xref: /linux/net/core/neighbour.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  *	Generic address resolution entity
3  *
4  *	Authors:
5  *	Pedro Roque		<roque@di.fc.ul.pt>
6  *	Alexey Kuznetsov	<kuznet@ms2.inr.ac.ru>
7  *
8  *	This program is free software; you can redistribute it and/or
9  *      modify it under the terms of the GNU General Public License
10  *      as published by the Free Software Foundation; either version
11  *      2 of the License, or (at your option) any later version.
12  *
13  *	Fixes:
14  *	Vitaly E. Lavrov	releasing NULL neighbor in neigh_add.
15  *	Harald Welte		Add neighbour cache statistics like rtstat
16  */
17 
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19 
20 #include <linux/slab.h>
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/socket.h>
25 #include <linux/netdevice.h>
26 #include <linux/proc_fs.h>
27 #ifdef CONFIG_SYSCTL
28 #include <linux/sysctl.h>
29 #endif
30 #include <linux/times.h>
31 #include <net/net_namespace.h>
32 #include <net/neighbour.h>
33 #include <net/dst.h>
34 #include <net/sock.h>
35 #include <net/netevent.h>
36 #include <net/netlink.h>
37 #include <linux/rtnetlink.h>
38 #include <linux/random.h>
39 #include <linux/string.h>
40 #include <linux/log2.h>
41 
42 #define NEIGH_DEBUG 1
43 
44 #define NEIGH_PRINTK(x...) printk(x)
45 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
46 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
47 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
48 
49 #if NEIGH_DEBUG >= 1
50 #undef NEIGH_PRINTK1
51 #define NEIGH_PRINTK1 NEIGH_PRINTK
52 #endif
53 #if NEIGH_DEBUG >= 2
54 #undef NEIGH_PRINTK2
55 #define NEIGH_PRINTK2 NEIGH_PRINTK
56 #endif
57 
58 #define PNEIGH_HASHMASK		0xF
59 
60 static void neigh_timer_handler(unsigned long arg);
61 static void __neigh_notify(struct neighbour *n, int type, int flags);
62 static void neigh_update_notify(struct neighbour *neigh);
63 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
64 
65 static struct neigh_table *neigh_tables;
66 #ifdef CONFIG_PROC_FS
67 static const struct file_operations neigh_stat_seq_fops;
68 #endif
69 
70 /*
71    Neighbour hash table buckets are protected with rwlock tbl->lock.
72 
73    - All the scans/updates to hash buckets MUST be made under this lock.
74    - NOTHING clever should be made under this lock: no callbacks
75      to protocol backends, no attempts to send something to network.
76      It will result in deadlocks, if backend/driver wants to use neighbour
77      cache.
78    - If the entry requires some non-trivial actions, increase
79      its reference count and release table lock.
80 
81    Neighbour entries are protected:
82    - with reference count.
83    - with rwlock neigh->lock
84 
85    Reference count prevents destruction.
86 
87    neigh->lock mainly serializes ll address data and its validity state.
88    However, the same lock is used to protect another entry fields:
89     - timer
90     - resolution queue
91 
92    Again, nothing clever shall be made under neigh->lock,
93    the most complicated procedure, which we allow is dev->hard_header.
94    It is supposed, that dev->hard_header is simplistic and does
95    not make callbacks to neighbour tables.
96 
97    The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
98    list of neighbour tables. This list is used only in process context,
99  */
100 
101 static DEFINE_RWLOCK(neigh_tbl_lock);
102 
103 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
104 {
105 	kfree_skb(skb);
106 	return -ENETDOWN;
107 }
108 
109 static void neigh_cleanup_and_release(struct neighbour *neigh)
110 {
111 	if (neigh->parms->neigh_cleanup)
112 		neigh->parms->neigh_cleanup(neigh);
113 
114 	__neigh_notify(neigh, RTM_DELNEIGH, 0);
115 	neigh_release(neigh);
116 }
117 
118 /*
119  * It is random distribution in the interval (1/2)*base...(3/2)*base.
120  * It corresponds to default IPv6 settings and is not overridable,
121  * because it is really reasonable choice.
122  */
123 
124 unsigned long neigh_rand_reach_time(unsigned long base)
125 {
126 	return base ? (net_random() % base) + (base >> 1) : 0;
127 }
128 EXPORT_SYMBOL(neigh_rand_reach_time);
129 
130 
131 static int neigh_forced_gc(struct neigh_table *tbl)
132 {
133 	int shrunk = 0;
134 	int i;
135 	struct neigh_hash_table *nht;
136 
137 	NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
138 
139 	write_lock_bh(&tbl->lock);
140 	nht = rcu_dereference_protected(tbl->nht,
141 					lockdep_is_held(&tbl->lock));
142 	for (i = 0; i < (1 << nht->hash_shift); i++) {
143 		struct neighbour *n;
144 		struct neighbour __rcu **np;
145 
146 		np = &nht->hash_buckets[i];
147 		while ((n = rcu_dereference_protected(*np,
148 					lockdep_is_held(&tbl->lock))) != NULL) {
149 			/* Neighbour record may be discarded if:
150 			 * - nobody refers to it.
151 			 * - it is not permanent
152 			 */
153 			write_lock(&n->lock);
154 			if (atomic_read(&n->refcnt) == 1 &&
155 			    !(n->nud_state & NUD_PERMANENT)) {
156 				rcu_assign_pointer(*np,
157 					rcu_dereference_protected(n->next,
158 						  lockdep_is_held(&tbl->lock)));
159 				n->dead = 1;
160 				shrunk	= 1;
161 				write_unlock(&n->lock);
162 				neigh_cleanup_and_release(n);
163 				continue;
164 			}
165 			write_unlock(&n->lock);
166 			np = &n->next;
167 		}
168 	}
169 
170 	tbl->last_flush = jiffies;
171 
172 	write_unlock_bh(&tbl->lock);
173 
174 	return shrunk;
175 }
176 
177 static void neigh_add_timer(struct neighbour *n, unsigned long when)
178 {
179 	neigh_hold(n);
180 	if (unlikely(mod_timer(&n->timer, when))) {
181 		printk("NEIGH: BUG, double timer add, state is %x\n",
182 		       n->nud_state);
183 		dump_stack();
184 	}
185 }
186 
187 static int neigh_del_timer(struct neighbour *n)
188 {
189 	if ((n->nud_state & NUD_IN_TIMER) &&
190 	    del_timer(&n->timer)) {
191 		neigh_release(n);
192 		return 1;
193 	}
194 	return 0;
195 }
196 
197 static void pneigh_queue_purge(struct sk_buff_head *list)
198 {
199 	struct sk_buff *skb;
200 
201 	while ((skb = skb_dequeue(list)) != NULL) {
202 		dev_put(skb->dev);
203 		kfree_skb(skb);
204 	}
205 }
206 
207 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
208 {
209 	int i;
210 	struct neigh_hash_table *nht;
211 
212 	nht = rcu_dereference_protected(tbl->nht,
213 					lockdep_is_held(&tbl->lock));
214 
215 	for (i = 0; i < (1 << nht->hash_shift); i++) {
216 		struct neighbour *n;
217 		struct neighbour __rcu **np = &nht->hash_buckets[i];
218 
219 		while ((n = rcu_dereference_protected(*np,
220 					lockdep_is_held(&tbl->lock))) != NULL) {
221 			if (dev && n->dev != dev) {
222 				np = &n->next;
223 				continue;
224 			}
225 			rcu_assign_pointer(*np,
226 				   rcu_dereference_protected(n->next,
227 						lockdep_is_held(&tbl->lock)));
228 			write_lock(&n->lock);
229 			neigh_del_timer(n);
230 			n->dead = 1;
231 
232 			if (atomic_read(&n->refcnt) != 1) {
233 				/* The most unpleasant situation.
234 				   We must destroy neighbour entry,
235 				   but someone still uses it.
236 
237 				   The destroy will be delayed until
238 				   the last user releases us, but
239 				   we must kill timers etc. and move
240 				   it to safe state.
241 				 */
242 				skb_queue_purge(&n->arp_queue);
243 				n->arp_queue_len_bytes = 0;
244 				n->output = neigh_blackhole;
245 				if (n->nud_state & NUD_VALID)
246 					n->nud_state = NUD_NOARP;
247 				else
248 					n->nud_state = NUD_NONE;
249 				NEIGH_PRINTK2("neigh %p is stray.\n", n);
250 			}
251 			write_unlock(&n->lock);
252 			neigh_cleanup_and_release(n);
253 		}
254 	}
255 }
256 
257 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
258 {
259 	write_lock_bh(&tbl->lock);
260 	neigh_flush_dev(tbl, dev);
261 	write_unlock_bh(&tbl->lock);
262 }
263 EXPORT_SYMBOL(neigh_changeaddr);
264 
265 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
266 {
267 	write_lock_bh(&tbl->lock);
268 	neigh_flush_dev(tbl, dev);
269 	pneigh_ifdown(tbl, dev);
270 	write_unlock_bh(&tbl->lock);
271 
272 	del_timer_sync(&tbl->proxy_timer);
273 	pneigh_queue_purge(&tbl->proxy_queue);
274 	return 0;
275 }
276 EXPORT_SYMBOL(neigh_ifdown);
277 
278 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev)
279 {
280 	struct neighbour *n = NULL;
281 	unsigned long now = jiffies;
282 	int entries;
283 
284 	entries = atomic_inc_return(&tbl->entries) - 1;
285 	if (entries >= tbl->gc_thresh3 ||
286 	    (entries >= tbl->gc_thresh2 &&
287 	     time_after(now, tbl->last_flush + 5 * HZ))) {
288 		if (!neigh_forced_gc(tbl) &&
289 		    entries >= tbl->gc_thresh3)
290 			goto out_entries;
291 	}
292 
293 	if (tbl->entry_size)
294 		n = kzalloc(tbl->entry_size, GFP_ATOMIC);
295 	else {
296 		int sz = sizeof(*n) + tbl->key_len;
297 
298 		sz = ALIGN(sz, NEIGH_PRIV_ALIGN);
299 		sz += dev->neigh_priv_len;
300 		n = kzalloc(sz, GFP_ATOMIC);
301 	}
302 	if (!n)
303 		goto out_entries;
304 
305 	skb_queue_head_init(&n->arp_queue);
306 	rwlock_init(&n->lock);
307 	seqlock_init(&n->ha_lock);
308 	n->updated	  = n->used = now;
309 	n->nud_state	  = NUD_NONE;
310 	n->output	  = neigh_blackhole;
311 	seqlock_init(&n->hh.hh_lock);
312 	n->parms	  = neigh_parms_clone(&tbl->parms);
313 	setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
314 
315 	NEIGH_CACHE_STAT_INC(tbl, allocs);
316 	n->tbl		  = tbl;
317 	atomic_set(&n->refcnt, 1);
318 	n->dead		  = 1;
319 out:
320 	return n;
321 
322 out_entries:
323 	atomic_dec(&tbl->entries);
324 	goto out;
325 }
326 
327 static void neigh_get_hash_rnd(u32 *x)
328 {
329 	get_random_bytes(x, sizeof(*x));
330 	*x |= 1;
331 }
332 
333 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
334 {
335 	size_t size = (1 << shift) * sizeof(struct neighbour *);
336 	struct neigh_hash_table *ret;
337 	struct neighbour __rcu **buckets;
338 	int i;
339 
340 	ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
341 	if (!ret)
342 		return NULL;
343 	if (size <= PAGE_SIZE)
344 		buckets = kzalloc(size, GFP_ATOMIC);
345 	else
346 		buckets = (struct neighbour __rcu **)
347 			  __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
348 					   get_order(size));
349 	if (!buckets) {
350 		kfree(ret);
351 		return NULL;
352 	}
353 	ret->hash_buckets = buckets;
354 	ret->hash_shift = shift;
355 	for (i = 0; i < NEIGH_NUM_HASH_RND; i++)
356 		neigh_get_hash_rnd(&ret->hash_rnd[i]);
357 	return ret;
358 }
359 
360 static void neigh_hash_free_rcu(struct rcu_head *head)
361 {
362 	struct neigh_hash_table *nht = container_of(head,
363 						    struct neigh_hash_table,
364 						    rcu);
365 	size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
366 	struct neighbour __rcu **buckets = nht->hash_buckets;
367 
368 	if (size <= PAGE_SIZE)
369 		kfree(buckets);
370 	else
371 		free_pages((unsigned long)buckets, get_order(size));
372 	kfree(nht);
373 }
374 
375 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
376 						unsigned long new_shift)
377 {
378 	unsigned int i, hash;
379 	struct neigh_hash_table *new_nht, *old_nht;
380 
381 	NEIGH_CACHE_STAT_INC(tbl, hash_grows);
382 
383 	old_nht = rcu_dereference_protected(tbl->nht,
384 					    lockdep_is_held(&tbl->lock));
385 	new_nht = neigh_hash_alloc(new_shift);
386 	if (!new_nht)
387 		return old_nht;
388 
389 	for (i = 0; i < (1 << old_nht->hash_shift); i++) {
390 		struct neighbour *n, *next;
391 
392 		for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
393 						   lockdep_is_held(&tbl->lock));
394 		     n != NULL;
395 		     n = next) {
396 			hash = tbl->hash(n->primary_key, n->dev,
397 					 new_nht->hash_rnd);
398 
399 			hash >>= (32 - new_nht->hash_shift);
400 			next = rcu_dereference_protected(n->next,
401 						lockdep_is_held(&tbl->lock));
402 
403 			rcu_assign_pointer(n->next,
404 					   rcu_dereference_protected(
405 						new_nht->hash_buckets[hash],
406 						lockdep_is_held(&tbl->lock)));
407 			rcu_assign_pointer(new_nht->hash_buckets[hash], n);
408 		}
409 	}
410 
411 	rcu_assign_pointer(tbl->nht, new_nht);
412 	call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
413 	return new_nht;
414 }
415 
416 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
417 			       struct net_device *dev)
418 {
419 	struct neighbour *n;
420 	int key_len = tbl->key_len;
421 	u32 hash_val;
422 	struct neigh_hash_table *nht;
423 
424 	NEIGH_CACHE_STAT_INC(tbl, lookups);
425 
426 	rcu_read_lock_bh();
427 	nht = rcu_dereference_bh(tbl->nht);
428 	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
429 
430 	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
431 	     n != NULL;
432 	     n = rcu_dereference_bh(n->next)) {
433 		if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
434 			if (!atomic_inc_not_zero(&n->refcnt))
435 				n = NULL;
436 			NEIGH_CACHE_STAT_INC(tbl, hits);
437 			break;
438 		}
439 	}
440 
441 	rcu_read_unlock_bh();
442 	return n;
443 }
444 EXPORT_SYMBOL(neigh_lookup);
445 
446 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
447 				     const void *pkey)
448 {
449 	struct neighbour *n;
450 	int key_len = tbl->key_len;
451 	u32 hash_val;
452 	struct neigh_hash_table *nht;
453 
454 	NEIGH_CACHE_STAT_INC(tbl, lookups);
455 
456 	rcu_read_lock_bh();
457 	nht = rcu_dereference_bh(tbl->nht);
458 	hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
459 
460 	for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
461 	     n != NULL;
462 	     n = rcu_dereference_bh(n->next)) {
463 		if (!memcmp(n->primary_key, pkey, key_len) &&
464 		    net_eq(dev_net(n->dev), net)) {
465 			if (!atomic_inc_not_zero(&n->refcnt))
466 				n = NULL;
467 			NEIGH_CACHE_STAT_INC(tbl, hits);
468 			break;
469 		}
470 	}
471 
472 	rcu_read_unlock_bh();
473 	return n;
474 }
475 EXPORT_SYMBOL(neigh_lookup_nodev);
476 
477 struct neighbour *__neigh_create(struct neigh_table *tbl, const void *pkey,
478 				 struct net_device *dev, bool want_ref)
479 {
480 	u32 hash_val;
481 	int key_len = tbl->key_len;
482 	int error;
483 	struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev);
484 	struct neigh_hash_table *nht;
485 
486 	if (!n) {
487 		rc = ERR_PTR(-ENOBUFS);
488 		goto out;
489 	}
490 
491 	memcpy(n->primary_key, pkey, key_len);
492 	n->dev = dev;
493 	dev_hold(dev);
494 
495 	/* Protocol specific setup. */
496 	if (tbl->constructor &&	(error = tbl->constructor(n)) < 0) {
497 		rc = ERR_PTR(error);
498 		goto out_neigh_release;
499 	}
500 
501 	if (dev->netdev_ops->ndo_neigh_construct) {
502 		error = dev->netdev_ops->ndo_neigh_construct(n);
503 		if (error < 0) {
504 			rc = ERR_PTR(error);
505 			goto out_neigh_release;
506 		}
507 	}
508 
509 	/* Device specific setup. */
510 	if (n->parms->neigh_setup &&
511 	    (error = n->parms->neigh_setup(n)) < 0) {
512 		rc = ERR_PTR(error);
513 		goto out_neigh_release;
514 	}
515 
516 	n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
517 
518 	write_lock_bh(&tbl->lock);
519 	nht = rcu_dereference_protected(tbl->nht,
520 					lockdep_is_held(&tbl->lock));
521 
522 	if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
523 		nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
524 
525 	hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
526 
527 	if (n->parms->dead) {
528 		rc = ERR_PTR(-EINVAL);
529 		goto out_tbl_unlock;
530 	}
531 
532 	for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
533 					    lockdep_is_held(&tbl->lock));
534 	     n1 != NULL;
535 	     n1 = rcu_dereference_protected(n1->next,
536 			lockdep_is_held(&tbl->lock))) {
537 		if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
538 			if (want_ref)
539 				neigh_hold(n1);
540 			rc = n1;
541 			goto out_tbl_unlock;
542 		}
543 	}
544 
545 	n->dead = 0;
546 	if (want_ref)
547 		neigh_hold(n);
548 	rcu_assign_pointer(n->next,
549 			   rcu_dereference_protected(nht->hash_buckets[hash_val],
550 						     lockdep_is_held(&tbl->lock)));
551 	rcu_assign_pointer(nht->hash_buckets[hash_val], n);
552 	write_unlock_bh(&tbl->lock);
553 	NEIGH_PRINTK2("neigh %p is created.\n", n);
554 	rc = n;
555 out:
556 	return rc;
557 out_tbl_unlock:
558 	write_unlock_bh(&tbl->lock);
559 out_neigh_release:
560 	neigh_release(n);
561 	goto out;
562 }
563 EXPORT_SYMBOL(__neigh_create);
564 
565 static u32 pneigh_hash(const void *pkey, int key_len)
566 {
567 	u32 hash_val = *(u32 *)(pkey + key_len - 4);
568 	hash_val ^= (hash_val >> 16);
569 	hash_val ^= hash_val >> 8;
570 	hash_val ^= hash_val >> 4;
571 	hash_val &= PNEIGH_HASHMASK;
572 	return hash_val;
573 }
574 
575 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
576 					      struct net *net,
577 					      const void *pkey,
578 					      int key_len,
579 					      struct net_device *dev)
580 {
581 	while (n) {
582 		if (!memcmp(n->key, pkey, key_len) &&
583 		    net_eq(pneigh_net(n), net) &&
584 		    (n->dev == dev || !n->dev))
585 			return n;
586 		n = n->next;
587 	}
588 	return NULL;
589 }
590 
591 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
592 		struct net *net, const void *pkey, struct net_device *dev)
593 {
594 	int key_len = tbl->key_len;
595 	u32 hash_val = pneigh_hash(pkey, key_len);
596 
597 	return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
598 				 net, pkey, key_len, dev);
599 }
600 EXPORT_SYMBOL_GPL(__pneigh_lookup);
601 
602 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
603 				    struct net *net, const void *pkey,
604 				    struct net_device *dev, int creat)
605 {
606 	struct pneigh_entry *n;
607 	int key_len = tbl->key_len;
608 	u32 hash_val = pneigh_hash(pkey, key_len);
609 
610 	read_lock_bh(&tbl->lock);
611 	n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
612 			      net, pkey, key_len, dev);
613 	read_unlock_bh(&tbl->lock);
614 
615 	if (n || !creat)
616 		goto out;
617 
618 	ASSERT_RTNL();
619 
620 	n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
621 	if (!n)
622 		goto out;
623 
624 	write_pnet(&n->net, hold_net(net));
625 	memcpy(n->key, pkey, key_len);
626 	n->dev = dev;
627 	if (dev)
628 		dev_hold(dev);
629 
630 	if (tbl->pconstructor && tbl->pconstructor(n)) {
631 		if (dev)
632 			dev_put(dev);
633 		release_net(net);
634 		kfree(n);
635 		n = NULL;
636 		goto out;
637 	}
638 
639 	write_lock_bh(&tbl->lock);
640 	n->next = tbl->phash_buckets[hash_val];
641 	tbl->phash_buckets[hash_val] = n;
642 	write_unlock_bh(&tbl->lock);
643 out:
644 	return n;
645 }
646 EXPORT_SYMBOL(pneigh_lookup);
647 
648 
649 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
650 		  struct net_device *dev)
651 {
652 	struct pneigh_entry *n, **np;
653 	int key_len = tbl->key_len;
654 	u32 hash_val = pneigh_hash(pkey, key_len);
655 
656 	write_lock_bh(&tbl->lock);
657 	for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
658 	     np = &n->next) {
659 		if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
660 		    net_eq(pneigh_net(n), net)) {
661 			*np = n->next;
662 			write_unlock_bh(&tbl->lock);
663 			if (tbl->pdestructor)
664 				tbl->pdestructor(n);
665 			if (n->dev)
666 				dev_put(n->dev);
667 			release_net(pneigh_net(n));
668 			kfree(n);
669 			return 0;
670 		}
671 	}
672 	write_unlock_bh(&tbl->lock);
673 	return -ENOENT;
674 }
675 
676 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
677 {
678 	struct pneigh_entry *n, **np;
679 	u32 h;
680 
681 	for (h = 0; h <= PNEIGH_HASHMASK; h++) {
682 		np = &tbl->phash_buckets[h];
683 		while ((n = *np) != NULL) {
684 			if (!dev || n->dev == dev) {
685 				*np = n->next;
686 				if (tbl->pdestructor)
687 					tbl->pdestructor(n);
688 				if (n->dev)
689 					dev_put(n->dev);
690 				release_net(pneigh_net(n));
691 				kfree(n);
692 				continue;
693 			}
694 			np = &n->next;
695 		}
696 	}
697 	return -ENOENT;
698 }
699 
700 static void neigh_parms_destroy(struct neigh_parms *parms);
701 
702 static inline void neigh_parms_put(struct neigh_parms *parms)
703 {
704 	if (atomic_dec_and_test(&parms->refcnt))
705 		neigh_parms_destroy(parms);
706 }
707 
708 /*
709  *	neighbour must already be out of the table;
710  *
711  */
712 void neigh_destroy(struct neighbour *neigh)
713 {
714 	struct net_device *dev = neigh->dev;
715 
716 	NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
717 
718 	if (!neigh->dead) {
719 		pr_warn("Destroying alive neighbour %p\n", neigh);
720 		dump_stack();
721 		return;
722 	}
723 
724 	if (neigh_del_timer(neigh))
725 		pr_warn("Impossible event\n");
726 
727 	skb_queue_purge(&neigh->arp_queue);
728 	neigh->arp_queue_len_bytes = 0;
729 
730 	if (dev->netdev_ops->ndo_neigh_destroy)
731 		dev->netdev_ops->ndo_neigh_destroy(neigh);
732 
733 	dev_put(dev);
734 	neigh_parms_put(neigh->parms);
735 
736 	NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
737 
738 	atomic_dec(&neigh->tbl->entries);
739 	kfree_rcu(neigh, rcu);
740 }
741 EXPORT_SYMBOL(neigh_destroy);
742 
743 /* Neighbour state is suspicious;
744    disable fast path.
745 
746    Called with write_locked neigh.
747  */
748 static void neigh_suspect(struct neighbour *neigh)
749 {
750 	NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
751 
752 	neigh->output = neigh->ops->output;
753 }
754 
755 /* Neighbour state is OK;
756    enable fast path.
757 
758    Called with write_locked neigh.
759  */
760 static void neigh_connect(struct neighbour *neigh)
761 {
762 	NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
763 
764 	neigh->output = neigh->ops->connected_output;
765 }
766 
767 static void neigh_periodic_work(struct work_struct *work)
768 {
769 	struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
770 	struct neighbour *n;
771 	struct neighbour __rcu **np;
772 	unsigned int i;
773 	struct neigh_hash_table *nht;
774 
775 	NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
776 
777 	write_lock_bh(&tbl->lock);
778 	nht = rcu_dereference_protected(tbl->nht,
779 					lockdep_is_held(&tbl->lock));
780 
781 	/*
782 	 *	periodically recompute ReachableTime from random function
783 	 */
784 
785 	if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
786 		struct neigh_parms *p;
787 		tbl->last_rand = jiffies;
788 		for (p = &tbl->parms; p; p = p->next)
789 			p->reachable_time =
790 				neigh_rand_reach_time(p->base_reachable_time);
791 	}
792 
793 	for (i = 0 ; i < (1 << nht->hash_shift); i++) {
794 		np = &nht->hash_buckets[i];
795 
796 		while ((n = rcu_dereference_protected(*np,
797 				lockdep_is_held(&tbl->lock))) != NULL) {
798 			unsigned int state;
799 
800 			write_lock(&n->lock);
801 
802 			state = n->nud_state;
803 			if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
804 				write_unlock(&n->lock);
805 				goto next_elt;
806 			}
807 
808 			if (time_before(n->used, n->confirmed))
809 				n->used = n->confirmed;
810 
811 			if (atomic_read(&n->refcnt) == 1 &&
812 			    (state == NUD_FAILED ||
813 			     time_after(jiffies, n->used + n->parms->gc_staletime))) {
814 				*np = n->next;
815 				n->dead = 1;
816 				write_unlock(&n->lock);
817 				neigh_cleanup_and_release(n);
818 				continue;
819 			}
820 			write_unlock(&n->lock);
821 
822 next_elt:
823 			np = &n->next;
824 		}
825 		/*
826 		 * It's fine to release lock here, even if hash table
827 		 * grows while we are preempted.
828 		 */
829 		write_unlock_bh(&tbl->lock);
830 		cond_resched();
831 		write_lock_bh(&tbl->lock);
832 		nht = rcu_dereference_protected(tbl->nht,
833 						lockdep_is_held(&tbl->lock));
834 	}
835 	/* Cycle through all hash buckets every base_reachable_time/2 ticks.
836 	 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
837 	 * base_reachable_time.
838 	 */
839 	schedule_delayed_work(&tbl->gc_work,
840 			      tbl->parms.base_reachable_time >> 1);
841 	write_unlock_bh(&tbl->lock);
842 }
843 
844 static __inline__ int neigh_max_probes(struct neighbour *n)
845 {
846 	struct neigh_parms *p = n->parms;
847 	return (n->nud_state & NUD_PROBE) ?
848 		p->ucast_probes :
849 		p->ucast_probes + p->app_probes + p->mcast_probes;
850 }
851 
852 static void neigh_invalidate(struct neighbour *neigh)
853 	__releases(neigh->lock)
854 	__acquires(neigh->lock)
855 {
856 	struct sk_buff *skb;
857 
858 	NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
859 	NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
860 	neigh->updated = jiffies;
861 
862 	/* It is very thin place. report_unreachable is very complicated
863 	   routine. Particularly, it can hit the same neighbour entry!
864 
865 	   So that, we try to be accurate and avoid dead loop. --ANK
866 	 */
867 	while (neigh->nud_state == NUD_FAILED &&
868 	       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
869 		write_unlock(&neigh->lock);
870 		neigh->ops->error_report(neigh, skb);
871 		write_lock(&neigh->lock);
872 	}
873 	skb_queue_purge(&neigh->arp_queue);
874 	neigh->arp_queue_len_bytes = 0;
875 }
876 
877 static void neigh_probe(struct neighbour *neigh)
878 	__releases(neigh->lock)
879 {
880 	struct sk_buff *skb = skb_peek(&neigh->arp_queue);
881 	/* keep skb alive even if arp_queue overflows */
882 	if (skb)
883 		skb = skb_copy(skb, GFP_ATOMIC);
884 	write_unlock(&neigh->lock);
885 	neigh->ops->solicit(neigh, skb);
886 	atomic_inc(&neigh->probes);
887 	kfree_skb(skb);
888 }
889 
890 /* Called when a timer expires for a neighbour entry. */
891 
892 static void neigh_timer_handler(unsigned long arg)
893 {
894 	unsigned long now, next;
895 	struct neighbour *neigh = (struct neighbour *)arg;
896 	unsigned int state;
897 	int notify = 0;
898 
899 	write_lock(&neigh->lock);
900 
901 	state = neigh->nud_state;
902 	now = jiffies;
903 	next = now + HZ;
904 
905 	if (!(state & NUD_IN_TIMER))
906 		goto out;
907 
908 	if (state & NUD_REACHABLE) {
909 		if (time_before_eq(now,
910 				   neigh->confirmed + neigh->parms->reachable_time)) {
911 			NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
912 			next = neigh->confirmed + neigh->parms->reachable_time;
913 		} else if (time_before_eq(now,
914 					  neigh->used + neigh->parms->delay_probe_time)) {
915 			NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
916 			neigh->nud_state = NUD_DELAY;
917 			neigh->updated = jiffies;
918 			neigh_suspect(neigh);
919 			next = now + neigh->parms->delay_probe_time;
920 		} else {
921 			NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
922 			neigh->nud_state = NUD_STALE;
923 			neigh->updated = jiffies;
924 			neigh_suspect(neigh);
925 			notify = 1;
926 		}
927 	} else if (state & NUD_DELAY) {
928 		if (time_before_eq(now,
929 				   neigh->confirmed + neigh->parms->delay_probe_time)) {
930 			NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
931 			neigh->nud_state = NUD_REACHABLE;
932 			neigh->updated = jiffies;
933 			neigh_connect(neigh);
934 			notify = 1;
935 			next = neigh->confirmed + neigh->parms->reachable_time;
936 		} else {
937 			NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
938 			neigh->nud_state = NUD_PROBE;
939 			neigh->updated = jiffies;
940 			atomic_set(&neigh->probes, 0);
941 			next = now + neigh->parms->retrans_time;
942 		}
943 	} else {
944 		/* NUD_PROBE|NUD_INCOMPLETE */
945 		next = now + neigh->parms->retrans_time;
946 	}
947 
948 	if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
949 	    atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
950 		neigh->nud_state = NUD_FAILED;
951 		notify = 1;
952 		neigh_invalidate(neigh);
953 	}
954 
955 	if (neigh->nud_state & NUD_IN_TIMER) {
956 		if (time_before(next, jiffies + HZ/2))
957 			next = jiffies + HZ/2;
958 		if (!mod_timer(&neigh->timer, next))
959 			neigh_hold(neigh);
960 	}
961 	if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
962 		neigh_probe(neigh);
963 	} else {
964 out:
965 		write_unlock(&neigh->lock);
966 	}
967 
968 	if (notify)
969 		neigh_update_notify(neigh);
970 
971 	neigh_release(neigh);
972 }
973 
974 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
975 {
976 	int rc;
977 	bool immediate_probe = false;
978 
979 	write_lock_bh(&neigh->lock);
980 
981 	rc = 0;
982 	if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
983 		goto out_unlock_bh;
984 
985 	if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
986 		if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
987 			unsigned long next, now = jiffies;
988 
989 			atomic_set(&neigh->probes, neigh->parms->ucast_probes);
990 			neigh->nud_state     = NUD_INCOMPLETE;
991 			neigh->updated = now;
992 			next = now + max(neigh->parms->retrans_time, HZ/2);
993 			neigh_add_timer(neigh, next);
994 			immediate_probe = true;
995 		} else {
996 			neigh->nud_state = NUD_FAILED;
997 			neigh->updated = jiffies;
998 			write_unlock_bh(&neigh->lock);
999 
1000 			kfree_skb(skb);
1001 			return 1;
1002 		}
1003 	} else if (neigh->nud_state & NUD_STALE) {
1004 		NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
1005 		neigh->nud_state = NUD_DELAY;
1006 		neigh->updated = jiffies;
1007 		neigh_add_timer(neigh,
1008 				jiffies + neigh->parms->delay_probe_time);
1009 	}
1010 
1011 	if (neigh->nud_state == NUD_INCOMPLETE) {
1012 		if (skb) {
1013 			while (neigh->arp_queue_len_bytes + skb->truesize >
1014 			       neigh->parms->queue_len_bytes) {
1015 				struct sk_buff *buff;
1016 
1017 				buff = __skb_dequeue(&neigh->arp_queue);
1018 				if (!buff)
1019 					break;
1020 				neigh->arp_queue_len_bytes -= buff->truesize;
1021 				kfree_skb(buff);
1022 				NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
1023 			}
1024 			skb_dst_force(skb);
1025 			__skb_queue_tail(&neigh->arp_queue, skb);
1026 			neigh->arp_queue_len_bytes += skb->truesize;
1027 		}
1028 		rc = 1;
1029 	}
1030 out_unlock_bh:
1031 	if (immediate_probe)
1032 		neigh_probe(neigh);
1033 	else
1034 		write_unlock(&neigh->lock);
1035 	local_bh_enable();
1036 	return rc;
1037 }
1038 EXPORT_SYMBOL(__neigh_event_send);
1039 
1040 static void neigh_update_hhs(struct neighbour *neigh)
1041 {
1042 	struct hh_cache *hh;
1043 	void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1044 		= NULL;
1045 
1046 	if (neigh->dev->header_ops)
1047 		update = neigh->dev->header_ops->cache_update;
1048 
1049 	if (update) {
1050 		hh = &neigh->hh;
1051 		if (hh->hh_len) {
1052 			write_seqlock_bh(&hh->hh_lock);
1053 			update(hh, neigh->dev, neigh->ha);
1054 			write_sequnlock_bh(&hh->hh_lock);
1055 		}
1056 	}
1057 }
1058 
1059 
1060 
1061 /* Generic update routine.
1062    -- lladdr is new lladdr or NULL, if it is not supplied.
1063    -- new    is new state.
1064    -- flags
1065 	NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1066 				if it is different.
1067 	NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1068 				lladdr instead of overriding it
1069 				if it is different.
1070 				It also allows to retain current state
1071 				if lladdr is unchanged.
1072 	NEIGH_UPDATE_F_ADMIN	means that the change is administrative.
1073 
1074 	NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1075 				NTF_ROUTER flag.
1076 	NEIGH_UPDATE_F_ISROUTER	indicates if the neighbour is known as
1077 				a router.
1078 
1079    Caller MUST hold reference count on the entry.
1080  */
1081 
1082 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1083 		 u32 flags)
1084 {
1085 	u8 old;
1086 	int err;
1087 	int notify = 0;
1088 	struct net_device *dev;
1089 	int update_isrouter = 0;
1090 
1091 	write_lock_bh(&neigh->lock);
1092 
1093 	dev    = neigh->dev;
1094 	old    = neigh->nud_state;
1095 	err    = -EPERM;
1096 
1097 	if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1098 	    (old & (NUD_NOARP | NUD_PERMANENT)))
1099 		goto out;
1100 
1101 	if (!(new & NUD_VALID)) {
1102 		neigh_del_timer(neigh);
1103 		if (old & NUD_CONNECTED)
1104 			neigh_suspect(neigh);
1105 		neigh->nud_state = new;
1106 		err = 0;
1107 		notify = old & NUD_VALID;
1108 		if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1109 		    (new & NUD_FAILED)) {
1110 			neigh_invalidate(neigh);
1111 			notify = 1;
1112 		}
1113 		goto out;
1114 	}
1115 
1116 	/* Compare new lladdr with cached one */
1117 	if (!dev->addr_len) {
1118 		/* First case: device needs no address. */
1119 		lladdr = neigh->ha;
1120 	} else if (lladdr) {
1121 		/* The second case: if something is already cached
1122 		   and a new address is proposed:
1123 		   - compare new & old
1124 		   - if they are different, check override flag
1125 		 */
1126 		if ((old & NUD_VALID) &&
1127 		    !memcmp(lladdr, neigh->ha, dev->addr_len))
1128 			lladdr = neigh->ha;
1129 	} else {
1130 		/* No address is supplied; if we know something,
1131 		   use it, otherwise discard the request.
1132 		 */
1133 		err = -EINVAL;
1134 		if (!(old & NUD_VALID))
1135 			goto out;
1136 		lladdr = neigh->ha;
1137 	}
1138 
1139 	if (new & NUD_CONNECTED)
1140 		neigh->confirmed = jiffies;
1141 	neigh->updated = jiffies;
1142 
1143 	/* If entry was valid and address is not changed,
1144 	   do not change entry state, if new one is STALE.
1145 	 */
1146 	err = 0;
1147 	update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1148 	if (old & NUD_VALID) {
1149 		if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1150 			update_isrouter = 0;
1151 			if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1152 			    (old & NUD_CONNECTED)) {
1153 				lladdr = neigh->ha;
1154 				new = NUD_STALE;
1155 			} else
1156 				goto out;
1157 		} else {
1158 			if (lladdr == neigh->ha && new == NUD_STALE &&
1159 			    ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1160 			     (old & NUD_CONNECTED))
1161 			    )
1162 				new = old;
1163 		}
1164 	}
1165 
1166 	if (new != old) {
1167 		neigh_del_timer(neigh);
1168 		if (new & NUD_IN_TIMER)
1169 			neigh_add_timer(neigh, (jiffies +
1170 						((new & NUD_REACHABLE) ?
1171 						 neigh->parms->reachable_time :
1172 						 0)));
1173 		neigh->nud_state = new;
1174 	}
1175 
1176 	if (lladdr != neigh->ha) {
1177 		write_seqlock(&neigh->ha_lock);
1178 		memcpy(&neigh->ha, lladdr, dev->addr_len);
1179 		write_sequnlock(&neigh->ha_lock);
1180 		neigh_update_hhs(neigh);
1181 		if (!(new & NUD_CONNECTED))
1182 			neigh->confirmed = jiffies -
1183 				      (neigh->parms->base_reachable_time << 1);
1184 		notify = 1;
1185 	}
1186 	if (new == old)
1187 		goto out;
1188 	if (new & NUD_CONNECTED)
1189 		neigh_connect(neigh);
1190 	else
1191 		neigh_suspect(neigh);
1192 	if (!(old & NUD_VALID)) {
1193 		struct sk_buff *skb;
1194 
1195 		/* Again: avoid dead loop if something went wrong */
1196 
1197 		while (neigh->nud_state & NUD_VALID &&
1198 		       (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1199 			struct dst_entry *dst = skb_dst(skb);
1200 			struct neighbour *n2, *n1 = neigh;
1201 			write_unlock_bh(&neigh->lock);
1202 
1203 			rcu_read_lock();
1204 
1205 			/* Why not just use 'neigh' as-is?  The problem is that
1206 			 * things such as shaper, eql, and sch_teql can end up
1207 			 * using alternative, different, neigh objects to output
1208 			 * the packet in the output path.  So what we need to do
1209 			 * here is re-lookup the top-level neigh in the path so
1210 			 * we can reinject the packet there.
1211 			 */
1212 			n2 = NULL;
1213 			if (dst) {
1214 				n2 = dst_neigh_lookup_skb(dst, skb);
1215 				if (n2)
1216 					n1 = n2;
1217 			}
1218 			n1->output(n1, skb);
1219 			if (n2)
1220 				neigh_release(n2);
1221 			rcu_read_unlock();
1222 
1223 			write_lock_bh(&neigh->lock);
1224 		}
1225 		skb_queue_purge(&neigh->arp_queue);
1226 		neigh->arp_queue_len_bytes = 0;
1227 	}
1228 out:
1229 	if (update_isrouter) {
1230 		neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1231 			(neigh->flags | NTF_ROUTER) :
1232 			(neigh->flags & ~NTF_ROUTER);
1233 	}
1234 	write_unlock_bh(&neigh->lock);
1235 
1236 	if (notify)
1237 		neigh_update_notify(neigh);
1238 
1239 	return err;
1240 }
1241 EXPORT_SYMBOL(neigh_update);
1242 
1243 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1244 				 u8 *lladdr, void *saddr,
1245 				 struct net_device *dev)
1246 {
1247 	struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1248 						 lladdr || !dev->addr_len);
1249 	if (neigh)
1250 		neigh_update(neigh, lladdr, NUD_STALE,
1251 			     NEIGH_UPDATE_F_OVERRIDE);
1252 	return neigh;
1253 }
1254 EXPORT_SYMBOL(neigh_event_ns);
1255 
1256 /* called with read_lock_bh(&n->lock); */
1257 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1258 {
1259 	struct net_device *dev = dst->dev;
1260 	__be16 prot = dst->ops->protocol;
1261 	struct hh_cache	*hh = &n->hh;
1262 
1263 	write_lock_bh(&n->lock);
1264 
1265 	/* Only one thread can come in here and initialize the
1266 	 * hh_cache entry.
1267 	 */
1268 	if (!hh->hh_len)
1269 		dev->header_ops->cache(n, hh, prot);
1270 
1271 	write_unlock_bh(&n->lock);
1272 }
1273 
1274 /* This function can be used in contexts, where only old dev_queue_xmit
1275  * worked, f.e. if you want to override normal output path (eql, shaper),
1276  * but resolution is not made yet.
1277  */
1278 
1279 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1280 {
1281 	struct net_device *dev = skb->dev;
1282 
1283 	__skb_pull(skb, skb_network_offset(skb));
1284 
1285 	if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1286 			    skb->len) < 0 &&
1287 	    dev->header_ops->rebuild(skb))
1288 		return 0;
1289 
1290 	return dev_queue_xmit(skb);
1291 }
1292 EXPORT_SYMBOL(neigh_compat_output);
1293 
1294 /* Slow and careful. */
1295 
1296 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1297 {
1298 	struct dst_entry *dst = skb_dst(skb);
1299 	int rc = 0;
1300 
1301 	if (!dst)
1302 		goto discard;
1303 
1304 	__skb_pull(skb, skb_network_offset(skb));
1305 
1306 	if (!neigh_event_send(neigh, skb)) {
1307 		int err;
1308 		struct net_device *dev = neigh->dev;
1309 		unsigned int seq;
1310 
1311 		if (dev->header_ops->cache && !neigh->hh.hh_len)
1312 			neigh_hh_init(neigh, dst);
1313 
1314 		do {
1315 			seq = read_seqbegin(&neigh->ha_lock);
1316 			err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1317 					      neigh->ha, NULL, skb->len);
1318 		} while (read_seqretry(&neigh->ha_lock, seq));
1319 
1320 		if (err >= 0)
1321 			rc = dev_queue_xmit(skb);
1322 		else
1323 			goto out_kfree_skb;
1324 	}
1325 out:
1326 	return rc;
1327 discard:
1328 	NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1329 		      dst, neigh);
1330 out_kfree_skb:
1331 	rc = -EINVAL;
1332 	kfree_skb(skb);
1333 	goto out;
1334 }
1335 EXPORT_SYMBOL(neigh_resolve_output);
1336 
1337 /* As fast as possible without hh cache */
1338 
1339 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1340 {
1341 	struct net_device *dev = neigh->dev;
1342 	unsigned int seq;
1343 	int err;
1344 
1345 	__skb_pull(skb, skb_network_offset(skb));
1346 
1347 	do {
1348 		seq = read_seqbegin(&neigh->ha_lock);
1349 		err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1350 				      neigh->ha, NULL, skb->len);
1351 	} while (read_seqretry(&neigh->ha_lock, seq));
1352 
1353 	if (err >= 0)
1354 		err = dev_queue_xmit(skb);
1355 	else {
1356 		err = -EINVAL;
1357 		kfree_skb(skb);
1358 	}
1359 	return err;
1360 }
1361 EXPORT_SYMBOL(neigh_connected_output);
1362 
1363 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1364 {
1365 	return dev_queue_xmit(skb);
1366 }
1367 EXPORT_SYMBOL(neigh_direct_output);
1368 
1369 static void neigh_proxy_process(unsigned long arg)
1370 {
1371 	struct neigh_table *tbl = (struct neigh_table *)arg;
1372 	long sched_next = 0;
1373 	unsigned long now = jiffies;
1374 	struct sk_buff *skb, *n;
1375 
1376 	spin_lock(&tbl->proxy_queue.lock);
1377 
1378 	skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1379 		long tdif = NEIGH_CB(skb)->sched_next - now;
1380 
1381 		if (tdif <= 0) {
1382 			struct net_device *dev = skb->dev;
1383 
1384 			__skb_unlink(skb, &tbl->proxy_queue);
1385 			if (tbl->proxy_redo && netif_running(dev)) {
1386 				rcu_read_lock();
1387 				tbl->proxy_redo(skb);
1388 				rcu_read_unlock();
1389 			} else {
1390 				kfree_skb(skb);
1391 			}
1392 
1393 			dev_put(dev);
1394 		} else if (!sched_next || tdif < sched_next)
1395 			sched_next = tdif;
1396 	}
1397 	del_timer(&tbl->proxy_timer);
1398 	if (sched_next)
1399 		mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1400 	spin_unlock(&tbl->proxy_queue.lock);
1401 }
1402 
1403 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1404 		    struct sk_buff *skb)
1405 {
1406 	unsigned long now = jiffies;
1407 	unsigned long sched_next = now + (net_random() % p->proxy_delay);
1408 
1409 	if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1410 		kfree_skb(skb);
1411 		return;
1412 	}
1413 
1414 	NEIGH_CB(skb)->sched_next = sched_next;
1415 	NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1416 
1417 	spin_lock(&tbl->proxy_queue.lock);
1418 	if (del_timer(&tbl->proxy_timer)) {
1419 		if (time_before(tbl->proxy_timer.expires, sched_next))
1420 			sched_next = tbl->proxy_timer.expires;
1421 	}
1422 	skb_dst_drop(skb);
1423 	dev_hold(skb->dev);
1424 	__skb_queue_tail(&tbl->proxy_queue, skb);
1425 	mod_timer(&tbl->proxy_timer, sched_next);
1426 	spin_unlock(&tbl->proxy_queue.lock);
1427 }
1428 EXPORT_SYMBOL(pneigh_enqueue);
1429 
1430 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1431 						      struct net *net, int ifindex)
1432 {
1433 	struct neigh_parms *p;
1434 
1435 	for (p = &tbl->parms; p; p = p->next) {
1436 		if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1437 		    (!p->dev && !ifindex))
1438 			return p;
1439 	}
1440 
1441 	return NULL;
1442 }
1443 
1444 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1445 				      struct neigh_table *tbl)
1446 {
1447 	struct neigh_parms *p, *ref;
1448 	struct net *net = dev_net(dev);
1449 	const struct net_device_ops *ops = dev->netdev_ops;
1450 
1451 	ref = lookup_neigh_parms(tbl, net, 0);
1452 	if (!ref)
1453 		return NULL;
1454 
1455 	p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1456 	if (p) {
1457 		p->tbl		  = tbl;
1458 		atomic_set(&p->refcnt, 1);
1459 		p->reachable_time =
1460 				neigh_rand_reach_time(p->base_reachable_time);
1461 
1462 		if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1463 			kfree(p);
1464 			return NULL;
1465 		}
1466 
1467 		dev_hold(dev);
1468 		p->dev = dev;
1469 		write_pnet(&p->net, hold_net(net));
1470 		p->sysctl_table = NULL;
1471 		write_lock_bh(&tbl->lock);
1472 		p->next		= tbl->parms.next;
1473 		tbl->parms.next = p;
1474 		write_unlock_bh(&tbl->lock);
1475 	}
1476 	return p;
1477 }
1478 EXPORT_SYMBOL(neigh_parms_alloc);
1479 
1480 static void neigh_rcu_free_parms(struct rcu_head *head)
1481 {
1482 	struct neigh_parms *parms =
1483 		container_of(head, struct neigh_parms, rcu_head);
1484 
1485 	neigh_parms_put(parms);
1486 }
1487 
1488 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1489 {
1490 	struct neigh_parms **p;
1491 
1492 	if (!parms || parms == &tbl->parms)
1493 		return;
1494 	write_lock_bh(&tbl->lock);
1495 	for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1496 		if (*p == parms) {
1497 			*p = parms->next;
1498 			parms->dead = 1;
1499 			write_unlock_bh(&tbl->lock);
1500 			if (parms->dev)
1501 				dev_put(parms->dev);
1502 			call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1503 			return;
1504 		}
1505 	}
1506 	write_unlock_bh(&tbl->lock);
1507 	NEIGH_PRINTK1("neigh_parms_release: not found\n");
1508 }
1509 EXPORT_SYMBOL(neigh_parms_release);
1510 
1511 static void neigh_parms_destroy(struct neigh_parms *parms)
1512 {
1513 	release_net(neigh_parms_net(parms));
1514 	kfree(parms);
1515 }
1516 
1517 static struct lock_class_key neigh_table_proxy_queue_class;
1518 
1519 static void neigh_table_init_no_netlink(struct neigh_table *tbl)
1520 {
1521 	unsigned long now = jiffies;
1522 	unsigned long phsize;
1523 
1524 	write_pnet(&tbl->parms.net, &init_net);
1525 	atomic_set(&tbl->parms.refcnt, 1);
1526 	tbl->parms.reachable_time =
1527 			  neigh_rand_reach_time(tbl->parms.base_reachable_time);
1528 
1529 	tbl->stats = alloc_percpu(struct neigh_statistics);
1530 	if (!tbl->stats)
1531 		panic("cannot create neighbour cache statistics");
1532 
1533 #ifdef CONFIG_PROC_FS
1534 	if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1535 			      &neigh_stat_seq_fops, tbl))
1536 		panic("cannot create neighbour proc dir entry");
1537 #endif
1538 
1539 	RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1540 
1541 	phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1542 	tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1543 
1544 	if (!tbl->nht || !tbl->phash_buckets)
1545 		panic("cannot allocate neighbour cache hashes");
1546 
1547 	rwlock_init(&tbl->lock);
1548 	INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1549 	schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1550 	setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1551 	skb_queue_head_init_class(&tbl->proxy_queue,
1552 			&neigh_table_proxy_queue_class);
1553 
1554 	tbl->last_flush = now;
1555 	tbl->last_rand	= now + tbl->parms.reachable_time * 20;
1556 }
1557 
1558 void neigh_table_init(struct neigh_table *tbl)
1559 {
1560 	struct neigh_table *tmp;
1561 
1562 	neigh_table_init_no_netlink(tbl);
1563 	write_lock(&neigh_tbl_lock);
1564 	for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1565 		if (tmp->family == tbl->family)
1566 			break;
1567 	}
1568 	tbl->next	= neigh_tables;
1569 	neigh_tables	= tbl;
1570 	write_unlock(&neigh_tbl_lock);
1571 
1572 	if (unlikely(tmp)) {
1573 		pr_err("Registering multiple tables for family %d\n",
1574 		       tbl->family);
1575 		dump_stack();
1576 	}
1577 }
1578 EXPORT_SYMBOL(neigh_table_init);
1579 
1580 int neigh_table_clear(struct neigh_table *tbl)
1581 {
1582 	struct neigh_table **tp;
1583 
1584 	/* It is not clean... Fix it to unload IPv6 module safely */
1585 	cancel_delayed_work_sync(&tbl->gc_work);
1586 	del_timer_sync(&tbl->proxy_timer);
1587 	pneigh_queue_purge(&tbl->proxy_queue);
1588 	neigh_ifdown(tbl, NULL);
1589 	if (atomic_read(&tbl->entries))
1590 		pr_crit("neighbour leakage\n");
1591 	write_lock(&neigh_tbl_lock);
1592 	for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1593 		if (*tp == tbl) {
1594 			*tp = tbl->next;
1595 			break;
1596 		}
1597 	}
1598 	write_unlock(&neigh_tbl_lock);
1599 
1600 	call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1601 		 neigh_hash_free_rcu);
1602 	tbl->nht = NULL;
1603 
1604 	kfree(tbl->phash_buckets);
1605 	tbl->phash_buckets = NULL;
1606 
1607 	remove_proc_entry(tbl->id, init_net.proc_net_stat);
1608 
1609 	free_percpu(tbl->stats);
1610 	tbl->stats = NULL;
1611 
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL(neigh_table_clear);
1615 
1616 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1617 {
1618 	struct net *net = sock_net(skb->sk);
1619 	struct ndmsg *ndm;
1620 	struct nlattr *dst_attr;
1621 	struct neigh_table *tbl;
1622 	struct net_device *dev = NULL;
1623 	int err = -EINVAL;
1624 
1625 	ASSERT_RTNL();
1626 	if (nlmsg_len(nlh) < sizeof(*ndm))
1627 		goto out;
1628 
1629 	dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1630 	if (dst_attr == NULL)
1631 		goto out;
1632 
1633 	ndm = nlmsg_data(nlh);
1634 	if (ndm->ndm_ifindex) {
1635 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1636 		if (dev == NULL) {
1637 			err = -ENODEV;
1638 			goto out;
1639 		}
1640 	}
1641 
1642 	read_lock(&neigh_tbl_lock);
1643 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1644 		struct neighbour *neigh;
1645 
1646 		if (tbl->family != ndm->ndm_family)
1647 			continue;
1648 		read_unlock(&neigh_tbl_lock);
1649 
1650 		if (nla_len(dst_attr) < tbl->key_len)
1651 			goto out;
1652 
1653 		if (ndm->ndm_flags & NTF_PROXY) {
1654 			err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1655 			goto out;
1656 		}
1657 
1658 		if (dev == NULL)
1659 			goto out;
1660 
1661 		neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1662 		if (neigh == NULL) {
1663 			err = -ENOENT;
1664 			goto out;
1665 		}
1666 
1667 		err = neigh_update(neigh, NULL, NUD_FAILED,
1668 				   NEIGH_UPDATE_F_OVERRIDE |
1669 				   NEIGH_UPDATE_F_ADMIN);
1670 		neigh_release(neigh);
1671 		goto out;
1672 	}
1673 	read_unlock(&neigh_tbl_lock);
1674 	err = -EAFNOSUPPORT;
1675 
1676 out:
1677 	return err;
1678 }
1679 
1680 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1681 {
1682 	struct net *net = sock_net(skb->sk);
1683 	struct ndmsg *ndm;
1684 	struct nlattr *tb[NDA_MAX+1];
1685 	struct neigh_table *tbl;
1686 	struct net_device *dev = NULL;
1687 	int err;
1688 
1689 	ASSERT_RTNL();
1690 	err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1691 	if (err < 0)
1692 		goto out;
1693 
1694 	err = -EINVAL;
1695 	if (tb[NDA_DST] == NULL)
1696 		goto out;
1697 
1698 	ndm = nlmsg_data(nlh);
1699 	if (ndm->ndm_ifindex) {
1700 		dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1701 		if (dev == NULL) {
1702 			err = -ENODEV;
1703 			goto out;
1704 		}
1705 
1706 		if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1707 			goto out;
1708 	}
1709 
1710 	read_lock(&neigh_tbl_lock);
1711 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1712 		int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1713 		struct neighbour *neigh;
1714 		void *dst, *lladdr;
1715 
1716 		if (tbl->family != ndm->ndm_family)
1717 			continue;
1718 		read_unlock(&neigh_tbl_lock);
1719 
1720 		if (nla_len(tb[NDA_DST]) < tbl->key_len)
1721 			goto out;
1722 		dst = nla_data(tb[NDA_DST]);
1723 		lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1724 
1725 		if (ndm->ndm_flags & NTF_PROXY) {
1726 			struct pneigh_entry *pn;
1727 
1728 			err = -ENOBUFS;
1729 			pn = pneigh_lookup(tbl, net, dst, dev, 1);
1730 			if (pn) {
1731 				pn->flags = ndm->ndm_flags;
1732 				err = 0;
1733 			}
1734 			goto out;
1735 		}
1736 
1737 		if (dev == NULL)
1738 			goto out;
1739 
1740 		neigh = neigh_lookup(tbl, dst, dev);
1741 		if (neigh == NULL) {
1742 			if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1743 				err = -ENOENT;
1744 				goto out;
1745 			}
1746 
1747 			neigh = __neigh_lookup_errno(tbl, dst, dev);
1748 			if (IS_ERR(neigh)) {
1749 				err = PTR_ERR(neigh);
1750 				goto out;
1751 			}
1752 		} else {
1753 			if (nlh->nlmsg_flags & NLM_F_EXCL) {
1754 				err = -EEXIST;
1755 				neigh_release(neigh);
1756 				goto out;
1757 			}
1758 
1759 			if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1760 				flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1761 		}
1762 
1763 		if (ndm->ndm_flags & NTF_USE) {
1764 			neigh_event_send(neigh, NULL);
1765 			err = 0;
1766 		} else
1767 			err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1768 		neigh_release(neigh);
1769 		goto out;
1770 	}
1771 
1772 	read_unlock(&neigh_tbl_lock);
1773 	err = -EAFNOSUPPORT;
1774 out:
1775 	return err;
1776 }
1777 
1778 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1779 {
1780 	struct nlattr *nest;
1781 
1782 	nest = nla_nest_start(skb, NDTA_PARMS);
1783 	if (nest == NULL)
1784 		return -ENOBUFS;
1785 
1786 	if ((parms->dev &&
1787 	     nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) ||
1788 	    nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) ||
1789 	    nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes) ||
1790 	    /* approximative value for deprecated QUEUE_LEN (in packets) */
1791 	    nla_put_u32(skb, NDTPA_QUEUE_LEN,
1792 			DIV_ROUND_UP(parms->queue_len_bytes,
1793 				     SKB_TRUESIZE(ETH_FRAME_LEN))) ||
1794 	    nla_put_u32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen) ||
1795 	    nla_put_u32(skb, NDTPA_APP_PROBES, parms->app_probes) ||
1796 	    nla_put_u32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes) ||
1797 	    nla_put_u32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes) ||
1798 	    nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) ||
1799 	    nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME,
1800 			  parms->base_reachable_time) ||
1801 	    nla_put_msecs(skb, NDTPA_GC_STALETIME, parms->gc_staletime) ||
1802 	    nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME,
1803 			  parms->delay_probe_time) ||
1804 	    nla_put_msecs(skb, NDTPA_RETRANS_TIME, parms->retrans_time) ||
1805 	    nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay) ||
1806 	    nla_put_msecs(skb, NDTPA_PROXY_DELAY, parms->proxy_delay) ||
1807 	    nla_put_msecs(skb, NDTPA_LOCKTIME, parms->locktime))
1808 		goto nla_put_failure;
1809 	return nla_nest_end(skb, nest);
1810 
1811 nla_put_failure:
1812 	nla_nest_cancel(skb, nest);
1813 	return -EMSGSIZE;
1814 }
1815 
1816 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1817 			      u32 pid, u32 seq, int type, int flags)
1818 {
1819 	struct nlmsghdr *nlh;
1820 	struct ndtmsg *ndtmsg;
1821 
1822 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1823 	if (nlh == NULL)
1824 		return -EMSGSIZE;
1825 
1826 	ndtmsg = nlmsg_data(nlh);
1827 
1828 	read_lock_bh(&tbl->lock);
1829 	ndtmsg->ndtm_family = tbl->family;
1830 	ndtmsg->ndtm_pad1   = 0;
1831 	ndtmsg->ndtm_pad2   = 0;
1832 
1833 	if (nla_put_string(skb, NDTA_NAME, tbl->id) ||
1834 	    nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) ||
1835 	    nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) ||
1836 	    nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) ||
1837 	    nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3))
1838 		goto nla_put_failure;
1839 	{
1840 		unsigned long now = jiffies;
1841 		unsigned int flush_delta = now - tbl->last_flush;
1842 		unsigned int rand_delta = now - tbl->last_rand;
1843 		struct neigh_hash_table *nht;
1844 		struct ndt_config ndc = {
1845 			.ndtc_key_len		= tbl->key_len,
1846 			.ndtc_entry_size	= tbl->entry_size,
1847 			.ndtc_entries		= atomic_read(&tbl->entries),
1848 			.ndtc_last_flush	= jiffies_to_msecs(flush_delta),
1849 			.ndtc_last_rand		= jiffies_to_msecs(rand_delta),
1850 			.ndtc_proxy_qlen	= tbl->proxy_queue.qlen,
1851 		};
1852 
1853 		rcu_read_lock_bh();
1854 		nht = rcu_dereference_bh(tbl->nht);
1855 		ndc.ndtc_hash_rnd = nht->hash_rnd[0];
1856 		ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1857 		rcu_read_unlock_bh();
1858 
1859 		if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc))
1860 			goto nla_put_failure;
1861 	}
1862 
1863 	{
1864 		int cpu;
1865 		struct ndt_stats ndst;
1866 
1867 		memset(&ndst, 0, sizeof(ndst));
1868 
1869 		for_each_possible_cpu(cpu) {
1870 			struct neigh_statistics	*st;
1871 
1872 			st = per_cpu_ptr(tbl->stats, cpu);
1873 			ndst.ndts_allocs		+= st->allocs;
1874 			ndst.ndts_destroys		+= st->destroys;
1875 			ndst.ndts_hash_grows		+= st->hash_grows;
1876 			ndst.ndts_res_failed		+= st->res_failed;
1877 			ndst.ndts_lookups		+= st->lookups;
1878 			ndst.ndts_hits			+= st->hits;
1879 			ndst.ndts_rcv_probes_mcast	+= st->rcv_probes_mcast;
1880 			ndst.ndts_rcv_probes_ucast	+= st->rcv_probes_ucast;
1881 			ndst.ndts_periodic_gc_runs	+= st->periodic_gc_runs;
1882 			ndst.ndts_forced_gc_runs	+= st->forced_gc_runs;
1883 		}
1884 
1885 		if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst))
1886 			goto nla_put_failure;
1887 	}
1888 
1889 	BUG_ON(tbl->parms.dev);
1890 	if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1891 		goto nla_put_failure;
1892 
1893 	read_unlock_bh(&tbl->lock);
1894 	return nlmsg_end(skb, nlh);
1895 
1896 nla_put_failure:
1897 	read_unlock_bh(&tbl->lock);
1898 	nlmsg_cancel(skb, nlh);
1899 	return -EMSGSIZE;
1900 }
1901 
1902 static int neightbl_fill_param_info(struct sk_buff *skb,
1903 				    struct neigh_table *tbl,
1904 				    struct neigh_parms *parms,
1905 				    u32 pid, u32 seq, int type,
1906 				    unsigned int flags)
1907 {
1908 	struct ndtmsg *ndtmsg;
1909 	struct nlmsghdr *nlh;
1910 
1911 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1912 	if (nlh == NULL)
1913 		return -EMSGSIZE;
1914 
1915 	ndtmsg = nlmsg_data(nlh);
1916 
1917 	read_lock_bh(&tbl->lock);
1918 	ndtmsg->ndtm_family = tbl->family;
1919 	ndtmsg->ndtm_pad1   = 0;
1920 	ndtmsg->ndtm_pad2   = 0;
1921 
1922 	if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1923 	    neightbl_fill_parms(skb, parms) < 0)
1924 		goto errout;
1925 
1926 	read_unlock_bh(&tbl->lock);
1927 	return nlmsg_end(skb, nlh);
1928 errout:
1929 	read_unlock_bh(&tbl->lock);
1930 	nlmsg_cancel(skb, nlh);
1931 	return -EMSGSIZE;
1932 }
1933 
1934 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1935 	[NDTA_NAME]		= { .type = NLA_STRING },
1936 	[NDTA_THRESH1]		= { .type = NLA_U32 },
1937 	[NDTA_THRESH2]		= { .type = NLA_U32 },
1938 	[NDTA_THRESH3]		= { .type = NLA_U32 },
1939 	[NDTA_GC_INTERVAL]	= { .type = NLA_U64 },
1940 	[NDTA_PARMS]		= { .type = NLA_NESTED },
1941 };
1942 
1943 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1944 	[NDTPA_IFINDEX]			= { .type = NLA_U32 },
1945 	[NDTPA_QUEUE_LEN]		= { .type = NLA_U32 },
1946 	[NDTPA_PROXY_QLEN]		= { .type = NLA_U32 },
1947 	[NDTPA_APP_PROBES]		= { .type = NLA_U32 },
1948 	[NDTPA_UCAST_PROBES]		= { .type = NLA_U32 },
1949 	[NDTPA_MCAST_PROBES]		= { .type = NLA_U32 },
1950 	[NDTPA_BASE_REACHABLE_TIME]	= { .type = NLA_U64 },
1951 	[NDTPA_GC_STALETIME]		= { .type = NLA_U64 },
1952 	[NDTPA_DELAY_PROBE_TIME]	= { .type = NLA_U64 },
1953 	[NDTPA_RETRANS_TIME]		= { .type = NLA_U64 },
1954 	[NDTPA_ANYCAST_DELAY]		= { .type = NLA_U64 },
1955 	[NDTPA_PROXY_DELAY]		= { .type = NLA_U64 },
1956 	[NDTPA_LOCKTIME]		= { .type = NLA_U64 },
1957 };
1958 
1959 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1960 {
1961 	struct net *net = sock_net(skb->sk);
1962 	struct neigh_table *tbl;
1963 	struct ndtmsg *ndtmsg;
1964 	struct nlattr *tb[NDTA_MAX+1];
1965 	int err;
1966 
1967 	err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1968 			  nl_neightbl_policy);
1969 	if (err < 0)
1970 		goto errout;
1971 
1972 	if (tb[NDTA_NAME] == NULL) {
1973 		err = -EINVAL;
1974 		goto errout;
1975 	}
1976 
1977 	ndtmsg = nlmsg_data(nlh);
1978 	read_lock(&neigh_tbl_lock);
1979 	for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1980 		if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1981 			continue;
1982 
1983 		if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1984 			break;
1985 	}
1986 
1987 	if (tbl == NULL) {
1988 		err = -ENOENT;
1989 		goto errout_locked;
1990 	}
1991 
1992 	/*
1993 	 * We acquire tbl->lock to be nice to the periodic timers and
1994 	 * make sure they always see a consistent set of values.
1995 	 */
1996 	write_lock_bh(&tbl->lock);
1997 
1998 	if (tb[NDTA_PARMS]) {
1999 		struct nlattr *tbp[NDTPA_MAX+1];
2000 		struct neigh_parms *p;
2001 		int i, ifindex = 0;
2002 
2003 		err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
2004 				       nl_ntbl_parm_policy);
2005 		if (err < 0)
2006 			goto errout_tbl_lock;
2007 
2008 		if (tbp[NDTPA_IFINDEX])
2009 			ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
2010 
2011 		p = lookup_neigh_parms(tbl, net, ifindex);
2012 		if (p == NULL) {
2013 			err = -ENOENT;
2014 			goto errout_tbl_lock;
2015 		}
2016 
2017 		for (i = 1; i <= NDTPA_MAX; i++) {
2018 			if (tbp[i] == NULL)
2019 				continue;
2020 
2021 			switch (i) {
2022 			case NDTPA_QUEUE_LEN:
2023 				p->queue_len_bytes = nla_get_u32(tbp[i]) *
2024 						     SKB_TRUESIZE(ETH_FRAME_LEN);
2025 				break;
2026 			case NDTPA_QUEUE_LENBYTES:
2027 				p->queue_len_bytes = nla_get_u32(tbp[i]);
2028 				break;
2029 			case NDTPA_PROXY_QLEN:
2030 				p->proxy_qlen = nla_get_u32(tbp[i]);
2031 				break;
2032 			case NDTPA_APP_PROBES:
2033 				p->app_probes = nla_get_u32(tbp[i]);
2034 				break;
2035 			case NDTPA_UCAST_PROBES:
2036 				p->ucast_probes = nla_get_u32(tbp[i]);
2037 				break;
2038 			case NDTPA_MCAST_PROBES:
2039 				p->mcast_probes = nla_get_u32(tbp[i]);
2040 				break;
2041 			case NDTPA_BASE_REACHABLE_TIME:
2042 				p->base_reachable_time = nla_get_msecs(tbp[i]);
2043 				break;
2044 			case NDTPA_GC_STALETIME:
2045 				p->gc_staletime = nla_get_msecs(tbp[i]);
2046 				break;
2047 			case NDTPA_DELAY_PROBE_TIME:
2048 				p->delay_probe_time = nla_get_msecs(tbp[i]);
2049 				break;
2050 			case NDTPA_RETRANS_TIME:
2051 				p->retrans_time = nla_get_msecs(tbp[i]);
2052 				break;
2053 			case NDTPA_ANYCAST_DELAY:
2054 				p->anycast_delay = nla_get_msecs(tbp[i]);
2055 				break;
2056 			case NDTPA_PROXY_DELAY:
2057 				p->proxy_delay = nla_get_msecs(tbp[i]);
2058 				break;
2059 			case NDTPA_LOCKTIME:
2060 				p->locktime = nla_get_msecs(tbp[i]);
2061 				break;
2062 			}
2063 		}
2064 	}
2065 
2066 	if (tb[NDTA_THRESH1])
2067 		tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2068 
2069 	if (tb[NDTA_THRESH2])
2070 		tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2071 
2072 	if (tb[NDTA_THRESH3])
2073 		tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2074 
2075 	if (tb[NDTA_GC_INTERVAL])
2076 		tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2077 
2078 	err = 0;
2079 
2080 errout_tbl_lock:
2081 	write_unlock_bh(&tbl->lock);
2082 errout_locked:
2083 	read_unlock(&neigh_tbl_lock);
2084 errout:
2085 	return err;
2086 }
2087 
2088 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2089 {
2090 	struct net *net = sock_net(skb->sk);
2091 	int family, tidx, nidx = 0;
2092 	int tbl_skip = cb->args[0];
2093 	int neigh_skip = cb->args[1];
2094 	struct neigh_table *tbl;
2095 
2096 	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2097 
2098 	read_lock(&neigh_tbl_lock);
2099 	for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2100 		struct neigh_parms *p;
2101 
2102 		if (tidx < tbl_skip || (family && tbl->family != family))
2103 			continue;
2104 
2105 		if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2106 				       cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2107 				       NLM_F_MULTI) <= 0)
2108 			break;
2109 
2110 		for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2111 			if (!net_eq(neigh_parms_net(p), net))
2112 				continue;
2113 
2114 			if (nidx < neigh_skip)
2115 				goto next;
2116 
2117 			if (neightbl_fill_param_info(skb, tbl, p,
2118 						     NETLINK_CB(cb->skb).pid,
2119 						     cb->nlh->nlmsg_seq,
2120 						     RTM_NEWNEIGHTBL,
2121 						     NLM_F_MULTI) <= 0)
2122 				goto out;
2123 		next:
2124 			nidx++;
2125 		}
2126 
2127 		neigh_skip = 0;
2128 	}
2129 out:
2130 	read_unlock(&neigh_tbl_lock);
2131 	cb->args[0] = tidx;
2132 	cb->args[1] = nidx;
2133 
2134 	return skb->len;
2135 }
2136 
2137 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2138 			   u32 pid, u32 seq, int type, unsigned int flags)
2139 {
2140 	unsigned long now = jiffies;
2141 	struct nda_cacheinfo ci;
2142 	struct nlmsghdr *nlh;
2143 	struct ndmsg *ndm;
2144 
2145 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2146 	if (nlh == NULL)
2147 		return -EMSGSIZE;
2148 
2149 	ndm = nlmsg_data(nlh);
2150 	ndm->ndm_family	 = neigh->ops->family;
2151 	ndm->ndm_pad1    = 0;
2152 	ndm->ndm_pad2    = 0;
2153 	ndm->ndm_flags	 = neigh->flags;
2154 	ndm->ndm_type	 = neigh->type;
2155 	ndm->ndm_ifindex = neigh->dev->ifindex;
2156 
2157 	if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key))
2158 		goto nla_put_failure;
2159 
2160 	read_lock_bh(&neigh->lock);
2161 	ndm->ndm_state	 = neigh->nud_state;
2162 	if (neigh->nud_state & NUD_VALID) {
2163 		char haddr[MAX_ADDR_LEN];
2164 
2165 		neigh_ha_snapshot(haddr, neigh, neigh->dev);
2166 		if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2167 			read_unlock_bh(&neigh->lock);
2168 			goto nla_put_failure;
2169 		}
2170 	}
2171 
2172 	ci.ndm_used	 = jiffies_to_clock_t(now - neigh->used);
2173 	ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2174 	ci.ndm_updated	 = jiffies_to_clock_t(now - neigh->updated);
2175 	ci.ndm_refcnt	 = atomic_read(&neigh->refcnt) - 1;
2176 	read_unlock_bh(&neigh->lock);
2177 
2178 	if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) ||
2179 	    nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci))
2180 		goto nla_put_failure;
2181 
2182 	return nlmsg_end(skb, nlh);
2183 
2184 nla_put_failure:
2185 	nlmsg_cancel(skb, nlh);
2186 	return -EMSGSIZE;
2187 }
2188 
2189 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn,
2190 			    u32 pid, u32 seq, int type, unsigned int flags,
2191 			    struct neigh_table *tbl)
2192 {
2193 	struct nlmsghdr *nlh;
2194 	struct ndmsg *ndm;
2195 
2196 	nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2197 	if (nlh == NULL)
2198 		return -EMSGSIZE;
2199 
2200 	ndm = nlmsg_data(nlh);
2201 	ndm->ndm_family	 = tbl->family;
2202 	ndm->ndm_pad1    = 0;
2203 	ndm->ndm_pad2    = 0;
2204 	ndm->ndm_flags	 = pn->flags | NTF_PROXY;
2205 	ndm->ndm_type	 = NDA_DST;
2206 	ndm->ndm_ifindex = pn->dev->ifindex;
2207 	ndm->ndm_state	 = NUD_NONE;
2208 
2209 	if (nla_put(skb, NDA_DST, tbl->key_len, pn->key))
2210 		goto nla_put_failure;
2211 
2212 	return nlmsg_end(skb, nlh);
2213 
2214 nla_put_failure:
2215 	nlmsg_cancel(skb, nlh);
2216 	return -EMSGSIZE;
2217 }
2218 
2219 static void neigh_update_notify(struct neighbour *neigh)
2220 {
2221 	call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2222 	__neigh_notify(neigh, RTM_NEWNEIGH, 0);
2223 }
2224 
2225 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2226 			    struct netlink_callback *cb)
2227 {
2228 	struct net *net = sock_net(skb->sk);
2229 	struct neighbour *n;
2230 	int rc, h, s_h = cb->args[1];
2231 	int idx, s_idx = idx = cb->args[2];
2232 	struct neigh_hash_table *nht;
2233 
2234 	rcu_read_lock_bh();
2235 	nht = rcu_dereference_bh(tbl->nht);
2236 
2237 	for (h = s_h; h < (1 << nht->hash_shift); h++) {
2238 		if (h > s_h)
2239 			s_idx = 0;
2240 		for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2241 		     n != NULL;
2242 		     n = rcu_dereference_bh(n->next)) {
2243 			if (!net_eq(dev_net(n->dev), net))
2244 				continue;
2245 			if (idx < s_idx)
2246 				goto next;
2247 			if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2248 					    cb->nlh->nlmsg_seq,
2249 					    RTM_NEWNEIGH,
2250 					    NLM_F_MULTI) <= 0) {
2251 				rc = -1;
2252 				goto out;
2253 			}
2254 next:
2255 			idx++;
2256 		}
2257 	}
2258 	rc = skb->len;
2259 out:
2260 	rcu_read_unlock_bh();
2261 	cb->args[1] = h;
2262 	cb->args[2] = idx;
2263 	return rc;
2264 }
2265 
2266 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2267 			     struct netlink_callback *cb)
2268 {
2269 	struct pneigh_entry *n;
2270 	struct net *net = sock_net(skb->sk);
2271 	int rc, h, s_h = cb->args[3];
2272 	int idx, s_idx = idx = cb->args[4];
2273 
2274 	read_lock_bh(&tbl->lock);
2275 
2276 	for (h = s_h; h <= PNEIGH_HASHMASK; h++) {
2277 		if (h > s_h)
2278 			s_idx = 0;
2279 		for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) {
2280 			if (dev_net(n->dev) != net)
2281 				continue;
2282 			if (idx < s_idx)
2283 				goto next;
2284 			if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2285 					    cb->nlh->nlmsg_seq,
2286 					    RTM_NEWNEIGH,
2287 					    NLM_F_MULTI, tbl) <= 0) {
2288 				read_unlock_bh(&tbl->lock);
2289 				rc = -1;
2290 				goto out;
2291 			}
2292 		next:
2293 			idx++;
2294 		}
2295 	}
2296 
2297 	read_unlock_bh(&tbl->lock);
2298 	rc = skb->len;
2299 out:
2300 	cb->args[3] = h;
2301 	cb->args[4] = idx;
2302 	return rc;
2303 
2304 }
2305 
2306 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2307 {
2308 	struct neigh_table *tbl;
2309 	int t, family, s_t;
2310 	int proxy = 0;
2311 	int err;
2312 
2313 	read_lock(&neigh_tbl_lock);
2314 	family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2315 
2316 	/* check for full ndmsg structure presence, family member is
2317 	 * the same for both structures
2318 	 */
2319 	if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) &&
2320 	    ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY)
2321 		proxy = 1;
2322 
2323 	s_t = cb->args[0];
2324 
2325 	for (tbl = neigh_tables, t = 0; tbl;
2326 	     tbl = tbl->next, t++) {
2327 		if (t < s_t || (family && tbl->family != family))
2328 			continue;
2329 		if (t > s_t)
2330 			memset(&cb->args[1], 0, sizeof(cb->args) -
2331 						sizeof(cb->args[0]));
2332 		if (proxy)
2333 			err = pneigh_dump_table(tbl, skb, cb);
2334 		else
2335 			err = neigh_dump_table(tbl, skb, cb);
2336 		if (err < 0)
2337 			break;
2338 	}
2339 	read_unlock(&neigh_tbl_lock);
2340 
2341 	cb->args[0] = t;
2342 	return skb->len;
2343 }
2344 
2345 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2346 {
2347 	int chain;
2348 	struct neigh_hash_table *nht;
2349 
2350 	rcu_read_lock_bh();
2351 	nht = rcu_dereference_bh(tbl->nht);
2352 
2353 	read_lock(&tbl->lock); /* avoid resizes */
2354 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2355 		struct neighbour *n;
2356 
2357 		for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2358 		     n != NULL;
2359 		     n = rcu_dereference_bh(n->next))
2360 			cb(n, cookie);
2361 	}
2362 	read_unlock(&tbl->lock);
2363 	rcu_read_unlock_bh();
2364 }
2365 EXPORT_SYMBOL(neigh_for_each);
2366 
2367 /* The tbl->lock must be held as a writer and BH disabled. */
2368 void __neigh_for_each_release(struct neigh_table *tbl,
2369 			      int (*cb)(struct neighbour *))
2370 {
2371 	int chain;
2372 	struct neigh_hash_table *nht;
2373 
2374 	nht = rcu_dereference_protected(tbl->nht,
2375 					lockdep_is_held(&tbl->lock));
2376 	for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2377 		struct neighbour *n;
2378 		struct neighbour __rcu **np;
2379 
2380 		np = &nht->hash_buckets[chain];
2381 		while ((n = rcu_dereference_protected(*np,
2382 					lockdep_is_held(&tbl->lock))) != NULL) {
2383 			int release;
2384 
2385 			write_lock(&n->lock);
2386 			release = cb(n);
2387 			if (release) {
2388 				rcu_assign_pointer(*np,
2389 					rcu_dereference_protected(n->next,
2390 						lockdep_is_held(&tbl->lock)));
2391 				n->dead = 1;
2392 			} else
2393 				np = &n->next;
2394 			write_unlock(&n->lock);
2395 			if (release)
2396 				neigh_cleanup_and_release(n);
2397 		}
2398 	}
2399 }
2400 EXPORT_SYMBOL(__neigh_for_each_release);
2401 
2402 #ifdef CONFIG_PROC_FS
2403 
2404 static struct neighbour *neigh_get_first(struct seq_file *seq)
2405 {
2406 	struct neigh_seq_state *state = seq->private;
2407 	struct net *net = seq_file_net(seq);
2408 	struct neigh_hash_table *nht = state->nht;
2409 	struct neighbour *n = NULL;
2410 	int bucket = state->bucket;
2411 
2412 	state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2413 	for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2414 		n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2415 
2416 		while (n) {
2417 			if (!net_eq(dev_net(n->dev), net))
2418 				goto next;
2419 			if (state->neigh_sub_iter) {
2420 				loff_t fakep = 0;
2421 				void *v;
2422 
2423 				v = state->neigh_sub_iter(state, n, &fakep);
2424 				if (!v)
2425 					goto next;
2426 			}
2427 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2428 				break;
2429 			if (n->nud_state & ~NUD_NOARP)
2430 				break;
2431 next:
2432 			n = rcu_dereference_bh(n->next);
2433 		}
2434 
2435 		if (n)
2436 			break;
2437 	}
2438 	state->bucket = bucket;
2439 
2440 	return n;
2441 }
2442 
2443 static struct neighbour *neigh_get_next(struct seq_file *seq,
2444 					struct neighbour *n,
2445 					loff_t *pos)
2446 {
2447 	struct neigh_seq_state *state = seq->private;
2448 	struct net *net = seq_file_net(seq);
2449 	struct neigh_hash_table *nht = state->nht;
2450 
2451 	if (state->neigh_sub_iter) {
2452 		void *v = state->neigh_sub_iter(state, n, pos);
2453 		if (v)
2454 			return n;
2455 	}
2456 	n = rcu_dereference_bh(n->next);
2457 
2458 	while (1) {
2459 		while (n) {
2460 			if (!net_eq(dev_net(n->dev), net))
2461 				goto next;
2462 			if (state->neigh_sub_iter) {
2463 				void *v = state->neigh_sub_iter(state, n, pos);
2464 				if (v)
2465 					return n;
2466 				goto next;
2467 			}
2468 			if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2469 				break;
2470 
2471 			if (n->nud_state & ~NUD_NOARP)
2472 				break;
2473 next:
2474 			n = rcu_dereference_bh(n->next);
2475 		}
2476 
2477 		if (n)
2478 			break;
2479 
2480 		if (++state->bucket >= (1 << nht->hash_shift))
2481 			break;
2482 
2483 		n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2484 	}
2485 
2486 	if (n && pos)
2487 		--(*pos);
2488 	return n;
2489 }
2490 
2491 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2492 {
2493 	struct neighbour *n = neigh_get_first(seq);
2494 
2495 	if (n) {
2496 		--(*pos);
2497 		while (*pos) {
2498 			n = neigh_get_next(seq, n, pos);
2499 			if (!n)
2500 				break;
2501 		}
2502 	}
2503 	return *pos ? NULL : n;
2504 }
2505 
2506 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2507 {
2508 	struct neigh_seq_state *state = seq->private;
2509 	struct net *net = seq_file_net(seq);
2510 	struct neigh_table *tbl = state->tbl;
2511 	struct pneigh_entry *pn = NULL;
2512 	int bucket = state->bucket;
2513 
2514 	state->flags |= NEIGH_SEQ_IS_PNEIGH;
2515 	for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2516 		pn = tbl->phash_buckets[bucket];
2517 		while (pn && !net_eq(pneigh_net(pn), net))
2518 			pn = pn->next;
2519 		if (pn)
2520 			break;
2521 	}
2522 	state->bucket = bucket;
2523 
2524 	return pn;
2525 }
2526 
2527 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2528 					    struct pneigh_entry *pn,
2529 					    loff_t *pos)
2530 {
2531 	struct neigh_seq_state *state = seq->private;
2532 	struct net *net = seq_file_net(seq);
2533 	struct neigh_table *tbl = state->tbl;
2534 
2535 	do {
2536 		pn = pn->next;
2537 	} while (pn && !net_eq(pneigh_net(pn), net));
2538 
2539 	while (!pn) {
2540 		if (++state->bucket > PNEIGH_HASHMASK)
2541 			break;
2542 		pn = tbl->phash_buckets[state->bucket];
2543 		while (pn && !net_eq(pneigh_net(pn), net))
2544 			pn = pn->next;
2545 		if (pn)
2546 			break;
2547 	}
2548 
2549 	if (pn && pos)
2550 		--(*pos);
2551 
2552 	return pn;
2553 }
2554 
2555 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2556 {
2557 	struct pneigh_entry *pn = pneigh_get_first(seq);
2558 
2559 	if (pn) {
2560 		--(*pos);
2561 		while (*pos) {
2562 			pn = pneigh_get_next(seq, pn, pos);
2563 			if (!pn)
2564 				break;
2565 		}
2566 	}
2567 	return *pos ? NULL : pn;
2568 }
2569 
2570 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2571 {
2572 	struct neigh_seq_state *state = seq->private;
2573 	void *rc;
2574 	loff_t idxpos = *pos;
2575 
2576 	rc = neigh_get_idx(seq, &idxpos);
2577 	if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2578 		rc = pneigh_get_idx(seq, &idxpos);
2579 
2580 	return rc;
2581 }
2582 
2583 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2584 	__acquires(rcu_bh)
2585 {
2586 	struct neigh_seq_state *state = seq->private;
2587 
2588 	state->tbl = tbl;
2589 	state->bucket = 0;
2590 	state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2591 
2592 	rcu_read_lock_bh();
2593 	state->nht = rcu_dereference_bh(tbl->nht);
2594 
2595 	return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2596 }
2597 EXPORT_SYMBOL(neigh_seq_start);
2598 
2599 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2600 {
2601 	struct neigh_seq_state *state;
2602 	void *rc;
2603 
2604 	if (v == SEQ_START_TOKEN) {
2605 		rc = neigh_get_first(seq);
2606 		goto out;
2607 	}
2608 
2609 	state = seq->private;
2610 	if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2611 		rc = neigh_get_next(seq, v, NULL);
2612 		if (rc)
2613 			goto out;
2614 		if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2615 			rc = pneigh_get_first(seq);
2616 	} else {
2617 		BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2618 		rc = pneigh_get_next(seq, v, NULL);
2619 	}
2620 out:
2621 	++(*pos);
2622 	return rc;
2623 }
2624 EXPORT_SYMBOL(neigh_seq_next);
2625 
2626 void neigh_seq_stop(struct seq_file *seq, void *v)
2627 	__releases(rcu_bh)
2628 {
2629 	rcu_read_unlock_bh();
2630 }
2631 EXPORT_SYMBOL(neigh_seq_stop);
2632 
2633 /* statistics via seq_file */
2634 
2635 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2636 {
2637 	struct neigh_table *tbl = seq->private;
2638 	int cpu;
2639 
2640 	if (*pos == 0)
2641 		return SEQ_START_TOKEN;
2642 
2643 	for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2644 		if (!cpu_possible(cpu))
2645 			continue;
2646 		*pos = cpu+1;
2647 		return per_cpu_ptr(tbl->stats, cpu);
2648 	}
2649 	return NULL;
2650 }
2651 
2652 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2653 {
2654 	struct neigh_table *tbl = seq->private;
2655 	int cpu;
2656 
2657 	for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2658 		if (!cpu_possible(cpu))
2659 			continue;
2660 		*pos = cpu+1;
2661 		return per_cpu_ptr(tbl->stats, cpu);
2662 	}
2663 	return NULL;
2664 }
2665 
2666 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2667 {
2668 
2669 }
2670 
2671 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2672 {
2673 	struct neigh_table *tbl = seq->private;
2674 	struct neigh_statistics *st = v;
2675 
2676 	if (v == SEQ_START_TOKEN) {
2677 		seq_printf(seq, "entries  allocs destroys hash_grows  lookups hits  res_failed  rcv_probes_mcast rcv_probes_ucast  periodic_gc_runs forced_gc_runs unresolved_discards\n");
2678 		return 0;
2679 	}
2680 
2681 	seq_printf(seq, "%08x  %08lx %08lx %08lx  %08lx %08lx  %08lx  "
2682 			"%08lx %08lx  %08lx %08lx %08lx\n",
2683 		   atomic_read(&tbl->entries),
2684 
2685 		   st->allocs,
2686 		   st->destroys,
2687 		   st->hash_grows,
2688 
2689 		   st->lookups,
2690 		   st->hits,
2691 
2692 		   st->res_failed,
2693 
2694 		   st->rcv_probes_mcast,
2695 		   st->rcv_probes_ucast,
2696 
2697 		   st->periodic_gc_runs,
2698 		   st->forced_gc_runs,
2699 		   st->unres_discards
2700 		   );
2701 
2702 	return 0;
2703 }
2704 
2705 static const struct seq_operations neigh_stat_seq_ops = {
2706 	.start	= neigh_stat_seq_start,
2707 	.next	= neigh_stat_seq_next,
2708 	.stop	= neigh_stat_seq_stop,
2709 	.show	= neigh_stat_seq_show,
2710 };
2711 
2712 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2713 {
2714 	int ret = seq_open(file, &neigh_stat_seq_ops);
2715 
2716 	if (!ret) {
2717 		struct seq_file *sf = file->private_data;
2718 		sf->private = PDE(inode)->data;
2719 	}
2720 	return ret;
2721 };
2722 
2723 static const struct file_operations neigh_stat_seq_fops = {
2724 	.owner	 = THIS_MODULE,
2725 	.open 	 = neigh_stat_seq_open,
2726 	.read	 = seq_read,
2727 	.llseek	 = seq_lseek,
2728 	.release = seq_release,
2729 };
2730 
2731 #endif /* CONFIG_PROC_FS */
2732 
2733 static inline size_t neigh_nlmsg_size(void)
2734 {
2735 	return NLMSG_ALIGN(sizeof(struct ndmsg))
2736 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2737 	       + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2738 	       + nla_total_size(sizeof(struct nda_cacheinfo))
2739 	       + nla_total_size(4); /* NDA_PROBES */
2740 }
2741 
2742 static void __neigh_notify(struct neighbour *n, int type, int flags)
2743 {
2744 	struct net *net = dev_net(n->dev);
2745 	struct sk_buff *skb;
2746 	int err = -ENOBUFS;
2747 
2748 	skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2749 	if (skb == NULL)
2750 		goto errout;
2751 
2752 	err = neigh_fill_info(skb, n, 0, 0, type, flags);
2753 	if (err < 0) {
2754 		/* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2755 		WARN_ON(err == -EMSGSIZE);
2756 		kfree_skb(skb);
2757 		goto errout;
2758 	}
2759 	rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2760 	return;
2761 errout:
2762 	if (err < 0)
2763 		rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2764 }
2765 
2766 #ifdef CONFIG_ARPD
2767 void neigh_app_ns(struct neighbour *n)
2768 {
2769 	__neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2770 }
2771 EXPORT_SYMBOL(neigh_app_ns);
2772 #endif /* CONFIG_ARPD */
2773 
2774 #ifdef CONFIG_SYSCTL
2775 
2776 static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer,
2777 			   size_t *lenp, loff_t *ppos)
2778 {
2779 	int size, ret;
2780 	ctl_table tmp = *ctl;
2781 
2782 	tmp.data = &size;
2783 	size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN));
2784 	ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
2785 	if (write && !ret)
2786 		*(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN);
2787 	return ret;
2788 }
2789 
2790 enum {
2791 	NEIGH_VAR_MCAST_PROBE,
2792 	NEIGH_VAR_UCAST_PROBE,
2793 	NEIGH_VAR_APP_PROBE,
2794 	NEIGH_VAR_RETRANS_TIME,
2795 	NEIGH_VAR_BASE_REACHABLE_TIME,
2796 	NEIGH_VAR_DELAY_PROBE_TIME,
2797 	NEIGH_VAR_GC_STALETIME,
2798 	NEIGH_VAR_QUEUE_LEN,
2799 	NEIGH_VAR_QUEUE_LEN_BYTES,
2800 	NEIGH_VAR_PROXY_QLEN,
2801 	NEIGH_VAR_ANYCAST_DELAY,
2802 	NEIGH_VAR_PROXY_DELAY,
2803 	NEIGH_VAR_LOCKTIME,
2804 	NEIGH_VAR_RETRANS_TIME_MS,
2805 	NEIGH_VAR_BASE_REACHABLE_TIME_MS,
2806 	NEIGH_VAR_GC_INTERVAL,
2807 	NEIGH_VAR_GC_THRESH1,
2808 	NEIGH_VAR_GC_THRESH2,
2809 	NEIGH_VAR_GC_THRESH3,
2810 	NEIGH_VAR_MAX
2811 };
2812 
2813 static struct neigh_sysctl_table {
2814 	struct ctl_table_header *sysctl_header;
2815 	struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1];
2816 } neigh_sysctl_template __read_mostly = {
2817 	.neigh_vars = {
2818 		[NEIGH_VAR_MCAST_PROBE] = {
2819 			.procname	= "mcast_solicit",
2820 			.maxlen		= sizeof(int),
2821 			.mode		= 0644,
2822 			.proc_handler	= proc_dointvec,
2823 		},
2824 		[NEIGH_VAR_UCAST_PROBE] = {
2825 			.procname	= "ucast_solicit",
2826 			.maxlen		= sizeof(int),
2827 			.mode		= 0644,
2828 			.proc_handler	= proc_dointvec,
2829 		},
2830 		[NEIGH_VAR_APP_PROBE] = {
2831 			.procname	= "app_solicit",
2832 			.maxlen		= sizeof(int),
2833 			.mode		= 0644,
2834 			.proc_handler	= proc_dointvec,
2835 		},
2836 		[NEIGH_VAR_RETRANS_TIME] = {
2837 			.procname	= "retrans_time",
2838 			.maxlen		= sizeof(int),
2839 			.mode		= 0644,
2840 			.proc_handler	= proc_dointvec_userhz_jiffies,
2841 		},
2842 		[NEIGH_VAR_BASE_REACHABLE_TIME] = {
2843 			.procname	= "base_reachable_time",
2844 			.maxlen		= sizeof(int),
2845 			.mode		= 0644,
2846 			.proc_handler	= proc_dointvec_jiffies,
2847 		},
2848 		[NEIGH_VAR_DELAY_PROBE_TIME] = {
2849 			.procname	= "delay_first_probe_time",
2850 			.maxlen		= sizeof(int),
2851 			.mode		= 0644,
2852 			.proc_handler	= proc_dointvec_jiffies,
2853 		},
2854 		[NEIGH_VAR_GC_STALETIME] = {
2855 			.procname	= "gc_stale_time",
2856 			.maxlen		= sizeof(int),
2857 			.mode		= 0644,
2858 			.proc_handler	= proc_dointvec_jiffies,
2859 		},
2860 		[NEIGH_VAR_QUEUE_LEN] = {
2861 			.procname	= "unres_qlen",
2862 			.maxlen		= sizeof(int),
2863 			.mode		= 0644,
2864 			.proc_handler	= proc_unres_qlen,
2865 		},
2866 		[NEIGH_VAR_QUEUE_LEN_BYTES] = {
2867 			.procname	= "unres_qlen_bytes",
2868 			.maxlen		= sizeof(int),
2869 			.mode		= 0644,
2870 			.proc_handler	= proc_dointvec,
2871 		},
2872 		[NEIGH_VAR_PROXY_QLEN] = {
2873 			.procname	= "proxy_qlen",
2874 			.maxlen		= sizeof(int),
2875 			.mode		= 0644,
2876 			.proc_handler	= proc_dointvec,
2877 		},
2878 		[NEIGH_VAR_ANYCAST_DELAY] = {
2879 			.procname	= "anycast_delay",
2880 			.maxlen		= sizeof(int),
2881 			.mode		= 0644,
2882 			.proc_handler	= proc_dointvec_userhz_jiffies,
2883 		},
2884 		[NEIGH_VAR_PROXY_DELAY] = {
2885 			.procname	= "proxy_delay",
2886 			.maxlen		= sizeof(int),
2887 			.mode		= 0644,
2888 			.proc_handler	= proc_dointvec_userhz_jiffies,
2889 		},
2890 		[NEIGH_VAR_LOCKTIME] = {
2891 			.procname	= "locktime",
2892 			.maxlen		= sizeof(int),
2893 			.mode		= 0644,
2894 			.proc_handler	= proc_dointvec_userhz_jiffies,
2895 		},
2896 		[NEIGH_VAR_RETRANS_TIME_MS] = {
2897 			.procname	= "retrans_time_ms",
2898 			.maxlen		= sizeof(int),
2899 			.mode		= 0644,
2900 			.proc_handler	= proc_dointvec_ms_jiffies,
2901 		},
2902 		[NEIGH_VAR_BASE_REACHABLE_TIME_MS] = {
2903 			.procname	= "base_reachable_time_ms",
2904 			.maxlen		= sizeof(int),
2905 			.mode		= 0644,
2906 			.proc_handler	= proc_dointvec_ms_jiffies,
2907 		},
2908 		[NEIGH_VAR_GC_INTERVAL] = {
2909 			.procname	= "gc_interval",
2910 			.maxlen		= sizeof(int),
2911 			.mode		= 0644,
2912 			.proc_handler	= proc_dointvec_jiffies,
2913 		},
2914 		[NEIGH_VAR_GC_THRESH1] = {
2915 			.procname	= "gc_thresh1",
2916 			.maxlen		= sizeof(int),
2917 			.mode		= 0644,
2918 			.proc_handler	= proc_dointvec,
2919 		},
2920 		[NEIGH_VAR_GC_THRESH2] = {
2921 			.procname	= "gc_thresh2",
2922 			.maxlen		= sizeof(int),
2923 			.mode		= 0644,
2924 			.proc_handler	= proc_dointvec,
2925 		},
2926 		[NEIGH_VAR_GC_THRESH3] = {
2927 			.procname	= "gc_thresh3",
2928 			.maxlen		= sizeof(int),
2929 			.mode		= 0644,
2930 			.proc_handler	= proc_dointvec,
2931 		},
2932 		{},
2933 	},
2934 };
2935 
2936 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2937 			  char *p_name, proc_handler *handler)
2938 {
2939 	struct neigh_sysctl_table *t;
2940 	const char *dev_name_source = NULL;
2941 	char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ];
2942 
2943 	t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2944 	if (!t)
2945 		goto err;
2946 
2947 	t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data  = &p->mcast_probes;
2948 	t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data  = &p->ucast_probes;
2949 	t->neigh_vars[NEIGH_VAR_APP_PROBE].data  = &p->app_probes;
2950 	t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data  = &p->retrans_time;
2951 	t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data  = &p->base_reachable_time;
2952 	t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data  = &p->delay_probe_time;
2953 	t->neigh_vars[NEIGH_VAR_GC_STALETIME].data  = &p->gc_staletime;
2954 	t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data  = &p->queue_len_bytes;
2955 	t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data  = &p->queue_len_bytes;
2956 	t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data  = &p->proxy_qlen;
2957 	t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data  = &p->anycast_delay;
2958 	t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay;
2959 	t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime;
2960 	t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data  = &p->retrans_time;
2961 	t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data  = &p->base_reachable_time;
2962 
2963 	if (dev) {
2964 		dev_name_source = dev->name;
2965 		/* Terminate the table early */
2966 		memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0,
2967 		       sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL]));
2968 	} else {
2969 		dev_name_source = "default";
2970 		t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1);
2971 		t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1;
2972 		t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2;
2973 		t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3;
2974 	}
2975 
2976 
2977 	if (handler) {
2978 		/* RetransTime */
2979 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler;
2980 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev;
2981 		/* ReachableTime */
2982 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler;
2983 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev;
2984 		/* RetransTime (in milliseconds)*/
2985 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler;
2986 		t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev;
2987 		/* ReachableTime (in milliseconds) */
2988 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler;
2989 		t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev;
2990 	}
2991 
2992 	snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s",
2993 		p_name, dev_name_source);
2994 	t->sysctl_header =
2995 		register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars);
2996 	if (!t->sysctl_header)
2997 		goto free;
2998 
2999 	p->sysctl_table = t;
3000 	return 0;
3001 
3002 free:
3003 	kfree(t);
3004 err:
3005 	return -ENOBUFS;
3006 }
3007 EXPORT_SYMBOL(neigh_sysctl_register);
3008 
3009 void neigh_sysctl_unregister(struct neigh_parms *p)
3010 {
3011 	if (p->sysctl_table) {
3012 		struct neigh_sysctl_table *t = p->sysctl_table;
3013 		p->sysctl_table = NULL;
3014 		unregister_net_sysctl_table(t->sysctl_header);
3015 		kfree(t);
3016 	}
3017 }
3018 EXPORT_SYMBOL(neigh_sysctl_unregister);
3019 
3020 #endif	/* CONFIG_SYSCTL */
3021 
3022 static int __init neigh_init(void)
3023 {
3024 	rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
3025 	rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
3026 	rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
3027 
3028 	rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
3029 		      NULL);
3030 	rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
3031 
3032 	return 0;
3033 }
3034 
3035 subsys_initcall(neigh_init);
3036 
3037