh->nud_state;
1094 	now = jiffies;
1095 	next = now + HZ;
1096 
1097 	if (!(state & NUD_IN_TIMER))
1098 		goto out;
1099 
1100 	if (state & NUD_REACHABLE) {
1101 		if (time_before_eq(now,
1102 				   neigh->confirmed + neigh->parms->reachable_time)) {
1103 			neigh_dbg(2, "neigh %p is still alive\n", neigh);
1104 			next = neigh->confirmed + neigh->parms->reachable_time;
1105 		} else if (time_before_eq(now,
1106 					  neigh->used +
1107 					  NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1108 			neigh_dbg(2, "neigh %p is delayed\n", neigh);
1109 			WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1110 			neigh->updated = jiffies;
1111 			neigh_suspect(neigh);
1112 			next = now + NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME);
1113 		} else {
1114 			neigh_dbg(2, "neigh %p is suspected\n", neigh);
1115 			WRITE_ONCE(neigh->nud_state, NUD_STALE);
1116 			neigh->updated = jiffies;
1117 			neigh_suspect(neigh);
1118 			notify = 1;
1119 		}
1120 	} else if (state & NUD_DELAY) {
1121 		if (time_before_eq(now,
1122 				   neigh->confirmed +
1123 				   NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME))) {
1124 			neigh_dbg(2, "neigh %p is now reachable\n", neigh);
1125 			WRITE_ONCE(neigh->nud_state, NUD_REACHABLE);
1126 			neigh->updated = jiffies;
1127 			neigh_connect(neigh);
1128 			notify = 1;
1129 			next = neigh->confirmed + neigh->parms->reachable_time;
1130 		} else {
1131 			neigh_dbg(2, "neigh %p is probed\n", neigh);
1132 			WRITE_ONCE(neigh->nud_state, NUD_PROBE);
1133 			neigh->updated = jiffies;
1134 			atomic_set(&neigh->probes, 0);
1135 			notify = 1;
1136 			next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1137 					 HZ/100);
1138 		}
1139 	} else {
1140 		/* NUD_PROBE|NUD_INCOMPLETE */
1141 		next = now + max(NEIGH_VAR(neigh->parms, RETRANS_TIME), HZ/100);
1142 	}
1143 
1144 	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
1145 	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
1146 		WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1147 		notify = 1;
1148 		neigh_invalidate(neigh);
1149 		goto out;
1150 	}
1151 
1152 	if (neigh->nud_state & NUD_IN_TIMER) {
1153 		if (time_before(next, jiffies + HZ/100))
1154 			next = jiffies + HZ/100;
1155 		if (!mod_timer(&neigh->timer, next))
1156 			neigh_hold(neigh);
1157 	}
1158 	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
1159 		neigh_probe(neigh);
1160 	} else {
1161 out:
1162 		write_unlock(&neigh->lock);
1163 	}
1164 
1165 	if (notify)
1166 		neigh_update_notify(neigh, 0);
1167 
1168 	trace_neigh_timer_handler(neigh, 0);
1169 
1170 	neigh_release(neigh);
1171 }
1172 
1173 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb,
1174 		       const bool immediate_ok)
1175 {
1176 	int rc;
1177 	bool immediate_probe = false;
1178 
1179 	write_lock_bh(&neigh->lock);
1180 
1181 	rc = 0;
1182 	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
1183 		goto out_unlock_bh;
1184 	if (neigh->dead)
1185 		goto out_dead;
1186 
1187 	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
1188 		if (NEIGH_VAR(neigh->parms, MCAST_PROBES) +
1189 		    NEIGH_VAR(neigh->parms, APP_PROBES)) {
1190 			unsigned long next, now = jiffies;
1191 
1192 			atomic_set(&neigh->probes,
1193 				   NEIGH_VAR(neigh->parms, UCAST_PROBES));
1194 			neigh_del_timer(neigh);
1195 			WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1196 			neigh->updated = now;
1197 			if (!immediate_ok) {
1198 				next = now + 1;
1199 			} else {
1200 				immediate_probe = true;
1201 				next = now + max(NEIGH_VAR(neigh->parms,
1202 							   RETRANS_TIME),
1203 						 HZ / 100);
1204 			}
1205 			neigh_add_timer(neigh, next);
1206 		} else {
1207 			WRITE_ONCE(neigh->nud_state, NUD_FAILED);
1208 			neigh->updated = jiffies;
1209 			write_unlock_bh(&neigh->lock);
1210 
1211 			kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_FAILED);
1212 			return 1;
1213 		}
1214 	} else if (neigh->nud_state & NUD_STALE) {
1215 		neigh_dbg(2, "neigh %p is delayed\n", neigh);
1216 		neigh_del_timer(neigh);
1217 		WRITE_ONCE(neigh->nud_state, NUD_DELAY);
1218 		neigh->updated = jiffies;
1219 		neigh_add_timer(neigh, jiffies +
1220 				NEIGH_VAR(neigh->parms, DELAY_PROBE_TIME));
1221 	}
1222 
1223 	if (neigh->nud_state == NUD_INCOMPLETE) {
1224 		if (skb) {
1225 			while (neigh->arp_queue_len_bytes + skb->truesize >
1226 			       NEIGH_VAR(neigh->parms, QUEUE_LEN_BYTES)) {
1227 				struct sk_buff *buff;
1228 
1229 				buff = __skb_dequeue(&neigh->arp_queue);
1230 				if (!buff)
1231 					break;
1232 				neigh->arp_queue_len_bytes -= buff->truesize;
1233 				kfree_skb_reason(buff, SKB_DROP_REASON_NEIGH_QUEUEFULL);
1234 				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1235 			}
1236 			skb_dst_force(skb);
1237 			__skb_queue_tail(&neigh->arp_queue, skb);
1238 			neigh->arp_queue_len_bytes += skb->truesize;
1239 		}
1240 		rc = 1;
1241 	}
1242 out_unlock_bh:
1243 	if (immediate_probe)
1244 		neigh_probe(neigh);
1245 	else
1246 		write_unlock(&neigh->lock);
1247 	local_bh_enable();
1248 	trace_neigh_event_send_done(neigh, rc);
1249 	return rc;
1250 
1251 out_dead:
1252 	if (neigh->nud_state & NUD_STALE)
1253 		goto out_unlock_bh;
1254 	write_unlock_bh(&neigh->lock);
1255 	kfree_skb_reason(skb, SKB_DROP_REASON_NEIGH_DEAD);
1256 	trace_neigh_event_send_dead(neigh, 1);
1257 	return 1;
1258 }
1259 EXPORT_SYMBOL(__neigh_event_send);
1260 
1261 static void neigh_update_hhs(struct neighbour *neigh)
1262 {
1263 	struct hh_cache *hh;
1264 	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1265 		= NULL;
1266 
1267 	if (neigh->dev->header_ops)
1268 		update = neigh->dev->header_ops->cache_update;
1269 
1270 	if (update) {
1271 		hh = &neigh->hh;
1272 		if (READ_ONCE(hh->hh_len)) {
1273 			write_seqlock_bh(&hh->hh_lock);
1274 			update(hh, neigh->dev, neigh->ha);
1275 			write_sequnlock_bh(&hh->hh_lock);
1276 		}
1277 	}
1278 }
1279 
1280 /* Generic update routine.
1281    -- lladdr is new lladdr or NULL, if it is not supplied.
1282    -- new    is new state.
1283    -- flags
1284 	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1285 				if it is different.
1286 	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1287 				lladdr instead of overriding it
1288 				if it is different.
1289 	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1290 	NEIGH_UPDATE_F_USE	means that the entry is user triggered.
1291 	NEIGH_UPDATE_F_MANAGED	means that the entry will be auto-refreshed.
1292 	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1293 				NTF_ROUTER flag.
1294 	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1295 				a router.
1296 
1297    Caller MUST hold reference count on the entry.
1298  */
1299 static int __neigh_update(struct neighbour *neigh, const u8 *lladdr,
1300 			  u8 new, u32 flags, u32 nlmsg_pid,
1301 			  struct netlink_ext_ack *extack)
1302 {
1303 	bool gc_update = false, managed_update = false;
1304 	int update_isrouter = 0;
1305 	struct net_device *dev;
1306 	int err, notify = 0;
1307 	u8 old;
1308 
1309 	trace_neigh_update(neigh, lladdr, new, flags, nlmsg_pid);
1310 
1311 	write_lock_bh(&neigh->lock);
1312 
1313 	dev    = neigh->dev;
1314 	old    = neigh->nud_state;
1315 	err    = -EPERM;
1316 
1317 	if (neigh->dead) {
1318 		NL_SET_ERR_MSG(extack, "Neighbor entry is now dead");
1319 		new = old;
1320 		goto out;
1321 	}
1322 	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1323 	    (old & (NUD_NOARP | NUD_PERMANENT)))
1324 		goto out;
1325 
1326 	neigh_update_flags(neigh, flags, &notify, &gc_update, &managed_update);
1327 	if (flags & (NEIGH_UPDATE_F_USE | NEIGH_UPDATE_F_MANAGED)) {
1328 		new = old & ~NUD_PERMANENT;
1329 		WRITE_ONCE(neigh->nud_state, new);
1330 		err = 0;
1331 		goto out;
1332 	}
1333 
1334 	if (!(new & NUD_VALID)) {
1335 		neigh_del_timer(neigh);
1336 		if (old & NUD_CONNECTED)
1337 			neigh_suspect(neigh);
1338 		WRITE_ONCE(neigh->nud_state, new);
1339 		err = 0;
1340 		notify = old & NUD_VALID;
1341 		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1342 		    (new & NUD_FAILED)) {
1343 			neigh_invalidate(neigh);
1344 			notify = 1;
1345 		}
1346 		goto out;
1347 	}
1348 
1349 	/* Compare new lladdr with cached one */
1350 	if (!dev->addr_len) {
1351 		/* First case: device needs no address. */
1352 		lladdr = neigh->ha;
1353 	} else if (lladdr) {
1354 		/* The second case: if something is already cached
1355 		   and a new address is proposed:
1356 		   - compare new & old
1357 		   - if they are different, check override flag
1358 		 */
1359 		if ((old & NUD_VALID) &&
1360 		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1361 			lladdr = neigh->ha;
1362 	} else {
1363 		/* No address is supplied; if we know something,
1364 		   use it, otherwise discard the request.
1365 		 */
1366 		err = -EINVAL;
1367 		if (!(old & NUD_VALID)) {
1368 			NL_SET_ERR_MSG(extack, "No link layer address given");
1369 			goto out;
1370 		}
1371 		lladdr = neigh->ha;
1372 	}
1373 
1374 	/* Update confirmed timestamp for neighbour entry after we
1375 	 * received ARP packet even if it doesn't change IP to MAC binding.
1376 	 */
1377 	if (new & NUD_CONNECTED)
1378 		neigh->confirmed = jiffies;
1379 
1380 	/* If entry was valid and address is not changed,
1381 	   do not change entry state, if new one is STALE.
1382 	 */
1383 	err = 0;
1384 	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1385 	if (old & NUD_VALID) {
1386 		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1387 			update_isrouter = 0;
1388 			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1389 			    (old & NUD_CONNECTED)) {
1390 				lladdr = neigh->ha;
1391 				new = NUD_STALE;
1392 			} else
1393 				goto out;
1394 		} else {
1395 			if (lladdr == neigh->ha && new == NUD_STALE &&
1396 			    !(flags & NEIGH_UPDATE_F_ADMIN))
1397 				new = old;
1398 		}
1399 	}
1400 
1401 	/* Update timestamp only once we know we will make a change to the
1402 	 * neighbour entry. Otherwise we risk to move the locktime window with
1403 	 * noop updates and ignore relevant ARP updates.
1404 	 */
1405 	if (new != old || lladdr != neigh->ha)
1406 		neigh->updated = jiffies;
1407 
1408 	if (new != old) {
1409 		neigh_del_timer(neigh);
1410 		if (new & NUD_PROBE)
1411 			atomic_set(&neigh->probes, 0);
1412 		if (new & NUD_IN_TIMER)
1413 			neigh_add_timer(neigh, (jiffies +
1414 						((new & NUD_REACHABLE) ?
1415 						 neigh->parms->reachable_time :
1416 						 0)));
1417 		WRITE_ONCE(neigh->nud_state, new);
1418 		notify = 1;
1419 	}
1420 
1421 	if (lladdr != neigh->ha) {
1422 		write_seqlock(&neigh->ha_lock);
1423 		memcpy(&neigh->ha, lladdr, dev->addr_len);
1424 		write_sequnlock(&neigh->ha_lock);
1425 		neigh_update_hhs(neigh);
1426 		if (!(new & NUD_CONNECTED))
1427 			neigh->confirmed = jiffies -
1428 				      (NEIGH_VAR(neigh->parms, BASE_REACHABLE_TIME) << 1);
1429 		notify = 1;
1430 	}
1431 	if (new == old)
1432 		goto out;
1433 	if (new & NUD_CONNECTED)
1434 		neigh_connect(neigh);
1435 	else
1436 		neigh_suspect(neigh);
1437 	if (!(old & NUD_VALID)) {
1438 		struct sk_buff *skb;
1439 
1440 		/* Again: avoid dead loop if something went wrong */
1441 
1442 		while (neigh->nud_state & NUD_VALID &&
1443 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1444 			struct dst_entry *dst = skb_dst(skb);
1445 			struct neighbour *n2, *n1 = neigh;
1446 			write_unlock_bh(&neigh->lock);
1447 
1448 			rcu_read_lock();
1449 
1450 			/* Why not just use 'neigh' as-is?  The problem is that
1451 			 * things such as shaper, eql, and sch_teql can end up
1452 			 * using alternative, different, neigh objects to output
1453 			 * the packet in the output path.  So what we need to do
1454 			 * here is re-lookup the top-level neigh in the path so
1455 			 * we can reinject the packet there.
1456 			 */
1457 			n2 = NULL;
1458 			if (dst && dst->obsolete != DST_OBSOLETE_DEAD) {
1459 				n2 = dst_neigh_lookup_skb(dst, skb);
1460 				if (n2)
1461 					n1 = n2;
1462 			}
1463 			READ_ONCE(n1->output)(n1, skb);
1464 			if (n2)
1465 				neigh_release(n2);
1466 			rcu_read_unlock();
1467 
1468 			write_lock_bh(&neigh->lock);
1469 		}
1470 		__skb_queue_purge(&neigh->arp_queue);
1471 		neigh->arp_queue_len_bytes = 0;
1472 	}
1473 out:
1474 	if (update_isrouter)
1475 		neigh_update_is_router(neigh, flags, &notify);
1476 	write_unlock_bh(&neigh->lock);
1477 	if (((new ^ old) & NUD_PERMANENT) || gc_update)
1478 		neigh_update_gc_list(neigh);
1479 	if (managed_update)
1480 		neigh_update_managed_list(neigh);
1481 	if (notify)
1482 		neigh_update_notify(neigh, nlmsg_pid);
1483 	trace_neigh_update_done(neigh, err);
1484 	return err;
1485 }
1486 
1487 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1488 		 u32 flags, u32 nlmsg_pid)
1489 {
1490 	return __neigh_update(neigh, lladdr, new, flags, nlmsg_pid, NULL);
1491 }
1492 EXPORT_SYMBOL(neigh_update);
1493 
1494 /* Update the neigh to listen temporarily for probe responses, even if it is
1495  * in a NUD_FAILED state. The caller has to hold neigh->lock for writing.
1496  */
1497 void __neigh_set_probe_once(struct neighbour *neigh)
1498 {
1499 	if (neigh->dead)
1500 		return;
1501 	neigh->updated = jiffies;
1502 	if (!(neigh->nud_state & NUD_FAILED))
1503 		return;
1504 	WRITE_ONCE(neigh->nud_state, NUD_INCOMPLETE);
1505 	atomic_set(&neigh->probes, neigh_max_probes(neigh));
1506 	neigh_add_timer(neigh,
1507 			jiffies + max(NEIGH_VAR(neigh->parms, RETRANS_TIME),
1508 				      HZ/100));
1509 }
1510 EXPORT_SYMBOL(__neigh_set_probe_once);
1511 
1512 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1513 				 u8 *lladdr, void *saddr,
1514 				 struct net_device *dev)
1515 {
1516 	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1517 						 lladdr || !dev->addr_len);
1518 	if (neigh)
1519 		neigh_update(neigh, lladdr, NUD_STALE,
1520 			     NEIGH_UPDATE_F_OVERRIDE, 0);
1521 	return neigh;
1522 }
1523 EXPORT_SYMBOL(neigh_event_ns);
1524 
1525 /* called with read_lock_bh(&n->lock); */
1526 static void neigh_hh_init(struct neighbour *n)
1527 {
1528 	struct net_device *dev = n->dev;
1529 	__be16 prot = n->tbl->protocol;
1530 	struct hh_cache	*hh = &n->hh;
1531 
1532 	write_lock_bh(&n->lock);
1533 
1534 	/* Only one thread can come in here and initialize the
1535 	 * hh_cache entry.
1536 	 */
1537 	if (!hh->hh_len)
1538 		dev->header_ops->cache(n, hh, prot);
1539 
1540 	write_unlock_bh(&n->lock);
1541 }
1542 
1543 /* Slow and careful. */
1544 
1545 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1546 {
1547 	int rc = 0;
1548 
1549 	if (!neigh_event_send(neigh, skb)) {
1550 		int err;
1551 		struct net_device *dev = neigh->dev;
1552 		unsigned int seq;
1553 
1554 		if (dev->header_ops->cache && !READ_ONCE(neigh->hh.hh_len))
1555 			neigh_hh_init(neigh);
1556 
1557 		do {
1558 			__skb_pull(skb, skb_network_offset(skb));
1559 			seq = read_seqbegin(&neigh->ha_lock);
1560 			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1561 					      neigh->ha, NULL, skb->len);
1562 		} while (read_seqretry(&neigh->ha_lock, seq));
1563 
1564 		if (err >= 0)
1565 			rc = dev_queue_xmit(skb);
1566 		else
1567 			goto out_kfree_skb;
1568 	}
1569 out:
1570 	return rc;
1571 out_kfree_skb:
1572 	rc = -EINVAL;
1573 	kfree_skb(skb);
1574 	goto out;
1575 }
1576 EXPORT_SYMBOL(neigh_resolve_output);
1577 
1578 /* As fast as possible without hh cache */
1579 
1580 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1581 {
1582 	struct net_device *dev = neigh->dev;
1583 	unsigned int seq;
1584 	int err;
1585 
1586 	do {
1587 		__skb_pull(skb, skb_network_offset(skb));
1588 		seq = read_seqbegin(&neigh->ha_lock);
1589 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1590 				      neigh->ha, NULL, skb->len);
1591 	} while (read_seqretry(&neigh->ha_lock, seq));
1592 
1593 	if (err >= 0)
1594 		err = dev_queue_xmit(skb);
1595 	else {
1596 		err = -EINVAL;
1597 		kfree_skb(skb);
1598 	}
1599 	return err;
1600 }
1601 EXPORT_SYMBOL(neigh_connected_output);
1602 
1603 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1604 {
1605 	return dev_queue_xmit(skb);
1606 }
1607 EXPORT_SYMBOL(neigh_direct_output);
1608 
1609 static void neigh_managed_work(struct work_struct *work)
1610 {
1611 	struct neigh_table *tbl = container_of(work, struct neigh_table,
1612 					       managed_work.work);
1613 	struct neighbour *neigh;
1614 
1615 	write_lock_bh(&tbl->lock);
1616 	list_for_each_entry(neigh, &tbl->managed_list, managed_list)
1617 		neigh_event_send_probe(neigh, NULL, false);
1618 	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work,
1619 			   NEIGH_VAR(&tbl->parms, INTERVAL_PROBE_TIME_MS));
1620 	write_unlock_bh(&tbl->lock);
1621 }
1622 
1623 static void neigh_proxy_process(struct timer_list *t)
1624 {
1625 	struct neigh_table *tbl = from_timer(tbl, t, proxy_timer);
1626 	long sched_next = 0;
1627 	unsigned long now = jiffies;
1628 	struct sk_buff *skb, *n;
1629 
1630 	spin_lock(&tbl->proxy_queue.lock);
1631 
1632 	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1633 		long tdif = NEIGH_CB(skb)->sched_next - now;
1634 
1635 		if (tdif <= 0) {
1636 			struct net_device *dev = skb->dev;
1637 
1638 			neigh_parms_qlen_dec(dev, tbl->family);
1639 			__skb_unlink(skb, &tbl->proxy_queue);
1640 
1641 			if (tbl->proxy_redo && netif_running(dev)) {
1642 				rcu_read_lock();
1643 				tbl->proxy_redo(skb);
1644 				rcu_read_unlock();
1645 			} else {
1646 				kfree_skb(skb);
1647 			}
1648 
1649 			dev_put(dev);
1650 		} else if (!sched_next || tdif < sched_next)
1651 			sched_next = tdif;
1652 	}
1653 	del_timer(&tbl->proxy_timer);
1654 	if (sched_next)
1655 		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1656 	spin_unlock(&tbl->proxy_queue.lock);
1657 }
1658 
1659 static unsigned long neigh_proxy_delay(struct neigh_parms *p)
1660 {
1661 	/* If proxy_delay is zero, do not call get_random_u32_below()
1662 	 * as it is undefined behavior.
1663 	 */
1664 	unsigned long proxy_delay = NEIGH_VAR(p, PROXY_DELAY);
1665 
1666 	return proxy_delay ?
1667 	       jiffies + get_random_u32_below(proxy_delay) : jiffies;
1668 }
1669 
1670 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1671 		    struct sk_buff *skb)
1672 {
1673 	unsigned long sched_next = neigh_proxy_delay(p);
1674 
1675 	if (p->qlen > NEIGH_VAR(p, PROXY_QLEN)) {
1676 		kfree_skb(skb);
1677 		return;
1678 	}
1679 
1680 	NEIGH_CB(skb)->sched_next = sched_next;
1681 	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1682 
1683 	spin_lock(&tbl->proxy_queue.lock);
1684 	if (del_timer(&tbl->proxy_timer)) {
1685 		if (time_before(tbl->proxy_timer.expires, sched_next))
1686 			sched_next = tbl->proxy_timer.expires;
1687 	}
1688 	skb_dst_drop(skb);
1689 	dev_hold(skb->dev);
1690 	__skb_queue_tail(&tbl->proxy_queue, skb);
1691 	p->qlen++;
1692 	mod_timer(&tbl->proxy_timer, sched_next);
1693 	spin_unlock(&tbl->proxy_queue.lock);
1694 }
1695 EXPORT_SYMBOL(pneigh_enqueue);
1696 
1697 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1698 						      struct net *net, int ifindex)
1699 {
1700 	struct neigh_parms *p;
1701 
1702 	list_for_each_entry(p, &tbl->parms_list, list) {
1703 		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1704 		    (!p->dev && !ifindex && net_eq(net, &init_net)))
1705 			return p;
1706 	}
1707 
1708 	return NULL;
1709 }
1710 
1711 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1712 				      struct neigh_table *tbl)
1713 {
1714 	struct neigh_parms *p;
1715 	struct net *net = dev_net(dev);
1716 	const struct net_device_ops *ops = dev->netdev_ops;
1717 
1718 	p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL);
1719 	if (p) {
1720 		p->tbl		  = tbl;
1721 		refcount_set(&p->refcnt, 1);
1722 		p->reachable_time =
1723 				neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
1724 		p->qlen = 0;
1725 		netdev_hold(dev, &p->dev_tracker, GFP_KERNEL);
1726 		p->dev = dev;
1727 		write_pnet(&p->net, net);
1728 		p->sysctl_table = NULL;
1729 
1730 		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1731 			netdev_put(dev, &p->dev_tracker);
1732 			kfree(p);
1733 			return NULL;
1734 		}
1735 
1736 		write_lock_bh(&tbl->lock);
1737 		list_add(&p->list, &tbl->parms.list);
1738 		write_unlock_bh(&tbl->lock);
1739 
1740 		neigh_parms_data_state_cleanall(p);
1741 	}
1742 	return p;
1743 }
1744 EXPORT_SYMBOL(neigh_parms_alloc);
1745 
1746 static void neigh_rcu_free_parms(struct rcu_head *head)
1747 {
1748 	struct neigh_parms *parms =
1749 		container_of(head, struct neigh_parms, rcu_head);
1750 
1751 	neigh_parms_put(parms);
1752 }
1753 
1754 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1755 {
1756 	if (!parms || parms == &tbl->parms)
1757 		return;
1758 	write_lock_bh(&tbl->lock);
1759 	list_del(&parms->list);
1760 	parms->dead = 1;
1761 	write_unlock_bh(&tbl->lock);
1762 	netdev_put(parms->dev, &parms->dev_tracker);
1763 	call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1764 }
1765 EXPORT_SYMBOL(neigh_parms_release);
1766 
1767 static void neigh_parms_destroy(struct neigh_parms *parms)
1768 {
1769 	kfree(parms);
1770 }
1771 
1772 static struct lock_class_key neigh_table_proxy_queue_class;
1773 
1774 static struct neigh_table *neigh_tables[NEIGH_NR_TABLES] __read_mostly;
1775 
1776 void neigh_table_init(int index, struct neigh_table *tbl)
1777 {
1778 	unsigned long now = jiffies;
1779 	unsigned long phsize;
1780 
1781 	INIT_LIST_HEAD(&tbl->parms_list);
1782 	INIT_LIST_HEAD(&tbl->gc_list);
1783 	INIT_LIST_HEAD(&tbl->managed_list);
1784 
1785 	list_add(&tbl->parms.list, &tbl->parms_list);
1786 	write_pnet(&tbl->parms.net, &init_net);
1787 	refcount_set(&tbl->parms.refcnt, 1);
1788 	tbl->parms.reachable_time =
1789 			  neigh_rand_reach_time(NEIGH_VAR(&tbl->parms, BASE_REACHABLE_TIME));
1790 	tbl->parms.qlen = 0;
1791 
1792 	tbl->stats = alloc_percpu(struct neigh_statistics);
1793 	if (!tbl->stats)
1794 		panic("cannot create neighbour cache statistics");
1795 
1796 #ifdef CONFIG_PROC_FS
1797 	if (!proc_create_seq_data(tbl->id, 0, init_net.proc_net_stat,
1798 			      &neigh_stat_seq_ops, tbl))
1799 		panic("cannot create neighbour proc dir entry");
1800 #endif
1801 
1802 	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1803 
1804 	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1805 	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1806 
1807 	if (!tbl->nht || !tbl->phash_buckets)
1808 		panic("cannot allocate neighbour cache hashes");
1809 
1810 	if (!tbl->entry_size)
1811 		tbl->entry_size = ALIGN(offsetof(struct neighbour, primary_key) +
1812 					tbl->key_len, NEIGH_PRIV_ALIGN);
1813 	else
1814 		WARN_ON(tbl->entry_size % NEIGH_PRIV_ALIGN);
1815 
1816 	rwlock_init(&tbl->lock);
1817 
1818 	INIT_DEFERRABLE_WORK(&tbl->gc_work, neigh_periodic_work);
1819 	queue_delayed_work(system_power_efficient_wq, &tbl->gc_work,
1820 			tbl->parms.reachable_time);
1821 	INIT_DEFERRABLE_WORK(&tbl->managed_work, neigh_managed_work);
1822 	queue_delayed_work(system_power_efficient_wq, &tbl->managed_work, 0);
1823 
1824 	timer_setup(&tbl->proxy_timer, neigh_proxy_process, 0);
1825 	skb_queue_head_init_class(&tbl->proxy_queue,
1826 			&neigh_table_proxy_queue_class);
1827 
1828 	tbl->last_flush = now;
1829 	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1830 
1831 	neigh_tables[index] = tbl;
1832 }
1833 EXPORT_SYMBOL(neigh_table_init);
1834 
1835 int neigh_table_clear(int index, struct neigh_table *tbl)
1836 {
1837 	neigh_tables[index] = NULL;
1838 	/* It is not clean... Fix it to unload IPv6 module safely */
1839 	cancel_delayed_work_sync(&tbl->managed_work);
1840 	cancel_delayed_work_sync(&tbl->gc_work);
1841 	del_timer_sync(&tbl->proxy_timer);
1842 	pneigh_queue_purge(&tbl->proxy_queue, NULL, tbl->family);
1843 	neigh_ifdown(tbl, NULL);
1844 	if (atomic_read(&tbl->entries))
1845 		pr_crit("neighbour leakage\n");
1846 
1847 	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1848 		 neigh_hash_free_rcu);
1849 	tbl->nht = NULL;
1850 
1851 	kfree(tbl->phash_buckets);
1852 	tbl->phash_buckets = NULL;
1853 
1854 	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1855 
1856 	free_percpu(tbl->stats);
1857 	tbl->stats = NULL;
1858 
1859 	return 0;
1860 }
1861 EXPORT_SYMBOL(neigh_table_clear);
1862 
1863 static struct neigh_table *neigh_find_table(int family)
1864 {
1865 	struct neigh_table *tbl = NULL;
1866 
1867 	switch (family) {
1868 	case AF_INET:
1869 		tbl = neigh_tables[NEIGH_ARP_TABLE];
1870 		break;
1871 	case AF_INET6:
1872 		tbl = neigh_tables[NEIGH_ND_TABLE];
1873 		break;
1874 	}
1875 
1876 	return tbl;
1877 }
1878 
1879 const struct nla_policy nda_policy[NDA_MAX+1] = {
1880 	[NDA_UNSPEC]		= { .strict_start_type = NDA_NH_ID },
1881 	[NDA_DST]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1882 	[NDA_LLADDR]		= { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
1883 	[NDA_CACHEINFO]		= { .len = sizeof(struct nda_cacheinfo) },
1884 	[NDA_PROBES]		= { .type = NLA_U32 },
1885 	[NDA_VLAN]		= { .type = NLA_U16 },
1886 	[NDA_PORT]		= { .type = NLA_U16 },
1887 	[NDA_VNI]		= { .type = NLA_U32 },
1888 	[NDA_IFINDEX]		= { .type = NLA_U32 },
1889 	[NDA_MASTER]		= { .type = NLA_U32 },
1890 	[NDA_PROTOCOL]		= { .type = NLA_U8 },
1891 	[NDA_NH_ID]		= { .type = NLA_U32 },
1892 	[NDA_FLAGS_EXT]		= NLA_POLICY_MASK(NLA_U32, NTF_EXT_MASK),
1893 	[NDA_FDB_EXT_ATTRS]	= { .type = NLA_NESTED },
1894 };
1895 
1896 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh,
1897 			struct netlink_ext_ack *extack)
1898 {
1899 	struct net *net = sock_net(skb->sk);
1900 	struct ndmsg *ndm;
1901 	struct nlattr *dst_attr;
1902 	struct neigh_table *tbl;
1903 	struct neighbour *neigh;
1904 	struct net_device *dev = NULL;
1905 	int err = -EINVAL;
1906 
1907 	ASSERT_RTNL();
1908 	if (nlmsg_len(nlh) < sizeof(*ndm))
1909 		goto out;
1910 
1911 	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1912 	if (!dst_attr) {
1913 		NL_SET_ERR_MSG(extack, "Network address not specified");
1914 		goto out;
1915 	}
1916 
1917 	ndm = nlmsg_data(nlh);
1918 	if (ndm->ndm_ifindex) {
1919 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1920 		if (dev == NULL) {
1921 			err = -ENODEV;
1922 			goto out;
1923 		}
1924 	}
1925 
1926 	tbl = neigh_find_table(ndm->ndm_family);
1927 	if (tbl == NULL)
1928 		return -EAFNOSUPPORT;
1929 
1930 	if (nla_len(dst_attr) < (int)tbl->key_len) {
1931 		NL_SET_ERR_MSG(extack, "Invalid network address");
1932 		goto out;
1933 	}
1934 
1935 	if (ndm->ndm_flags & NTF_PROXY) {
1936 		err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1937 		goto out;
1938 	}
1939 
1940 	if (dev == NULL)
1941 		goto out;
1942 
1943 	neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1944 	if (neigh == NULL) {
1945 		err = -ENOENT;
1946 		goto out;
1947 	}
1948 
1949 	err = __neigh_update(neigh, NULL, NUD_FAILED,
1950 			     NEIGH_UPDATE_F_OVERRIDE | NEIGH_UPDATE_F_ADMIN,
1951 			     NETLINK_CB(skb).portid, extack);
1952 	write_lock_bh(&tbl->lock);
1953 	neigh_release(neigh);
1954 	neigh_remove_one(neigh, tbl);
1955 	write_unlock_bh(&tbl->lock);
1956 
1957 out:
1958 	return err;
1959 }
1960 
1961 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh,
1962 		     struct netlink_ext_ack *extack)
1963 {
1964 	int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE |
1965 		    NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1966 	struct net *net = sock_net(skb->sk);
1967 	struct ndmsg *ndm;
1968 	struct nlattr *tb[NDA_MAX+1];
1969 	struct neigh_table *tbl;
1970 	struct net_device *dev = NULL;
1971 	struct neighbour *neigh;
1972 	void *dst, *lladdr;
1973 	u8 protocol = 0;
1974 	u32 ndm_flags;
1975 	int err;
1976 
1977 	ASSERT_RTNL();
1978 	err = nlmsg_parse_deprecated(nlh, sizeof(*ndm), tb, NDA_MAX,
1979 				     nda_policy, extack);
1980 	if (err < 0)
1981 		goto out;
1982 
1983 	err = -EINVAL;
1984 	if (!tb[NDA_DST]) {
1985 		NL_SET_ERR_MSG(extack, "Network address not specified");
1986 		goto out;
1987 	}
1988 
1989 	ndm = nlmsg_data(nlh);
1990 	ndm_flags = ndm->ndm_flags;
1991 	if (tb[NDA_FLAGS_EXT]) {
1992 		u32 ext = nla_get_u32(tb[NDA_FLAGS_EXT]);
1993 
1994 		BUILD_BUG_ON(sizeof(neigh->flags) * BITS_PER_BYTE <
1995 			     (sizeof(ndm->ndm_flags) * BITS_PER_BYTE +
1996 			      hweight32(NTF_EXT_MASK)));
1997 		ndm_flags |= (ext << NTF_EXT_SHIFT);
1998 	}
1999 	if (ndm->ndm_ifindex) {
2000 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
2001 		if (dev == NULL) {
2002 			err = -ENODEV;
2003 			goto out;
2004 		}
2005 
2006 		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) {
2007 			NL_SET_ERR_MSG(extack, "Invalid link address");
2008 			goto out;
2009 		}
2010 	}
2011 
2012 	tbl = neigh_find_table(ndm->ndm_family);
2013 	if (tbl == NULL)
2014 		return -EAFNOSUPPORT;
2015 
2016 	if (nla_len(tb[NDA_DST]) < (int)tbl->key_len) {
2017 		NL_SET_ERR_MSG(extack, "Invalid network address");
2018 		goto out;
2019 	}
2020 
2021 	dst = nla_data(tb[NDA_DST]);
2022 	lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
2023 
2024 	if (tb[NDA_PROTOCOL])
2025 		protocol = nla_get_u8(tb[NDA_PROTOCOL]);
2026 	if (ndm_flags & NTF_PROXY) {
2027 		struct pneigh_entry *pn;
2028 
2029 		if (ndm_flags & NTF_MANAGED) {
2030 			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag combination");
2031 			goto out;
2032 		}
2033 
2034 		err = -ENOBUFS;
2035 		pn = pneigh_lookup(tbl, net, dst, dev, 1);
2036 		if (pn) {
2037 			pn->flags = ndm_flags;
2038 			if (protocol)
2039 				pn->protocol = protocol;
2040 			err = 0;
2041 		}
2042 		goto out;
2043 	}
2044 
2045 	if (!dev) {
2046 		NL_SET_ERR_MSG(extack, "Device not specified");
2047 		goto out;
2048 	}
2049 
2050 	if (tbl->allow_add && !tbl->allow_add(dev, extack)) {
2051 		err = -EINVAL;
2052 		goto out;
2053 	}
2054 
2055 	neigh = neigh_lookup(tbl, dst, dev);
2056 	if (neigh == NULL) {
2057 		bool ndm_permanent  = ndm->ndm_state & NUD_PERMANENT;
2058 		bool exempt_from_gc = ndm_permanent ||
2059 				      ndm_flags & NTF_EXT_LEARNED;
2060 
2061 		if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
2062 			err = -ENOENT;
2063 			goto out;
2064 		}
2065 		if (ndm_permanent && (ndm_flags & NTF_MANAGED)) {
2066 			NL_SET_ERR_MSG(extack, "Invalid NTF_* flag for permanent entry");
2067 			err = -EINVAL;
2068 			goto out;
2069 		}
2070 
2071 		neigh = ___neigh_create(tbl, dst, dev,
2072 					ndm_flags &
2073 					(NTF_EXT_LEARNED | NTF_MANAGED),
2074 					exempt_from_gc, true);
2075 		if (IS_ERR(neigh)) {
2076 			err = PTR_ERR(neigh);
2077 			goto out;
2078 		}
2079 	} else {
2080 		if (nlh->nlmsg_flags & NLM_F_EXCL) {
2081 			err = -EEXIST;
2082 			neigh_release(neigh);
2083 			goto out;
2084 		}
2085 
2086 		if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
2087 			flags &= ~(NEIGH_UPDATE_F_OVERRIDE |
2088 				   NEIGH_UPDATE_F_OVERRIDE_ISROUTER);
2089 	}
2090 
2091 	if (protocol)
2092 		neigh->protocol = protocol;
2093 	if (ndm_flags & NTF_EXT_LEARNED)
2094 		flags |= NEIGH_UPDATE_F_EXT_LEARNED;
2095 	if (ndm_flags & NTF_ROUTER)
2096 		flags |= NEIGH_UPDATE_F_ISROUTER;
2097 	if (ndm_flags & NTF_MANAGED)
2098 		flags |= NEIGH_UPDATE_F_MANAGED;
2099 	if (ndm_flags & NTF_USE)
2100 		flags |= NEIGH_UPDATE_F_USE;
2101 
2102 	err = __neigh_update(neigh, lladdr, ndm->ndm_state, flags,
2103 			     NETLINK_CB(skb).portid, extack);
2104 	if (!err && ndm_flags & (NTF_USE | NTF_MANAGED)) {
2105 		neigh_event_send(neigh, NULL);
2106 		err = 0;
2107 	}
2108 	neigh_release(neigh);
2109 out:
2110 	return err;
2111 }
2112 
2113 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
2114 {
2115 	struct nlattr *nest;
2116 
2117 	nest = nla_nest_start_noflag(skb, NDTA_PARMS);
2118 	if (nest == NULL)
2119 		return -ENOBUFS;
2120 
2121 	if ((parms->dev &&
2122 	     nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
2123 	    nla_put_u32(skb, NDTPA_REFCNT, refcount_read(&parms->refcnt)) ||
2124 	    nla_put_u32(skb, NDTPA_QUEUE_LENBYTES,
2125 			NEIGH_VAR(parms, QUEUE_LEN_BYTES)) ||
2126 	    /* approximative value for deprecated QUEUE_LEN (in packets) */
2127 	    nla_put_u32(skb, NDTPA_QUEUE_LEN,
2128 			NEIGH_VAR(parms, QUEUE_LEN_BYTES) / SKB_TRUESIZE(ETH_FRAME_LEN)) ||
2129 	    nla_put_u32(skb, NDTPA_PROXY_QLEN, NEIGH_VAR(parms, PROXY_QLEN)) ||
2130 	    nla_put_u32(skb, NDTPA_APP_PROBES, NEIGH_VAR(parms, APP_PROBES)) ||
2131 	    nla_put_u32(skb, NDTPA_UCAST_PROBES,
2132 			NEIGH_VAR(parms, UCAST_PROBES)) ||
2133 	    nla_put_u32(skb, NDTPA_MCAST_PROBES,
2134 			NEIGH_VAR(parms, MCAST_PROBES)) ||
2135 	    nla_put_u32(skb, NDTPA_MCAST_REPROBES,
2136 			NEIGH_VAR(parms, MCAST_REPROBES)) ||
2137 	    nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time,
2138 			  NDTPA_PAD) ||
2139 	    nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
2140 			  NEIGH_VAR(parms, BASE_REACHABLE_TIME), NDTPA_PAD) ||
2141 	    nla_put_msecs(skb, NDTPA_GC_STALETIME,
2142 			  NEIGH_VAR(parms, GC_STALETIME), NDTPA_PAD) ||
2143 	    nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
2144 			  NEIGH_VAR(parms, DELAY_PROBE_TIME), NDTPA_PAD) ||
2145 	    nla_put_msecs(skb, NDTPA_RETRANS_TIME,
2146 			  NEIGH_VAR(parms, RETRANS_TIME), NDTPA_PAD) ||
2147 	    nla_put_msecs(skb, NDTPA_ANYCAST_DELAY,
2148 			  NEIGH_VAR(parms, ANYCAST_DELAY), NDTPA_PAD) ||
2149 	    nla_put_msecs(skb, NDTPA_PROXY_DELAY,
2150 			  NEIGH_VAR(parms, PROXY_DELAY), NDTPA_PAD) ||
2151 	    nla_put_msecs(skb, NDTPA_LOCKTIME,
2152 			  NEIGH_VAR(parms, LOCKTIME), NDTPA_PAD) ||
2153 	    nla_put_msecs(skb, NDTPA_INTERVAL_PROBE_TIME_MS,
2154 			  NEIGH_VAR(parms, INTERVAL_PROBE_TIME_MS), NDTPA_PAD))
2155 		goto nla_put_failure;
2156 	return nla_nest_end(skb, nest);
2157 
2158 nla_put_failure:
2159 	nla_nest_cancel(skb, nest);
2160 	return -EMSGSIZE;
2161 }
2162 
2163 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
2164 			      u32 pid, u32 seq, int type, int flags)
2165 {
2166 	struct nlmsghdr *nlh;
2167 	struct ndtmsg *ndtmsg;
2168 
2169 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2170 	if (nlh == NULL)
2171 		return -EMSGSIZE;
2172 
2173 	ndtmsg = nlmsg_data(nlh);
2174 
2175 	read_lock_bh(&tbl->lock);
2176 	ndtmsg->ndtm_family = tbl->family;
2177 	ndtmsg->ndtm_pad1   = 0;
2178 	ndtmsg->ndtm_pad2   = 0;
2179 
2180 	if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
2181 	    nla_put_msecs(skb, NDTA_GC_INTERVAL, READ_ONCE(tbl->gc_interval),
2182 			  NDTA_PAD) ||
2183 	    nla_put_u32(skb, NDTA_THRESH1, READ_ONCE(tbl->gc_thresh1)) ||
2184 	    nla_put_u32(skb, NDTA_THRESH2, READ_ONCE(tbl->gc_thresh2)) ||
2185 	    nla_put_u32(skb, NDTA_THRESH3, READ_ONCE(tbl->gc_thresh3)))
2186 		goto nla_put_failure;
2187 	{
2188 		unsigned long now = jiffies;
2189 		long flush_delta = now - READ_ONCE(tbl->last_flush);
2190 		long rand_delta = now - READ_ONCE(tbl->last_rand);
2191 		struct neigh_hash_table *nht;
2192 		struct ndt_config ndc = {
2193 			.ndtc_key_len		= tbl->key_len,
2194 			.ndtc_entry_size	= tbl->entry_size,
2195 			.ndtc_entries		= atomic_read(&tbl->entries),
2196 			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
2197 			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
2198 			.ndtc_proxy_qlen	= READ_ONCE(tbl->proxy_queue.qlen),
2199 		};
2200 
2201 		rcu_read_lock();
2202 		nht = rcu_dereference(tbl->nht);
2203 		ndc.ndtc_hash_rnd = nht->hash_rnd[0];
2204 		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
2205 		rcu_read_unlock();
2206 
2207 		if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
2208 			goto nla_put_failure;
2209 	}
2210 
2211 	{
2212 		int cpu;
2213 		struct ndt_stats ndst;
2214 
2215 		memset(&ndst, 0, sizeof(ndst));
2216 
2217 		for_each_possible_cpu(cpu) {
2218 			struct neigh_statistics	*st;
2219 
2220 			st = per_cpu_ptr(tbl->stats, cpu);
2221 			ndst.ndts_allocs		+= READ_ONCE(st->allocs);
2222 			ndst.ndts_destroys		+= READ_ONCE(st->destroys);
2223 			ndst.ndts_hash_grows		+= READ_ONCE(st->hash_grows);
2224 			ndst.ndts_res_failed		+= READ_ONCE(st->res_failed);
2225 			ndst.ndts_lookups		+= READ_ONCE(st->lookups);
2226 			ndst.ndts_hits			+= READ_ONCE(st->hits);
2227 			ndst.ndts_rcv_probes_mcast	+= READ_ONCE(st->rcv_probes_mcast);
2228 			ndst.ndts_rcv_probes_ucast	+= READ_ONCE(st->rcv_probes_ucast);
2229 			ndst.ndts_periodic_gc_runs	+= READ_ONCE(st->periodic_gc_runs);
2230 			ndst.ndts_forced_gc_runs	+= READ_ONCE(st->forced_gc_runs);
2231 			ndst.ndts_table_fulls		+= READ_ONCE(st->table_fulls);
2232 		}
2233 
2234 		if (nla_put_64bit(skb, NDTA_STATS, sizeof(ndst), &ndst,
2235 				  NDTA_PAD))
2236 			goto nla_put_failure;
2237 	}
2238 
2239 	BUG_ON(tbl->parms.dev);
2240 	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
2241 		goto nla_put_failure;
2242 
2243 	read_unlock_bh(&tbl->lock);
2244 	nlmsg_end(skb, nlh);
2245 	return 0;
2246 
2247 nla_put_failure:
2248 	read_unlock_bh(&tbl->lock);
2249 	nlmsg_cancel(skb, nlh);
2250 	return -EMSGSIZE;
2251 }
2252 
2253 static int neightbl_fill_param_info(struct sk_buff *skb,
2254 				    struct neigh_table *tbl,
2255 				    struct neigh_parms *parms,
2256 				    u32 pid, u32 seq, int type,
2257 				    unsigned int flags)
2258 {
2259 	struct ndtmsg *ndtmsg;
2260 	struct nlmsghdr *nlh;
2261 
2262 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
2263 	if (nlh == NULL)
2264 		return -EMSGSIZE;
2265 
2266 	ndtmsg = nlmsg_data(nlh);
2267 
2268 	read_lock_bh(&tbl->lock);
2269 	ndtmsg->ndtm_family = tbl->family;
2270 	ndtmsg->ndtm_pad1   = 0;
2271 	ndtmsg->ndtm_pad2   = 0;
2272 
2273 	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
2274 	    neightbl_fill_parms(skb, parms) < 0)
2275 		goto errout;
2276 
2277 	read_unlock_bh(&tbl->lock);
2278 	nlmsg_end(skb, nlh);
2279 	return 0;
2280 errout:
2281 	read_unlock_bh(&tbl->lock);
2282 	nlmsg_cancel(skb, nlh);
2283 	return -EMSGSIZE;
2284 }
2285 
2286 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
2287 	[NDTA_NAME]		= { .type = NLA_STRING },
2288 	[NDTA_THRESH1]		= { .type = NLA_U32 },
2289 	[NDTA_THRESH2]		= { .type = NLA_U32 },
2290 	[NDTA_THRESH3]		= { .type = NLA_U32 },
2291 	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
2292 	[NDTA_PARMS]		= { .type = NLA_NESTED },
2293 };
2294 
2295 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
2296 	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
2297 	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
2298 	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
2299 	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
2300 	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
2301 	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
2302 	[NDTPA_MCAST_REPROBES]		= { .type = NLA_U32 },
2303 	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
2304 	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
2305 	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
2306 	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
2307 	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
2308 	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
2309 	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
2310 	[NDTPA_INTERVAL_PROBE_TIME_MS]	= { .type = NLA_U64, .min = 1 },
2311 };
2312 
2313 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh,
2314 			struct netlink_ext_ack *extack)
2315 {
2316 	struct net *net = sock_net(skb->sk);
2317 	struct neigh_table *tbl;
2318 	struct ndtmsg *ndtmsg;
2319 	struct nlattr *tb[NDTA_MAX+1];
2320 	bool found = false;
2321 	int err, tidx;
2322 
2323 	err = nlmsg_parse_deprecated(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
2324 				     nl_neightbl_policy, extack);
2325 	if (err < 0)
2326 		goto errout;
2327 
2328 	if (tb[NDTA_NAME] == NULL) {
2329 		err = -EINVAL;
2330 		goto errout;
2331 	}
2332 
2333 	ndtmsg = nlmsg_data(nlh);
2334 
2335 	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2336 		tbl = neigh_tables[tidx];
2337 		if (!tbl)
2338 			continue;
2339 		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
2340 			continue;
2341 		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) {
2342 			found = true;
2343 			break;
2344 		}
2345 	}
2346 
2347 	if (!found)
2348 		return -ENOENT;
2349 
2350 	/*
2351 	 * We acquire tbl->lock to be nice to the periodic timers and
2352 	 * make sure they always see a consistent set of values.
2353 	 */
2354 	write_lock_bh(&tbl->lock);
2355 
2356 	if (tb[NDTA_PARMS]) {
2357 		struct nlattr *tbp[NDTPA_MAX+1];
2358 		struct neigh_parms *p;
2359 		int i, ifindex = 0;
2360 
2361 		err = nla_parse_nested_deprecated(tbp, NDTPA_MAX,
2362 						  tb[NDTA_PARMS],
2363 						  nl_ntbl_parm_policy, extack);
2364 		if (err < 0)
2365 			goto errout_tbl_lock;
2366 
2367 		if (tbp[NDTPA_IFINDEX])
2368 			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2369 
2370 		p = lookup_neigh_parms(tbl, net, ifindex);
2371 		if (p == NULL) {
2372 			err = -ENOENT;
2373 			goto errout_tbl_lock;
2374 		}
2375 
2376 		for (i = 1; i <= NDTPA_MAX; i++) {
2377 			if (tbp[i] == NULL)
2378 				continue;
2379 
2380 			switch (i) {
2381 			case NDTPA_QUEUE_LEN:
2382 				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2383 					      nla_get_u32(tbp[i]) *
2384 					      SKB_TRUESIZE(ETH_FRAME_LEN));
2385 				break;
2386 			case NDTPA_QUEUE_LENBYTES:
2387 				NEIGH_VAR_SET(p, QUEUE_LEN_BYTES,
2388 					      nla_get_u32(tbp[i]));
2389 				break;
2390 			case NDTPA_PROXY_QLEN:
2391 				NEIGH_VAR_SET(p, PROXY_QLEN,
2392 					      nla_get_u32(tbp[i]));
2393 				break;
2394 			case NDTPA_APP_PROBES:
2395 				NEIGH_VAR_SET(p, APP_PROBES,
2396 					      nla_get_u32(tbp[i]));
2397 				break;
2398 			case NDTPA_UCAST_PROBES:
2399 				NEIGH_VAR_SET(p, UCAST_PROBES,
2400 					      nla_get_u32(tbp[i]));
2401 				break;
2402 			case NDTPA_MCAST_PROBES:
2403 				NEIGH_VAR_SET(p, MCAST_PROBES,
2404 					      nla_get_u32(tbp[i]));
2405 				break;
2406 			case NDTPA_MCAST_REPROBES:
2407 				NEIGH_VAR_SET(p, MCAST_REPROBES,
2408 					      nla_get_u32(tbp[i]));
2409 				break;
2410 			case NDTPA_BASE_REACHABLE_TIME:
2411 				NEIGH_VAR_SET(p, BASE_REACHABLE_TIME,
2412 					      nla_get_msecs(tbp[i]));
2413 				/* update reachable_time as well, otherwise, the change will
2414 				 * only be effective after the next time neigh_periodic_work
2415 				 * decides to recompute it (can be multiple minutes)
2416 				 */
2417 				p->reachable_time =
2418 					neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
2419 				break;
2420 			case NDTPA_GC_STALETIME:
2421 				NEIGH_VAR_SET(p, GC_STALETIME,
2422 					      nla_get_msecs(tbp[i]));
2423 				break;
2424 			case NDTPA_DELAY_PROBE_TIME:
2425 				NEIGH_VAR_SET(p, DELAY_PROBE_TIME,
2426 					      nla_get_msecs(tbp[i]));
2427 				call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
2428 				break;
2429 			case NDTPA_INTERVAL_PROBE_TIME_MS:
2430 				NEIGH_VAR_SET(p, INTERVAL_PROBE_TIME_MS,
2431 					      nla_get_msecs(tbp[i]));
2432 				break;
2433 			case NDTPA_RETRANS_TIME:
2434 				NEIGH_VAR_SET(p, RETRANS_TIME,
2435 					      nla_get_msecs(tbp[i]));
2436 				break;
2437 			case NDTPA_ANYCAST_DELAY:
2438 				NEIGH_VAR_SET(p, ANYCAST_DELAY,
2439 					      nla_get_msecs(tbp[i]));
2440 				break;
2441 			case NDTPA_PROXY_DELAY:
2442 				NEIGH_VAR_SET(p, PROXY_DELAY,
2443 					      nla_get_msecs(tbp[i]));
2444 				break;
2445 			case NDTPA_LOCKTIME:
2446 				NEIGH_VAR_SET(p, LOCKTIME,
2447 					      nla_get_msecs(tbp[i]));
2448 				break;
2449 			}
2450 		}
2451 	}
2452 
2453 	err = -ENOENT;
2454 	if ((tb[NDTA_THRESH1] || tb[NDTA_THRESH2] ||
2455 	     tb[NDTA_THRESH3] || tb[NDTA_GC_INTERVAL]) &&
2456 	    !net_eq(net, &init_net))
2457 		goto errout_tbl_lock;
2458 
2459 	if (tb[NDTA_THRESH1])
2460 		WRITE_ONCE(tbl->gc_thresh1, nla_get_u32(tb[NDTA_THRESH1]));
2461 
2462 	if (tb[NDTA_THRESH2])
2463 		WRITE_ONCE(tbl->gc_thresh2, nla_get_u32(tb[NDTA_THRESH2]));
2464 
2465 	if (tb[NDTA_THRESH3])
2466 		WRITE_ONCE(tbl->gc_thresh3, nla_get_u32(tb[NDTA_THRESH3]));
2467 
2468 	if (tb[NDTA_GC_INTERVAL])
2469 		WRITE_ONCE(tbl->gc_interval, nla_get_msecs(tb[NDTA_GC_INTERVAL]));
2470 
2471 	err = 0;
2472 
2473 errout_tbl_lock:
2474 	write_unlock_bh(&tbl->lock);
2475 errout:
2476 	return err;
2477 }
2478 
2479 static int neightbl_valid_dump_info(const struct nlmsghdr *nlh,
2480 				    struct netlink_ext_ack *extack)
2481 {
2482 	struct ndtmsg *ndtm;
2483 
2484 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndtm))) {
2485 		NL_SET_ERR_MSG(extack, "Invalid header for neighbor table dump request");
2486 		return -EINVAL;
2487 	}
2488 
2489 	ndtm = nlmsg_data(nlh);
2490 	if (ndtm->ndtm_pad1  || ndtm->ndtm_pad2) {
2491 		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor table dump request");
2492 		return -EINVAL;
2493 	}
2494 
2495 	if (nlmsg_attrlen(nlh, sizeof(*ndtm))) {
2496 		NL_SET_ERR_MSG(extack, "Invalid data after header in neighbor table dump request");
2497 		return -EINVAL;
2498 	}
2499 
2500 	return 0;
2501 }
2502 
2503 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2504 {
2505 	const struct nlmsghdr *nlh = cb->nlh;
2506 	struct net *net = sock_net(skb->sk);
2507 	int family, tidx, nidx = 0;
2508 	int tbl_skip = cb->args[0];
2509 	int neigh_skip = cb->args[1];
2510 	struct neigh_table *tbl;
2511 
2512 	if (cb->strict_check) {
2513 		int err = neightbl_valid_dump_info(nlh, cb->extack);
2514 
2515 		if (err < 0)
2516 			return err;
2517 	}
2518 
2519 	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2520 
2521 	for (tidx = 0; tidx < NEIGH_NR_TABLES; tidx++) {
2522 		struct neigh_parms *p;
2523 
2524 		tbl = neigh_tables[tidx];
2525 		if (!tbl)
2526 			continue;
2527 
2528 		if (tidx < tbl_skip || (family && tbl->family != family))
2529 			continue;
2530 
2531 		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).portid,
2532 				       nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2533 				       NLM_F_MULTI) < 0)
2534 			break;
2535 
2536 		nidx = 0;
2537 		p = list_next_entry(&tbl->parms, list);
2538 		list_for_each_entry_from(p, &tbl->parms_list, list) {
2539 			if (!net_eq(neigh_parms_net(p), net))
2540 				continue;
2541 
2542 			if (nidx < neigh_skip)
2543 				goto next;
2544 
2545 			if (neightbl_fill_param_info(skb, tbl, p,
2546 						     NETLINK_CB(cb->skb).portid,
2547 						     nlh->nlmsg_seq,
2548 						     RTM_NEWNEIGHTBL,
2549 						     NLM_F_MULTI) < 0)
2550 				goto out;
2551 		next:
2552 			nidx++;
2553 		}
2554 
2555 		neigh_skip = 0;
2556 	}
2557 out:
2558 	cb->args[0] = tidx;
2559 	cb->args[1] = nidx;
2560 
2561 	return skb->len;
2562 }
2563 
2564 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2565 			   u32 pid, u32 seq, int type, unsigned int flags)
2566 {
2567 	u32 neigh_flags, neigh_flags_ext;
2568 	unsigned long now = jiffies;
2569 	struct nda_cacheinfo ci;
2570 	struct nlmsghdr *nlh;
2571 	struct ndmsg *ndm;
2572 
2573 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2574 	if (nlh == NULL)
2575 		return -EMSGSIZE;
2576 
2577 	neigh_flags_ext = neigh->flags >> NTF_EXT_SHIFT;
2578 	neigh_flags     = neigh->flags & NTF_OLD_MASK;
2579 
2580 	ndm = nlmsg_data(nlh);
2581 	ndm->ndm_family	 = neigh->ops->family;
2582 	ndm->ndm_pad1    = 0;
2583 	ndm->ndm_pad2    = 0;
2584 	ndm->ndm_flags	 = neigh_flags;
2585 	ndm->ndm_type	 = neigh->type;
2586 	ndm->ndm_ifindex = neigh->dev->ifindex;
2587 
2588 	if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2589 		goto nla_put_failure;
2590 
2591 	read_lock_bh(&neigh->lock);
2592 	ndm->ndm_state	 = neigh->nud_state;
2593 	if (neigh->nud_state & NUD_VALID) {
2594 		char haddr[MAX_ADDR_LEN];
2595 
2596 		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2597 		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2598 			read_unlock_bh(&neigh->lock);
2599 			goto nla_put_failure;
2600 		}
2601 	}
2602 
2603 	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2604 	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2605 	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2606 	ci.ndm_refcnt	 = refcount_read(&neigh->refcnt) - 1;
2607 	read_unlock_bh(&neigh->lock);
2608 
2609 	if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2610 	    nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2611 		goto nla_put_failure;
2612 
2613 	if (neigh->protocol && nla_put_u8(skb, NDA_PROTOCOL, neigh->protocol))
2614 		goto nla_put_failure;
2615 	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2616 		goto nla_put_failure;
2617 
2618 	nlmsg_end(skb, nlh);
2619 	return 0;
2620 
2621 nla_put_failure:
2622 	nlmsg_cancel(skb, nlh);
2623 	return -EMSGSIZE;
2624 }
2625 
2626 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2627 			    u32 pid, u32 seq, int type, unsigned int flags,
2628 			    struct neigh_table *tbl)
2629 {
2630 	u32 neigh_flags, neigh_flags_ext;
2631 	struct nlmsghdr *nlh;
2632 	struct ndmsg *ndm;
2633 
2634 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2635 	if (nlh == NULL)
2636 		return -EMSGSIZE;
2637 
2638 	neigh_flags_ext = pn->flags >> NTF_EXT_SHIFT;
2639 	neigh_flags     = pn->flags & NTF_OLD_MASK;
2640 
2641 	ndm = nlmsg_data(nlh);
2642 	ndm->ndm_family	 = tbl->family;
2643 	ndm->ndm_pad1    = 0;
2644 	ndm->ndm_pad2    = 0;
2645 	ndm->ndm_flags	 = neigh_flags | NTF_PROXY;
2646 	ndm->ndm_type	 = RTN_UNICAST;
2647 	ndm->ndm_ifindex = pn->dev ? pn->dev->ifindex : 0;
2648 	ndm->ndm_state	 = NUD_NONE;
2649 
2650 	if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2651 		goto nla_put_failure;
2652 
2653 	if (pn->protocol && nla_put_u8(skb, NDA_PROTOCOL, pn->protocol))
2654 		goto nla_put_failure;
2655 	if (neigh_flags_ext && nla_put_u32(skb, NDA_FLAGS_EXT, neigh_flags_ext))
2656 		goto nla_put_failure;
2657 
2658 	nlmsg_end(skb, nlh);
2659 	return 0;
2660 
2661 nla_put_failure:
2662 	nlmsg_cancel(skb, nlh);
2663 	return -EMSGSIZE;
2664 }
2665 
2666 static void neigh_update_notify(struct neighbour *neigh, u32 nlmsg_pid)
2667 {
2668 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2669 	__neigh_notify(neigh, RTM_NEWNEIGH, 0, nlmsg_pid);
2670 }
2671 
2672 static bool neigh_master_filtered(struct net_device *dev, int master_idx)
2673 {
2674 	struct net_device *master;
2675 
2676 	if (!master_idx)
2677 		return false;
2678 
2679 	master = dev ? netdev_master_upper_dev_get(dev) : NULL;
2680 
2681 	/* 0 is already used to denote NDA_MASTER wasn't passed, therefore need another
2682 	 * invalid value for ifindex to denote "no master".
2683 	 */
2684 	if (master_idx == -1)
2685 		return !!master;
2686 
2687 	if (!master || master->ifindex != master_idx)
2688 		return true;
2689 
2690 	return false;
2691 }
2692 
2693 static bool neigh_ifindex_filtered(struct net_device *dev, int filter_idx)
2694 {
2695 	if (filter_idx && (!dev || dev->ifindex != filter_idx))
2696 		return true;
2697 
2698 	return false;
2699 }
2700 
2701 struct neigh_dump_filter {
2702 	int master_idx;
2703 	int dev_idx;
2704 };
2705 
2706 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2707 			    struct netlink_callback *cb,
2708 			    struct neigh_dump_filter *filter)
2709 {
2710 	struct net *net = sock_net(skb->sk);
2711 	struct neighbour *n;
2712 	int rc, h, s_h = cb->args[1];
2713 	int idx, s_idx = idx = cb->args[2];
2714 	struct neigh_hash_table *nht;
2715 	unsigned int flags = NLM_F_MULTI;
2716 
2717 	if (filter->dev_idx || filter->master_idx)
2718 		flags |= NLM_F_DUMP_FILTERED;
2719 
2720 	rcu_read_lock();
2721 	nht = rcu_dereference(tbl->nht);
2722 
2723 	for (h = s_h; h < (1 << nht->hash_shift); h++) {
2724 		if (h > s_h)
2725 			s_idx = 0;
2726 		for (n = rcu_dereference(nht->hash_buckets[h]), idx = 0;
2727 		     n != NULL;
2728 		     n = rcu_dereference(n->next)) {
2729 			if (idx < s_idx || !net_eq(dev_net(n->dev), net))
2730 				goto next;
2731 			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2732 			    neigh_master_filtered(n->dev, filter->master_idx))
2733 				goto next;
2734 			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2735 					    cb->nlh->nlmsg_seq,
2736 					    RTM_NEWNEIGH,
2737 					    flags) < 0) {
2738 				rc = -1;
2739 				goto out;
2740 			}
2741 next:
2742 			idx++;
2743 		}
2744 	}
2745 	rc = skb->len;
2746 out:
2747 	rcu_read_unlock();
2748 	cb->args[1] = h;
2749 	cb->args[2] = idx;
2750 	return rc;
2751 }
2752 
2753 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2754 			     struct netlink_callback *cb,
2755 			     struct neigh_dump_filter *filter)
2756 {
2757 	struct pneigh_entry *n;
2758 	struct net *net = sock_net(skb->sk);
2759 	int rc, h, s_h = cb->args[3];
2760 	int idx, s_idx = idx = cb->args[4];
2761 	unsigned int flags = NLM_F_MULTI;
2762 
2763 	if (filter->dev_idx || filter->master_idx)
2764 		flags |= NLM_F_DUMP_FILTERED;
2765 
2766 	read_lock_bh(&tbl->lock);
2767 
2768 	for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2769 		if (h > s_h)
2770 			s_idx = 0;
2771 		for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2772 			if (idx < s_idx || pneigh_net(n) != net)
2773 				goto next;
2774 			if (neigh_ifindex_filtered(n->dev, filter->dev_idx) ||
2775 			    neigh_master_filtered(n->dev, filter->master_idx))
2776 				goto next;
2777 			if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).portid,
2778 					    cb->nlh->nlmsg_seq,
2779 					    RTM_NEWNEIGH, flags, tbl) < 0) {
2780 				read_unlock_bh(&tbl->lock);
2781 				rc = -1;
2782 				goto out;
2783 			}
2784 		next:
2785 			idx++;
2786 		}
2787 	}
2788 
2789 	read_unlock_bh(&tbl->lock);
2790 	rc = skb->len;
2791 out:
2792 	cb->args[3] = h;
2793 	cb->args[4] = idx;
2794 	return rc;
2795 
2796 }
2797 
2798 static int neigh_valid_dump_req(const struct nlmsghdr *nlh,
2799 				bool strict_check,
2800 				struct neigh_dump_filter *filter,
2801 				struct netlink_ext_ack *extack)
2802 {
2803 	struct nlattr *tb[NDA_MAX + 1];
2804 	int err, i;
2805 
2806 	if (strict_check) {
2807 		struct ndmsg *ndm;
2808 
2809 		if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2810 			NL_SET_ERR_MSG(extack, "Invalid header for neighbor dump request");
2811 			return -EINVAL;
2812 		}
2813 
2814 		ndm = nlmsg_data(nlh);
2815 		if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_ifindex ||
2816 		    ndm->ndm_state || ndm->ndm_type) {
2817 			NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor dump request");
2818 			return -EINVAL;
2819 		}
2820 
2821 		if (ndm->ndm_flags & ~NTF_PROXY) {
2822 			NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor dump request");
2823 			return -EINVAL;
2824 		}
2825 
2826 		err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg),
2827 						    tb, NDA_MAX, nda_policy,
2828 						    extack);
2829 	} else {
2830 		err = nlmsg_parse_deprecated(nlh, sizeof(struct ndmsg), tb,
2831 					     NDA_MAX, nda_policy, extack);
2832 	}
2833 	if (err < 0)
2834 		return err;
2835 
2836 	for (i = 0; i <= NDA_MAX; ++i) {
2837 		if (!tb[i])
2838 			continue;
2839 
2840 		/* all new attributes should require strict_check */
2841 		switch (i) {
2842 		case NDA_IFINDEX:
2843 			filter->dev_idx = nla_get_u32(tb[i]);
2844 			break;
2845 		case NDA_MASTER:
2846 			filter->master_idx = nla_get_u32(tb[i]);
2847 			break;
2848 		default:
2849 			if (strict_check) {
2850 				NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor dump request");
2851 				return -EINVAL;
2852 			}
2853 		}
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2860 {
2861 	const struct nlmsghdr *nlh = cb->nlh;
2862 	struct neigh_dump_filter filter = {};
2863 	struct neigh_table *tbl;
2864 	int t, family, s_t;
2865 	int proxy = 0;
2866 	int err;
2867 
2868 	family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
2869 
2870 	/* check for full ndmsg structure presence, family member is
2871 	 * the same for both structures
2872 	 */
2873 	if (nlmsg_len(nlh) >= sizeof(struct ndmsg) &&
2874 	    ((struct ndmsg *)nlmsg_data(nlh))->ndm_flags == NTF_PROXY)
2875 		proxy = 1;
2876 
2877 	err = neigh_valid_dump_req(nlh, cb->strict_check, &filter, cb->extack);
2878 	if (err < 0 && cb->strict_check)
2879 		return err;
2880 
2881 	s_t = cb->args[0];
2882 
2883 	for (t = 0; t < NEIGH_NR_TABLES; t++) {
2884 		tbl = neigh_tables[t];
2885 
2886 		if (!tbl)
2887 			continue;
2888 		if (t < s_t || (family && tbl->family != family))
2889 			continue;
2890 		if (t > s_t)
2891 			memset(&cb->args[1], 0, sizeof(cb->args) -
2892 						sizeof(cb->args[0]));
2893 		if (proxy)
2894 			err = pneigh_dump_table(tbl, skb, cb, &filter);
2895 		else
2896 			err = neigh_dump_table(tbl, skb, cb, &filter);
2897 		if (err < 0)
2898 			break;
2899 	}
2900 
2901 	cb->args[0] = t;
2902 	return skb->len;
2903 }
2904 
2905 static int neigh_valid_get_req(const struct nlmsghdr *nlh,
2906 			       struct neigh_table **tbl,
2907 			       void **dst, int *dev_idx, u8 *ndm_flags,
2908 			       struct netlink_ext_ack *extack)
2909 {
2910 	struct nlattr *tb[NDA_MAX + 1];
2911 	struct ndmsg *ndm;
2912 	int err, i;
2913 
2914 	if (nlh->nlmsg_len < nlmsg_msg_size(sizeof(*ndm))) {
2915 		NL_SET_ERR_MSG(extack, "Invalid header for neighbor get request");
2916 		return -EINVAL;
2917 	}
2918 
2919 	ndm = nlmsg_data(nlh);
2920 	if (ndm->ndm_pad1  || ndm->ndm_pad2  || ndm->ndm_state ||
2921 	    ndm->ndm_type) {
2922 		NL_SET_ERR_MSG(extack, "Invalid values in header for neighbor get request");
2923 		return -EINVAL;
2924 	}
2925 
2926 	if (ndm->ndm_flags & ~NTF_PROXY) {
2927 		NL_SET_ERR_MSG(extack, "Invalid flags in header for neighbor get request");
2928 		return -EINVAL;
2929 	}
2930 
2931 	err = nlmsg_parse_deprecated_strict(nlh, sizeof(struct ndmsg), tb,
2932 					    NDA_MAX, nda_policy, extack);
2933 	if (err < 0)
2934 		return err;
2935 
2936 	*ndm_flags = ndm->ndm_flags;
2937 	*dev_idx = ndm->ndm_ifindex;
2938 	*tbl = neigh_find_table(ndm->ndm_family);
2939 	if (*tbl == NULL) {
2940 		NL_SET_ERR_MSG(extack, "Unsupported family in header for neighbor get request");
2941 		return -EAFNOSUPPORT;
2942 	}
2943 
2944 	for (i = 0; i <= NDA_MAX; ++i) {
2945 		if (!tb[i])
2946 			continue;
2947 
2948 		switch (i) {
2949 		case NDA_DST:
2950 			if (nla_len(tb[i]) != (int)(*tbl)->key_len) {
2951 				NL_SET_ERR_MSG(extack, "Invalid network address in neighbor get request");
2952 				return -EINVAL;
2953 			}
2954 			*dst = nla_data(tb[i]);
2955 			break;
2956 		default:
2957 			NL_SET_ERR_MSG(extack, "Unsupported attribute in neighbor get request");
2958 			return -EINVAL;
2959 		}
2960 	}
2961 
2962 	return 0;
2963 }
2964 
2965 static inline size_t neigh_nlmsg_size(void)
2966 {
2967 	return NLMSG_ALIGN(sizeof(struct ndmsg))
2968 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2969 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2970 	       + nla_total_size(sizeof(struct nda_cacheinfo))
2971 	       + nla_total_size(4)  /* NDA_PROBES */
2972 	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
2973 	       + nla_total_size(1); /* NDA_PROTOCOL */
2974 }
2975 
2976 static int neigh_get_reply(struct net *net, struct neighbour *neigh,
2977 			   u32 pid, u32 seq)
2978 {
2979 	struct sk_buff *skb;
2980 	int err = 0;
2981 
2982 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_KERNEL);
2983 	if (!skb)
2984 		return -ENOBUFS;
2985 
2986 	err = neigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0);
2987 	if (err) {
2988 		kfree_skb(skb);
2989 		goto errout;
2990 	}
2991 
2992 	err = rtnl_unicast(skb, net, pid);
2993 errout:
2994 	return err;
2995 }
2996 
2997 static inline size_t pneigh_nlmsg_size(void)
2998 {
2999 	return NLMSG_ALIGN(sizeof(struct ndmsg))
3000 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
3001 	       + nla_total_size(4)  /* NDA_FLAGS_EXT */
3002 	       + nla_total_size(1); /* NDA_PROTOCOL */
3003 }
3004 
3005 static int pneigh_get_reply(struct net *net, struct pneigh_entry *neigh,
3006 			    u32 pid, u32 seq, struct neigh_table *tbl)
3007 {
3008 	struct sk_buff *skb;
3009 	int err = 0;
3010 
3011 	skb = nlmsg_new(pneigh_nlmsg_size(), GFP_KERNEL);
3012 	if (!skb)
3013 		return -ENOBUFS;
3014 
3015 	err = pneigh_fill_info(skb, neigh, pid, seq, RTM_NEWNEIGH, 0, tbl);
3016 	if (err) {
3017 		kfree_skb(skb);
3018 		goto errout;
3019 	}
3020 
3021 	err = rtnl_unicast(skb, net, pid);
3022 errout:
3023 	return err;
3024 }
3025 
3026 static int neigh_get(struct sk_buff *in_skb, struct nlmsghdr *nlh,
3027 		     struct netlink_ext_ack *extack)
3028 {
3029 	struct net *net = sock_net(in_skb->sk);
3030 	struct net_device *dev = NULL;
3031 	struct neigh_table *tbl = NULL;
3032 	struct neighbour *neigh;
3033 	void *dst = NULL;
3034 	u8 ndm_flags = 0;
3035 	int dev_idx = 0;
3036 	int err;
3037 
3038 	err = neigh_valid_get_req(nlh, &tbl, &dst, &dev_idx, &ndm_flags,
3039 				  extack);
3040 	if (err < 0)
3041 		return err;
3042 
3043 	if (dev_idx) {
3044 		dev = __dev_get_by_index(net, dev_idx);
3045 		if (!dev) {
3046 			NL_SET_ERR_MSG(extack, "Unknown device ifindex");
3047 			return -ENODEV;
3048 		}
3049 	}
3050 
3051 	if (!dst) {
3052 		NL_SET_ERR_MSG(extack, "Network address not specified");
3053 		return -EINVAL;
3054 	}
3055 
3056 	if (ndm_flags & NTF_PROXY) {
3057 		struct pneigh_entry *pn;
3058 
3059 		pn = pneigh_lookup(tbl, net, dst, dev, 0);
3060 		if (!pn) {
3061 			NL_SET_ERR_MSG(extack, "Proxy neighbour entry not found");
3062 			return -ENOENT;
3063 		}
3064 		return pneigh_get_reply(net, pn, NETLINK_CB(in_skb).portid,
3065 					nlh->nlmsg_seq, tbl);
3066 	}
3067 
3068 	if (!dev) {
3069 		NL_SET_ERR_MSG(extack, "No device specified");
3070 		return -EINVAL;
3071 	}
3072 
3073 	neigh = neigh_lookup(tbl, dst, dev);
3074 	if (!neigh) {
3075 		NL_SET_ERR_MSG(extack, "Neighbour entry not found");
3076 		return -ENOENT;
3077 	}
3078 
3079 	err = neigh_get_reply(net, neigh, NETLINK_CB(in_skb).portid,
3080 			      nlh->nlmsg_seq);
3081 
3082 	neigh_release(neigh);
3083 
3084 	return err;
3085 }
3086 
3087 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
3088 {
3089 	int chain;
3090 	struct neigh_hash_table *nht;
3091 
3092 	rcu_read_lock();
3093 	nht = rcu_dereference(tbl->nht);
3094 
3095 	read_lock_bh(&tbl->lock); /* avoid resizes */
3096 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3097 		struct neighbour *n;
3098 
3099 		for (n = rcu_dereference(nht->hash_buckets[chain]);
3100 		     n != NULL;
3101 		     n = rcu_dereference(n->next))
3102 			cb(n, cookie);
3103 	}
3104 	read_unlock_bh(&tbl->lock);
3105 	rcu_read_unlock();
3106 }
3107 EXPORT_SYMBOL(neigh_for_each);
3108 
3109 /* The tbl->lock must be held as a writer and BH disabled. */
3110 void __neigh_for_each_release(struct neigh_table *tbl,
3111 			      int (*cb)(struct neighbour *))
3112 {
3113 	int chain;
3114 	struct neigh_hash_table *nht;
3115 
3116 	nht = rcu_dereference_protected(tbl->nht,
3117 					lockdep_is_held(&tbl->lock));
3118 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
3119 		struct neighbour *n;
3120 		struct neighbour __rcu **np;
3121 
3122 		np = &nht->hash_buckets[chain];
3123 		while ((n = rcu_dereference_protected(*np,
3124 					lockdep_is_held(&tbl->lock))) != NULL) {
3125 			int release;
3126 
3127 			write_lock(&n->lock);
3128 			release = cb(n);
3129 			if (release) {
3130 				rcu_assign_pointer(*np,
3131 					rcu_dereference_protected(n->next,
3132 						lockdep_is_held(&tbl->lock)));
3133 				neigh_mark_dead(n);
3134 			} else
3135 				np = &n->next;
3136 			write_unlock(&n->lock);
3137 			if (release)
3138 				neigh_cleanup_and_release(n);
3139 		}
3140 	}
3141 }
3142 EXPORT_SYMBOL(__neigh_for_each_release);
3143 
3144 int neigh_xmit(int index, struct net_device *dev,
3145 	       const void *addr, struct sk_buff *skb)
3146 {
3147 	int err = -EAFNOSUPPORT;
3148 	if (likely(index < NEIGH_NR_TABLES)) {
3149 		struct neigh_table *tbl;
3150 		struct neighbour *neigh;
3151 
3152 		tbl = neigh_tables[index];
3153 		if (!tbl)
3154 			goto out;
3155 		rcu_read_lock();
3156 		if (index == NEIGH_ARP_TABLE) {
3157 			u32 key = *((u32 *)addr);
3158 
3159 			neigh = __ipv4_neigh_lookup_noref(dev, key);
3160 		} else {
3161 			neigh = __neigh_lookup_noref(tbl, addr, dev);
3162 		}
3163 		if (!neigh)
3164 			neigh = __neigh_create(tbl, addr, dev, false);
3165 		err = PTR_ERR(neigh);
3166 		if (IS_ERR(neigh)) {
3167 			rcu_read_unlock();
3168 			goto out_kfree_skb;
3169 		}
3170 		err = READ_ONCE(neigh->output)(neigh, skb);
3171 		rcu_read_unlock();
3172 	}
3173 	else if (index == NEIGH_LINK_TABLE) {
3174 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
3175 				      addr, NULL, skb->len);
3176 		if (err < 0)
3177 			goto out_kfree_skb;
3178 		err = dev_queue_xmit(skb);
3179 	}
3180 out:
3181 	return err;
3182 out_kfree_skb:
3183 	kfree_skb(skb);
3184 	goto out;
3185 }
3186 EXPORT_SYMBOL(neigh_xmit);
3187 
3188 #ifdef CONFIG_PROC_FS
3189 
3190 static struct neighbour *neigh_get_first(struct seq_file *seq)
3191 {
3192 	struct neigh_seq_state *state = seq->private;
3193 	struct net *net = seq_file_net(seq);
3194 	struct neigh_hash_table *nht = state->nht;
3195 	struct neighbour *n = NULL;
3196 	int bucket;
3197 
3198 	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
3199 	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
3200 		n = rcu_dereference(nht->hash_buckets[bucket]);
3201 
3202 		while (n) {
3203 			if (!net_eq(dev_net(n->dev), net))
3204 				goto next;
3205 			if (state->neigh_sub_iter) {
3206 				loff_t fakep = 0;
3207 				void *v;
3208 
3209 				v = state->neigh_sub_iter(state, n, &fakep);
3210 				if (!v)
3211 					goto next;
3212 			}
3213 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3214 				break;
3215 			if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3216 				break;
3217 next:
3218 			n = rcu_dereference(n->next);
3219 		}
3220 
3221 		if (n)
3222 			break;
3223 	}
3224 	state->bucket = bucket;
3225 
3226 	return n;
3227 }
3228 
3229 static struct neighbour *neigh_get_next(struct seq_file *seq,
3230 					struct neighbour *n,
3231 					loff_t *pos)
3232 {
3233 	struct neigh_seq_state *state = seq->private;
3234 	struct net *net = seq_file_net(seq);
3235 	struct neigh_hash_table *nht = state->nht;
3236 
3237 	if (state->neigh_sub_iter) {
3238 		void *v = state->neigh_sub_iter(state, n, pos);
3239 		if (v)
3240 			return n;
3241 	}
3242 	n = rcu_dereference(n->next);
3243 
3244 	while (1) {
3245 		while (n) {
3246 			if (!net_eq(dev_net(n->dev), net))
3247 				goto next;
3248 			if (state->neigh_sub_iter) {
3249 				void *v = state->neigh_sub_iter(state, n, pos);
3250 				if (v)
3251 					return n;
3252 				goto next;
3253 			}
3254 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
3255 				break;
3256 
3257 			if (READ_ONCE(n->nud_state) & ~NUD_NOARP)
3258 				break;
3259 next:
3260 			n = rcu_dereference(n->next);
3261 		}
3262 
3263 		if (n)
3264 			break;
3265 
3266 		if (++state->bucket >= (1 << nht->hash_shift))
3267 			break;
3268 
3269 		n = rcu_dereference(nht->hash_buckets[state->bucket]);
3270 	}
3271 
3272 	if (n && pos)
3273 		--(*pos);
3274 	return n;
3275 }
3276 
3277 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
3278 {
3279 	struct neighbour *n = neigh_get_first(seq);
3280 
3281 	if (n) {
3282 		--(*pos);
3283 		while (*pos) {
3284 			n = neigh_get_next(seq, n, pos);
3285 			if (!n)
3286 				break;
3287 		}
3288 	}
3289 	return *pos ? NULL : n;
3290 }
3291 
3292 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
3293 {
3294 	struct neigh_seq_state *state = seq->private;
3295 	struct net *net = seq_file_net(seq);
3296 	struct neigh_table *tbl = state->tbl;
3297 	struct pneigh_entry *pn = NULL;
3298 	int bucket;
3299 
3300 	state->flags |= NEIGH_SEQ_IS_PNEIGH;
3301 	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
3302 		pn = tbl->phash_buckets[bucket];
3303 		while (pn && !net_eq(pneigh_net(pn), net))
3304 			pn = pn->next;
3305 		if (pn)
3306 			break;
3307 	}
3308 	state->bucket = bucket;
3309 
3310 	return pn;
3311 }
3312 
3313 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
3314 					    struct pneigh_entry *pn,
3315 					    loff_t *pos)
3316 {
3317 	struct neigh_seq_state *state = seq->private;
3318 	struct net *net = seq_file_net(seq);
3319 	struct neigh_table *tbl = state->tbl;
3320 
3321 	do {
3322 		pn = pn->next;
3323 	} while (pn && !net_eq(pneigh_net(pn), net));
3324 
3325 	while (!pn) {
3326 		if (++state->bucket > PNEIGH_HASHMASK)
3327 			break;
3328 		pn = tbl->phash_buckets[state->bucket];
3329 		while (pn && !net_eq(pneigh_net(pn), net))
3330 			pn = pn->next;
3331 		if (pn)
3332 			break;
3333 	}
3334 
3335 	if (pn && pos)
3336 		--(*pos);
3337 
3338 	return pn;
3339 }
3340 
3341 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
3342 {
3343 	struct pneigh_entry *pn = pneigh_get_first(seq);
3344 
3345 	if (pn) {
3346 		--(*pos);
3347 		while (*pos) {
3348 			pn = pneigh_get_next(seq, pn, pos);
3349 			if (!pn)
3350 				break;
3351 		}
3352 	}
3353 	return *pos ? NULL : pn;
3354 }
3355 
3356 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
3357 {
3358 	struct neigh_seq_state *state = seq->private;
3359 	void *rc;
3360 	loff_t idxpos = *pos;
3361 
3362 	rc = neigh_get_idx(seq, &idxpos);
3363 	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3364 		rc = pneigh_get_idx(seq, &idxpos);
3365 
3366 	return rc;
3367 }
3368 
3369 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
3370 	__acquires(tbl->lock)
3371 	__acquires(rcu)
3372 {
3373 	struct neigh_seq_state *state = seq->private;
3374 
3375 	state->tbl = tbl;
3376 	state->bucket = 0;
3377 	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
3378 
3379 	rcu_read_lock();
3380 	state->nht = rcu_dereference(tbl->nht);
3381 	read_lock_bh(&tbl->lock);
3382 
3383 	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
3384 }
3385 EXPORT_SYMBOL(neigh_seq_start);
3386 
3387 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3388 {
3389 	struct neigh_seq_state *state;
3390 	void *rc;
3391 
3392 	if (v == SEQ_START_TOKEN) {
3393 		rc = neigh_get_first(seq);
3394 		goto out;
3395 	}
3396 
3397 	state = seq->private;
3398 	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
3399 		rc = neigh_get_next(seq, v, NULL);
3400 		if (rc)
3401 			goto out;
3402 		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
3403 			rc = pneigh_get_first(seq);
3404 	} else {
3405 		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
3406 		rc = pneigh_get_next(seq, v, NULL);
3407 	}
3408 out:
3409 	++(*pos);
3410 	return rc;
3411 }
3412 EXPORT_SYMBOL(neigh_seq_next);
3413 
3414 void neigh_seq_stop(struct seq_file *seq, void *v)
3415 	__releases(tbl->lock)
3416 	__releases(rcu)
3417 {
3418 	struct neigh_seq_state *state = seq->private;
3419 	struct neigh_table *tbl = state->tbl;
3420 
3421 	read_unlock_bh(&tbl->lock);
3422 	rcu_read_unlock();
3423 }
3424 EXPORT_SYMBOL(neigh_seq_stop);
3425 
3426 /* statistics via seq_file */
3427 
3428 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
3429 {
3430 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3431 	int cpu;
3432 
3433 	if (*pos == 0)
3434 		return SEQ_START_TOKEN;
3435 
3436 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
3437 		if (!cpu_possible(cpu))
3438 			continue;
3439 		*pos = cpu+1;
3440 		return per_cpu_ptr(tbl->stats, cpu);
3441 	}
3442 	return NULL;
3443 }
3444 
3445 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3446 {
3447 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3448 	int cpu;
3449 
3450 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
3451 		if (!cpu_possible(cpu))
3452 			continue;
3453 		*pos = cpu+1;
3454 		return per_cpu_ptr(tbl->stats, cpu);
3455 	}
3456 	(*pos)++;
3457 	return NULL;
3458 }
3459 
3460 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
3461 {
3462 
3463 }
3464 
3465 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
3466 {
3467 	struct neigh_table *tbl = pde_data(file_inode(seq->file));
3468 	struct neigh_statistics *st = v;
3469 
3470 	if (v == SEQ_START_TOKEN) {
3471 		seq_puts(seq, "entries  allocs   destroys hash_grows lookups  hits     res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards table_fulls\n");
3472 		return 0;
3473 	}
3474 
3475 	seq_printf(seq, "%08x %08lx %08lx %08lx   %08lx %08lx %08lx   "
3476 			"%08lx         %08lx         %08lx         "
3477 			"%08lx       %08lx            %08lx\n",
3478 		   atomic_read(&tbl->entries),
3479 
3480 		   st->allocs,
3481 		   st->destroys,
3482 		   st->hash_grows,
3483 
3484 		   st->lookups,
3485 		   st->hits,
3486 
3487 		   st->res_failed,
3488 
3489 		   st->rcv_probes_mcast,
3490 		   st->rcv_probes_ucast,
3491 
3492 		   st->periodic_gc_runs,
3493 		   st->forced_gc_runs,
3494 		   st->unres_discards,
3495 		   st->table_fulls
3496 		   );
3497 
3498 	return 0;
3499 }
3500 
3501 static const struct seq_operations neigh_stat_seq_ops = {
3502 	.start	= neigh_stat_seq_start,
3503 	.next	= neigh_stat_seq_next,
3504 	.stop	= neigh_stat_seq_stop,
3505 	.show	= neigh_stat_seq_show,
3506 };
3507 #endif /* CONFIG_PROC_FS */
3508 
3509 static void __neigh_notify(struct neighbour *n, int type, int flags,
3510 			   u32 pid)
3511 {
3512 	struct net *net = dev_net(n->dev);
3513 	struct sk_buff *skb;
3514 	int err = -ENOBUFS;
3515 
3516 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
3517 	if (skb == NULL)
3518 		goto errout;
3519 
3520 	err = neigh_fill_info(skb, n, pid, 0, type, flags);
3521 	if (err < 0) {
3522 		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
3523 		WARN_ON(err == -EMSGSIZE);
3524 		kfree_skb(skb);
3525 		goto errout;
3526 	}
3527 	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
3528 	return;
3529 errout:
3530 	if (err < 0)
3531 		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
3532 }
3533 
3534 void neigh_app_ns(struct neighbour *n)
3535 {
3536 	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST, 0);
3537 }
3538 EXPORT_SYMBOL(neigh_app_ns);
3539 
3540 #ifdef CONFIG_SYSCTL
3541 static int unres_qlen_max = INT_MAX / SKB_TRUESIZE(ETH_FRAME_LEN);
3542 
3543 static int proc_unres_qlen(struct ctl_table *ctl, int write,
3544 			   void *buffer, size_t *lenp, loff_t *ppos)
3545 {
3546 	int size, ret;
3547 	struct ctl_table tmp = *ctl;
3548 
3549 	tmp.extra1 = SYSCTL_ZERO;
3550 	tmp.extra2 = &unres_qlen_max;
3551 	tmp.data = &size;
3552 
3553 	size = *(int *)ctl->data / SKB_TRUESIZE(ETH_FRAME_LEN);
3554 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3555 
3556 	if (write && !ret)
3557 		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
3558 	return ret;
3559 }
3560 
3561 static void neigh_copy_dflt_parms(struct net *net, struct neigh_parms *p,
3562 				  int index)
3563 {
3564 	struct net_device *dev;
3565 	int family = neigh_parms_family(p);
3566 
3567 	rcu_read_lock();
3568 	for_each_netdev_rcu(net, dev) {
3569 		struct neigh_parms *dst_p =
3570 				neigh_get_dev_parms_rcu(dev, family);
3571 
3572 		if (dst_p && !test_bit(index, dst_p->data_state))
3573 			dst_p->data[index] = p->data[index];
3574 	}
3575 	rcu_read_unlock();
3576 }
3577 
3578 static void neigh_proc_update(struct ctl_table *ctl, int write)
3579 {
3580 	struct net_device *dev = ctl->extra1;
3581 	struct neigh_parms *p = ctl->extra2;
3582 	struct net *net = neigh_parms_net(p);
3583 	int index = (int *) ctl->data - p->data;
3584 
3585 	if (!write)
3586 		return;
3587 
3588 	set_bit(index, p->data_state);
3589 	if (index == NEIGH_VAR_DELAY_PROBE_TIME)
3590 		call_netevent_notifiers(NETEVENT_DELAY_PROBE_TIME_UPDATE, p);
3591 	if (!dev) /* NULL dev means this is default value */
3592 		neigh_copy_dflt_parms(net, p, index);
3593 }
3594 
3595 static int neigh_proc_dointvec_zero_intmax(struct ctl_table *ctl, int write,
3596 					   void *buffer, size_t *lenp,
3597 					   loff_t *ppos)
3598 {
3599 	struct ctl_table tmp = *ctl;
3600 	int ret;
3601 
3602 	tmp.extra1 = SYSCTL_ZERO;
3603 	tmp.extra2 = SYSCTL_INT_MAX;
3604 
3605 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
3606 	neigh_proc_update(ctl, write);
3607 	return ret;
3608 }
3609 
3610 static int neigh_proc_dointvec_ms_jiffies_positive(struct ctl_table *ctl, int write,
3611 						   void *buffer, size_t *lenp, loff_t *ppos)
3612 {
3613 	struct ctl_table tmp = *ctl;
3614 	int ret;
3615 
3616 	int min = msecs_to_jiffies(1);
3617 
3618 	tmp.extra1 = &min;
3619 	tmp.extra2 = NULL;
3620 
3621 	ret = proc_dointvec_ms_jiffies_minmax(&tmp, write, buffer, lenp, ppos);
3622 	neigh_proc_update(ctl, write);
3623 	return ret;
3624 }
3625 
3626 int neigh_proc_dointvec(struct ctl_table *ctl, int write, void *buffer,
3627 			size_t *lenp, loff_t *ppos)
3628 {
3629 	int ret = proc_dointvec(ctl, write, buffer, lenp, ppos);
3630 
3631 	neigh_proc_update(ctl, write);
3632 	return ret;
3633 }
3634 EXPORT_SYMBOL(neigh_proc_dointvec);
3635 
3636 int neigh_proc_dointvec_jiffies(struct ctl_table *ctl, int write, void *buffer,
3637 				size_t *lenp, loff_t *ppos)
3638 {
3639 	int ret = proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3640 
3641 	neigh_proc_update(ctl, write);
3642 	return ret;
3643 }
3644 EXPORT_SYMBOL(neigh_proc_dointvec_jiffies);
3645 
3646 static int neigh_proc_dointvec_userhz_jiffies(struct ctl_table *ctl, int write,
3647 					      void *buffer, size_t *lenp,
3648 					      loff_t *ppos)
3649 {
3650 	int ret = proc_dointvec_userhz_jiffies(ctl, write, buffer, lenp, ppos);
3651 
3652 	neigh_proc_update(ctl, write);
3653 	return ret;
3654 }
3655 
3656 int neigh_proc_dointvec_ms_jiffies(struct ctl_table *ctl, int write,
3657 				   void *buffer, size_t *lenp, loff_t *ppos)
3658 {
3659 	int ret = proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3660 
3661 	neigh_proc_update(ctl, write);
3662 	return ret;
3663 }
3664 EXPORT_SYMBOL(neigh_proc_dointvec_ms_jiffies);
3665 
3666 static int neigh_proc_dointvec_unres_qlen(struct ctl_table *ctl, int write,
3667 					  void *buffer, size_t *lenp,
3668 					  loff_t *ppos)
3669 {
3670 	int ret = proc_unres_qlen(ctl, write, buffer, lenp, ppos);
3671 
3672 	neigh_proc_update(ctl, write);
3673 	return ret;
3674 }
3675 
3676 static int neigh_proc_base_reachable_time(struct ctl_table *ctl, int write,
3677 					  void *buffer, size_t *lenp,
3678 					  loff_t *ppos)
3679 {
3680 	struct neigh_parms *p = ctl->extra2;
3681 	int ret;
3682 
3683 	if (strcmp(ctl->procname, "base_reachable_time") == 0)
3684 		ret = neigh_proc_dointvec_jiffies(ctl, write, buffer, lenp, ppos);
3685 	else if (strcmp(ctl->procname, "base_reachable_time_ms") == 0)
3686 		ret = neigh_proc_dointvec_ms_jiffies(ctl, write, buffer, lenp, ppos);
3687 	else
3688 		ret = -1;
3689 
3690 	if (write && ret == 0) {
3691 		/* update reachable_time as well, otherwise, the change will
3692 		 * only be effective after the next time neigh_periodic_work
3693 		 * decides to recompute it
3694 		 */
3695 		p->reachable_time =
3696 			neigh_rand_reach_time(NEIGH_VAR(p, BASE_REACHABLE_TIME));
3697 	}
3698 	return ret;
3699 }
3700 
3701 #define NEIGH_PARMS_DATA_OFFSET(index)	\
3702 	(&((struct neigh_parms *) 0)->data[index])
3703 
3704 #define NEIGH_SYSCTL_ENTRY(attr, data_attr, name, mval, proc) \
3705 	[NEIGH_VAR_ ## attr] = { \
3706 		.procname	= name, \
3707 		.data		= NEIGH_PARMS_DATA_OFFSET(NEIGH_VAR_ ## data_attr), \
3708 		.maxlen		= sizeof(int), \
3709 		.mode		= mval, \
3710 		.proc_handler	= proc, \
3711 	}
3712 
3713 #define NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(attr, name) \
3714 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_zero_intmax)
3715 
3716 #define NEIGH_SYSCTL_JIFFIES_ENTRY(attr, name) \
3717 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_jiffies)
3718 
3719 #define NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(attr, name) \
3720 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_userhz_jiffies)
3721 
3722 #define NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(attr, name) \
3723 	NEIGH_SYSCTL_ENTRY(attr, attr, name, 0644, neigh_proc_dointvec_ms_jiffies_positive)
3724 
3725 #define NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(attr, data_attr, name) \
3726 	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_ms_jiffies)
3727 
3728 #define NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(attr, data_attr, name) \
3729 	NEIGH_SYSCTL_ENTRY(attr, data_attr, name, 0644, neigh_proc_dointvec_unres_qlen)
3730 
3731 static struct neigh_sysctl_table {
3732 	struct ctl_table_header *sysctl_header;
3733 	struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
3734 } neigh_sysctl_template __read_mostly = {
3735 	.neigh_vars = {
3736 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_PROBES, "mcast_solicit"),
3737 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(UCAST_PROBES, "ucast_solicit"),
3738 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(APP_PROBES, "app_solicit"),
3739 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(MCAST_REPROBES, "mcast_resolicit"),
3740 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(RETRANS_TIME, "retrans_time"),
3741 		NEIGH_SYSCTL_JIFFIES_ENTRY(BASE_REACHABLE_TIME, "base_reachable_time"),
3742 		NEIGH_SYSCTL_JIFFIES_ENTRY(DELAY_PROBE_TIME, "delay_first_probe_time"),
3743 		NEIGH_SYSCTL_MS_JIFFIES_POSITIVE_ENTRY(INTERVAL_PROBE_TIME_MS,
3744 						       "interval_probe_time_ms"),
3745 		NEIGH_SYSCTL_JIFFIES_ENTRY(GC_STALETIME, "gc_stale_time"),
3746 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(QUEUE_LEN_BYTES, "unres_qlen_bytes"),
3747 		NEIGH_SYSCTL_ZERO_INTMAX_ENTRY(PROXY_QLEN, "proxy_qlen"),
3748 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(ANYCAST_DELAY, "anycast_delay"),
3749 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(PROXY_DELAY, "proxy_delay"),
3750 		NEIGH_SYSCTL_USERHZ_JIFFIES_ENTRY(LOCKTIME, "locktime"),
3751 		NEIGH_SYSCTL_UNRES_QLEN_REUSED_ENTRY(QUEUE_LEN, QUEUE_LEN_BYTES, "unres_qlen"),
3752 		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(RETRANS_TIME_MS, RETRANS_TIME, "retrans_time_ms"),
3753 		NEIGH_SYSCTL_MS_JIFFIES_REUSED_ENTRY(BASE_REACHABLE_TIME_MS, BASE_REACHABLE_TIME, "base_reachable_time_ms"),
3754 		[NEIGH_VAR_GC_INTERVAL] = {
3755 			.procname	= "gc_interval",
3756 			.maxlen		= sizeof(int),
3757 			.mode		= 0644,
3758 			.proc_handler	= proc_dointvec_jiffies,
3759 		},
3760 		[NEIGH_VAR_GC_THRESH1] = {
3761 			.procname	= "gc_thresh1",
3762 			.maxlen		= sizeof(int),
3763 			.mode		= 0644,
3764 			.extra1		= SYSCTL_ZERO,
3765 			.extra2		= SYSCTL_INT_MAX,
3766 			.proc_handler	= proc_dointvec_minmax,
3767 		},
3768 		[NEIGH_VAR_GC_THRESH2] = {
3769 			.procname	= "gc_thresh2",
3770 			.maxlen		= sizeof(int),
3771 			.mode		= 0644,
3772 			.extra1		= SYSCTL_ZERO,
3773 			.extra2		= SYSCTL_INT_MAX,
3774 			.proc_handler	= proc_dointvec_minmax,
3775 		},
3776 		[NEIGH_VAR_GC_THRESH3] = {
3777 			.procname	= "gc_thresh3",
3778 			.maxlen		= sizeof(int),
3779 			.mode		= 0644,
3780 			.extra1		= SYSCTL_ZERO,
3781 			.extra2		= SYSCTL_INT_MAX,
3782 			.proc_handler	= proc_dointvec_minmax,
3783 		},
3784 		{},
3785 	},
3786 };
3787 
3788 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
3789 			  proc_handler *handler)
3790 {
3791 	int i;
3792 	struct neigh_sysctl_table *t;
3793 	const char *dev_name_source;
3794 	char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
3795 	char *p_name;
3796 	size_t neigh_vars_size;
3797 
3798 	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL_ACCOUNT);
3799 	if (!t)
3800 		goto err;
3801 
3802 	for (i = 0; i < NEIGH_VAR_GC_INTERVAL; i++) {
3803 		t->neigh_vars[i].data += (long) p;
3804 		t->neigh_vars[i].extra1 = dev;
3805 		t->neigh_vars[i].extra2 = p;
3806 	}
3807 
3808 	neigh_vars_size = ARRAY_SIZE(t->neigh_vars);
3809 	if (dev) {
3810 		dev_name_source = dev->name;
3811 		/* Terminate the table early */
3812 		memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
3813 		       sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
3814 		neigh_vars_size = NEIGH_VAR_BASE_REACHABLE_TIME_MS + 1;
3815 	} else {
3816 		struct neigh_table *tbl = p->tbl;
3817 		dev_name_source = "default";
3818 		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = &tbl->gc_interval;
3819 		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = &tbl->gc_thresh1;
3820 		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = &tbl->gc_thresh2;
3821 		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = &tbl->gc_thresh3;
3822 	}
3823 
3824 	if (handler) {
3825 		/* RetransTime */
3826 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
3827 		/* ReachableTime */
3828 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
3829 		/* RetransTime (in milliseconds)*/
3830 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
3831 		/* ReachableTime (in milliseconds) */
3832 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
3833 	} else {
3834 		/* Those handlers will update p->reachable_time after
3835 		 * base_reachable_time(_ms) is set to ensure the new timer starts being
3836 		 * applied after the next neighbour update instead of waiting for
3837 		 * neigh_periodic_work to update its value (can be multiple minutes)
3838 		 * So any handler that replaces them should do this as well
3839 		 */
3840 		/* ReachableTime */
3841 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler =
3842 			neigh_proc_base_reachable_time;
3843 		/* ReachableTime (in milliseconds) */
3844 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler =
3845 			neigh_proc_base_reachable_time;
3846 	}
3847 
3848 	switch (neigh_parms_family(p)) {
3849 	case AF_INET:
3850 	      p_name = "ipv4";
3851 	      break;
3852 	case AF_INET6:
3853 	      p_name = "ipv6";
3854 	      break;
3855 	default:
3856 	      BUG();
3857 	}
3858 
3859 	snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
3860 		p_name, dev_name_source);
3861 	t->sysctl_header = register_net_sysctl_sz(neigh_parms_net(p),
3862 						  neigh_path, t->neigh_vars,
3863 						  neigh_vars_size);
3864 	if (!t->sysctl_header)
3865 		goto free;
3866 
3867 	p->sysctl_table = t;
3868 	return 0;
3869 
3870 free:
3871 	kfree(t);
3872 err:
3873 	return -ENOBUFS;
3874 }
3875 EXPORT_SYMBOL(neigh_sysctl_register);
3876 
3877 void neigh_sysctl_unregister(struct neigh_parms *p)
3878 {
3879 	if (p->sysctl_table) {
3880 		struct neigh_sysctl_table *t = p->sysctl_table;
3881 		p->sysctl_table = NULL;
3882 		unregister_net_sysctl_table(t->sysctl_header);
3883 		kfree(t);
3884 	}
3885 }
3886 EXPORT_SYMBOL(neigh_sysctl_unregister);
3887 
3888 #endif	/* CONFIG_SYSCTL */
3889 
3890 static int __init neigh_init(void)
3891 {
3892 	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, 0);
3893 	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, 0);
3894 	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, neigh_get, neigh_dump_info, 0);
3895 
3896 	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3897 		      0);
3898 	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, 0);
3899 
3900 	return 0;
3901 }
3902 
3903 subsys_initcall(neigh_init);
3904