1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/socket.h> 22 #include <linux/netdevice.h> 23 #include <linux/proc_fs.h> 24 #ifdef CONFIG_SYSCTL 25 #include <linux/sysctl.h> 26 #endif 27 #include <linux/times.h> 28 #include <net/net_namespace.h> 29 #include <net/neighbour.h> 30 #include <net/dst.h> 31 #include <net/sock.h> 32 #include <net/netevent.h> 33 #include <net/netlink.h> 34 #include <linux/rtnetlink.h> 35 #include <linux/random.h> 36 #include <linux/string.h> 37 #include <linux/log2.h> 38 39 #define NEIGH_DEBUG 1 40 41 #define NEIGH_PRINTK(x...) printk(x) 42 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 43 #define NEIGH_PRINTK0 NEIGH_PRINTK 44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 46 47 #if NEIGH_DEBUG >= 1 48 #undef NEIGH_PRINTK1 49 #define NEIGH_PRINTK1 NEIGH_PRINTK 50 #endif 51 #if NEIGH_DEBUG >= 2 52 #undef NEIGH_PRINTK2 53 #define NEIGH_PRINTK2 NEIGH_PRINTK 54 #endif 55 56 #define PNEIGH_HASHMASK 0xF 57 58 static void neigh_timer_handler(unsigned long arg); 59 static void __neigh_notify(struct neighbour *n, int type, int flags); 60 static void neigh_update_notify(struct neighbour *neigh); 61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 62 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev); 63 64 static struct neigh_table *neigh_tables; 65 #ifdef CONFIG_PROC_FS 66 static const struct file_operations neigh_stat_seq_fops; 67 #endif 68 69 /* 70 Neighbour hash table buckets are protected with rwlock tbl->lock. 71 72 - All the scans/updates to hash buckets MUST be made under this lock. 73 - NOTHING clever should be made under this lock: no callbacks 74 to protocol backends, no attempts to send something to network. 75 It will result in deadlocks, if backend/driver wants to use neighbour 76 cache. 77 - If the entry requires some non-trivial actions, increase 78 its reference count and release table lock. 79 80 Neighbour entries are protected: 81 - with reference count. 82 - with rwlock neigh->lock 83 84 Reference count prevents destruction. 85 86 neigh->lock mainly serializes ll address data and its validity state. 87 However, the same lock is used to protect another entry fields: 88 - timer 89 - resolution queue 90 91 Again, nothing clever shall be made under neigh->lock, 92 the most complicated procedure, which we allow is dev->hard_header. 93 It is supposed, that dev->hard_header is simplistic and does 94 not make callbacks to neighbour tables. 95 96 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 97 list of neighbour tables. This list is used only in process context, 98 */ 99 100 static DEFINE_RWLOCK(neigh_tbl_lock); 101 102 static int neigh_blackhole(struct sk_buff *skb) 103 { 104 kfree_skb(skb); 105 return -ENETDOWN; 106 } 107 108 static void neigh_cleanup_and_release(struct neighbour *neigh) 109 { 110 if (neigh->parms->neigh_cleanup) 111 neigh->parms->neigh_cleanup(neigh); 112 113 __neigh_notify(neigh, RTM_DELNEIGH, 0); 114 neigh_release(neigh); 115 } 116 117 /* 118 * It is random distribution in the interval (1/2)*base...(3/2)*base. 119 * It corresponds to default IPv6 settings and is not overridable, 120 * because it is really reasonable choice. 121 */ 122 123 unsigned long neigh_rand_reach_time(unsigned long base) 124 { 125 return (base ? (net_random() % base) + (base >> 1) : 0); 126 } 127 128 129 static int neigh_forced_gc(struct neigh_table *tbl) 130 { 131 int shrunk = 0; 132 int i; 133 134 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 135 136 write_lock_bh(&tbl->lock); 137 for (i = 0; i <= tbl->hash_mask; i++) { 138 struct neighbour *n, **np; 139 140 np = &tbl->hash_buckets[i]; 141 while ((n = *np) != NULL) { 142 /* Neighbour record may be discarded if: 143 * - nobody refers to it. 144 * - it is not permanent 145 */ 146 write_lock(&n->lock); 147 if (atomic_read(&n->refcnt) == 1 && 148 !(n->nud_state & NUD_PERMANENT)) { 149 *np = n->next; 150 n->dead = 1; 151 shrunk = 1; 152 write_unlock(&n->lock); 153 neigh_cleanup_and_release(n); 154 continue; 155 } 156 write_unlock(&n->lock); 157 np = &n->next; 158 } 159 } 160 161 tbl->last_flush = jiffies; 162 163 write_unlock_bh(&tbl->lock); 164 165 return shrunk; 166 } 167 168 static int neigh_del_timer(struct neighbour *n) 169 { 170 if ((n->nud_state & NUD_IN_TIMER) && 171 del_timer(&n->timer)) { 172 neigh_release(n); 173 return 1; 174 } 175 return 0; 176 } 177 178 static void pneigh_queue_purge(struct sk_buff_head *list) 179 { 180 struct sk_buff *skb; 181 182 while ((skb = skb_dequeue(list)) != NULL) { 183 dev_put(skb->dev); 184 kfree_skb(skb); 185 } 186 } 187 188 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 189 { 190 int i; 191 192 for (i = 0; i <= tbl->hash_mask; i++) { 193 struct neighbour *n, **np = &tbl->hash_buckets[i]; 194 195 while ((n = *np) != NULL) { 196 if (dev && n->dev != dev) { 197 np = &n->next; 198 continue; 199 } 200 *np = n->next; 201 write_lock(&n->lock); 202 neigh_del_timer(n); 203 n->dead = 1; 204 205 if (atomic_read(&n->refcnt) != 1) { 206 /* The most unpleasant situation. 207 We must destroy neighbour entry, 208 but someone still uses it. 209 210 The destroy will be delayed until 211 the last user releases us, but 212 we must kill timers etc. and move 213 it to safe state. 214 */ 215 skb_queue_purge(&n->arp_queue); 216 n->output = neigh_blackhole; 217 if (n->nud_state & NUD_VALID) 218 n->nud_state = NUD_NOARP; 219 else 220 n->nud_state = NUD_NONE; 221 NEIGH_PRINTK2("neigh %p is stray.\n", n); 222 } 223 write_unlock(&n->lock); 224 neigh_cleanup_and_release(n); 225 } 226 } 227 } 228 229 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 230 { 231 write_lock_bh(&tbl->lock); 232 neigh_flush_dev(tbl, dev); 233 write_unlock_bh(&tbl->lock); 234 } 235 236 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 237 { 238 write_lock_bh(&tbl->lock); 239 neigh_flush_dev(tbl, dev); 240 pneigh_ifdown(tbl, dev); 241 write_unlock_bh(&tbl->lock); 242 243 del_timer_sync(&tbl->proxy_timer); 244 pneigh_queue_purge(&tbl->proxy_queue); 245 return 0; 246 } 247 248 static struct neighbour *neigh_alloc(struct neigh_table *tbl) 249 { 250 struct neighbour *n = NULL; 251 unsigned long now = jiffies; 252 int entries; 253 254 entries = atomic_inc_return(&tbl->entries) - 1; 255 if (entries >= tbl->gc_thresh3 || 256 (entries >= tbl->gc_thresh2 && 257 time_after(now, tbl->last_flush + 5 * HZ))) { 258 if (!neigh_forced_gc(tbl) && 259 entries >= tbl->gc_thresh3) 260 goto out_entries; 261 } 262 263 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC); 264 if (!n) 265 goto out_entries; 266 267 skb_queue_head_init(&n->arp_queue); 268 rwlock_init(&n->lock); 269 n->updated = n->used = now; 270 n->nud_state = NUD_NONE; 271 n->output = neigh_blackhole; 272 n->parms = neigh_parms_clone(&tbl->parms); 273 init_timer(&n->timer); 274 n->timer.function = neigh_timer_handler; 275 n->timer.data = (unsigned long)n; 276 277 NEIGH_CACHE_STAT_INC(tbl, allocs); 278 n->tbl = tbl; 279 atomic_set(&n->refcnt, 1); 280 n->dead = 1; 281 out: 282 return n; 283 284 out_entries: 285 atomic_dec(&tbl->entries); 286 goto out; 287 } 288 289 static struct neighbour **neigh_hash_alloc(unsigned int entries) 290 { 291 unsigned long size = entries * sizeof(struct neighbour *); 292 struct neighbour **ret; 293 294 if (size <= PAGE_SIZE) { 295 ret = kzalloc(size, GFP_ATOMIC); 296 } else { 297 ret = (struct neighbour **) 298 __get_free_pages(GFP_ATOMIC|__GFP_ZERO, get_order(size)); 299 } 300 return ret; 301 } 302 303 static void neigh_hash_free(struct neighbour **hash, unsigned int entries) 304 { 305 unsigned long size = entries * sizeof(struct neighbour *); 306 307 if (size <= PAGE_SIZE) 308 kfree(hash); 309 else 310 free_pages((unsigned long)hash, get_order(size)); 311 } 312 313 static void neigh_hash_grow(struct neigh_table *tbl, unsigned long new_entries) 314 { 315 struct neighbour **new_hash, **old_hash; 316 unsigned int i, new_hash_mask, old_entries; 317 318 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 319 320 BUG_ON(!is_power_of_2(new_entries)); 321 new_hash = neigh_hash_alloc(new_entries); 322 if (!new_hash) 323 return; 324 325 old_entries = tbl->hash_mask + 1; 326 new_hash_mask = new_entries - 1; 327 old_hash = tbl->hash_buckets; 328 329 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 330 for (i = 0; i < old_entries; i++) { 331 struct neighbour *n, *next; 332 333 for (n = old_hash[i]; n; n = next) { 334 unsigned int hash_val = tbl->hash(n->primary_key, n->dev); 335 336 hash_val &= new_hash_mask; 337 next = n->next; 338 339 n->next = new_hash[hash_val]; 340 new_hash[hash_val] = n; 341 } 342 } 343 tbl->hash_buckets = new_hash; 344 tbl->hash_mask = new_hash_mask; 345 346 neigh_hash_free(old_hash, old_entries); 347 } 348 349 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 350 struct net_device *dev) 351 { 352 struct neighbour *n; 353 int key_len = tbl->key_len; 354 u32 hash_val = tbl->hash(pkey, dev); 355 356 NEIGH_CACHE_STAT_INC(tbl, lookups); 357 358 read_lock_bh(&tbl->lock); 359 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 360 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 361 neigh_hold(n); 362 NEIGH_CACHE_STAT_INC(tbl, hits); 363 break; 364 } 365 } 366 read_unlock_bh(&tbl->lock); 367 return n; 368 } 369 370 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, const void *pkey) 371 { 372 struct neighbour *n; 373 int key_len = tbl->key_len; 374 u32 hash_val = tbl->hash(pkey, NULL); 375 376 NEIGH_CACHE_STAT_INC(tbl, lookups); 377 378 read_lock_bh(&tbl->lock); 379 for (n = tbl->hash_buckets[hash_val & tbl->hash_mask]; n; n = n->next) { 380 if (!memcmp(n->primary_key, pkey, key_len)) { 381 neigh_hold(n); 382 NEIGH_CACHE_STAT_INC(tbl, hits); 383 break; 384 } 385 } 386 read_unlock_bh(&tbl->lock); 387 return n; 388 } 389 390 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 391 struct net_device *dev) 392 { 393 u32 hash_val; 394 int key_len = tbl->key_len; 395 int error; 396 struct neighbour *n1, *rc, *n = neigh_alloc(tbl); 397 398 if (!n) { 399 rc = ERR_PTR(-ENOBUFS); 400 goto out; 401 } 402 403 memcpy(n->primary_key, pkey, key_len); 404 n->dev = dev; 405 dev_hold(dev); 406 407 /* Protocol specific setup. */ 408 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 409 rc = ERR_PTR(error); 410 goto out_neigh_release; 411 } 412 413 /* Device specific setup. */ 414 if (n->parms->neigh_setup && 415 (error = n->parms->neigh_setup(n)) < 0) { 416 rc = ERR_PTR(error); 417 goto out_neigh_release; 418 } 419 420 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 421 422 write_lock_bh(&tbl->lock); 423 424 if (atomic_read(&tbl->entries) > (tbl->hash_mask + 1)) 425 neigh_hash_grow(tbl, (tbl->hash_mask + 1) << 1); 426 427 hash_val = tbl->hash(pkey, dev) & tbl->hash_mask; 428 429 if (n->parms->dead) { 430 rc = ERR_PTR(-EINVAL); 431 goto out_tbl_unlock; 432 } 433 434 for (n1 = tbl->hash_buckets[hash_val]; n1; n1 = n1->next) { 435 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 436 neigh_hold(n1); 437 rc = n1; 438 goto out_tbl_unlock; 439 } 440 } 441 442 n->next = tbl->hash_buckets[hash_val]; 443 tbl->hash_buckets[hash_val] = n; 444 n->dead = 0; 445 neigh_hold(n); 446 write_unlock_bh(&tbl->lock); 447 NEIGH_PRINTK2("neigh %p is created.\n", n); 448 rc = n; 449 out: 450 return rc; 451 out_tbl_unlock: 452 write_unlock_bh(&tbl->lock); 453 out_neigh_release: 454 neigh_release(n); 455 goto out; 456 } 457 458 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, const void *pkey, 459 struct net_device *dev, int creat) 460 { 461 struct pneigh_entry *n; 462 int key_len = tbl->key_len; 463 u32 hash_val = *(u32 *)(pkey + key_len - 4); 464 465 hash_val ^= (hash_val >> 16); 466 hash_val ^= hash_val >> 8; 467 hash_val ^= hash_val >> 4; 468 hash_val &= PNEIGH_HASHMASK; 469 470 read_lock_bh(&tbl->lock); 471 472 for (n = tbl->phash_buckets[hash_val]; n; n = n->next) { 473 if (!memcmp(n->key, pkey, key_len) && 474 (n->dev == dev || !n->dev)) { 475 read_unlock_bh(&tbl->lock); 476 goto out; 477 } 478 } 479 read_unlock_bh(&tbl->lock); 480 n = NULL; 481 if (!creat) 482 goto out; 483 484 ASSERT_RTNL(); 485 486 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 487 if (!n) 488 goto out; 489 490 memcpy(n->key, pkey, key_len); 491 n->dev = dev; 492 if (dev) 493 dev_hold(dev); 494 495 if (tbl->pconstructor && tbl->pconstructor(n)) { 496 if (dev) 497 dev_put(dev); 498 kfree(n); 499 n = NULL; 500 goto out; 501 } 502 503 write_lock_bh(&tbl->lock); 504 n->next = tbl->phash_buckets[hash_val]; 505 tbl->phash_buckets[hash_val] = n; 506 write_unlock_bh(&tbl->lock); 507 out: 508 return n; 509 } 510 511 512 int pneigh_delete(struct neigh_table *tbl, const void *pkey, 513 struct net_device *dev) 514 { 515 struct pneigh_entry *n, **np; 516 int key_len = tbl->key_len; 517 u32 hash_val = *(u32 *)(pkey + key_len - 4); 518 519 hash_val ^= (hash_val >> 16); 520 hash_val ^= hash_val >> 8; 521 hash_val ^= hash_val >> 4; 522 hash_val &= PNEIGH_HASHMASK; 523 524 write_lock_bh(&tbl->lock); 525 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 526 np = &n->next) { 527 if (!memcmp(n->key, pkey, key_len) && n->dev == dev) { 528 *np = n->next; 529 write_unlock_bh(&tbl->lock); 530 if (tbl->pdestructor) 531 tbl->pdestructor(n); 532 if (n->dev) 533 dev_put(n->dev); 534 kfree(n); 535 return 0; 536 } 537 } 538 write_unlock_bh(&tbl->lock); 539 return -ENOENT; 540 } 541 542 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 543 { 544 struct pneigh_entry *n, **np; 545 u32 h; 546 547 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 548 np = &tbl->phash_buckets[h]; 549 while ((n = *np) != NULL) { 550 if (!dev || n->dev == dev) { 551 *np = n->next; 552 if (tbl->pdestructor) 553 tbl->pdestructor(n); 554 if (n->dev) 555 dev_put(n->dev); 556 kfree(n); 557 continue; 558 } 559 np = &n->next; 560 } 561 } 562 return -ENOENT; 563 } 564 565 566 /* 567 * neighbour must already be out of the table; 568 * 569 */ 570 void neigh_destroy(struct neighbour *neigh) 571 { 572 struct hh_cache *hh; 573 574 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 575 576 if (!neigh->dead) { 577 printk(KERN_WARNING 578 "Destroying alive neighbour %p\n", neigh); 579 dump_stack(); 580 return; 581 } 582 583 if (neigh_del_timer(neigh)) 584 printk(KERN_WARNING "Impossible event.\n"); 585 586 while ((hh = neigh->hh) != NULL) { 587 neigh->hh = hh->hh_next; 588 hh->hh_next = NULL; 589 590 write_seqlock_bh(&hh->hh_lock); 591 hh->hh_output = neigh_blackhole; 592 write_sequnlock_bh(&hh->hh_lock); 593 if (atomic_dec_and_test(&hh->hh_refcnt)) 594 kfree(hh); 595 } 596 597 skb_queue_purge(&neigh->arp_queue); 598 599 dev_put(neigh->dev); 600 neigh_parms_put(neigh->parms); 601 602 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 603 604 atomic_dec(&neigh->tbl->entries); 605 kmem_cache_free(neigh->tbl->kmem_cachep, neigh); 606 } 607 608 /* Neighbour state is suspicious; 609 disable fast path. 610 611 Called with write_locked neigh. 612 */ 613 static void neigh_suspect(struct neighbour *neigh) 614 { 615 struct hh_cache *hh; 616 617 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 618 619 neigh->output = neigh->ops->output; 620 621 for (hh = neigh->hh; hh; hh = hh->hh_next) 622 hh->hh_output = neigh->ops->output; 623 } 624 625 /* Neighbour state is OK; 626 enable fast path. 627 628 Called with write_locked neigh. 629 */ 630 static void neigh_connect(struct neighbour *neigh) 631 { 632 struct hh_cache *hh; 633 634 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 635 636 neigh->output = neigh->ops->connected_output; 637 638 for (hh = neigh->hh; hh; hh = hh->hh_next) 639 hh->hh_output = neigh->ops->hh_output; 640 } 641 642 static void neigh_periodic_timer(unsigned long arg) 643 { 644 struct neigh_table *tbl = (struct neigh_table *)arg; 645 struct neighbour *n, **np; 646 unsigned long expire, now = jiffies; 647 648 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 649 650 write_lock(&tbl->lock); 651 652 /* 653 * periodically recompute ReachableTime from random function 654 */ 655 656 if (time_after(now, tbl->last_rand + 300 * HZ)) { 657 struct neigh_parms *p; 658 tbl->last_rand = now; 659 for (p = &tbl->parms; p; p = p->next) 660 p->reachable_time = 661 neigh_rand_reach_time(p->base_reachable_time); 662 } 663 664 np = &tbl->hash_buckets[tbl->hash_chain_gc]; 665 tbl->hash_chain_gc = ((tbl->hash_chain_gc + 1) & tbl->hash_mask); 666 667 while ((n = *np) != NULL) { 668 unsigned int state; 669 670 write_lock(&n->lock); 671 672 state = n->nud_state; 673 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 674 write_unlock(&n->lock); 675 goto next_elt; 676 } 677 678 if (time_before(n->used, n->confirmed)) 679 n->used = n->confirmed; 680 681 if (atomic_read(&n->refcnt) == 1 && 682 (state == NUD_FAILED || 683 time_after(now, n->used + n->parms->gc_staletime))) { 684 *np = n->next; 685 n->dead = 1; 686 write_unlock(&n->lock); 687 neigh_cleanup_and_release(n); 688 continue; 689 } 690 write_unlock(&n->lock); 691 692 next_elt: 693 np = &n->next; 694 } 695 696 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 697 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 698 * base_reachable_time. 699 */ 700 expire = tbl->parms.base_reachable_time >> 1; 701 expire /= (tbl->hash_mask + 1); 702 if (!expire) 703 expire = 1; 704 705 if (expire>HZ) 706 mod_timer(&tbl->gc_timer, round_jiffies(now + expire)); 707 else 708 mod_timer(&tbl->gc_timer, now + expire); 709 710 write_unlock(&tbl->lock); 711 } 712 713 static __inline__ int neigh_max_probes(struct neighbour *n) 714 { 715 struct neigh_parms *p = n->parms; 716 return (n->nud_state & NUD_PROBE ? 717 p->ucast_probes : 718 p->ucast_probes + p->app_probes + p->mcast_probes); 719 } 720 721 static inline void neigh_add_timer(struct neighbour *n, unsigned long when) 722 { 723 if (unlikely(mod_timer(&n->timer, when))) { 724 printk("NEIGH: BUG, double timer add, state is %x\n", 725 n->nud_state); 726 dump_stack(); 727 } 728 } 729 730 /* Called when a timer expires for a neighbour entry. */ 731 732 static void neigh_timer_handler(unsigned long arg) 733 { 734 unsigned long now, next; 735 struct neighbour *neigh = (struct neighbour *)arg; 736 unsigned state; 737 int notify = 0; 738 739 write_lock(&neigh->lock); 740 741 state = neigh->nud_state; 742 now = jiffies; 743 next = now + HZ; 744 745 if (!(state & NUD_IN_TIMER)) { 746 #ifndef CONFIG_SMP 747 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n"); 748 #endif 749 goto out; 750 } 751 752 if (state & NUD_REACHABLE) { 753 if (time_before_eq(now, 754 neigh->confirmed + neigh->parms->reachable_time)) { 755 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 756 next = neigh->confirmed + neigh->parms->reachable_time; 757 } else if (time_before_eq(now, 758 neigh->used + neigh->parms->delay_probe_time)) { 759 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 760 neigh->nud_state = NUD_DELAY; 761 neigh->updated = jiffies; 762 neigh_suspect(neigh); 763 next = now + neigh->parms->delay_probe_time; 764 } else { 765 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 766 neigh->nud_state = NUD_STALE; 767 neigh->updated = jiffies; 768 neigh_suspect(neigh); 769 notify = 1; 770 } 771 } else if (state & NUD_DELAY) { 772 if (time_before_eq(now, 773 neigh->confirmed + neigh->parms->delay_probe_time)) { 774 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 775 neigh->nud_state = NUD_REACHABLE; 776 neigh->updated = jiffies; 777 neigh_connect(neigh); 778 notify = 1; 779 next = neigh->confirmed + neigh->parms->reachable_time; 780 } else { 781 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 782 neigh->nud_state = NUD_PROBE; 783 neigh->updated = jiffies; 784 atomic_set(&neigh->probes, 0); 785 next = now + neigh->parms->retrans_time; 786 } 787 } else { 788 /* NUD_PROBE|NUD_INCOMPLETE */ 789 next = now + neigh->parms->retrans_time; 790 } 791 792 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 793 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 794 struct sk_buff *skb; 795 796 neigh->nud_state = NUD_FAILED; 797 neigh->updated = jiffies; 798 notify = 1; 799 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 800 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 801 802 /* It is very thin place. report_unreachable is very complicated 803 routine. Particularly, it can hit the same neighbour entry! 804 805 So that, we try to be accurate and avoid dead loop. --ANK 806 */ 807 while (neigh->nud_state == NUD_FAILED && 808 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 809 write_unlock(&neigh->lock); 810 neigh->ops->error_report(neigh, skb); 811 write_lock(&neigh->lock); 812 } 813 skb_queue_purge(&neigh->arp_queue); 814 } 815 816 if (neigh->nud_state & NUD_IN_TIMER) { 817 if (time_before(next, jiffies + HZ/2)) 818 next = jiffies + HZ/2; 819 if (!mod_timer(&neigh->timer, next)) 820 neigh_hold(neigh); 821 } 822 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 823 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 824 /* keep skb alive even if arp_queue overflows */ 825 if (skb) 826 skb_get(skb); 827 write_unlock(&neigh->lock); 828 neigh->ops->solicit(neigh, skb); 829 atomic_inc(&neigh->probes); 830 if (skb) 831 kfree_skb(skb); 832 } else { 833 out: 834 write_unlock(&neigh->lock); 835 } 836 837 if (notify) 838 neigh_update_notify(neigh); 839 840 neigh_release(neigh); 841 } 842 843 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 844 { 845 int rc; 846 unsigned long now; 847 848 write_lock_bh(&neigh->lock); 849 850 rc = 0; 851 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 852 goto out_unlock_bh; 853 854 now = jiffies; 855 856 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 857 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 858 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 859 neigh->nud_state = NUD_INCOMPLETE; 860 neigh->updated = jiffies; 861 neigh_hold(neigh); 862 neigh_add_timer(neigh, now + 1); 863 } else { 864 neigh->nud_state = NUD_FAILED; 865 neigh->updated = jiffies; 866 write_unlock_bh(&neigh->lock); 867 868 if (skb) 869 kfree_skb(skb); 870 return 1; 871 } 872 } else if (neigh->nud_state & NUD_STALE) { 873 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 874 neigh_hold(neigh); 875 neigh->nud_state = NUD_DELAY; 876 neigh->updated = jiffies; 877 neigh_add_timer(neigh, 878 jiffies + neigh->parms->delay_probe_time); 879 } 880 881 if (neigh->nud_state == NUD_INCOMPLETE) { 882 if (skb) { 883 if (skb_queue_len(&neigh->arp_queue) >= 884 neigh->parms->queue_len) { 885 struct sk_buff *buff; 886 buff = neigh->arp_queue.next; 887 __skb_unlink(buff, &neigh->arp_queue); 888 kfree_skb(buff); 889 } 890 __skb_queue_tail(&neigh->arp_queue, skb); 891 } 892 rc = 1; 893 } 894 out_unlock_bh: 895 write_unlock_bh(&neigh->lock); 896 return rc; 897 } 898 899 static void neigh_update_hhs(struct neighbour *neigh) 900 { 901 struct hh_cache *hh; 902 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 903 = neigh->dev->header_ops->cache_update; 904 905 if (update) { 906 for (hh = neigh->hh; hh; hh = hh->hh_next) { 907 write_seqlock_bh(&hh->hh_lock); 908 update(hh, neigh->dev, neigh->ha); 909 write_sequnlock_bh(&hh->hh_lock); 910 } 911 } 912 } 913 914 915 916 /* Generic update routine. 917 -- lladdr is new lladdr or NULL, if it is not supplied. 918 -- new is new state. 919 -- flags 920 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 921 if it is different. 922 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 923 lladdr instead of overriding it 924 if it is different. 925 It also allows to retain current state 926 if lladdr is unchanged. 927 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 928 929 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 930 NTF_ROUTER flag. 931 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 932 a router. 933 934 Caller MUST hold reference count on the entry. 935 */ 936 937 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 938 u32 flags) 939 { 940 u8 old; 941 int err; 942 int notify = 0; 943 struct net_device *dev; 944 int update_isrouter = 0; 945 946 write_lock_bh(&neigh->lock); 947 948 dev = neigh->dev; 949 old = neigh->nud_state; 950 err = -EPERM; 951 952 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 953 (old & (NUD_NOARP | NUD_PERMANENT))) 954 goto out; 955 956 if (!(new & NUD_VALID)) { 957 neigh_del_timer(neigh); 958 if (old & NUD_CONNECTED) 959 neigh_suspect(neigh); 960 neigh->nud_state = new; 961 err = 0; 962 notify = old & NUD_VALID; 963 goto out; 964 } 965 966 /* Compare new lladdr with cached one */ 967 if (!dev->addr_len) { 968 /* First case: device needs no address. */ 969 lladdr = neigh->ha; 970 } else if (lladdr) { 971 /* The second case: if something is already cached 972 and a new address is proposed: 973 - compare new & old 974 - if they are different, check override flag 975 */ 976 if ((old & NUD_VALID) && 977 !memcmp(lladdr, neigh->ha, dev->addr_len)) 978 lladdr = neigh->ha; 979 } else { 980 /* No address is supplied; if we know something, 981 use it, otherwise discard the request. 982 */ 983 err = -EINVAL; 984 if (!(old & NUD_VALID)) 985 goto out; 986 lladdr = neigh->ha; 987 } 988 989 if (new & NUD_CONNECTED) 990 neigh->confirmed = jiffies; 991 neigh->updated = jiffies; 992 993 /* If entry was valid and address is not changed, 994 do not change entry state, if new one is STALE. 995 */ 996 err = 0; 997 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 998 if (old & NUD_VALID) { 999 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1000 update_isrouter = 0; 1001 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1002 (old & NUD_CONNECTED)) { 1003 lladdr = neigh->ha; 1004 new = NUD_STALE; 1005 } else 1006 goto out; 1007 } else { 1008 if (lladdr == neigh->ha && new == NUD_STALE && 1009 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1010 (old & NUD_CONNECTED)) 1011 ) 1012 new = old; 1013 } 1014 } 1015 1016 if (new != old) { 1017 neigh_del_timer(neigh); 1018 if (new & NUD_IN_TIMER) { 1019 neigh_hold(neigh); 1020 neigh_add_timer(neigh, (jiffies + 1021 ((new & NUD_REACHABLE) ? 1022 neigh->parms->reachable_time : 1023 0))); 1024 } 1025 neigh->nud_state = new; 1026 } 1027 1028 if (lladdr != neigh->ha) { 1029 memcpy(&neigh->ha, lladdr, dev->addr_len); 1030 neigh_update_hhs(neigh); 1031 if (!(new & NUD_CONNECTED)) 1032 neigh->confirmed = jiffies - 1033 (neigh->parms->base_reachable_time << 1); 1034 notify = 1; 1035 } 1036 if (new == old) 1037 goto out; 1038 if (new & NUD_CONNECTED) 1039 neigh_connect(neigh); 1040 else 1041 neigh_suspect(neigh); 1042 if (!(old & NUD_VALID)) { 1043 struct sk_buff *skb; 1044 1045 /* Again: avoid dead loop if something went wrong */ 1046 1047 while (neigh->nud_state & NUD_VALID && 1048 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1049 struct neighbour *n1 = neigh; 1050 write_unlock_bh(&neigh->lock); 1051 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1052 if (skb->dst && skb->dst->neighbour) 1053 n1 = skb->dst->neighbour; 1054 n1->output(skb); 1055 write_lock_bh(&neigh->lock); 1056 } 1057 skb_queue_purge(&neigh->arp_queue); 1058 } 1059 out: 1060 if (update_isrouter) { 1061 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1062 (neigh->flags | NTF_ROUTER) : 1063 (neigh->flags & ~NTF_ROUTER); 1064 } 1065 write_unlock_bh(&neigh->lock); 1066 1067 if (notify) 1068 neigh_update_notify(neigh); 1069 1070 return err; 1071 } 1072 1073 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1074 u8 *lladdr, void *saddr, 1075 struct net_device *dev) 1076 { 1077 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1078 lladdr || !dev->addr_len); 1079 if (neigh) 1080 neigh_update(neigh, lladdr, NUD_STALE, 1081 NEIGH_UPDATE_F_OVERRIDE); 1082 return neigh; 1083 } 1084 1085 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst, 1086 __be16 protocol) 1087 { 1088 struct hh_cache *hh; 1089 struct net_device *dev = dst->dev; 1090 1091 for (hh = n->hh; hh; hh = hh->hh_next) 1092 if (hh->hh_type == protocol) 1093 break; 1094 1095 if (!hh && (hh = kzalloc(sizeof(*hh), GFP_ATOMIC)) != NULL) { 1096 seqlock_init(&hh->hh_lock); 1097 hh->hh_type = protocol; 1098 atomic_set(&hh->hh_refcnt, 0); 1099 hh->hh_next = NULL; 1100 1101 if (dev->header_ops->cache(n, hh)) { 1102 kfree(hh); 1103 hh = NULL; 1104 } else { 1105 atomic_inc(&hh->hh_refcnt); 1106 hh->hh_next = n->hh; 1107 n->hh = hh; 1108 if (n->nud_state & NUD_CONNECTED) 1109 hh->hh_output = n->ops->hh_output; 1110 else 1111 hh->hh_output = n->ops->output; 1112 } 1113 } 1114 if (hh) { 1115 atomic_inc(&hh->hh_refcnt); 1116 dst->hh = hh; 1117 } 1118 } 1119 1120 /* This function can be used in contexts, where only old dev_queue_xmit 1121 worked, f.e. if you want to override normal output path (eql, shaper), 1122 but resolution is not made yet. 1123 */ 1124 1125 int neigh_compat_output(struct sk_buff *skb) 1126 { 1127 struct net_device *dev = skb->dev; 1128 1129 __skb_pull(skb, skb_network_offset(skb)); 1130 1131 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1132 skb->len) < 0 && 1133 dev->header_ops->rebuild(skb)) 1134 return 0; 1135 1136 return dev_queue_xmit(skb); 1137 } 1138 1139 /* Slow and careful. */ 1140 1141 int neigh_resolve_output(struct sk_buff *skb) 1142 { 1143 struct dst_entry *dst = skb->dst; 1144 struct neighbour *neigh; 1145 int rc = 0; 1146 1147 if (!dst || !(neigh = dst->neighbour)) 1148 goto discard; 1149 1150 __skb_pull(skb, skb_network_offset(skb)); 1151 1152 if (!neigh_event_send(neigh, skb)) { 1153 int err; 1154 struct net_device *dev = neigh->dev; 1155 if (dev->header_ops->cache && !dst->hh) { 1156 write_lock_bh(&neigh->lock); 1157 if (!dst->hh) 1158 neigh_hh_init(neigh, dst, dst->ops->protocol); 1159 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1160 neigh->ha, NULL, skb->len); 1161 write_unlock_bh(&neigh->lock); 1162 } else { 1163 read_lock_bh(&neigh->lock); 1164 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1165 neigh->ha, NULL, skb->len); 1166 read_unlock_bh(&neigh->lock); 1167 } 1168 if (err >= 0) 1169 rc = neigh->ops->queue_xmit(skb); 1170 else 1171 goto out_kfree_skb; 1172 } 1173 out: 1174 return rc; 1175 discard: 1176 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1177 dst, dst ? dst->neighbour : NULL); 1178 out_kfree_skb: 1179 rc = -EINVAL; 1180 kfree_skb(skb); 1181 goto out; 1182 } 1183 1184 /* As fast as possible without hh cache */ 1185 1186 int neigh_connected_output(struct sk_buff *skb) 1187 { 1188 int err; 1189 struct dst_entry *dst = skb->dst; 1190 struct neighbour *neigh = dst->neighbour; 1191 struct net_device *dev = neigh->dev; 1192 1193 __skb_pull(skb, skb_network_offset(skb)); 1194 1195 read_lock_bh(&neigh->lock); 1196 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1197 neigh->ha, NULL, skb->len); 1198 read_unlock_bh(&neigh->lock); 1199 if (err >= 0) 1200 err = neigh->ops->queue_xmit(skb); 1201 else { 1202 err = -EINVAL; 1203 kfree_skb(skb); 1204 } 1205 return err; 1206 } 1207 1208 static void neigh_proxy_process(unsigned long arg) 1209 { 1210 struct neigh_table *tbl = (struct neigh_table *)arg; 1211 long sched_next = 0; 1212 unsigned long now = jiffies; 1213 struct sk_buff *skb; 1214 1215 spin_lock(&tbl->proxy_queue.lock); 1216 1217 skb = tbl->proxy_queue.next; 1218 1219 while (skb != (struct sk_buff *)&tbl->proxy_queue) { 1220 struct sk_buff *back = skb; 1221 long tdif = NEIGH_CB(back)->sched_next - now; 1222 1223 skb = skb->next; 1224 if (tdif <= 0) { 1225 struct net_device *dev = back->dev; 1226 __skb_unlink(back, &tbl->proxy_queue); 1227 if (tbl->proxy_redo && netif_running(dev)) 1228 tbl->proxy_redo(back); 1229 else 1230 kfree_skb(back); 1231 1232 dev_put(dev); 1233 } else if (!sched_next || tdif < sched_next) 1234 sched_next = tdif; 1235 } 1236 del_timer(&tbl->proxy_timer); 1237 if (sched_next) 1238 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1239 spin_unlock(&tbl->proxy_queue.lock); 1240 } 1241 1242 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1243 struct sk_buff *skb) 1244 { 1245 unsigned long now = jiffies; 1246 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1247 1248 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1249 kfree_skb(skb); 1250 return; 1251 } 1252 1253 NEIGH_CB(skb)->sched_next = sched_next; 1254 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1255 1256 spin_lock(&tbl->proxy_queue.lock); 1257 if (del_timer(&tbl->proxy_timer)) { 1258 if (time_before(tbl->proxy_timer.expires, sched_next)) 1259 sched_next = tbl->proxy_timer.expires; 1260 } 1261 dst_release(skb->dst); 1262 skb->dst = NULL; 1263 dev_hold(skb->dev); 1264 __skb_queue_tail(&tbl->proxy_queue, skb); 1265 mod_timer(&tbl->proxy_timer, sched_next); 1266 spin_unlock(&tbl->proxy_queue.lock); 1267 } 1268 1269 1270 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1271 struct neigh_table *tbl) 1272 { 1273 struct neigh_parms *p = kmemdup(&tbl->parms, sizeof(*p), GFP_KERNEL); 1274 1275 if (p) { 1276 p->tbl = tbl; 1277 atomic_set(&p->refcnt, 1); 1278 INIT_RCU_HEAD(&p->rcu_head); 1279 p->reachable_time = 1280 neigh_rand_reach_time(p->base_reachable_time); 1281 if (dev) { 1282 if (dev->neigh_setup && dev->neigh_setup(dev, p)) { 1283 kfree(p); 1284 return NULL; 1285 } 1286 1287 dev_hold(dev); 1288 p->dev = dev; 1289 } 1290 p->sysctl_table = NULL; 1291 write_lock_bh(&tbl->lock); 1292 p->next = tbl->parms.next; 1293 tbl->parms.next = p; 1294 write_unlock_bh(&tbl->lock); 1295 } 1296 return p; 1297 } 1298 1299 static void neigh_rcu_free_parms(struct rcu_head *head) 1300 { 1301 struct neigh_parms *parms = 1302 container_of(head, struct neigh_parms, rcu_head); 1303 1304 neigh_parms_put(parms); 1305 } 1306 1307 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1308 { 1309 struct neigh_parms **p; 1310 1311 if (!parms || parms == &tbl->parms) 1312 return; 1313 write_lock_bh(&tbl->lock); 1314 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1315 if (*p == parms) { 1316 *p = parms->next; 1317 parms->dead = 1; 1318 write_unlock_bh(&tbl->lock); 1319 if (parms->dev) 1320 dev_put(parms->dev); 1321 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1322 return; 1323 } 1324 } 1325 write_unlock_bh(&tbl->lock); 1326 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1327 } 1328 1329 void neigh_parms_destroy(struct neigh_parms *parms) 1330 { 1331 kfree(parms); 1332 } 1333 1334 static struct lock_class_key neigh_table_proxy_queue_class; 1335 1336 void neigh_table_init_no_netlink(struct neigh_table *tbl) 1337 { 1338 unsigned long now = jiffies; 1339 unsigned long phsize; 1340 1341 atomic_set(&tbl->parms.refcnt, 1); 1342 INIT_RCU_HEAD(&tbl->parms.rcu_head); 1343 tbl->parms.reachable_time = 1344 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1345 1346 if (!tbl->kmem_cachep) 1347 tbl->kmem_cachep = 1348 kmem_cache_create(tbl->id, tbl->entry_size, 0, 1349 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1350 NULL); 1351 tbl->stats = alloc_percpu(struct neigh_statistics); 1352 if (!tbl->stats) 1353 panic("cannot create neighbour cache statistics"); 1354 1355 #ifdef CONFIG_PROC_FS 1356 tbl->pde = create_proc_entry(tbl->id, 0, init_net.proc_net_stat); 1357 if (!tbl->pde) 1358 panic("cannot create neighbour proc dir entry"); 1359 tbl->pde->proc_fops = &neigh_stat_seq_fops; 1360 tbl->pde->data = tbl; 1361 #endif 1362 1363 tbl->hash_mask = 1; 1364 tbl->hash_buckets = neigh_hash_alloc(tbl->hash_mask + 1); 1365 1366 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1367 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1368 1369 if (!tbl->hash_buckets || !tbl->phash_buckets) 1370 panic("cannot allocate neighbour cache hashes"); 1371 1372 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd)); 1373 1374 rwlock_init(&tbl->lock); 1375 init_timer(&tbl->gc_timer); 1376 tbl->gc_timer.data = (unsigned long)tbl; 1377 tbl->gc_timer.function = neigh_periodic_timer; 1378 tbl->gc_timer.expires = now + 1; 1379 add_timer(&tbl->gc_timer); 1380 1381 init_timer(&tbl->proxy_timer); 1382 tbl->proxy_timer.data = (unsigned long)tbl; 1383 tbl->proxy_timer.function = neigh_proxy_process; 1384 skb_queue_head_init_class(&tbl->proxy_queue, 1385 &neigh_table_proxy_queue_class); 1386 1387 tbl->last_flush = now; 1388 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1389 } 1390 1391 void neigh_table_init(struct neigh_table *tbl) 1392 { 1393 struct neigh_table *tmp; 1394 1395 neigh_table_init_no_netlink(tbl); 1396 write_lock(&neigh_tbl_lock); 1397 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1398 if (tmp->family == tbl->family) 1399 break; 1400 } 1401 tbl->next = neigh_tables; 1402 neigh_tables = tbl; 1403 write_unlock(&neigh_tbl_lock); 1404 1405 if (unlikely(tmp)) { 1406 printk(KERN_ERR "NEIGH: Registering multiple tables for " 1407 "family %d\n", tbl->family); 1408 dump_stack(); 1409 } 1410 } 1411 1412 int neigh_table_clear(struct neigh_table *tbl) 1413 { 1414 struct neigh_table **tp; 1415 1416 /* It is not clean... Fix it to unload IPv6 module safely */ 1417 del_timer_sync(&tbl->gc_timer); 1418 del_timer_sync(&tbl->proxy_timer); 1419 pneigh_queue_purge(&tbl->proxy_queue); 1420 neigh_ifdown(tbl, NULL); 1421 if (atomic_read(&tbl->entries)) 1422 printk(KERN_CRIT "neighbour leakage\n"); 1423 write_lock(&neigh_tbl_lock); 1424 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1425 if (*tp == tbl) { 1426 *tp = tbl->next; 1427 break; 1428 } 1429 } 1430 write_unlock(&neigh_tbl_lock); 1431 1432 neigh_hash_free(tbl->hash_buckets, tbl->hash_mask + 1); 1433 tbl->hash_buckets = NULL; 1434 1435 kfree(tbl->phash_buckets); 1436 tbl->phash_buckets = NULL; 1437 1438 free_percpu(tbl->stats); 1439 tbl->stats = NULL; 1440 1441 kmem_cache_destroy(tbl->kmem_cachep); 1442 tbl->kmem_cachep = NULL; 1443 1444 return 0; 1445 } 1446 1447 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1448 { 1449 struct net *net = skb->sk->sk_net; 1450 struct ndmsg *ndm; 1451 struct nlattr *dst_attr; 1452 struct neigh_table *tbl; 1453 struct net_device *dev = NULL; 1454 int err = -EINVAL; 1455 1456 if (nlmsg_len(nlh) < sizeof(*ndm)) 1457 goto out; 1458 1459 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1460 if (dst_attr == NULL) 1461 goto out; 1462 1463 ndm = nlmsg_data(nlh); 1464 if (ndm->ndm_ifindex) { 1465 dev = dev_get_by_index(net, ndm->ndm_ifindex); 1466 if (dev == NULL) { 1467 err = -ENODEV; 1468 goto out; 1469 } 1470 } 1471 1472 read_lock(&neigh_tbl_lock); 1473 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1474 struct neighbour *neigh; 1475 1476 if (tbl->family != ndm->ndm_family) 1477 continue; 1478 read_unlock(&neigh_tbl_lock); 1479 1480 if (nla_len(dst_attr) < tbl->key_len) 1481 goto out_dev_put; 1482 1483 if (ndm->ndm_flags & NTF_PROXY) { 1484 err = pneigh_delete(tbl, nla_data(dst_attr), dev); 1485 goto out_dev_put; 1486 } 1487 1488 if (dev == NULL) 1489 goto out_dev_put; 1490 1491 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1492 if (neigh == NULL) { 1493 err = -ENOENT; 1494 goto out_dev_put; 1495 } 1496 1497 err = neigh_update(neigh, NULL, NUD_FAILED, 1498 NEIGH_UPDATE_F_OVERRIDE | 1499 NEIGH_UPDATE_F_ADMIN); 1500 neigh_release(neigh); 1501 goto out_dev_put; 1502 } 1503 read_unlock(&neigh_tbl_lock); 1504 err = -EAFNOSUPPORT; 1505 1506 out_dev_put: 1507 if (dev) 1508 dev_put(dev); 1509 out: 1510 return err; 1511 } 1512 1513 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1514 { 1515 struct net *net = skb->sk->sk_net; 1516 struct ndmsg *ndm; 1517 struct nlattr *tb[NDA_MAX+1]; 1518 struct neigh_table *tbl; 1519 struct net_device *dev = NULL; 1520 int err; 1521 1522 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1523 if (err < 0) 1524 goto out; 1525 1526 err = -EINVAL; 1527 if (tb[NDA_DST] == NULL) 1528 goto out; 1529 1530 ndm = nlmsg_data(nlh); 1531 if (ndm->ndm_ifindex) { 1532 dev = dev_get_by_index(net, ndm->ndm_ifindex); 1533 if (dev == NULL) { 1534 err = -ENODEV; 1535 goto out; 1536 } 1537 1538 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1539 goto out_dev_put; 1540 } 1541 1542 read_lock(&neigh_tbl_lock); 1543 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1544 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1545 struct neighbour *neigh; 1546 void *dst, *lladdr; 1547 1548 if (tbl->family != ndm->ndm_family) 1549 continue; 1550 read_unlock(&neigh_tbl_lock); 1551 1552 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1553 goto out_dev_put; 1554 dst = nla_data(tb[NDA_DST]); 1555 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1556 1557 if (ndm->ndm_flags & NTF_PROXY) { 1558 struct pneigh_entry *pn; 1559 1560 err = -ENOBUFS; 1561 pn = pneigh_lookup(tbl, dst, dev, 1); 1562 if (pn) { 1563 pn->flags = ndm->ndm_flags; 1564 err = 0; 1565 } 1566 goto out_dev_put; 1567 } 1568 1569 if (dev == NULL) 1570 goto out_dev_put; 1571 1572 neigh = neigh_lookup(tbl, dst, dev); 1573 if (neigh == NULL) { 1574 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1575 err = -ENOENT; 1576 goto out_dev_put; 1577 } 1578 1579 neigh = __neigh_lookup_errno(tbl, dst, dev); 1580 if (IS_ERR(neigh)) { 1581 err = PTR_ERR(neigh); 1582 goto out_dev_put; 1583 } 1584 } else { 1585 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1586 err = -EEXIST; 1587 neigh_release(neigh); 1588 goto out_dev_put; 1589 } 1590 1591 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1592 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1593 } 1594 1595 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1596 neigh_release(neigh); 1597 goto out_dev_put; 1598 } 1599 1600 read_unlock(&neigh_tbl_lock); 1601 err = -EAFNOSUPPORT; 1602 1603 out_dev_put: 1604 if (dev) 1605 dev_put(dev); 1606 out: 1607 return err; 1608 } 1609 1610 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1611 { 1612 struct nlattr *nest; 1613 1614 nest = nla_nest_start(skb, NDTA_PARMS); 1615 if (nest == NULL) 1616 return -ENOBUFS; 1617 1618 if (parms->dev) 1619 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex); 1620 1621 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)); 1622 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len); 1623 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen); 1624 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes); 1625 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes); 1626 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes); 1627 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time); 1628 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME, 1629 parms->base_reachable_time); 1630 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime); 1631 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time); 1632 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time); 1633 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay); 1634 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay); 1635 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime); 1636 1637 return nla_nest_end(skb, nest); 1638 1639 nla_put_failure: 1640 return nla_nest_cancel(skb, nest); 1641 } 1642 1643 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1644 u32 pid, u32 seq, int type, int flags) 1645 { 1646 struct nlmsghdr *nlh; 1647 struct ndtmsg *ndtmsg; 1648 1649 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1650 if (nlh == NULL) 1651 return -EMSGSIZE; 1652 1653 ndtmsg = nlmsg_data(nlh); 1654 1655 read_lock_bh(&tbl->lock); 1656 ndtmsg->ndtm_family = tbl->family; 1657 ndtmsg->ndtm_pad1 = 0; 1658 ndtmsg->ndtm_pad2 = 0; 1659 1660 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id); 1661 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval); 1662 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1); 1663 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2); 1664 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3); 1665 1666 { 1667 unsigned long now = jiffies; 1668 unsigned int flush_delta = now - tbl->last_flush; 1669 unsigned int rand_delta = now - tbl->last_rand; 1670 1671 struct ndt_config ndc = { 1672 .ndtc_key_len = tbl->key_len, 1673 .ndtc_entry_size = tbl->entry_size, 1674 .ndtc_entries = atomic_read(&tbl->entries), 1675 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1676 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1677 .ndtc_hash_rnd = tbl->hash_rnd, 1678 .ndtc_hash_mask = tbl->hash_mask, 1679 .ndtc_hash_chain_gc = tbl->hash_chain_gc, 1680 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1681 }; 1682 1683 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc); 1684 } 1685 1686 { 1687 int cpu; 1688 struct ndt_stats ndst; 1689 1690 memset(&ndst, 0, sizeof(ndst)); 1691 1692 for_each_possible_cpu(cpu) { 1693 struct neigh_statistics *st; 1694 1695 st = per_cpu_ptr(tbl->stats, cpu); 1696 ndst.ndts_allocs += st->allocs; 1697 ndst.ndts_destroys += st->destroys; 1698 ndst.ndts_hash_grows += st->hash_grows; 1699 ndst.ndts_res_failed += st->res_failed; 1700 ndst.ndts_lookups += st->lookups; 1701 ndst.ndts_hits += st->hits; 1702 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1703 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1704 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1705 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1706 } 1707 1708 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst); 1709 } 1710 1711 BUG_ON(tbl->parms.dev); 1712 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1713 goto nla_put_failure; 1714 1715 read_unlock_bh(&tbl->lock); 1716 return nlmsg_end(skb, nlh); 1717 1718 nla_put_failure: 1719 read_unlock_bh(&tbl->lock); 1720 nlmsg_cancel(skb, nlh); 1721 return -EMSGSIZE; 1722 } 1723 1724 static int neightbl_fill_param_info(struct sk_buff *skb, 1725 struct neigh_table *tbl, 1726 struct neigh_parms *parms, 1727 u32 pid, u32 seq, int type, 1728 unsigned int flags) 1729 { 1730 struct ndtmsg *ndtmsg; 1731 struct nlmsghdr *nlh; 1732 1733 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1734 if (nlh == NULL) 1735 return -EMSGSIZE; 1736 1737 ndtmsg = nlmsg_data(nlh); 1738 1739 read_lock_bh(&tbl->lock); 1740 ndtmsg->ndtm_family = tbl->family; 1741 ndtmsg->ndtm_pad1 = 0; 1742 ndtmsg->ndtm_pad2 = 0; 1743 1744 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1745 neightbl_fill_parms(skb, parms) < 0) 1746 goto errout; 1747 1748 read_unlock_bh(&tbl->lock); 1749 return nlmsg_end(skb, nlh); 1750 errout: 1751 read_unlock_bh(&tbl->lock); 1752 nlmsg_cancel(skb, nlh); 1753 return -EMSGSIZE; 1754 } 1755 1756 static inline struct neigh_parms *lookup_neigh_params(struct neigh_table *tbl, 1757 int ifindex) 1758 { 1759 struct neigh_parms *p; 1760 1761 for (p = &tbl->parms; p; p = p->next) 1762 if ((p->dev && p->dev->ifindex == ifindex) || 1763 (!p->dev && !ifindex)) 1764 return p; 1765 1766 return NULL; 1767 } 1768 1769 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1770 [NDTA_NAME] = { .type = NLA_STRING }, 1771 [NDTA_THRESH1] = { .type = NLA_U32 }, 1772 [NDTA_THRESH2] = { .type = NLA_U32 }, 1773 [NDTA_THRESH3] = { .type = NLA_U32 }, 1774 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1775 [NDTA_PARMS] = { .type = NLA_NESTED }, 1776 }; 1777 1778 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1779 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1780 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1781 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1782 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1783 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1784 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1785 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1786 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1787 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1788 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1789 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1790 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1791 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1792 }; 1793 1794 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1795 { 1796 struct neigh_table *tbl; 1797 struct ndtmsg *ndtmsg; 1798 struct nlattr *tb[NDTA_MAX+1]; 1799 int err; 1800 1801 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1802 nl_neightbl_policy); 1803 if (err < 0) 1804 goto errout; 1805 1806 if (tb[NDTA_NAME] == NULL) { 1807 err = -EINVAL; 1808 goto errout; 1809 } 1810 1811 ndtmsg = nlmsg_data(nlh); 1812 read_lock(&neigh_tbl_lock); 1813 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1814 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1815 continue; 1816 1817 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1818 break; 1819 } 1820 1821 if (tbl == NULL) { 1822 err = -ENOENT; 1823 goto errout_locked; 1824 } 1825 1826 /* 1827 * We acquire tbl->lock to be nice to the periodic timers and 1828 * make sure they always see a consistent set of values. 1829 */ 1830 write_lock_bh(&tbl->lock); 1831 1832 if (tb[NDTA_PARMS]) { 1833 struct nlattr *tbp[NDTPA_MAX+1]; 1834 struct neigh_parms *p; 1835 int i, ifindex = 0; 1836 1837 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1838 nl_ntbl_parm_policy); 1839 if (err < 0) 1840 goto errout_tbl_lock; 1841 1842 if (tbp[NDTPA_IFINDEX]) 1843 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1844 1845 p = lookup_neigh_params(tbl, ifindex); 1846 if (p == NULL) { 1847 err = -ENOENT; 1848 goto errout_tbl_lock; 1849 } 1850 1851 for (i = 1; i <= NDTPA_MAX; i++) { 1852 if (tbp[i] == NULL) 1853 continue; 1854 1855 switch (i) { 1856 case NDTPA_QUEUE_LEN: 1857 p->queue_len = nla_get_u32(tbp[i]); 1858 break; 1859 case NDTPA_PROXY_QLEN: 1860 p->proxy_qlen = nla_get_u32(tbp[i]); 1861 break; 1862 case NDTPA_APP_PROBES: 1863 p->app_probes = nla_get_u32(tbp[i]); 1864 break; 1865 case NDTPA_UCAST_PROBES: 1866 p->ucast_probes = nla_get_u32(tbp[i]); 1867 break; 1868 case NDTPA_MCAST_PROBES: 1869 p->mcast_probes = nla_get_u32(tbp[i]); 1870 break; 1871 case NDTPA_BASE_REACHABLE_TIME: 1872 p->base_reachable_time = nla_get_msecs(tbp[i]); 1873 break; 1874 case NDTPA_GC_STALETIME: 1875 p->gc_staletime = nla_get_msecs(tbp[i]); 1876 break; 1877 case NDTPA_DELAY_PROBE_TIME: 1878 p->delay_probe_time = nla_get_msecs(tbp[i]); 1879 break; 1880 case NDTPA_RETRANS_TIME: 1881 p->retrans_time = nla_get_msecs(tbp[i]); 1882 break; 1883 case NDTPA_ANYCAST_DELAY: 1884 p->anycast_delay = nla_get_msecs(tbp[i]); 1885 break; 1886 case NDTPA_PROXY_DELAY: 1887 p->proxy_delay = nla_get_msecs(tbp[i]); 1888 break; 1889 case NDTPA_LOCKTIME: 1890 p->locktime = nla_get_msecs(tbp[i]); 1891 break; 1892 } 1893 } 1894 } 1895 1896 if (tb[NDTA_THRESH1]) 1897 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 1898 1899 if (tb[NDTA_THRESH2]) 1900 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 1901 1902 if (tb[NDTA_THRESH3]) 1903 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 1904 1905 if (tb[NDTA_GC_INTERVAL]) 1906 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 1907 1908 err = 0; 1909 1910 errout_tbl_lock: 1911 write_unlock_bh(&tbl->lock); 1912 errout_locked: 1913 read_unlock(&neigh_tbl_lock); 1914 errout: 1915 return err; 1916 } 1917 1918 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 1919 { 1920 int family, tidx, nidx = 0; 1921 int tbl_skip = cb->args[0]; 1922 int neigh_skip = cb->args[1]; 1923 struct neigh_table *tbl; 1924 1925 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 1926 1927 read_lock(&neigh_tbl_lock); 1928 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 1929 struct neigh_parms *p; 1930 1931 if (tidx < tbl_skip || (family && tbl->family != family)) 1932 continue; 1933 1934 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 1935 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 1936 NLM_F_MULTI) <= 0) 1937 break; 1938 1939 for (nidx = 0, p = tbl->parms.next; p; p = p->next, nidx++) { 1940 if (nidx < neigh_skip) 1941 continue; 1942 1943 if (neightbl_fill_param_info(skb, tbl, p, 1944 NETLINK_CB(cb->skb).pid, 1945 cb->nlh->nlmsg_seq, 1946 RTM_NEWNEIGHTBL, 1947 NLM_F_MULTI) <= 0) 1948 goto out; 1949 } 1950 1951 neigh_skip = 0; 1952 } 1953 out: 1954 read_unlock(&neigh_tbl_lock); 1955 cb->args[0] = tidx; 1956 cb->args[1] = nidx; 1957 1958 return skb->len; 1959 } 1960 1961 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 1962 u32 pid, u32 seq, int type, unsigned int flags) 1963 { 1964 unsigned long now = jiffies; 1965 struct nda_cacheinfo ci; 1966 struct nlmsghdr *nlh; 1967 struct ndmsg *ndm; 1968 1969 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 1970 if (nlh == NULL) 1971 return -EMSGSIZE; 1972 1973 ndm = nlmsg_data(nlh); 1974 ndm->ndm_family = neigh->ops->family; 1975 ndm->ndm_pad1 = 0; 1976 ndm->ndm_pad2 = 0; 1977 ndm->ndm_flags = neigh->flags; 1978 ndm->ndm_type = neigh->type; 1979 ndm->ndm_ifindex = neigh->dev->ifindex; 1980 1981 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key); 1982 1983 read_lock_bh(&neigh->lock); 1984 ndm->ndm_state = neigh->nud_state; 1985 if ((neigh->nud_state & NUD_VALID) && 1986 nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, neigh->ha) < 0) { 1987 read_unlock_bh(&neigh->lock); 1988 goto nla_put_failure; 1989 } 1990 1991 ci.ndm_used = now - neigh->used; 1992 ci.ndm_confirmed = now - neigh->confirmed; 1993 ci.ndm_updated = now - neigh->updated; 1994 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 1995 read_unlock_bh(&neigh->lock); 1996 1997 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes)); 1998 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci); 1999 2000 return nlmsg_end(skb, nlh); 2001 2002 nla_put_failure: 2003 nlmsg_cancel(skb, nlh); 2004 return -EMSGSIZE; 2005 } 2006 2007 static void neigh_update_notify(struct neighbour *neigh) 2008 { 2009 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2010 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2011 } 2012 2013 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2014 struct netlink_callback *cb) 2015 { 2016 struct neighbour *n; 2017 int rc, h, s_h = cb->args[1]; 2018 int idx, s_idx = idx = cb->args[2]; 2019 2020 read_lock_bh(&tbl->lock); 2021 for (h = 0; h <= tbl->hash_mask; h++) { 2022 if (h < s_h) 2023 continue; 2024 if (h > s_h) 2025 s_idx = 0; 2026 for (n = tbl->hash_buckets[h], idx = 0; n; n = n->next, idx++) { 2027 if (idx < s_idx) 2028 continue; 2029 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2030 cb->nlh->nlmsg_seq, 2031 RTM_NEWNEIGH, 2032 NLM_F_MULTI) <= 0) { 2033 read_unlock_bh(&tbl->lock); 2034 rc = -1; 2035 goto out; 2036 } 2037 } 2038 } 2039 read_unlock_bh(&tbl->lock); 2040 rc = skb->len; 2041 out: 2042 cb->args[1] = h; 2043 cb->args[2] = idx; 2044 return rc; 2045 } 2046 2047 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2048 { 2049 struct neigh_table *tbl; 2050 int t, family, s_t; 2051 2052 read_lock(&neigh_tbl_lock); 2053 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2054 s_t = cb->args[0]; 2055 2056 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) { 2057 if (t < s_t || (family && tbl->family != family)) 2058 continue; 2059 if (t > s_t) 2060 memset(&cb->args[1], 0, sizeof(cb->args) - 2061 sizeof(cb->args[0])); 2062 if (neigh_dump_table(tbl, skb, cb) < 0) 2063 break; 2064 } 2065 read_unlock(&neigh_tbl_lock); 2066 2067 cb->args[0] = t; 2068 return skb->len; 2069 } 2070 2071 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2072 { 2073 int chain; 2074 2075 read_lock_bh(&tbl->lock); 2076 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2077 struct neighbour *n; 2078 2079 for (n = tbl->hash_buckets[chain]; n; n = n->next) 2080 cb(n, cookie); 2081 } 2082 read_unlock_bh(&tbl->lock); 2083 } 2084 EXPORT_SYMBOL(neigh_for_each); 2085 2086 /* The tbl->lock must be held as a writer and BH disabled. */ 2087 void __neigh_for_each_release(struct neigh_table *tbl, 2088 int (*cb)(struct neighbour *)) 2089 { 2090 int chain; 2091 2092 for (chain = 0; chain <= tbl->hash_mask; chain++) { 2093 struct neighbour *n, **np; 2094 2095 np = &tbl->hash_buckets[chain]; 2096 while ((n = *np) != NULL) { 2097 int release; 2098 2099 write_lock(&n->lock); 2100 release = cb(n); 2101 if (release) { 2102 *np = n->next; 2103 n->dead = 1; 2104 } else 2105 np = &n->next; 2106 write_unlock(&n->lock); 2107 if (release) 2108 neigh_cleanup_and_release(n); 2109 } 2110 } 2111 } 2112 EXPORT_SYMBOL(__neigh_for_each_release); 2113 2114 #ifdef CONFIG_PROC_FS 2115 2116 static struct neighbour *neigh_get_first(struct seq_file *seq) 2117 { 2118 struct neigh_seq_state *state = seq->private; 2119 struct neigh_table *tbl = state->tbl; 2120 struct neighbour *n = NULL; 2121 int bucket = state->bucket; 2122 2123 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2124 for (bucket = 0; bucket <= tbl->hash_mask; bucket++) { 2125 n = tbl->hash_buckets[bucket]; 2126 2127 while (n) { 2128 if (state->neigh_sub_iter) { 2129 loff_t fakep = 0; 2130 void *v; 2131 2132 v = state->neigh_sub_iter(state, n, &fakep); 2133 if (!v) 2134 goto next; 2135 } 2136 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2137 break; 2138 if (n->nud_state & ~NUD_NOARP) 2139 break; 2140 next: 2141 n = n->next; 2142 } 2143 2144 if (n) 2145 break; 2146 } 2147 state->bucket = bucket; 2148 2149 return n; 2150 } 2151 2152 static struct neighbour *neigh_get_next(struct seq_file *seq, 2153 struct neighbour *n, 2154 loff_t *pos) 2155 { 2156 struct neigh_seq_state *state = seq->private; 2157 struct neigh_table *tbl = state->tbl; 2158 2159 if (state->neigh_sub_iter) { 2160 void *v = state->neigh_sub_iter(state, n, pos); 2161 if (v) 2162 return n; 2163 } 2164 n = n->next; 2165 2166 while (1) { 2167 while (n) { 2168 if (state->neigh_sub_iter) { 2169 void *v = state->neigh_sub_iter(state, n, pos); 2170 if (v) 2171 return n; 2172 goto next; 2173 } 2174 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2175 break; 2176 2177 if (n->nud_state & ~NUD_NOARP) 2178 break; 2179 next: 2180 n = n->next; 2181 } 2182 2183 if (n) 2184 break; 2185 2186 if (++state->bucket > tbl->hash_mask) 2187 break; 2188 2189 n = tbl->hash_buckets[state->bucket]; 2190 } 2191 2192 if (n && pos) 2193 --(*pos); 2194 return n; 2195 } 2196 2197 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2198 { 2199 struct neighbour *n = neigh_get_first(seq); 2200 2201 if (n) { 2202 while (*pos) { 2203 n = neigh_get_next(seq, n, pos); 2204 if (!n) 2205 break; 2206 } 2207 } 2208 return *pos ? NULL : n; 2209 } 2210 2211 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2212 { 2213 struct neigh_seq_state *state = seq->private; 2214 struct neigh_table *tbl = state->tbl; 2215 struct pneigh_entry *pn = NULL; 2216 int bucket = state->bucket; 2217 2218 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2219 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2220 pn = tbl->phash_buckets[bucket]; 2221 if (pn) 2222 break; 2223 } 2224 state->bucket = bucket; 2225 2226 return pn; 2227 } 2228 2229 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2230 struct pneigh_entry *pn, 2231 loff_t *pos) 2232 { 2233 struct neigh_seq_state *state = seq->private; 2234 struct neigh_table *tbl = state->tbl; 2235 2236 pn = pn->next; 2237 while (!pn) { 2238 if (++state->bucket > PNEIGH_HASHMASK) 2239 break; 2240 pn = tbl->phash_buckets[state->bucket]; 2241 if (pn) 2242 break; 2243 } 2244 2245 if (pn && pos) 2246 --(*pos); 2247 2248 return pn; 2249 } 2250 2251 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2252 { 2253 struct pneigh_entry *pn = pneigh_get_first(seq); 2254 2255 if (pn) { 2256 while (*pos) { 2257 pn = pneigh_get_next(seq, pn, pos); 2258 if (!pn) 2259 break; 2260 } 2261 } 2262 return *pos ? NULL : pn; 2263 } 2264 2265 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2266 { 2267 struct neigh_seq_state *state = seq->private; 2268 void *rc; 2269 2270 rc = neigh_get_idx(seq, pos); 2271 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2272 rc = pneigh_get_idx(seq, pos); 2273 2274 return rc; 2275 } 2276 2277 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2278 { 2279 struct neigh_seq_state *state = seq->private; 2280 loff_t pos_minus_one; 2281 2282 state->tbl = tbl; 2283 state->bucket = 0; 2284 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2285 2286 read_lock_bh(&tbl->lock); 2287 2288 pos_minus_one = *pos - 1; 2289 return *pos ? neigh_get_idx_any(seq, &pos_minus_one) : SEQ_START_TOKEN; 2290 } 2291 EXPORT_SYMBOL(neigh_seq_start); 2292 2293 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2294 { 2295 struct neigh_seq_state *state; 2296 void *rc; 2297 2298 if (v == SEQ_START_TOKEN) { 2299 rc = neigh_get_idx(seq, pos); 2300 goto out; 2301 } 2302 2303 state = seq->private; 2304 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2305 rc = neigh_get_next(seq, v, NULL); 2306 if (rc) 2307 goto out; 2308 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2309 rc = pneigh_get_first(seq); 2310 } else { 2311 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2312 rc = pneigh_get_next(seq, v, NULL); 2313 } 2314 out: 2315 ++(*pos); 2316 return rc; 2317 } 2318 EXPORT_SYMBOL(neigh_seq_next); 2319 2320 void neigh_seq_stop(struct seq_file *seq, void *v) 2321 { 2322 struct neigh_seq_state *state = seq->private; 2323 struct neigh_table *tbl = state->tbl; 2324 2325 read_unlock_bh(&tbl->lock); 2326 } 2327 EXPORT_SYMBOL(neigh_seq_stop); 2328 2329 /* statistics via seq_file */ 2330 2331 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2332 { 2333 struct proc_dir_entry *pde = seq->private; 2334 struct neigh_table *tbl = pde->data; 2335 int cpu; 2336 2337 if (*pos == 0) 2338 return SEQ_START_TOKEN; 2339 2340 for (cpu = *pos-1; cpu < NR_CPUS; ++cpu) { 2341 if (!cpu_possible(cpu)) 2342 continue; 2343 *pos = cpu+1; 2344 return per_cpu_ptr(tbl->stats, cpu); 2345 } 2346 return NULL; 2347 } 2348 2349 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2350 { 2351 struct proc_dir_entry *pde = seq->private; 2352 struct neigh_table *tbl = pde->data; 2353 int cpu; 2354 2355 for (cpu = *pos; cpu < NR_CPUS; ++cpu) { 2356 if (!cpu_possible(cpu)) 2357 continue; 2358 *pos = cpu+1; 2359 return per_cpu_ptr(tbl->stats, cpu); 2360 } 2361 return NULL; 2362 } 2363 2364 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2365 { 2366 2367 } 2368 2369 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2370 { 2371 struct proc_dir_entry *pde = seq->private; 2372 struct neigh_table *tbl = pde->data; 2373 struct neigh_statistics *st = v; 2374 2375 if (v == SEQ_START_TOKEN) { 2376 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs\n"); 2377 return 0; 2378 } 2379 2380 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2381 "%08lx %08lx %08lx %08lx\n", 2382 atomic_read(&tbl->entries), 2383 2384 st->allocs, 2385 st->destroys, 2386 st->hash_grows, 2387 2388 st->lookups, 2389 st->hits, 2390 2391 st->res_failed, 2392 2393 st->rcv_probes_mcast, 2394 st->rcv_probes_ucast, 2395 2396 st->periodic_gc_runs, 2397 st->forced_gc_runs 2398 ); 2399 2400 return 0; 2401 } 2402 2403 static const struct seq_operations neigh_stat_seq_ops = { 2404 .start = neigh_stat_seq_start, 2405 .next = neigh_stat_seq_next, 2406 .stop = neigh_stat_seq_stop, 2407 .show = neigh_stat_seq_show, 2408 }; 2409 2410 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2411 { 2412 int ret = seq_open(file, &neigh_stat_seq_ops); 2413 2414 if (!ret) { 2415 struct seq_file *sf = file->private_data; 2416 sf->private = PDE(inode); 2417 } 2418 return ret; 2419 }; 2420 2421 static const struct file_operations neigh_stat_seq_fops = { 2422 .owner = THIS_MODULE, 2423 .open = neigh_stat_seq_open, 2424 .read = seq_read, 2425 .llseek = seq_lseek, 2426 .release = seq_release, 2427 }; 2428 2429 #endif /* CONFIG_PROC_FS */ 2430 2431 static inline size_t neigh_nlmsg_size(void) 2432 { 2433 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2434 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2435 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2436 + nla_total_size(sizeof(struct nda_cacheinfo)) 2437 + nla_total_size(4); /* NDA_PROBES */ 2438 } 2439 2440 static void __neigh_notify(struct neighbour *n, int type, int flags) 2441 { 2442 struct sk_buff *skb; 2443 int err = -ENOBUFS; 2444 2445 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2446 if (skb == NULL) 2447 goto errout; 2448 2449 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2450 if (err < 0) { 2451 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2452 WARN_ON(err == -EMSGSIZE); 2453 kfree_skb(skb); 2454 goto errout; 2455 } 2456 err = rtnl_notify(skb, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2457 errout: 2458 if (err < 0) 2459 rtnl_set_sk_err(RTNLGRP_NEIGH, err); 2460 } 2461 2462 #ifdef CONFIG_ARPD 2463 void neigh_app_ns(struct neighbour *n) 2464 { 2465 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2466 } 2467 #endif /* CONFIG_ARPD */ 2468 2469 #ifdef CONFIG_SYSCTL 2470 2471 static struct neigh_sysctl_table { 2472 struct ctl_table_header *sysctl_header; 2473 ctl_table neigh_vars[__NET_NEIGH_MAX]; 2474 ctl_table neigh_dev[2]; 2475 ctl_table neigh_neigh_dir[2]; 2476 ctl_table neigh_proto_dir[2]; 2477 ctl_table neigh_root_dir[2]; 2478 } neigh_sysctl_template __read_mostly = { 2479 .neigh_vars = { 2480 { 2481 .ctl_name = NET_NEIGH_MCAST_SOLICIT, 2482 .procname = "mcast_solicit", 2483 .maxlen = sizeof(int), 2484 .mode = 0644, 2485 .proc_handler = &proc_dointvec, 2486 }, 2487 { 2488 .ctl_name = NET_NEIGH_UCAST_SOLICIT, 2489 .procname = "ucast_solicit", 2490 .maxlen = sizeof(int), 2491 .mode = 0644, 2492 .proc_handler = &proc_dointvec, 2493 }, 2494 { 2495 .ctl_name = NET_NEIGH_APP_SOLICIT, 2496 .procname = "app_solicit", 2497 .maxlen = sizeof(int), 2498 .mode = 0644, 2499 .proc_handler = &proc_dointvec, 2500 }, 2501 { 2502 .procname = "retrans_time", 2503 .maxlen = sizeof(int), 2504 .mode = 0644, 2505 .proc_handler = &proc_dointvec_userhz_jiffies, 2506 }, 2507 { 2508 .ctl_name = NET_NEIGH_REACHABLE_TIME, 2509 .procname = "base_reachable_time", 2510 .maxlen = sizeof(int), 2511 .mode = 0644, 2512 .proc_handler = &proc_dointvec_jiffies, 2513 .strategy = &sysctl_jiffies, 2514 }, 2515 { 2516 .ctl_name = NET_NEIGH_DELAY_PROBE_TIME, 2517 .procname = "delay_first_probe_time", 2518 .maxlen = sizeof(int), 2519 .mode = 0644, 2520 .proc_handler = &proc_dointvec_jiffies, 2521 .strategy = &sysctl_jiffies, 2522 }, 2523 { 2524 .ctl_name = NET_NEIGH_GC_STALE_TIME, 2525 .procname = "gc_stale_time", 2526 .maxlen = sizeof(int), 2527 .mode = 0644, 2528 .proc_handler = &proc_dointvec_jiffies, 2529 .strategy = &sysctl_jiffies, 2530 }, 2531 { 2532 .ctl_name = NET_NEIGH_UNRES_QLEN, 2533 .procname = "unres_qlen", 2534 .maxlen = sizeof(int), 2535 .mode = 0644, 2536 .proc_handler = &proc_dointvec, 2537 }, 2538 { 2539 .ctl_name = NET_NEIGH_PROXY_QLEN, 2540 .procname = "proxy_qlen", 2541 .maxlen = sizeof(int), 2542 .mode = 0644, 2543 .proc_handler = &proc_dointvec, 2544 }, 2545 { 2546 .procname = "anycast_delay", 2547 .maxlen = sizeof(int), 2548 .mode = 0644, 2549 .proc_handler = &proc_dointvec_userhz_jiffies, 2550 }, 2551 { 2552 .procname = "proxy_delay", 2553 .maxlen = sizeof(int), 2554 .mode = 0644, 2555 .proc_handler = &proc_dointvec_userhz_jiffies, 2556 }, 2557 { 2558 .procname = "locktime", 2559 .maxlen = sizeof(int), 2560 .mode = 0644, 2561 .proc_handler = &proc_dointvec_userhz_jiffies, 2562 }, 2563 { 2564 .ctl_name = NET_NEIGH_RETRANS_TIME_MS, 2565 .procname = "retrans_time_ms", 2566 .maxlen = sizeof(int), 2567 .mode = 0644, 2568 .proc_handler = &proc_dointvec_ms_jiffies, 2569 .strategy = &sysctl_ms_jiffies, 2570 }, 2571 { 2572 .ctl_name = NET_NEIGH_REACHABLE_TIME_MS, 2573 .procname = "base_reachable_time_ms", 2574 .maxlen = sizeof(int), 2575 .mode = 0644, 2576 .proc_handler = &proc_dointvec_ms_jiffies, 2577 .strategy = &sysctl_ms_jiffies, 2578 }, 2579 { 2580 .ctl_name = NET_NEIGH_GC_INTERVAL, 2581 .procname = "gc_interval", 2582 .maxlen = sizeof(int), 2583 .mode = 0644, 2584 .proc_handler = &proc_dointvec_jiffies, 2585 .strategy = &sysctl_jiffies, 2586 }, 2587 { 2588 .ctl_name = NET_NEIGH_GC_THRESH1, 2589 .procname = "gc_thresh1", 2590 .maxlen = sizeof(int), 2591 .mode = 0644, 2592 .proc_handler = &proc_dointvec, 2593 }, 2594 { 2595 .ctl_name = NET_NEIGH_GC_THRESH2, 2596 .procname = "gc_thresh2", 2597 .maxlen = sizeof(int), 2598 .mode = 0644, 2599 .proc_handler = &proc_dointvec, 2600 }, 2601 { 2602 .ctl_name = NET_NEIGH_GC_THRESH3, 2603 .procname = "gc_thresh3", 2604 .maxlen = sizeof(int), 2605 .mode = 0644, 2606 .proc_handler = &proc_dointvec, 2607 }, 2608 {} 2609 }, 2610 .neigh_dev = { 2611 { 2612 .ctl_name = NET_PROTO_CONF_DEFAULT, 2613 .procname = "default", 2614 .mode = 0555, 2615 }, 2616 }, 2617 .neigh_neigh_dir = { 2618 { 2619 .procname = "neigh", 2620 .mode = 0555, 2621 }, 2622 }, 2623 .neigh_proto_dir = { 2624 { 2625 .mode = 0555, 2626 }, 2627 }, 2628 .neigh_root_dir = { 2629 { 2630 .ctl_name = CTL_NET, 2631 .procname = "net", 2632 .mode = 0555, 2633 }, 2634 }, 2635 }; 2636 2637 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2638 int p_id, int pdev_id, char *p_name, 2639 proc_handler *handler, ctl_handler *strategy) 2640 { 2641 struct neigh_sysctl_table *t = kmemdup(&neigh_sysctl_template, 2642 sizeof(*t), GFP_KERNEL); 2643 const char *dev_name_source = NULL; 2644 char *dev_name = NULL; 2645 int err = 0; 2646 2647 if (!t) 2648 return -ENOBUFS; 2649 t->neigh_vars[0].data = &p->mcast_probes; 2650 t->neigh_vars[1].data = &p->ucast_probes; 2651 t->neigh_vars[2].data = &p->app_probes; 2652 t->neigh_vars[3].data = &p->retrans_time; 2653 t->neigh_vars[4].data = &p->base_reachable_time; 2654 t->neigh_vars[5].data = &p->delay_probe_time; 2655 t->neigh_vars[6].data = &p->gc_staletime; 2656 t->neigh_vars[7].data = &p->queue_len; 2657 t->neigh_vars[8].data = &p->proxy_qlen; 2658 t->neigh_vars[9].data = &p->anycast_delay; 2659 t->neigh_vars[10].data = &p->proxy_delay; 2660 t->neigh_vars[11].data = &p->locktime; 2661 t->neigh_vars[12].data = &p->retrans_time; 2662 t->neigh_vars[13].data = &p->base_reachable_time; 2663 2664 if (dev) { 2665 dev_name_source = dev->name; 2666 t->neigh_dev[0].ctl_name = dev->ifindex; 2667 /* Terminate the table early */ 2668 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14])); 2669 } else { 2670 dev_name_source = t->neigh_dev[0].procname; 2671 t->neigh_vars[14].data = (int *)(p + 1); 2672 t->neigh_vars[15].data = (int *)(p + 1) + 1; 2673 t->neigh_vars[16].data = (int *)(p + 1) + 2; 2674 t->neigh_vars[17].data = (int *)(p + 1) + 3; 2675 } 2676 2677 2678 if (handler || strategy) { 2679 /* RetransTime */ 2680 t->neigh_vars[3].proc_handler = handler; 2681 t->neigh_vars[3].strategy = strategy; 2682 t->neigh_vars[3].extra1 = dev; 2683 if (!strategy) 2684 t->neigh_vars[3].ctl_name = CTL_UNNUMBERED; 2685 /* ReachableTime */ 2686 t->neigh_vars[4].proc_handler = handler; 2687 t->neigh_vars[4].strategy = strategy; 2688 t->neigh_vars[4].extra1 = dev; 2689 if (!strategy) 2690 t->neigh_vars[4].ctl_name = CTL_UNNUMBERED; 2691 /* RetransTime (in milliseconds)*/ 2692 t->neigh_vars[12].proc_handler = handler; 2693 t->neigh_vars[12].strategy = strategy; 2694 t->neigh_vars[12].extra1 = dev; 2695 if (!strategy) 2696 t->neigh_vars[12].ctl_name = CTL_UNNUMBERED; 2697 /* ReachableTime (in milliseconds) */ 2698 t->neigh_vars[13].proc_handler = handler; 2699 t->neigh_vars[13].strategy = strategy; 2700 t->neigh_vars[13].extra1 = dev; 2701 if (!strategy) 2702 t->neigh_vars[13].ctl_name = CTL_UNNUMBERED; 2703 } 2704 2705 dev_name = kstrdup(dev_name_source, GFP_KERNEL); 2706 if (!dev_name) { 2707 err = -ENOBUFS; 2708 goto free; 2709 } 2710 2711 t->neigh_dev[0].procname = dev_name; 2712 2713 t->neigh_neigh_dir[0].ctl_name = pdev_id; 2714 2715 t->neigh_proto_dir[0].procname = p_name; 2716 t->neigh_proto_dir[0].ctl_name = p_id; 2717 2718 t->neigh_dev[0].child = t->neigh_vars; 2719 t->neigh_neigh_dir[0].child = t->neigh_dev; 2720 t->neigh_proto_dir[0].child = t->neigh_neigh_dir; 2721 t->neigh_root_dir[0].child = t->neigh_proto_dir; 2722 2723 t->sysctl_header = register_sysctl_table(t->neigh_root_dir); 2724 if (!t->sysctl_header) { 2725 err = -ENOBUFS; 2726 goto free_procname; 2727 } 2728 p->sysctl_table = t; 2729 return 0; 2730 2731 /* error path */ 2732 free_procname: 2733 kfree(dev_name); 2734 free: 2735 kfree(t); 2736 2737 return err; 2738 } 2739 2740 void neigh_sysctl_unregister(struct neigh_parms *p) 2741 { 2742 if (p->sysctl_table) { 2743 struct neigh_sysctl_table *t = p->sysctl_table; 2744 p->sysctl_table = NULL; 2745 unregister_sysctl_table(t->sysctl_header); 2746 kfree(t->neigh_dev[0].procname); 2747 kfree(t); 2748 } 2749 } 2750 2751 #endif /* CONFIG_SYSCTL */ 2752 2753 static int __init neigh_init(void) 2754 { 2755 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL); 2756 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL); 2757 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info); 2758 2759 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info); 2760 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL); 2761 2762 return 0; 2763 } 2764 2765 subsys_initcall(neigh_init); 2766 2767 EXPORT_SYMBOL(__neigh_event_send); 2768 EXPORT_SYMBOL(neigh_changeaddr); 2769 EXPORT_SYMBOL(neigh_compat_output); 2770 EXPORT_SYMBOL(neigh_connected_output); 2771 EXPORT_SYMBOL(neigh_create); 2772 EXPORT_SYMBOL(neigh_destroy); 2773 EXPORT_SYMBOL(neigh_event_ns); 2774 EXPORT_SYMBOL(neigh_ifdown); 2775 EXPORT_SYMBOL(neigh_lookup); 2776 EXPORT_SYMBOL(neigh_lookup_nodev); 2777 EXPORT_SYMBOL(neigh_parms_alloc); 2778 EXPORT_SYMBOL(neigh_parms_release); 2779 EXPORT_SYMBOL(neigh_rand_reach_time); 2780 EXPORT_SYMBOL(neigh_resolve_output); 2781 EXPORT_SYMBOL(neigh_table_clear); 2782 EXPORT_SYMBOL(neigh_table_init); 2783 EXPORT_SYMBOL(neigh_table_init_no_netlink); 2784 EXPORT_SYMBOL(neigh_update); 2785 EXPORT_SYMBOL(pneigh_enqueue); 2786 EXPORT_SYMBOL(pneigh_lookup); 2787 2788 #ifdef CONFIG_ARPD 2789 EXPORT_SYMBOL(neigh_app_ns); 2790 #endif 2791 #ifdef CONFIG_SYSCTL 2792 EXPORT_SYMBOL(neigh_sysctl_register); 2793 EXPORT_SYMBOL(neigh_sysctl_unregister); 2794 #endif 2795