1 /* 2 * Generic address resolution entity 3 * 4 * Authors: 5 * Pedro Roque <roque@di.fc.ul.pt> 6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * Fixes: 14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add. 15 * Harald Welte Add neighbour cache statistics like rtstat 16 */ 17 18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 19 20 #include <linux/slab.h> 21 #include <linux/types.h> 22 #include <linux/kernel.h> 23 #include <linux/module.h> 24 #include <linux/socket.h> 25 #include <linux/netdevice.h> 26 #include <linux/proc_fs.h> 27 #ifdef CONFIG_SYSCTL 28 #include <linux/sysctl.h> 29 #endif 30 #include <linux/times.h> 31 #include <net/net_namespace.h> 32 #include <net/neighbour.h> 33 #include <net/dst.h> 34 #include <net/sock.h> 35 #include <net/netevent.h> 36 #include <net/netlink.h> 37 #include <linux/rtnetlink.h> 38 #include <linux/random.h> 39 #include <linux/string.h> 40 #include <linux/log2.h> 41 42 #define NEIGH_DEBUG 1 43 44 #define NEIGH_PRINTK(x...) printk(x) 45 #define NEIGH_NOPRINTK(x...) do { ; } while(0) 46 #define NEIGH_PRINTK1 NEIGH_NOPRINTK 47 #define NEIGH_PRINTK2 NEIGH_NOPRINTK 48 49 #if NEIGH_DEBUG >= 1 50 #undef NEIGH_PRINTK1 51 #define NEIGH_PRINTK1 NEIGH_PRINTK 52 #endif 53 #if NEIGH_DEBUG >= 2 54 #undef NEIGH_PRINTK2 55 #define NEIGH_PRINTK2 NEIGH_PRINTK 56 #endif 57 58 #define PNEIGH_HASHMASK 0xF 59 60 static void neigh_timer_handler(unsigned long arg); 61 static void __neigh_notify(struct neighbour *n, int type, int flags); 62 static void neigh_update_notify(struct neighbour *neigh); 63 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev); 64 65 static struct neigh_table *neigh_tables; 66 #ifdef CONFIG_PROC_FS 67 static const struct file_operations neigh_stat_seq_fops; 68 #endif 69 70 /* 71 Neighbour hash table buckets are protected with rwlock tbl->lock. 72 73 - All the scans/updates to hash buckets MUST be made under this lock. 74 - NOTHING clever should be made under this lock: no callbacks 75 to protocol backends, no attempts to send something to network. 76 It will result in deadlocks, if backend/driver wants to use neighbour 77 cache. 78 - If the entry requires some non-trivial actions, increase 79 its reference count and release table lock. 80 81 Neighbour entries are protected: 82 - with reference count. 83 - with rwlock neigh->lock 84 85 Reference count prevents destruction. 86 87 neigh->lock mainly serializes ll address data and its validity state. 88 However, the same lock is used to protect another entry fields: 89 - timer 90 - resolution queue 91 92 Again, nothing clever shall be made under neigh->lock, 93 the most complicated procedure, which we allow is dev->hard_header. 94 It is supposed, that dev->hard_header is simplistic and does 95 not make callbacks to neighbour tables. 96 97 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting 98 list of neighbour tables. This list is used only in process context, 99 */ 100 101 static DEFINE_RWLOCK(neigh_tbl_lock); 102 103 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb) 104 { 105 kfree_skb(skb); 106 return -ENETDOWN; 107 } 108 109 static void neigh_cleanup_and_release(struct neighbour *neigh) 110 { 111 if (neigh->parms->neigh_cleanup) 112 neigh->parms->neigh_cleanup(neigh); 113 114 __neigh_notify(neigh, RTM_DELNEIGH, 0); 115 neigh_release(neigh); 116 } 117 118 /* 119 * It is random distribution in the interval (1/2)*base...(3/2)*base. 120 * It corresponds to default IPv6 settings and is not overridable, 121 * because it is really reasonable choice. 122 */ 123 124 unsigned long neigh_rand_reach_time(unsigned long base) 125 { 126 return base ? (net_random() % base) + (base >> 1) : 0; 127 } 128 EXPORT_SYMBOL(neigh_rand_reach_time); 129 130 131 static int neigh_forced_gc(struct neigh_table *tbl) 132 { 133 int shrunk = 0; 134 int i; 135 struct neigh_hash_table *nht; 136 137 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs); 138 139 write_lock_bh(&tbl->lock); 140 nht = rcu_dereference_protected(tbl->nht, 141 lockdep_is_held(&tbl->lock)); 142 for (i = 0; i < (1 << nht->hash_shift); i++) { 143 struct neighbour *n; 144 struct neighbour __rcu **np; 145 146 np = &nht->hash_buckets[i]; 147 while ((n = rcu_dereference_protected(*np, 148 lockdep_is_held(&tbl->lock))) != NULL) { 149 /* Neighbour record may be discarded if: 150 * - nobody refers to it. 151 * - it is not permanent 152 */ 153 write_lock(&n->lock); 154 if (atomic_read(&n->refcnt) == 1 && 155 !(n->nud_state & NUD_PERMANENT)) { 156 rcu_assign_pointer(*np, 157 rcu_dereference_protected(n->next, 158 lockdep_is_held(&tbl->lock))); 159 n->dead = 1; 160 shrunk = 1; 161 write_unlock(&n->lock); 162 neigh_cleanup_and_release(n); 163 continue; 164 } 165 write_unlock(&n->lock); 166 np = &n->next; 167 } 168 } 169 170 tbl->last_flush = jiffies; 171 172 write_unlock_bh(&tbl->lock); 173 174 return shrunk; 175 } 176 177 static void neigh_add_timer(struct neighbour *n, unsigned long when) 178 { 179 neigh_hold(n); 180 if (unlikely(mod_timer(&n->timer, when))) { 181 printk("NEIGH: BUG, double timer add, state is %x\n", 182 n->nud_state); 183 dump_stack(); 184 } 185 } 186 187 static int neigh_del_timer(struct neighbour *n) 188 { 189 if ((n->nud_state & NUD_IN_TIMER) && 190 del_timer(&n->timer)) { 191 neigh_release(n); 192 return 1; 193 } 194 return 0; 195 } 196 197 static void pneigh_queue_purge(struct sk_buff_head *list) 198 { 199 struct sk_buff *skb; 200 201 while ((skb = skb_dequeue(list)) != NULL) { 202 dev_put(skb->dev); 203 kfree_skb(skb); 204 } 205 } 206 207 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev) 208 { 209 int i; 210 struct neigh_hash_table *nht; 211 212 nht = rcu_dereference_protected(tbl->nht, 213 lockdep_is_held(&tbl->lock)); 214 215 for (i = 0; i < (1 << nht->hash_shift); i++) { 216 struct neighbour *n; 217 struct neighbour __rcu **np = &nht->hash_buckets[i]; 218 219 while ((n = rcu_dereference_protected(*np, 220 lockdep_is_held(&tbl->lock))) != NULL) { 221 if (dev && n->dev != dev) { 222 np = &n->next; 223 continue; 224 } 225 rcu_assign_pointer(*np, 226 rcu_dereference_protected(n->next, 227 lockdep_is_held(&tbl->lock))); 228 write_lock(&n->lock); 229 neigh_del_timer(n); 230 n->dead = 1; 231 232 if (atomic_read(&n->refcnt) != 1) { 233 /* The most unpleasant situation. 234 We must destroy neighbour entry, 235 but someone still uses it. 236 237 The destroy will be delayed until 238 the last user releases us, but 239 we must kill timers etc. and move 240 it to safe state. 241 */ 242 skb_queue_purge(&n->arp_queue); 243 n->arp_queue_len_bytes = 0; 244 n->output = neigh_blackhole; 245 if (n->nud_state & NUD_VALID) 246 n->nud_state = NUD_NOARP; 247 else 248 n->nud_state = NUD_NONE; 249 NEIGH_PRINTK2("neigh %p is stray.\n", n); 250 } 251 write_unlock(&n->lock); 252 neigh_cleanup_and_release(n); 253 } 254 } 255 } 256 257 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev) 258 { 259 write_lock_bh(&tbl->lock); 260 neigh_flush_dev(tbl, dev); 261 write_unlock_bh(&tbl->lock); 262 } 263 EXPORT_SYMBOL(neigh_changeaddr); 264 265 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 266 { 267 write_lock_bh(&tbl->lock); 268 neigh_flush_dev(tbl, dev); 269 pneigh_ifdown(tbl, dev); 270 write_unlock_bh(&tbl->lock); 271 272 del_timer_sync(&tbl->proxy_timer); 273 pneigh_queue_purge(&tbl->proxy_queue); 274 return 0; 275 } 276 EXPORT_SYMBOL(neigh_ifdown); 277 278 static struct neighbour *neigh_alloc(struct neigh_table *tbl, struct net_device *dev) 279 { 280 struct neighbour *n = NULL; 281 unsigned long now = jiffies; 282 int entries; 283 284 entries = atomic_inc_return(&tbl->entries) - 1; 285 if (entries >= tbl->gc_thresh3 || 286 (entries >= tbl->gc_thresh2 && 287 time_after(now, tbl->last_flush + 5 * HZ))) { 288 if (!neigh_forced_gc(tbl) && 289 entries >= tbl->gc_thresh3) 290 goto out_entries; 291 } 292 293 if (tbl->entry_size) 294 n = kzalloc(tbl->entry_size, GFP_ATOMIC); 295 else { 296 int sz = sizeof(*n) + tbl->key_len; 297 298 sz = ALIGN(sz, NEIGH_PRIV_ALIGN); 299 sz += dev->neigh_priv_len; 300 n = kzalloc(sz, GFP_ATOMIC); 301 } 302 if (!n) 303 goto out_entries; 304 305 skb_queue_head_init(&n->arp_queue); 306 rwlock_init(&n->lock); 307 seqlock_init(&n->ha_lock); 308 n->updated = n->used = now; 309 n->nud_state = NUD_NONE; 310 n->output = neigh_blackhole; 311 seqlock_init(&n->hh.hh_lock); 312 n->parms = neigh_parms_clone(&tbl->parms); 313 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n); 314 315 NEIGH_CACHE_STAT_INC(tbl, allocs); 316 n->tbl = tbl; 317 atomic_set(&n->refcnt, 1); 318 n->dead = 1; 319 out: 320 return n; 321 322 out_entries: 323 atomic_dec(&tbl->entries); 324 goto out; 325 } 326 327 static void neigh_get_hash_rnd(u32 *x) 328 { 329 get_random_bytes(x, sizeof(*x)); 330 *x |= 1; 331 } 332 333 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift) 334 { 335 size_t size = (1 << shift) * sizeof(struct neighbour *); 336 struct neigh_hash_table *ret; 337 struct neighbour __rcu **buckets; 338 int i; 339 340 ret = kmalloc(sizeof(*ret), GFP_ATOMIC); 341 if (!ret) 342 return NULL; 343 if (size <= PAGE_SIZE) 344 buckets = kzalloc(size, GFP_ATOMIC); 345 else 346 buckets = (struct neighbour __rcu **) 347 __get_free_pages(GFP_ATOMIC | __GFP_ZERO, 348 get_order(size)); 349 if (!buckets) { 350 kfree(ret); 351 return NULL; 352 } 353 ret->hash_buckets = buckets; 354 ret->hash_shift = shift; 355 for (i = 0; i < NEIGH_NUM_HASH_RND; i++) 356 neigh_get_hash_rnd(&ret->hash_rnd[i]); 357 return ret; 358 } 359 360 static void neigh_hash_free_rcu(struct rcu_head *head) 361 { 362 struct neigh_hash_table *nht = container_of(head, 363 struct neigh_hash_table, 364 rcu); 365 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *); 366 struct neighbour __rcu **buckets = nht->hash_buckets; 367 368 if (size <= PAGE_SIZE) 369 kfree(buckets); 370 else 371 free_pages((unsigned long)buckets, get_order(size)); 372 kfree(nht); 373 } 374 375 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl, 376 unsigned long new_shift) 377 { 378 unsigned int i, hash; 379 struct neigh_hash_table *new_nht, *old_nht; 380 381 NEIGH_CACHE_STAT_INC(tbl, hash_grows); 382 383 old_nht = rcu_dereference_protected(tbl->nht, 384 lockdep_is_held(&tbl->lock)); 385 new_nht = neigh_hash_alloc(new_shift); 386 if (!new_nht) 387 return old_nht; 388 389 for (i = 0; i < (1 << old_nht->hash_shift); i++) { 390 struct neighbour *n, *next; 391 392 for (n = rcu_dereference_protected(old_nht->hash_buckets[i], 393 lockdep_is_held(&tbl->lock)); 394 n != NULL; 395 n = next) { 396 hash = tbl->hash(n->primary_key, n->dev, 397 new_nht->hash_rnd); 398 399 hash >>= (32 - new_nht->hash_shift); 400 next = rcu_dereference_protected(n->next, 401 lockdep_is_held(&tbl->lock)); 402 403 rcu_assign_pointer(n->next, 404 rcu_dereference_protected( 405 new_nht->hash_buckets[hash], 406 lockdep_is_held(&tbl->lock))); 407 rcu_assign_pointer(new_nht->hash_buckets[hash], n); 408 } 409 } 410 411 rcu_assign_pointer(tbl->nht, new_nht); 412 call_rcu(&old_nht->rcu, neigh_hash_free_rcu); 413 return new_nht; 414 } 415 416 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey, 417 struct net_device *dev) 418 { 419 struct neighbour *n; 420 int key_len = tbl->key_len; 421 u32 hash_val; 422 struct neigh_hash_table *nht; 423 424 NEIGH_CACHE_STAT_INC(tbl, lookups); 425 426 rcu_read_lock_bh(); 427 nht = rcu_dereference_bh(tbl->nht); 428 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 429 430 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 431 n != NULL; 432 n = rcu_dereference_bh(n->next)) { 433 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) { 434 if (!atomic_inc_not_zero(&n->refcnt)) 435 n = NULL; 436 NEIGH_CACHE_STAT_INC(tbl, hits); 437 break; 438 } 439 } 440 441 rcu_read_unlock_bh(); 442 return n; 443 } 444 EXPORT_SYMBOL(neigh_lookup); 445 446 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net, 447 const void *pkey) 448 { 449 struct neighbour *n; 450 int key_len = tbl->key_len; 451 u32 hash_val; 452 struct neigh_hash_table *nht; 453 454 NEIGH_CACHE_STAT_INC(tbl, lookups); 455 456 rcu_read_lock_bh(); 457 nht = rcu_dereference_bh(tbl->nht); 458 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift); 459 460 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]); 461 n != NULL; 462 n = rcu_dereference_bh(n->next)) { 463 if (!memcmp(n->primary_key, pkey, key_len) && 464 net_eq(dev_net(n->dev), net)) { 465 if (!atomic_inc_not_zero(&n->refcnt)) 466 n = NULL; 467 NEIGH_CACHE_STAT_INC(tbl, hits); 468 break; 469 } 470 } 471 472 rcu_read_unlock_bh(); 473 return n; 474 } 475 EXPORT_SYMBOL(neigh_lookup_nodev); 476 477 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey, 478 struct net_device *dev) 479 { 480 u32 hash_val; 481 int key_len = tbl->key_len; 482 int error; 483 struct neighbour *n1, *rc, *n = neigh_alloc(tbl, dev); 484 struct neigh_hash_table *nht; 485 486 if (!n) { 487 rc = ERR_PTR(-ENOBUFS); 488 goto out; 489 } 490 491 memcpy(n->primary_key, pkey, key_len); 492 n->dev = dev; 493 dev_hold(dev); 494 495 /* Protocol specific setup. */ 496 if (tbl->constructor && (error = tbl->constructor(n)) < 0) { 497 rc = ERR_PTR(error); 498 goto out_neigh_release; 499 } 500 501 if (dev->netdev_ops->ndo_neigh_construct) { 502 error = dev->netdev_ops->ndo_neigh_construct(n); 503 if (error < 0) { 504 rc = ERR_PTR(error); 505 goto out_neigh_release; 506 } 507 } 508 509 /* Device specific setup. */ 510 if (n->parms->neigh_setup && 511 (error = n->parms->neigh_setup(n)) < 0) { 512 rc = ERR_PTR(error); 513 goto out_neigh_release; 514 } 515 516 n->confirmed = jiffies - (n->parms->base_reachable_time << 1); 517 518 write_lock_bh(&tbl->lock); 519 nht = rcu_dereference_protected(tbl->nht, 520 lockdep_is_held(&tbl->lock)); 521 522 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift)) 523 nht = neigh_hash_grow(tbl, nht->hash_shift + 1); 524 525 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift); 526 527 if (n->parms->dead) { 528 rc = ERR_PTR(-EINVAL); 529 goto out_tbl_unlock; 530 } 531 532 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val], 533 lockdep_is_held(&tbl->lock)); 534 n1 != NULL; 535 n1 = rcu_dereference_protected(n1->next, 536 lockdep_is_held(&tbl->lock))) { 537 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) { 538 neigh_hold(n1); 539 rc = n1; 540 goto out_tbl_unlock; 541 } 542 } 543 544 n->dead = 0; 545 neigh_hold(n); 546 rcu_assign_pointer(n->next, 547 rcu_dereference_protected(nht->hash_buckets[hash_val], 548 lockdep_is_held(&tbl->lock))); 549 rcu_assign_pointer(nht->hash_buckets[hash_val], n); 550 write_unlock_bh(&tbl->lock); 551 NEIGH_PRINTK2("neigh %p is created.\n", n); 552 rc = n; 553 out: 554 return rc; 555 out_tbl_unlock: 556 write_unlock_bh(&tbl->lock); 557 out_neigh_release: 558 neigh_release(n); 559 goto out; 560 } 561 EXPORT_SYMBOL(neigh_create); 562 563 static u32 pneigh_hash(const void *pkey, int key_len) 564 { 565 u32 hash_val = *(u32 *)(pkey + key_len - 4); 566 hash_val ^= (hash_val >> 16); 567 hash_val ^= hash_val >> 8; 568 hash_val ^= hash_val >> 4; 569 hash_val &= PNEIGH_HASHMASK; 570 return hash_val; 571 } 572 573 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n, 574 struct net *net, 575 const void *pkey, 576 int key_len, 577 struct net_device *dev) 578 { 579 while (n) { 580 if (!memcmp(n->key, pkey, key_len) && 581 net_eq(pneigh_net(n), net) && 582 (n->dev == dev || !n->dev)) 583 return n; 584 n = n->next; 585 } 586 return NULL; 587 } 588 589 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl, 590 struct net *net, const void *pkey, struct net_device *dev) 591 { 592 int key_len = tbl->key_len; 593 u32 hash_val = pneigh_hash(pkey, key_len); 594 595 return __pneigh_lookup_1(tbl->phash_buckets[hash_val], 596 net, pkey, key_len, dev); 597 } 598 EXPORT_SYMBOL_GPL(__pneigh_lookup); 599 600 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl, 601 struct net *net, const void *pkey, 602 struct net_device *dev, int creat) 603 { 604 struct pneigh_entry *n; 605 int key_len = tbl->key_len; 606 u32 hash_val = pneigh_hash(pkey, key_len); 607 608 read_lock_bh(&tbl->lock); 609 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val], 610 net, pkey, key_len, dev); 611 read_unlock_bh(&tbl->lock); 612 613 if (n || !creat) 614 goto out; 615 616 ASSERT_RTNL(); 617 618 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL); 619 if (!n) 620 goto out; 621 622 write_pnet(&n->net, hold_net(net)); 623 memcpy(n->key, pkey, key_len); 624 n->dev = dev; 625 if (dev) 626 dev_hold(dev); 627 628 if (tbl->pconstructor && tbl->pconstructor(n)) { 629 if (dev) 630 dev_put(dev); 631 release_net(net); 632 kfree(n); 633 n = NULL; 634 goto out; 635 } 636 637 write_lock_bh(&tbl->lock); 638 n->next = tbl->phash_buckets[hash_val]; 639 tbl->phash_buckets[hash_val] = n; 640 write_unlock_bh(&tbl->lock); 641 out: 642 return n; 643 } 644 EXPORT_SYMBOL(pneigh_lookup); 645 646 647 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey, 648 struct net_device *dev) 649 { 650 struct pneigh_entry *n, **np; 651 int key_len = tbl->key_len; 652 u32 hash_val = pneigh_hash(pkey, key_len); 653 654 write_lock_bh(&tbl->lock); 655 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL; 656 np = &n->next) { 657 if (!memcmp(n->key, pkey, key_len) && n->dev == dev && 658 net_eq(pneigh_net(n), net)) { 659 *np = n->next; 660 write_unlock_bh(&tbl->lock); 661 if (tbl->pdestructor) 662 tbl->pdestructor(n); 663 if (n->dev) 664 dev_put(n->dev); 665 release_net(pneigh_net(n)); 666 kfree(n); 667 return 0; 668 } 669 } 670 write_unlock_bh(&tbl->lock); 671 return -ENOENT; 672 } 673 674 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev) 675 { 676 struct pneigh_entry *n, **np; 677 u32 h; 678 679 for (h = 0; h <= PNEIGH_HASHMASK; h++) { 680 np = &tbl->phash_buckets[h]; 681 while ((n = *np) != NULL) { 682 if (!dev || n->dev == dev) { 683 *np = n->next; 684 if (tbl->pdestructor) 685 tbl->pdestructor(n); 686 if (n->dev) 687 dev_put(n->dev); 688 release_net(pneigh_net(n)); 689 kfree(n); 690 continue; 691 } 692 np = &n->next; 693 } 694 } 695 return -ENOENT; 696 } 697 698 static void neigh_parms_destroy(struct neigh_parms *parms); 699 700 static inline void neigh_parms_put(struct neigh_parms *parms) 701 { 702 if (atomic_dec_and_test(&parms->refcnt)) 703 neigh_parms_destroy(parms); 704 } 705 706 /* 707 * neighbour must already be out of the table; 708 * 709 */ 710 void neigh_destroy(struct neighbour *neigh) 711 { 712 struct net_device *dev = neigh->dev; 713 714 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys); 715 716 if (!neigh->dead) { 717 pr_warn("Destroying alive neighbour %p\n", neigh); 718 dump_stack(); 719 return; 720 } 721 722 if (neigh_del_timer(neigh)) 723 pr_warn("Impossible event\n"); 724 725 skb_queue_purge(&neigh->arp_queue); 726 neigh->arp_queue_len_bytes = 0; 727 728 if (dev->netdev_ops->ndo_neigh_destroy) 729 dev->netdev_ops->ndo_neigh_destroy(neigh); 730 731 dev_put(dev); 732 neigh_parms_put(neigh->parms); 733 734 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh); 735 736 atomic_dec(&neigh->tbl->entries); 737 kfree_rcu(neigh, rcu); 738 } 739 EXPORT_SYMBOL(neigh_destroy); 740 741 /* Neighbour state is suspicious; 742 disable fast path. 743 744 Called with write_locked neigh. 745 */ 746 static void neigh_suspect(struct neighbour *neigh) 747 { 748 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 749 750 neigh->output = neigh->ops->output; 751 } 752 753 /* Neighbour state is OK; 754 enable fast path. 755 756 Called with write_locked neigh. 757 */ 758 static void neigh_connect(struct neighbour *neigh) 759 { 760 NEIGH_PRINTK2("neigh %p is connected.\n", neigh); 761 762 neigh->output = neigh->ops->connected_output; 763 } 764 765 static void neigh_periodic_work(struct work_struct *work) 766 { 767 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work); 768 struct neighbour *n; 769 struct neighbour __rcu **np; 770 unsigned int i; 771 struct neigh_hash_table *nht; 772 773 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs); 774 775 write_lock_bh(&tbl->lock); 776 nht = rcu_dereference_protected(tbl->nht, 777 lockdep_is_held(&tbl->lock)); 778 779 /* 780 * periodically recompute ReachableTime from random function 781 */ 782 783 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) { 784 struct neigh_parms *p; 785 tbl->last_rand = jiffies; 786 for (p = &tbl->parms; p; p = p->next) 787 p->reachable_time = 788 neigh_rand_reach_time(p->base_reachable_time); 789 } 790 791 for (i = 0 ; i < (1 << nht->hash_shift); i++) { 792 np = &nht->hash_buckets[i]; 793 794 while ((n = rcu_dereference_protected(*np, 795 lockdep_is_held(&tbl->lock))) != NULL) { 796 unsigned int state; 797 798 write_lock(&n->lock); 799 800 state = n->nud_state; 801 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) { 802 write_unlock(&n->lock); 803 goto next_elt; 804 } 805 806 if (time_before(n->used, n->confirmed)) 807 n->used = n->confirmed; 808 809 if (atomic_read(&n->refcnt) == 1 && 810 (state == NUD_FAILED || 811 time_after(jiffies, n->used + n->parms->gc_staletime))) { 812 *np = n->next; 813 n->dead = 1; 814 write_unlock(&n->lock); 815 neigh_cleanup_and_release(n); 816 continue; 817 } 818 write_unlock(&n->lock); 819 820 next_elt: 821 np = &n->next; 822 } 823 /* 824 * It's fine to release lock here, even if hash table 825 * grows while we are preempted. 826 */ 827 write_unlock_bh(&tbl->lock); 828 cond_resched(); 829 write_lock_bh(&tbl->lock); 830 nht = rcu_dereference_protected(tbl->nht, 831 lockdep_is_held(&tbl->lock)); 832 } 833 /* Cycle through all hash buckets every base_reachable_time/2 ticks. 834 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2 835 * base_reachable_time. 836 */ 837 schedule_delayed_work(&tbl->gc_work, 838 tbl->parms.base_reachable_time >> 1); 839 write_unlock_bh(&tbl->lock); 840 } 841 842 static __inline__ int neigh_max_probes(struct neighbour *n) 843 { 844 struct neigh_parms *p = n->parms; 845 return (n->nud_state & NUD_PROBE) ? 846 p->ucast_probes : 847 p->ucast_probes + p->app_probes + p->mcast_probes; 848 } 849 850 static void neigh_invalidate(struct neighbour *neigh) 851 __releases(neigh->lock) 852 __acquires(neigh->lock) 853 { 854 struct sk_buff *skb; 855 856 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed); 857 NEIGH_PRINTK2("neigh %p is failed.\n", neigh); 858 neigh->updated = jiffies; 859 860 /* It is very thin place. report_unreachable is very complicated 861 routine. Particularly, it can hit the same neighbour entry! 862 863 So that, we try to be accurate and avoid dead loop. --ANK 864 */ 865 while (neigh->nud_state == NUD_FAILED && 866 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 867 write_unlock(&neigh->lock); 868 neigh->ops->error_report(neigh, skb); 869 write_lock(&neigh->lock); 870 } 871 skb_queue_purge(&neigh->arp_queue); 872 neigh->arp_queue_len_bytes = 0; 873 } 874 875 static void neigh_probe(struct neighbour *neigh) 876 __releases(neigh->lock) 877 { 878 struct sk_buff *skb = skb_peek(&neigh->arp_queue); 879 /* keep skb alive even if arp_queue overflows */ 880 if (skb) 881 skb = skb_copy(skb, GFP_ATOMIC); 882 write_unlock(&neigh->lock); 883 neigh->ops->solicit(neigh, skb); 884 atomic_inc(&neigh->probes); 885 kfree_skb(skb); 886 } 887 888 /* Called when a timer expires for a neighbour entry. */ 889 890 static void neigh_timer_handler(unsigned long arg) 891 { 892 unsigned long now, next; 893 struct neighbour *neigh = (struct neighbour *)arg; 894 unsigned int state; 895 int notify = 0; 896 897 write_lock(&neigh->lock); 898 899 state = neigh->nud_state; 900 now = jiffies; 901 next = now + HZ; 902 903 if (!(state & NUD_IN_TIMER)) 904 goto out; 905 906 if (state & NUD_REACHABLE) { 907 if (time_before_eq(now, 908 neigh->confirmed + neigh->parms->reachable_time)) { 909 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh); 910 next = neigh->confirmed + neigh->parms->reachable_time; 911 } else if (time_before_eq(now, 912 neigh->used + neigh->parms->delay_probe_time)) { 913 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 914 neigh->nud_state = NUD_DELAY; 915 neigh->updated = jiffies; 916 neigh_suspect(neigh); 917 next = now + neigh->parms->delay_probe_time; 918 } else { 919 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh); 920 neigh->nud_state = NUD_STALE; 921 neigh->updated = jiffies; 922 neigh_suspect(neigh); 923 notify = 1; 924 } 925 } else if (state & NUD_DELAY) { 926 if (time_before_eq(now, 927 neigh->confirmed + neigh->parms->delay_probe_time)) { 928 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh); 929 neigh->nud_state = NUD_REACHABLE; 930 neigh->updated = jiffies; 931 neigh_connect(neigh); 932 notify = 1; 933 next = neigh->confirmed + neigh->parms->reachable_time; 934 } else { 935 NEIGH_PRINTK2("neigh %p is probed.\n", neigh); 936 neigh->nud_state = NUD_PROBE; 937 neigh->updated = jiffies; 938 atomic_set(&neigh->probes, 0); 939 next = now + neigh->parms->retrans_time; 940 } 941 } else { 942 /* NUD_PROBE|NUD_INCOMPLETE */ 943 next = now + neigh->parms->retrans_time; 944 } 945 946 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) && 947 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) { 948 neigh->nud_state = NUD_FAILED; 949 notify = 1; 950 neigh_invalidate(neigh); 951 } 952 953 if (neigh->nud_state & NUD_IN_TIMER) { 954 if (time_before(next, jiffies + HZ/2)) 955 next = jiffies + HZ/2; 956 if (!mod_timer(&neigh->timer, next)) 957 neigh_hold(neigh); 958 } 959 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) { 960 neigh_probe(neigh); 961 } else { 962 out: 963 write_unlock(&neigh->lock); 964 } 965 966 if (notify) 967 neigh_update_notify(neigh); 968 969 neigh_release(neigh); 970 } 971 972 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb) 973 { 974 int rc; 975 bool immediate_probe = false; 976 977 write_lock_bh(&neigh->lock); 978 979 rc = 0; 980 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE)) 981 goto out_unlock_bh; 982 983 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) { 984 if (neigh->parms->mcast_probes + neigh->parms->app_probes) { 985 unsigned long next, now = jiffies; 986 987 atomic_set(&neigh->probes, neigh->parms->ucast_probes); 988 neigh->nud_state = NUD_INCOMPLETE; 989 neigh->updated = now; 990 next = now + max(neigh->parms->retrans_time, HZ/2); 991 neigh_add_timer(neigh, next); 992 immediate_probe = true; 993 } else { 994 neigh->nud_state = NUD_FAILED; 995 neigh->updated = jiffies; 996 write_unlock_bh(&neigh->lock); 997 998 kfree_skb(skb); 999 return 1; 1000 } 1001 } else if (neigh->nud_state & NUD_STALE) { 1002 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh); 1003 neigh->nud_state = NUD_DELAY; 1004 neigh->updated = jiffies; 1005 neigh_add_timer(neigh, 1006 jiffies + neigh->parms->delay_probe_time); 1007 } 1008 1009 if (neigh->nud_state == NUD_INCOMPLETE) { 1010 if (skb) { 1011 while (neigh->arp_queue_len_bytes + skb->truesize > 1012 neigh->parms->queue_len_bytes) { 1013 struct sk_buff *buff; 1014 1015 buff = __skb_dequeue(&neigh->arp_queue); 1016 if (!buff) 1017 break; 1018 neigh->arp_queue_len_bytes -= buff->truesize; 1019 kfree_skb(buff); 1020 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards); 1021 } 1022 skb_dst_force(skb); 1023 __skb_queue_tail(&neigh->arp_queue, skb); 1024 neigh->arp_queue_len_bytes += skb->truesize; 1025 } 1026 rc = 1; 1027 } 1028 out_unlock_bh: 1029 if (immediate_probe) 1030 neigh_probe(neigh); 1031 else 1032 write_unlock(&neigh->lock); 1033 local_bh_enable(); 1034 return rc; 1035 } 1036 EXPORT_SYMBOL(__neigh_event_send); 1037 1038 static void neigh_update_hhs(struct neighbour *neigh) 1039 { 1040 struct hh_cache *hh; 1041 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *) 1042 = NULL; 1043 1044 if (neigh->dev->header_ops) 1045 update = neigh->dev->header_ops->cache_update; 1046 1047 if (update) { 1048 hh = &neigh->hh; 1049 if (hh->hh_len) { 1050 write_seqlock_bh(&hh->hh_lock); 1051 update(hh, neigh->dev, neigh->ha); 1052 write_sequnlock_bh(&hh->hh_lock); 1053 } 1054 } 1055 } 1056 1057 1058 1059 /* Generic update routine. 1060 -- lladdr is new lladdr or NULL, if it is not supplied. 1061 -- new is new state. 1062 -- flags 1063 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr, 1064 if it is different. 1065 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected" 1066 lladdr instead of overriding it 1067 if it is different. 1068 It also allows to retain current state 1069 if lladdr is unchanged. 1070 NEIGH_UPDATE_F_ADMIN means that the change is administrative. 1071 1072 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing 1073 NTF_ROUTER flag. 1074 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as 1075 a router. 1076 1077 Caller MUST hold reference count on the entry. 1078 */ 1079 1080 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new, 1081 u32 flags) 1082 { 1083 u8 old; 1084 int err; 1085 int notify = 0; 1086 struct net_device *dev; 1087 int update_isrouter = 0; 1088 1089 write_lock_bh(&neigh->lock); 1090 1091 dev = neigh->dev; 1092 old = neigh->nud_state; 1093 err = -EPERM; 1094 1095 if (!(flags & NEIGH_UPDATE_F_ADMIN) && 1096 (old & (NUD_NOARP | NUD_PERMANENT))) 1097 goto out; 1098 1099 if (!(new & NUD_VALID)) { 1100 neigh_del_timer(neigh); 1101 if (old & NUD_CONNECTED) 1102 neigh_suspect(neigh); 1103 neigh->nud_state = new; 1104 err = 0; 1105 notify = old & NUD_VALID; 1106 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) && 1107 (new & NUD_FAILED)) { 1108 neigh_invalidate(neigh); 1109 notify = 1; 1110 } 1111 goto out; 1112 } 1113 1114 /* Compare new lladdr with cached one */ 1115 if (!dev->addr_len) { 1116 /* First case: device needs no address. */ 1117 lladdr = neigh->ha; 1118 } else if (lladdr) { 1119 /* The second case: if something is already cached 1120 and a new address is proposed: 1121 - compare new & old 1122 - if they are different, check override flag 1123 */ 1124 if ((old & NUD_VALID) && 1125 !memcmp(lladdr, neigh->ha, dev->addr_len)) 1126 lladdr = neigh->ha; 1127 } else { 1128 /* No address is supplied; if we know something, 1129 use it, otherwise discard the request. 1130 */ 1131 err = -EINVAL; 1132 if (!(old & NUD_VALID)) 1133 goto out; 1134 lladdr = neigh->ha; 1135 } 1136 1137 if (new & NUD_CONNECTED) 1138 neigh->confirmed = jiffies; 1139 neigh->updated = jiffies; 1140 1141 /* If entry was valid and address is not changed, 1142 do not change entry state, if new one is STALE. 1143 */ 1144 err = 0; 1145 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER; 1146 if (old & NUD_VALID) { 1147 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) { 1148 update_isrouter = 0; 1149 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) && 1150 (old & NUD_CONNECTED)) { 1151 lladdr = neigh->ha; 1152 new = NUD_STALE; 1153 } else 1154 goto out; 1155 } else { 1156 if (lladdr == neigh->ha && new == NUD_STALE && 1157 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) || 1158 (old & NUD_CONNECTED)) 1159 ) 1160 new = old; 1161 } 1162 } 1163 1164 if (new != old) { 1165 neigh_del_timer(neigh); 1166 if (new & NUD_IN_TIMER) 1167 neigh_add_timer(neigh, (jiffies + 1168 ((new & NUD_REACHABLE) ? 1169 neigh->parms->reachable_time : 1170 0))); 1171 neigh->nud_state = new; 1172 } 1173 1174 if (lladdr != neigh->ha) { 1175 write_seqlock(&neigh->ha_lock); 1176 memcpy(&neigh->ha, lladdr, dev->addr_len); 1177 write_sequnlock(&neigh->ha_lock); 1178 neigh_update_hhs(neigh); 1179 if (!(new & NUD_CONNECTED)) 1180 neigh->confirmed = jiffies - 1181 (neigh->parms->base_reachable_time << 1); 1182 notify = 1; 1183 } 1184 if (new == old) 1185 goto out; 1186 if (new & NUD_CONNECTED) 1187 neigh_connect(neigh); 1188 else 1189 neigh_suspect(neigh); 1190 if (!(old & NUD_VALID)) { 1191 struct sk_buff *skb; 1192 1193 /* Again: avoid dead loop if something went wrong */ 1194 1195 while (neigh->nud_state & NUD_VALID && 1196 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) { 1197 struct dst_entry *dst = skb_dst(skb); 1198 struct neighbour *n2, *n1 = neigh; 1199 write_unlock_bh(&neigh->lock); 1200 1201 rcu_read_lock(); 1202 /* On shaper/eql skb->dst->neighbour != neigh :( */ 1203 if (dst && (n2 = dst_get_neighbour_noref(dst)) != NULL) 1204 n1 = n2; 1205 n1->output(n1, skb); 1206 rcu_read_unlock(); 1207 1208 write_lock_bh(&neigh->lock); 1209 } 1210 skb_queue_purge(&neigh->arp_queue); 1211 neigh->arp_queue_len_bytes = 0; 1212 } 1213 out: 1214 if (update_isrouter) { 1215 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ? 1216 (neigh->flags | NTF_ROUTER) : 1217 (neigh->flags & ~NTF_ROUTER); 1218 } 1219 write_unlock_bh(&neigh->lock); 1220 1221 if (notify) 1222 neigh_update_notify(neigh); 1223 1224 return err; 1225 } 1226 EXPORT_SYMBOL(neigh_update); 1227 1228 struct neighbour *neigh_event_ns(struct neigh_table *tbl, 1229 u8 *lladdr, void *saddr, 1230 struct net_device *dev) 1231 { 1232 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev, 1233 lladdr || !dev->addr_len); 1234 if (neigh) 1235 neigh_update(neigh, lladdr, NUD_STALE, 1236 NEIGH_UPDATE_F_OVERRIDE); 1237 return neigh; 1238 } 1239 EXPORT_SYMBOL(neigh_event_ns); 1240 1241 /* called with read_lock_bh(&n->lock); */ 1242 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst) 1243 { 1244 struct net_device *dev = dst->dev; 1245 __be16 prot = dst->ops->protocol; 1246 struct hh_cache *hh = &n->hh; 1247 1248 write_lock_bh(&n->lock); 1249 1250 /* Only one thread can come in here and initialize the 1251 * hh_cache entry. 1252 */ 1253 if (!hh->hh_len) 1254 dev->header_ops->cache(n, hh, prot); 1255 1256 write_unlock_bh(&n->lock); 1257 } 1258 1259 /* This function can be used in contexts, where only old dev_queue_xmit 1260 * worked, f.e. if you want to override normal output path (eql, shaper), 1261 * but resolution is not made yet. 1262 */ 1263 1264 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb) 1265 { 1266 struct net_device *dev = skb->dev; 1267 1268 __skb_pull(skb, skb_network_offset(skb)); 1269 1270 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL, 1271 skb->len) < 0 && 1272 dev->header_ops->rebuild(skb)) 1273 return 0; 1274 1275 return dev_queue_xmit(skb); 1276 } 1277 EXPORT_SYMBOL(neigh_compat_output); 1278 1279 /* Slow and careful. */ 1280 1281 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb) 1282 { 1283 struct dst_entry *dst = skb_dst(skb); 1284 int rc = 0; 1285 1286 if (!dst) 1287 goto discard; 1288 1289 __skb_pull(skb, skb_network_offset(skb)); 1290 1291 if (!neigh_event_send(neigh, skb)) { 1292 int err; 1293 struct net_device *dev = neigh->dev; 1294 unsigned int seq; 1295 1296 if (dev->header_ops->cache && !neigh->hh.hh_len) 1297 neigh_hh_init(neigh, dst); 1298 1299 do { 1300 seq = read_seqbegin(&neigh->ha_lock); 1301 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1302 neigh->ha, NULL, skb->len); 1303 } while (read_seqretry(&neigh->ha_lock, seq)); 1304 1305 if (err >= 0) 1306 rc = dev_queue_xmit(skb); 1307 else 1308 goto out_kfree_skb; 1309 } 1310 out: 1311 return rc; 1312 discard: 1313 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n", 1314 dst, neigh); 1315 out_kfree_skb: 1316 rc = -EINVAL; 1317 kfree_skb(skb); 1318 goto out; 1319 } 1320 EXPORT_SYMBOL(neigh_resolve_output); 1321 1322 /* As fast as possible without hh cache */ 1323 1324 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb) 1325 { 1326 struct net_device *dev = neigh->dev; 1327 unsigned int seq; 1328 int err; 1329 1330 __skb_pull(skb, skb_network_offset(skb)); 1331 1332 do { 1333 seq = read_seqbegin(&neigh->ha_lock); 1334 err = dev_hard_header(skb, dev, ntohs(skb->protocol), 1335 neigh->ha, NULL, skb->len); 1336 } while (read_seqretry(&neigh->ha_lock, seq)); 1337 1338 if (err >= 0) 1339 err = dev_queue_xmit(skb); 1340 else { 1341 err = -EINVAL; 1342 kfree_skb(skb); 1343 } 1344 return err; 1345 } 1346 EXPORT_SYMBOL(neigh_connected_output); 1347 1348 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb) 1349 { 1350 return dev_queue_xmit(skb); 1351 } 1352 EXPORT_SYMBOL(neigh_direct_output); 1353 1354 static void neigh_proxy_process(unsigned long arg) 1355 { 1356 struct neigh_table *tbl = (struct neigh_table *)arg; 1357 long sched_next = 0; 1358 unsigned long now = jiffies; 1359 struct sk_buff *skb, *n; 1360 1361 spin_lock(&tbl->proxy_queue.lock); 1362 1363 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) { 1364 long tdif = NEIGH_CB(skb)->sched_next - now; 1365 1366 if (tdif <= 0) { 1367 struct net_device *dev = skb->dev; 1368 1369 __skb_unlink(skb, &tbl->proxy_queue); 1370 if (tbl->proxy_redo && netif_running(dev)) { 1371 rcu_read_lock(); 1372 tbl->proxy_redo(skb); 1373 rcu_read_unlock(); 1374 } else { 1375 kfree_skb(skb); 1376 } 1377 1378 dev_put(dev); 1379 } else if (!sched_next || tdif < sched_next) 1380 sched_next = tdif; 1381 } 1382 del_timer(&tbl->proxy_timer); 1383 if (sched_next) 1384 mod_timer(&tbl->proxy_timer, jiffies + sched_next); 1385 spin_unlock(&tbl->proxy_queue.lock); 1386 } 1387 1388 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p, 1389 struct sk_buff *skb) 1390 { 1391 unsigned long now = jiffies; 1392 unsigned long sched_next = now + (net_random() % p->proxy_delay); 1393 1394 if (tbl->proxy_queue.qlen > p->proxy_qlen) { 1395 kfree_skb(skb); 1396 return; 1397 } 1398 1399 NEIGH_CB(skb)->sched_next = sched_next; 1400 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED; 1401 1402 spin_lock(&tbl->proxy_queue.lock); 1403 if (del_timer(&tbl->proxy_timer)) { 1404 if (time_before(tbl->proxy_timer.expires, sched_next)) 1405 sched_next = tbl->proxy_timer.expires; 1406 } 1407 skb_dst_drop(skb); 1408 dev_hold(skb->dev); 1409 __skb_queue_tail(&tbl->proxy_queue, skb); 1410 mod_timer(&tbl->proxy_timer, sched_next); 1411 spin_unlock(&tbl->proxy_queue.lock); 1412 } 1413 EXPORT_SYMBOL(pneigh_enqueue); 1414 1415 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl, 1416 struct net *net, int ifindex) 1417 { 1418 struct neigh_parms *p; 1419 1420 for (p = &tbl->parms; p; p = p->next) { 1421 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) || 1422 (!p->dev && !ifindex)) 1423 return p; 1424 } 1425 1426 return NULL; 1427 } 1428 1429 struct neigh_parms *neigh_parms_alloc(struct net_device *dev, 1430 struct neigh_table *tbl) 1431 { 1432 struct neigh_parms *p, *ref; 1433 struct net *net = dev_net(dev); 1434 const struct net_device_ops *ops = dev->netdev_ops; 1435 1436 ref = lookup_neigh_parms(tbl, net, 0); 1437 if (!ref) 1438 return NULL; 1439 1440 p = kmemdup(ref, sizeof(*p), GFP_KERNEL); 1441 if (p) { 1442 p->tbl = tbl; 1443 atomic_set(&p->refcnt, 1); 1444 p->reachable_time = 1445 neigh_rand_reach_time(p->base_reachable_time); 1446 1447 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) { 1448 kfree(p); 1449 return NULL; 1450 } 1451 1452 dev_hold(dev); 1453 p->dev = dev; 1454 write_pnet(&p->net, hold_net(net)); 1455 p->sysctl_table = NULL; 1456 write_lock_bh(&tbl->lock); 1457 p->next = tbl->parms.next; 1458 tbl->parms.next = p; 1459 write_unlock_bh(&tbl->lock); 1460 } 1461 return p; 1462 } 1463 EXPORT_SYMBOL(neigh_parms_alloc); 1464 1465 static void neigh_rcu_free_parms(struct rcu_head *head) 1466 { 1467 struct neigh_parms *parms = 1468 container_of(head, struct neigh_parms, rcu_head); 1469 1470 neigh_parms_put(parms); 1471 } 1472 1473 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms) 1474 { 1475 struct neigh_parms **p; 1476 1477 if (!parms || parms == &tbl->parms) 1478 return; 1479 write_lock_bh(&tbl->lock); 1480 for (p = &tbl->parms.next; *p; p = &(*p)->next) { 1481 if (*p == parms) { 1482 *p = parms->next; 1483 parms->dead = 1; 1484 write_unlock_bh(&tbl->lock); 1485 if (parms->dev) 1486 dev_put(parms->dev); 1487 call_rcu(&parms->rcu_head, neigh_rcu_free_parms); 1488 return; 1489 } 1490 } 1491 write_unlock_bh(&tbl->lock); 1492 NEIGH_PRINTK1("neigh_parms_release: not found\n"); 1493 } 1494 EXPORT_SYMBOL(neigh_parms_release); 1495 1496 static void neigh_parms_destroy(struct neigh_parms *parms) 1497 { 1498 release_net(neigh_parms_net(parms)); 1499 kfree(parms); 1500 } 1501 1502 static struct lock_class_key neigh_table_proxy_queue_class; 1503 1504 static void neigh_table_init_no_netlink(struct neigh_table *tbl) 1505 { 1506 unsigned long now = jiffies; 1507 unsigned long phsize; 1508 1509 write_pnet(&tbl->parms.net, &init_net); 1510 atomic_set(&tbl->parms.refcnt, 1); 1511 tbl->parms.reachable_time = 1512 neigh_rand_reach_time(tbl->parms.base_reachable_time); 1513 1514 tbl->stats = alloc_percpu(struct neigh_statistics); 1515 if (!tbl->stats) 1516 panic("cannot create neighbour cache statistics"); 1517 1518 #ifdef CONFIG_PROC_FS 1519 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat, 1520 &neigh_stat_seq_fops, tbl)) 1521 panic("cannot create neighbour proc dir entry"); 1522 #endif 1523 1524 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3)); 1525 1526 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *); 1527 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL); 1528 1529 if (!tbl->nht || !tbl->phash_buckets) 1530 panic("cannot allocate neighbour cache hashes"); 1531 1532 rwlock_init(&tbl->lock); 1533 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work); 1534 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time); 1535 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl); 1536 skb_queue_head_init_class(&tbl->proxy_queue, 1537 &neigh_table_proxy_queue_class); 1538 1539 tbl->last_flush = now; 1540 tbl->last_rand = now + tbl->parms.reachable_time * 20; 1541 } 1542 1543 void neigh_table_init(struct neigh_table *tbl) 1544 { 1545 struct neigh_table *tmp; 1546 1547 neigh_table_init_no_netlink(tbl); 1548 write_lock(&neigh_tbl_lock); 1549 for (tmp = neigh_tables; tmp; tmp = tmp->next) { 1550 if (tmp->family == tbl->family) 1551 break; 1552 } 1553 tbl->next = neigh_tables; 1554 neigh_tables = tbl; 1555 write_unlock(&neigh_tbl_lock); 1556 1557 if (unlikely(tmp)) { 1558 pr_err("Registering multiple tables for family %d\n", 1559 tbl->family); 1560 dump_stack(); 1561 } 1562 } 1563 EXPORT_SYMBOL(neigh_table_init); 1564 1565 int neigh_table_clear(struct neigh_table *tbl) 1566 { 1567 struct neigh_table **tp; 1568 1569 /* It is not clean... Fix it to unload IPv6 module safely */ 1570 cancel_delayed_work_sync(&tbl->gc_work); 1571 del_timer_sync(&tbl->proxy_timer); 1572 pneigh_queue_purge(&tbl->proxy_queue); 1573 neigh_ifdown(tbl, NULL); 1574 if (atomic_read(&tbl->entries)) 1575 pr_crit("neighbour leakage\n"); 1576 write_lock(&neigh_tbl_lock); 1577 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) { 1578 if (*tp == tbl) { 1579 *tp = tbl->next; 1580 break; 1581 } 1582 } 1583 write_unlock(&neigh_tbl_lock); 1584 1585 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu, 1586 neigh_hash_free_rcu); 1587 tbl->nht = NULL; 1588 1589 kfree(tbl->phash_buckets); 1590 tbl->phash_buckets = NULL; 1591 1592 remove_proc_entry(tbl->id, init_net.proc_net_stat); 1593 1594 free_percpu(tbl->stats); 1595 tbl->stats = NULL; 1596 1597 return 0; 1598 } 1599 EXPORT_SYMBOL(neigh_table_clear); 1600 1601 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1602 { 1603 struct net *net = sock_net(skb->sk); 1604 struct ndmsg *ndm; 1605 struct nlattr *dst_attr; 1606 struct neigh_table *tbl; 1607 struct net_device *dev = NULL; 1608 int err = -EINVAL; 1609 1610 ASSERT_RTNL(); 1611 if (nlmsg_len(nlh) < sizeof(*ndm)) 1612 goto out; 1613 1614 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST); 1615 if (dst_attr == NULL) 1616 goto out; 1617 1618 ndm = nlmsg_data(nlh); 1619 if (ndm->ndm_ifindex) { 1620 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1621 if (dev == NULL) { 1622 err = -ENODEV; 1623 goto out; 1624 } 1625 } 1626 1627 read_lock(&neigh_tbl_lock); 1628 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1629 struct neighbour *neigh; 1630 1631 if (tbl->family != ndm->ndm_family) 1632 continue; 1633 read_unlock(&neigh_tbl_lock); 1634 1635 if (nla_len(dst_attr) < tbl->key_len) 1636 goto out; 1637 1638 if (ndm->ndm_flags & NTF_PROXY) { 1639 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev); 1640 goto out; 1641 } 1642 1643 if (dev == NULL) 1644 goto out; 1645 1646 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev); 1647 if (neigh == NULL) { 1648 err = -ENOENT; 1649 goto out; 1650 } 1651 1652 err = neigh_update(neigh, NULL, NUD_FAILED, 1653 NEIGH_UPDATE_F_OVERRIDE | 1654 NEIGH_UPDATE_F_ADMIN); 1655 neigh_release(neigh); 1656 goto out; 1657 } 1658 read_unlock(&neigh_tbl_lock); 1659 err = -EAFNOSUPPORT; 1660 1661 out: 1662 return err; 1663 } 1664 1665 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1666 { 1667 struct net *net = sock_net(skb->sk); 1668 struct ndmsg *ndm; 1669 struct nlattr *tb[NDA_MAX+1]; 1670 struct neigh_table *tbl; 1671 struct net_device *dev = NULL; 1672 int err; 1673 1674 ASSERT_RTNL(); 1675 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL); 1676 if (err < 0) 1677 goto out; 1678 1679 err = -EINVAL; 1680 if (tb[NDA_DST] == NULL) 1681 goto out; 1682 1683 ndm = nlmsg_data(nlh); 1684 if (ndm->ndm_ifindex) { 1685 dev = __dev_get_by_index(net, ndm->ndm_ifindex); 1686 if (dev == NULL) { 1687 err = -ENODEV; 1688 goto out; 1689 } 1690 1691 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len) 1692 goto out; 1693 } 1694 1695 read_lock(&neigh_tbl_lock); 1696 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1697 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE; 1698 struct neighbour *neigh; 1699 void *dst, *lladdr; 1700 1701 if (tbl->family != ndm->ndm_family) 1702 continue; 1703 read_unlock(&neigh_tbl_lock); 1704 1705 if (nla_len(tb[NDA_DST]) < tbl->key_len) 1706 goto out; 1707 dst = nla_data(tb[NDA_DST]); 1708 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL; 1709 1710 if (ndm->ndm_flags & NTF_PROXY) { 1711 struct pneigh_entry *pn; 1712 1713 err = -ENOBUFS; 1714 pn = pneigh_lookup(tbl, net, dst, dev, 1); 1715 if (pn) { 1716 pn->flags = ndm->ndm_flags; 1717 err = 0; 1718 } 1719 goto out; 1720 } 1721 1722 if (dev == NULL) 1723 goto out; 1724 1725 neigh = neigh_lookup(tbl, dst, dev); 1726 if (neigh == NULL) { 1727 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) { 1728 err = -ENOENT; 1729 goto out; 1730 } 1731 1732 neigh = __neigh_lookup_errno(tbl, dst, dev); 1733 if (IS_ERR(neigh)) { 1734 err = PTR_ERR(neigh); 1735 goto out; 1736 } 1737 } else { 1738 if (nlh->nlmsg_flags & NLM_F_EXCL) { 1739 err = -EEXIST; 1740 neigh_release(neigh); 1741 goto out; 1742 } 1743 1744 if (!(nlh->nlmsg_flags & NLM_F_REPLACE)) 1745 flags &= ~NEIGH_UPDATE_F_OVERRIDE; 1746 } 1747 1748 if (ndm->ndm_flags & NTF_USE) { 1749 neigh_event_send(neigh, NULL); 1750 err = 0; 1751 } else 1752 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags); 1753 neigh_release(neigh); 1754 goto out; 1755 } 1756 1757 read_unlock(&neigh_tbl_lock); 1758 err = -EAFNOSUPPORT; 1759 out: 1760 return err; 1761 } 1762 1763 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms) 1764 { 1765 struct nlattr *nest; 1766 1767 nest = nla_nest_start(skb, NDTA_PARMS); 1768 if (nest == NULL) 1769 return -ENOBUFS; 1770 1771 if ((parms->dev && 1772 nla_put_u32(skb, NDTPA_IFINDEX, parms->dev->ifindex)) || 1773 nla_put_u32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt)) || 1774 nla_put_u32(skb, NDTPA_QUEUE_LENBYTES, parms->queue_len_bytes) || 1775 /* approximative value for deprecated QUEUE_LEN (in packets) */ 1776 nla_put_u32(skb, NDTPA_QUEUE_LEN, 1777 DIV_ROUND_UP(parms->queue_len_bytes, 1778 SKB_TRUESIZE(ETH_FRAME_LEN))) || 1779 nla_put_u32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen) || 1780 nla_put_u32(skb, NDTPA_APP_PROBES, parms->app_probes) || 1781 nla_put_u32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes) || 1782 nla_put_u32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes) || 1783 nla_put_msecs(skb, NDTPA_REACHABLE_TIME, parms->reachable_time) || 1784 nla_put_msecs(skb, NDTPA_BASE_REACHABLE_TIME, 1785 parms->base_reachable_time) || 1786 nla_put_msecs(skb, NDTPA_GC_STALETIME, parms->gc_staletime) || 1787 nla_put_msecs(skb, NDTPA_DELAY_PROBE_TIME, 1788 parms->delay_probe_time) || 1789 nla_put_msecs(skb, NDTPA_RETRANS_TIME, parms->retrans_time) || 1790 nla_put_msecs(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay) || 1791 nla_put_msecs(skb, NDTPA_PROXY_DELAY, parms->proxy_delay) || 1792 nla_put_msecs(skb, NDTPA_LOCKTIME, parms->locktime)) 1793 goto nla_put_failure; 1794 return nla_nest_end(skb, nest); 1795 1796 nla_put_failure: 1797 nla_nest_cancel(skb, nest); 1798 return -EMSGSIZE; 1799 } 1800 1801 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl, 1802 u32 pid, u32 seq, int type, int flags) 1803 { 1804 struct nlmsghdr *nlh; 1805 struct ndtmsg *ndtmsg; 1806 1807 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1808 if (nlh == NULL) 1809 return -EMSGSIZE; 1810 1811 ndtmsg = nlmsg_data(nlh); 1812 1813 read_lock_bh(&tbl->lock); 1814 ndtmsg->ndtm_family = tbl->family; 1815 ndtmsg->ndtm_pad1 = 0; 1816 ndtmsg->ndtm_pad2 = 0; 1817 1818 if (nla_put_string(skb, NDTA_NAME, tbl->id) || 1819 nla_put_msecs(skb, NDTA_GC_INTERVAL, tbl->gc_interval) || 1820 nla_put_u32(skb, NDTA_THRESH1, tbl->gc_thresh1) || 1821 nla_put_u32(skb, NDTA_THRESH2, tbl->gc_thresh2) || 1822 nla_put_u32(skb, NDTA_THRESH3, tbl->gc_thresh3)) 1823 goto nla_put_failure; 1824 { 1825 unsigned long now = jiffies; 1826 unsigned int flush_delta = now - tbl->last_flush; 1827 unsigned int rand_delta = now - tbl->last_rand; 1828 struct neigh_hash_table *nht; 1829 struct ndt_config ndc = { 1830 .ndtc_key_len = tbl->key_len, 1831 .ndtc_entry_size = tbl->entry_size, 1832 .ndtc_entries = atomic_read(&tbl->entries), 1833 .ndtc_last_flush = jiffies_to_msecs(flush_delta), 1834 .ndtc_last_rand = jiffies_to_msecs(rand_delta), 1835 .ndtc_proxy_qlen = tbl->proxy_queue.qlen, 1836 }; 1837 1838 rcu_read_lock_bh(); 1839 nht = rcu_dereference_bh(tbl->nht); 1840 ndc.ndtc_hash_rnd = nht->hash_rnd[0]; 1841 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1); 1842 rcu_read_unlock_bh(); 1843 1844 if (nla_put(skb, NDTA_CONFIG, sizeof(ndc), &ndc)) 1845 goto nla_put_failure; 1846 } 1847 1848 { 1849 int cpu; 1850 struct ndt_stats ndst; 1851 1852 memset(&ndst, 0, sizeof(ndst)); 1853 1854 for_each_possible_cpu(cpu) { 1855 struct neigh_statistics *st; 1856 1857 st = per_cpu_ptr(tbl->stats, cpu); 1858 ndst.ndts_allocs += st->allocs; 1859 ndst.ndts_destroys += st->destroys; 1860 ndst.ndts_hash_grows += st->hash_grows; 1861 ndst.ndts_res_failed += st->res_failed; 1862 ndst.ndts_lookups += st->lookups; 1863 ndst.ndts_hits += st->hits; 1864 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast; 1865 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast; 1866 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs; 1867 ndst.ndts_forced_gc_runs += st->forced_gc_runs; 1868 } 1869 1870 if (nla_put(skb, NDTA_STATS, sizeof(ndst), &ndst)) 1871 goto nla_put_failure; 1872 } 1873 1874 BUG_ON(tbl->parms.dev); 1875 if (neightbl_fill_parms(skb, &tbl->parms) < 0) 1876 goto nla_put_failure; 1877 1878 read_unlock_bh(&tbl->lock); 1879 return nlmsg_end(skb, nlh); 1880 1881 nla_put_failure: 1882 read_unlock_bh(&tbl->lock); 1883 nlmsg_cancel(skb, nlh); 1884 return -EMSGSIZE; 1885 } 1886 1887 static int neightbl_fill_param_info(struct sk_buff *skb, 1888 struct neigh_table *tbl, 1889 struct neigh_parms *parms, 1890 u32 pid, u32 seq, int type, 1891 unsigned int flags) 1892 { 1893 struct ndtmsg *ndtmsg; 1894 struct nlmsghdr *nlh; 1895 1896 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags); 1897 if (nlh == NULL) 1898 return -EMSGSIZE; 1899 1900 ndtmsg = nlmsg_data(nlh); 1901 1902 read_lock_bh(&tbl->lock); 1903 ndtmsg->ndtm_family = tbl->family; 1904 ndtmsg->ndtm_pad1 = 0; 1905 ndtmsg->ndtm_pad2 = 0; 1906 1907 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 || 1908 neightbl_fill_parms(skb, parms) < 0) 1909 goto errout; 1910 1911 read_unlock_bh(&tbl->lock); 1912 return nlmsg_end(skb, nlh); 1913 errout: 1914 read_unlock_bh(&tbl->lock); 1915 nlmsg_cancel(skb, nlh); 1916 return -EMSGSIZE; 1917 } 1918 1919 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = { 1920 [NDTA_NAME] = { .type = NLA_STRING }, 1921 [NDTA_THRESH1] = { .type = NLA_U32 }, 1922 [NDTA_THRESH2] = { .type = NLA_U32 }, 1923 [NDTA_THRESH3] = { .type = NLA_U32 }, 1924 [NDTA_GC_INTERVAL] = { .type = NLA_U64 }, 1925 [NDTA_PARMS] = { .type = NLA_NESTED }, 1926 }; 1927 1928 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = { 1929 [NDTPA_IFINDEX] = { .type = NLA_U32 }, 1930 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 }, 1931 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 }, 1932 [NDTPA_APP_PROBES] = { .type = NLA_U32 }, 1933 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 }, 1934 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 }, 1935 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 }, 1936 [NDTPA_GC_STALETIME] = { .type = NLA_U64 }, 1937 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 }, 1938 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 }, 1939 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 }, 1940 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 }, 1941 [NDTPA_LOCKTIME] = { .type = NLA_U64 }, 1942 }; 1943 1944 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg) 1945 { 1946 struct net *net = sock_net(skb->sk); 1947 struct neigh_table *tbl; 1948 struct ndtmsg *ndtmsg; 1949 struct nlattr *tb[NDTA_MAX+1]; 1950 int err; 1951 1952 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX, 1953 nl_neightbl_policy); 1954 if (err < 0) 1955 goto errout; 1956 1957 if (tb[NDTA_NAME] == NULL) { 1958 err = -EINVAL; 1959 goto errout; 1960 } 1961 1962 ndtmsg = nlmsg_data(nlh); 1963 read_lock(&neigh_tbl_lock); 1964 for (tbl = neigh_tables; tbl; tbl = tbl->next) { 1965 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family) 1966 continue; 1967 1968 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0) 1969 break; 1970 } 1971 1972 if (tbl == NULL) { 1973 err = -ENOENT; 1974 goto errout_locked; 1975 } 1976 1977 /* 1978 * We acquire tbl->lock to be nice to the periodic timers and 1979 * make sure they always see a consistent set of values. 1980 */ 1981 write_lock_bh(&tbl->lock); 1982 1983 if (tb[NDTA_PARMS]) { 1984 struct nlattr *tbp[NDTPA_MAX+1]; 1985 struct neigh_parms *p; 1986 int i, ifindex = 0; 1987 1988 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS], 1989 nl_ntbl_parm_policy); 1990 if (err < 0) 1991 goto errout_tbl_lock; 1992 1993 if (tbp[NDTPA_IFINDEX]) 1994 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]); 1995 1996 p = lookup_neigh_parms(tbl, net, ifindex); 1997 if (p == NULL) { 1998 err = -ENOENT; 1999 goto errout_tbl_lock; 2000 } 2001 2002 for (i = 1; i <= NDTPA_MAX; i++) { 2003 if (tbp[i] == NULL) 2004 continue; 2005 2006 switch (i) { 2007 case NDTPA_QUEUE_LEN: 2008 p->queue_len_bytes = nla_get_u32(tbp[i]) * 2009 SKB_TRUESIZE(ETH_FRAME_LEN); 2010 break; 2011 case NDTPA_QUEUE_LENBYTES: 2012 p->queue_len_bytes = nla_get_u32(tbp[i]); 2013 break; 2014 case NDTPA_PROXY_QLEN: 2015 p->proxy_qlen = nla_get_u32(tbp[i]); 2016 break; 2017 case NDTPA_APP_PROBES: 2018 p->app_probes = nla_get_u32(tbp[i]); 2019 break; 2020 case NDTPA_UCAST_PROBES: 2021 p->ucast_probes = nla_get_u32(tbp[i]); 2022 break; 2023 case NDTPA_MCAST_PROBES: 2024 p->mcast_probes = nla_get_u32(tbp[i]); 2025 break; 2026 case NDTPA_BASE_REACHABLE_TIME: 2027 p->base_reachable_time = nla_get_msecs(tbp[i]); 2028 break; 2029 case NDTPA_GC_STALETIME: 2030 p->gc_staletime = nla_get_msecs(tbp[i]); 2031 break; 2032 case NDTPA_DELAY_PROBE_TIME: 2033 p->delay_probe_time = nla_get_msecs(tbp[i]); 2034 break; 2035 case NDTPA_RETRANS_TIME: 2036 p->retrans_time = nla_get_msecs(tbp[i]); 2037 break; 2038 case NDTPA_ANYCAST_DELAY: 2039 p->anycast_delay = nla_get_msecs(tbp[i]); 2040 break; 2041 case NDTPA_PROXY_DELAY: 2042 p->proxy_delay = nla_get_msecs(tbp[i]); 2043 break; 2044 case NDTPA_LOCKTIME: 2045 p->locktime = nla_get_msecs(tbp[i]); 2046 break; 2047 } 2048 } 2049 } 2050 2051 if (tb[NDTA_THRESH1]) 2052 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]); 2053 2054 if (tb[NDTA_THRESH2]) 2055 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]); 2056 2057 if (tb[NDTA_THRESH3]) 2058 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]); 2059 2060 if (tb[NDTA_GC_INTERVAL]) 2061 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]); 2062 2063 err = 0; 2064 2065 errout_tbl_lock: 2066 write_unlock_bh(&tbl->lock); 2067 errout_locked: 2068 read_unlock(&neigh_tbl_lock); 2069 errout: 2070 return err; 2071 } 2072 2073 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2074 { 2075 struct net *net = sock_net(skb->sk); 2076 int family, tidx, nidx = 0; 2077 int tbl_skip = cb->args[0]; 2078 int neigh_skip = cb->args[1]; 2079 struct neigh_table *tbl; 2080 2081 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2082 2083 read_lock(&neigh_tbl_lock); 2084 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) { 2085 struct neigh_parms *p; 2086 2087 if (tidx < tbl_skip || (family && tbl->family != family)) 2088 continue; 2089 2090 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid, 2091 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL, 2092 NLM_F_MULTI) <= 0) 2093 break; 2094 2095 for (nidx = 0, p = tbl->parms.next; p; p = p->next) { 2096 if (!net_eq(neigh_parms_net(p), net)) 2097 continue; 2098 2099 if (nidx < neigh_skip) 2100 goto next; 2101 2102 if (neightbl_fill_param_info(skb, tbl, p, 2103 NETLINK_CB(cb->skb).pid, 2104 cb->nlh->nlmsg_seq, 2105 RTM_NEWNEIGHTBL, 2106 NLM_F_MULTI) <= 0) 2107 goto out; 2108 next: 2109 nidx++; 2110 } 2111 2112 neigh_skip = 0; 2113 } 2114 out: 2115 read_unlock(&neigh_tbl_lock); 2116 cb->args[0] = tidx; 2117 cb->args[1] = nidx; 2118 2119 return skb->len; 2120 } 2121 2122 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh, 2123 u32 pid, u32 seq, int type, unsigned int flags) 2124 { 2125 unsigned long now = jiffies; 2126 struct nda_cacheinfo ci; 2127 struct nlmsghdr *nlh; 2128 struct ndmsg *ndm; 2129 2130 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2131 if (nlh == NULL) 2132 return -EMSGSIZE; 2133 2134 ndm = nlmsg_data(nlh); 2135 ndm->ndm_family = neigh->ops->family; 2136 ndm->ndm_pad1 = 0; 2137 ndm->ndm_pad2 = 0; 2138 ndm->ndm_flags = neigh->flags; 2139 ndm->ndm_type = neigh->type; 2140 ndm->ndm_ifindex = neigh->dev->ifindex; 2141 2142 if (nla_put(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key)) 2143 goto nla_put_failure; 2144 2145 read_lock_bh(&neigh->lock); 2146 ndm->ndm_state = neigh->nud_state; 2147 if (neigh->nud_state & NUD_VALID) { 2148 char haddr[MAX_ADDR_LEN]; 2149 2150 neigh_ha_snapshot(haddr, neigh, neigh->dev); 2151 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) { 2152 read_unlock_bh(&neigh->lock); 2153 goto nla_put_failure; 2154 } 2155 } 2156 2157 ci.ndm_used = jiffies_to_clock_t(now - neigh->used); 2158 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed); 2159 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated); 2160 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1; 2161 read_unlock_bh(&neigh->lock); 2162 2163 if (nla_put_u32(skb, NDA_PROBES, atomic_read(&neigh->probes)) || 2164 nla_put(skb, NDA_CACHEINFO, sizeof(ci), &ci)) 2165 goto nla_put_failure; 2166 2167 return nlmsg_end(skb, nlh); 2168 2169 nla_put_failure: 2170 nlmsg_cancel(skb, nlh); 2171 return -EMSGSIZE; 2172 } 2173 2174 static int pneigh_fill_info(struct sk_buff *skb, struct pneigh_entry *pn, 2175 u32 pid, u32 seq, int type, unsigned int flags, 2176 struct neigh_table *tbl) 2177 { 2178 struct nlmsghdr *nlh; 2179 struct ndmsg *ndm; 2180 2181 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags); 2182 if (nlh == NULL) 2183 return -EMSGSIZE; 2184 2185 ndm = nlmsg_data(nlh); 2186 ndm->ndm_family = tbl->family; 2187 ndm->ndm_pad1 = 0; 2188 ndm->ndm_pad2 = 0; 2189 ndm->ndm_flags = pn->flags | NTF_PROXY; 2190 ndm->ndm_type = NDA_DST; 2191 ndm->ndm_ifindex = pn->dev->ifindex; 2192 ndm->ndm_state = NUD_NONE; 2193 2194 if (nla_put(skb, NDA_DST, tbl->key_len, pn->key)) 2195 goto nla_put_failure; 2196 2197 return nlmsg_end(skb, nlh); 2198 2199 nla_put_failure: 2200 nlmsg_cancel(skb, nlh); 2201 return -EMSGSIZE; 2202 } 2203 2204 static void neigh_update_notify(struct neighbour *neigh) 2205 { 2206 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh); 2207 __neigh_notify(neigh, RTM_NEWNEIGH, 0); 2208 } 2209 2210 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2211 struct netlink_callback *cb) 2212 { 2213 struct net *net = sock_net(skb->sk); 2214 struct neighbour *n; 2215 int rc, h, s_h = cb->args[1]; 2216 int idx, s_idx = idx = cb->args[2]; 2217 struct neigh_hash_table *nht; 2218 2219 rcu_read_lock_bh(); 2220 nht = rcu_dereference_bh(tbl->nht); 2221 2222 for (h = s_h; h < (1 << nht->hash_shift); h++) { 2223 if (h > s_h) 2224 s_idx = 0; 2225 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0; 2226 n != NULL; 2227 n = rcu_dereference_bh(n->next)) { 2228 if (!net_eq(dev_net(n->dev), net)) 2229 continue; 2230 if (idx < s_idx) 2231 goto next; 2232 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2233 cb->nlh->nlmsg_seq, 2234 RTM_NEWNEIGH, 2235 NLM_F_MULTI) <= 0) { 2236 rc = -1; 2237 goto out; 2238 } 2239 next: 2240 idx++; 2241 } 2242 } 2243 rc = skb->len; 2244 out: 2245 rcu_read_unlock_bh(); 2246 cb->args[1] = h; 2247 cb->args[2] = idx; 2248 return rc; 2249 } 2250 2251 static int pneigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb, 2252 struct netlink_callback *cb) 2253 { 2254 struct pneigh_entry *n; 2255 struct net *net = sock_net(skb->sk); 2256 int rc, h, s_h = cb->args[3]; 2257 int idx, s_idx = idx = cb->args[4]; 2258 2259 read_lock_bh(&tbl->lock); 2260 2261 for (h = s_h; h <= PNEIGH_HASHMASK; h++) { 2262 if (h > s_h) 2263 s_idx = 0; 2264 for (n = tbl->phash_buckets[h], idx = 0; n; n = n->next) { 2265 if (dev_net(n->dev) != net) 2266 continue; 2267 if (idx < s_idx) 2268 goto next; 2269 if (pneigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid, 2270 cb->nlh->nlmsg_seq, 2271 RTM_NEWNEIGH, 2272 NLM_F_MULTI, tbl) <= 0) { 2273 read_unlock_bh(&tbl->lock); 2274 rc = -1; 2275 goto out; 2276 } 2277 next: 2278 idx++; 2279 } 2280 } 2281 2282 read_unlock_bh(&tbl->lock); 2283 rc = skb->len; 2284 out: 2285 cb->args[3] = h; 2286 cb->args[4] = idx; 2287 return rc; 2288 2289 } 2290 2291 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb) 2292 { 2293 struct neigh_table *tbl; 2294 int t, family, s_t; 2295 int proxy = 0; 2296 int err; 2297 2298 read_lock(&neigh_tbl_lock); 2299 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family; 2300 2301 /* check for full ndmsg structure presence, family member is 2302 * the same for both structures 2303 */ 2304 if (nlmsg_len(cb->nlh) >= sizeof(struct ndmsg) && 2305 ((struct ndmsg *) nlmsg_data(cb->nlh))->ndm_flags == NTF_PROXY) 2306 proxy = 1; 2307 2308 s_t = cb->args[0]; 2309 2310 for (tbl = neigh_tables, t = 0; tbl; 2311 tbl = tbl->next, t++) { 2312 if (t < s_t || (family && tbl->family != family)) 2313 continue; 2314 if (t > s_t) 2315 memset(&cb->args[1], 0, sizeof(cb->args) - 2316 sizeof(cb->args[0])); 2317 if (proxy) 2318 err = pneigh_dump_table(tbl, skb, cb); 2319 else 2320 err = neigh_dump_table(tbl, skb, cb); 2321 if (err < 0) 2322 break; 2323 } 2324 read_unlock(&neigh_tbl_lock); 2325 2326 cb->args[0] = t; 2327 return skb->len; 2328 } 2329 2330 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie) 2331 { 2332 int chain; 2333 struct neigh_hash_table *nht; 2334 2335 rcu_read_lock_bh(); 2336 nht = rcu_dereference_bh(tbl->nht); 2337 2338 read_lock(&tbl->lock); /* avoid resizes */ 2339 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2340 struct neighbour *n; 2341 2342 for (n = rcu_dereference_bh(nht->hash_buckets[chain]); 2343 n != NULL; 2344 n = rcu_dereference_bh(n->next)) 2345 cb(n, cookie); 2346 } 2347 read_unlock(&tbl->lock); 2348 rcu_read_unlock_bh(); 2349 } 2350 EXPORT_SYMBOL(neigh_for_each); 2351 2352 /* The tbl->lock must be held as a writer and BH disabled. */ 2353 void __neigh_for_each_release(struct neigh_table *tbl, 2354 int (*cb)(struct neighbour *)) 2355 { 2356 int chain; 2357 struct neigh_hash_table *nht; 2358 2359 nht = rcu_dereference_protected(tbl->nht, 2360 lockdep_is_held(&tbl->lock)); 2361 for (chain = 0; chain < (1 << nht->hash_shift); chain++) { 2362 struct neighbour *n; 2363 struct neighbour __rcu **np; 2364 2365 np = &nht->hash_buckets[chain]; 2366 while ((n = rcu_dereference_protected(*np, 2367 lockdep_is_held(&tbl->lock))) != NULL) { 2368 int release; 2369 2370 write_lock(&n->lock); 2371 release = cb(n); 2372 if (release) { 2373 rcu_assign_pointer(*np, 2374 rcu_dereference_protected(n->next, 2375 lockdep_is_held(&tbl->lock))); 2376 n->dead = 1; 2377 } else 2378 np = &n->next; 2379 write_unlock(&n->lock); 2380 if (release) 2381 neigh_cleanup_and_release(n); 2382 } 2383 } 2384 } 2385 EXPORT_SYMBOL(__neigh_for_each_release); 2386 2387 #ifdef CONFIG_PROC_FS 2388 2389 static struct neighbour *neigh_get_first(struct seq_file *seq) 2390 { 2391 struct neigh_seq_state *state = seq->private; 2392 struct net *net = seq_file_net(seq); 2393 struct neigh_hash_table *nht = state->nht; 2394 struct neighbour *n = NULL; 2395 int bucket = state->bucket; 2396 2397 state->flags &= ~NEIGH_SEQ_IS_PNEIGH; 2398 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) { 2399 n = rcu_dereference_bh(nht->hash_buckets[bucket]); 2400 2401 while (n) { 2402 if (!net_eq(dev_net(n->dev), net)) 2403 goto next; 2404 if (state->neigh_sub_iter) { 2405 loff_t fakep = 0; 2406 void *v; 2407 2408 v = state->neigh_sub_iter(state, n, &fakep); 2409 if (!v) 2410 goto next; 2411 } 2412 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2413 break; 2414 if (n->nud_state & ~NUD_NOARP) 2415 break; 2416 next: 2417 n = rcu_dereference_bh(n->next); 2418 } 2419 2420 if (n) 2421 break; 2422 } 2423 state->bucket = bucket; 2424 2425 return n; 2426 } 2427 2428 static struct neighbour *neigh_get_next(struct seq_file *seq, 2429 struct neighbour *n, 2430 loff_t *pos) 2431 { 2432 struct neigh_seq_state *state = seq->private; 2433 struct net *net = seq_file_net(seq); 2434 struct neigh_hash_table *nht = state->nht; 2435 2436 if (state->neigh_sub_iter) { 2437 void *v = state->neigh_sub_iter(state, n, pos); 2438 if (v) 2439 return n; 2440 } 2441 n = rcu_dereference_bh(n->next); 2442 2443 while (1) { 2444 while (n) { 2445 if (!net_eq(dev_net(n->dev), net)) 2446 goto next; 2447 if (state->neigh_sub_iter) { 2448 void *v = state->neigh_sub_iter(state, n, pos); 2449 if (v) 2450 return n; 2451 goto next; 2452 } 2453 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP)) 2454 break; 2455 2456 if (n->nud_state & ~NUD_NOARP) 2457 break; 2458 next: 2459 n = rcu_dereference_bh(n->next); 2460 } 2461 2462 if (n) 2463 break; 2464 2465 if (++state->bucket >= (1 << nht->hash_shift)) 2466 break; 2467 2468 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]); 2469 } 2470 2471 if (n && pos) 2472 --(*pos); 2473 return n; 2474 } 2475 2476 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos) 2477 { 2478 struct neighbour *n = neigh_get_first(seq); 2479 2480 if (n) { 2481 --(*pos); 2482 while (*pos) { 2483 n = neigh_get_next(seq, n, pos); 2484 if (!n) 2485 break; 2486 } 2487 } 2488 return *pos ? NULL : n; 2489 } 2490 2491 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq) 2492 { 2493 struct neigh_seq_state *state = seq->private; 2494 struct net *net = seq_file_net(seq); 2495 struct neigh_table *tbl = state->tbl; 2496 struct pneigh_entry *pn = NULL; 2497 int bucket = state->bucket; 2498 2499 state->flags |= NEIGH_SEQ_IS_PNEIGH; 2500 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) { 2501 pn = tbl->phash_buckets[bucket]; 2502 while (pn && !net_eq(pneigh_net(pn), net)) 2503 pn = pn->next; 2504 if (pn) 2505 break; 2506 } 2507 state->bucket = bucket; 2508 2509 return pn; 2510 } 2511 2512 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq, 2513 struct pneigh_entry *pn, 2514 loff_t *pos) 2515 { 2516 struct neigh_seq_state *state = seq->private; 2517 struct net *net = seq_file_net(seq); 2518 struct neigh_table *tbl = state->tbl; 2519 2520 do { 2521 pn = pn->next; 2522 } while (pn && !net_eq(pneigh_net(pn), net)); 2523 2524 while (!pn) { 2525 if (++state->bucket > PNEIGH_HASHMASK) 2526 break; 2527 pn = tbl->phash_buckets[state->bucket]; 2528 while (pn && !net_eq(pneigh_net(pn), net)) 2529 pn = pn->next; 2530 if (pn) 2531 break; 2532 } 2533 2534 if (pn && pos) 2535 --(*pos); 2536 2537 return pn; 2538 } 2539 2540 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos) 2541 { 2542 struct pneigh_entry *pn = pneigh_get_first(seq); 2543 2544 if (pn) { 2545 --(*pos); 2546 while (*pos) { 2547 pn = pneigh_get_next(seq, pn, pos); 2548 if (!pn) 2549 break; 2550 } 2551 } 2552 return *pos ? NULL : pn; 2553 } 2554 2555 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos) 2556 { 2557 struct neigh_seq_state *state = seq->private; 2558 void *rc; 2559 loff_t idxpos = *pos; 2560 2561 rc = neigh_get_idx(seq, &idxpos); 2562 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2563 rc = pneigh_get_idx(seq, &idxpos); 2564 2565 return rc; 2566 } 2567 2568 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags) 2569 __acquires(rcu_bh) 2570 { 2571 struct neigh_seq_state *state = seq->private; 2572 2573 state->tbl = tbl; 2574 state->bucket = 0; 2575 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH); 2576 2577 rcu_read_lock_bh(); 2578 state->nht = rcu_dereference_bh(tbl->nht); 2579 2580 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN; 2581 } 2582 EXPORT_SYMBOL(neigh_seq_start); 2583 2584 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2585 { 2586 struct neigh_seq_state *state; 2587 void *rc; 2588 2589 if (v == SEQ_START_TOKEN) { 2590 rc = neigh_get_first(seq); 2591 goto out; 2592 } 2593 2594 state = seq->private; 2595 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) { 2596 rc = neigh_get_next(seq, v, NULL); 2597 if (rc) 2598 goto out; 2599 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY)) 2600 rc = pneigh_get_first(seq); 2601 } else { 2602 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY); 2603 rc = pneigh_get_next(seq, v, NULL); 2604 } 2605 out: 2606 ++(*pos); 2607 return rc; 2608 } 2609 EXPORT_SYMBOL(neigh_seq_next); 2610 2611 void neigh_seq_stop(struct seq_file *seq, void *v) 2612 __releases(rcu_bh) 2613 { 2614 rcu_read_unlock_bh(); 2615 } 2616 EXPORT_SYMBOL(neigh_seq_stop); 2617 2618 /* statistics via seq_file */ 2619 2620 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos) 2621 { 2622 struct neigh_table *tbl = seq->private; 2623 int cpu; 2624 2625 if (*pos == 0) 2626 return SEQ_START_TOKEN; 2627 2628 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) { 2629 if (!cpu_possible(cpu)) 2630 continue; 2631 *pos = cpu+1; 2632 return per_cpu_ptr(tbl->stats, cpu); 2633 } 2634 return NULL; 2635 } 2636 2637 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2638 { 2639 struct neigh_table *tbl = seq->private; 2640 int cpu; 2641 2642 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) { 2643 if (!cpu_possible(cpu)) 2644 continue; 2645 *pos = cpu+1; 2646 return per_cpu_ptr(tbl->stats, cpu); 2647 } 2648 return NULL; 2649 } 2650 2651 static void neigh_stat_seq_stop(struct seq_file *seq, void *v) 2652 { 2653 2654 } 2655 2656 static int neigh_stat_seq_show(struct seq_file *seq, void *v) 2657 { 2658 struct neigh_table *tbl = seq->private; 2659 struct neigh_statistics *st = v; 2660 2661 if (v == SEQ_START_TOKEN) { 2662 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n"); 2663 return 0; 2664 } 2665 2666 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx " 2667 "%08lx %08lx %08lx %08lx %08lx\n", 2668 atomic_read(&tbl->entries), 2669 2670 st->allocs, 2671 st->destroys, 2672 st->hash_grows, 2673 2674 st->lookups, 2675 st->hits, 2676 2677 st->res_failed, 2678 2679 st->rcv_probes_mcast, 2680 st->rcv_probes_ucast, 2681 2682 st->periodic_gc_runs, 2683 st->forced_gc_runs, 2684 st->unres_discards 2685 ); 2686 2687 return 0; 2688 } 2689 2690 static const struct seq_operations neigh_stat_seq_ops = { 2691 .start = neigh_stat_seq_start, 2692 .next = neigh_stat_seq_next, 2693 .stop = neigh_stat_seq_stop, 2694 .show = neigh_stat_seq_show, 2695 }; 2696 2697 static int neigh_stat_seq_open(struct inode *inode, struct file *file) 2698 { 2699 int ret = seq_open(file, &neigh_stat_seq_ops); 2700 2701 if (!ret) { 2702 struct seq_file *sf = file->private_data; 2703 sf->private = PDE(inode)->data; 2704 } 2705 return ret; 2706 }; 2707 2708 static const struct file_operations neigh_stat_seq_fops = { 2709 .owner = THIS_MODULE, 2710 .open = neigh_stat_seq_open, 2711 .read = seq_read, 2712 .llseek = seq_lseek, 2713 .release = seq_release, 2714 }; 2715 2716 #endif /* CONFIG_PROC_FS */ 2717 2718 static inline size_t neigh_nlmsg_size(void) 2719 { 2720 return NLMSG_ALIGN(sizeof(struct ndmsg)) 2721 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */ 2722 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */ 2723 + nla_total_size(sizeof(struct nda_cacheinfo)) 2724 + nla_total_size(4); /* NDA_PROBES */ 2725 } 2726 2727 static void __neigh_notify(struct neighbour *n, int type, int flags) 2728 { 2729 struct net *net = dev_net(n->dev); 2730 struct sk_buff *skb; 2731 int err = -ENOBUFS; 2732 2733 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC); 2734 if (skb == NULL) 2735 goto errout; 2736 2737 err = neigh_fill_info(skb, n, 0, 0, type, flags); 2738 if (err < 0) { 2739 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */ 2740 WARN_ON(err == -EMSGSIZE); 2741 kfree_skb(skb); 2742 goto errout; 2743 } 2744 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC); 2745 return; 2746 errout: 2747 if (err < 0) 2748 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err); 2749 } 2750 2751 #ifdef CONFIG_ARPD 2752 void neigh_app_ns(struct neighbour *n) 2753 { 2754 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST); 2755 } 2756 EXPORT_SYMBOL(neigh_app_ns); 2757 #endif /* CONFIG_ARPD */ 2758 2759 #ifdef CONFIG_SYSCTL 2760 2761 static int proc_unres_qlen(ctl_table *ctl, int write, void __user *buffer, 2762 size_t *lenp, loff_t *ppos) 2763 { 2764 int size, ret; 2765 ctl_table tmp = *ctl; 2766 2767 tmp.data = &size; 2768 size = DIV_ROUND_UP(*(int *)ctl->data, SKB_TRUESIZE(ETH_FRAME_LEN)); 2769 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 2770 if (write && !ret) 2771 *(int *)ctl->data = size * SKB_TRUESIZE(ETH_FRAME_LEN); 2772 return ret; 2773 } 2774 2775 enum { 2776 NEIGH_VAR_MCAST_PROBE, 2777 NEIGH_VAR_UCAST_PROBE, 2778 NEIGH_VAR_APP_PROBE, 2779 NEIGH_VAR_RETRANS_TIME, 2780 NEIGH_VAR_BASE_REACHABLE_TIME, 2781 NEIGH_VAR_DELAY_PROBE_TIME, 2782 NEIGH_VAR_GC_STALETIME, 2783 NEIGH_VAR_QUEUE_LEN, 2784 NEIGH_VAR_QUEUE_LEN_BYTES, 2785 NEIGH_VAR_PROXY_QLEN, 2786 NEIGH_VAR_ANYCAST_DELAY, 2787 NEIGH_VAR_PROXY_DELAY, 2788 NEIGH_VAR_LOCKTIME, 2789 NEIGH_VAR_RETRANS_TIME_MS, 2790 NEIGH_VAR_BASE_REACHABLE_TIME_MS, 2791 NEIGH_VAR_GC_INTERVAL, 2792 NEIGH_VAR_GC_THRESH1, 2793 NEIGH_VAR_GC_THRESH2, 2794 NEIGH_VAR_GC_THRESH3, 2795 NEIGH_VAR_MAX 2796 }; 2797 2798 static struct neigh_sysctl_table { 2799 struct ctl_table_header *sysctl_header; 2800 struct ctl_table neigh_vars[NEIGH_VAR_MAX + 1]; 2801 } neigh_sysctl_template __read_mostly = { 2802 .neigh_vars = { 2803 [NEIGH_VAR_MCAST_PROBE] = { 2804 .procname = "mcast_solicit", 2805 .maxlen = sizeof(int), 2806 .mode = 0644, 2807 .proc_handler = proc_dointvec, 2808 }, 2809 [NEIGH_VAR_UCAST_PROBE] = { 2810 .procname = "ucast_solicit", 2811 .maxlen = sizeof(int), 2812 .mode = 0644, 2813 .proc_handler = proc_dointvec, 2814 }, 2815 [NEIGH_VAR_APP_PROBE] = { 2816 .procname = "app_solicit", 2817 .maxlen = sizeof(int), 2818 .mode = 0644, 2819 .proc_handler = proc_dointvec, 2820 }, 2821 [NEIGH_VAR_RETRANS_TIME] = { 2822 .procname = "retrans_time", 2823 .maxlen = sizeof(int), 2824 .mode = 0644, 2825 .proc_handler = proc_dointvec_userhz_jiffies, 2826 }, 2827 [NEIGH_VAR_BASE_REACHABLE_TIME] = { 2828 .procname = "base_reachable_time", 2829 .maxlen = sizeof(int), 2830 .mode = 0644, 2831 .proc_handler = proc_dointvec_jiffies, 2832 }, 2833 [NEIGH_VAR_DELAY_PROBE_TIME] = { 2834 .procname = "delay_first_probe_time", 2835 .maxlen = sizeof(int), 2836 .mode = 0644, 2837 .proc_handler = proc_dointvec_jiffies, 2838 }, 2839 [NEIGH_VAR_GC_STALETIME] = { 2840 .procname = "gc_stale_time", 2841 .maxlen = sizeof(int), 2842 .mode = 0644, 2843 .proc_handler = proc_dointvec_jiffies, 2844 }, 2845 [NEIGH_VAR_QUEUE_LEN] = { 2846 .procname = "unres_qlen", 2847 .maxlen = sizeof(int), 2848 .mode = 0644, 2849 .proc_handler = proc_unres_qlen, 2850 }, 2851 [NEIGH_VAR_QUEUE_LEN_BYTES] = { 2852 .procname = "unres_qlen_bytes", 2853 .maxlen = sizeof(int), 2854 .mode = 0644, 2855 .proc_handler = proc_dointvec, 2856 }, 2857 [NEIGH_VAR_PROXY_QLEN] = { 2858 .procname = "proxy_qlen", 2859 .maxlen = sizeof(int), 2860 .mode = 0644, 2861 .proc_handler = proc_dointvec, 2862 }, 2863 [NEIGH_VAR_ANYCAST_DELAY] = { 2864 .procname = "anycast_delay", 2865 .maxlen = sizeof(int), 2866 .mode = 0644, 2867 .proc_handler = proc_dointvec_userhz_jiffies, 2868 }, 2869 [NEIGH_VAR_PROXY_DELAY] = { 2870 .procname = "proxy_delay", 2871 .maxlen = sizeof(int), 2872 .mode = 0644, 2873 .proc_handler = proc_dointvec_userhz_jiffies, 2874 }, 2875 [NEIGH_VAR_LOCKTIME] = { 2876 .procname = "locktime", 2877 .maxlen = sizeof(int), 2878 .mode = 0644, 2879 .proc_handler = proc_dointvec_userhz_jiffies, 2880 }, 2881 [NEIGH_VAR_RETRANS_TIME_MS] = { 2882 .procname = "retrans_time_ms", 2883 .maxlen = sizeof(int), 2884 .mode = 0644, 2885 .proc_handler = proc_dointvec_ms_jiffies, 2886 }, 2887 [NEIGH_VAR_BASE_REACHABLE_TIME_MS] = { 2888 .procname = "base_reachable_time_ms", 2889 .maxlen = sizeof(int), 2890 .mode = 0644, 2891 .proc_handler = proc_dointvec_ms_jiffies, 2892 }, 2893 [NEIGH_VAR_GC_INTERVAL] = { 2894 .procname = "gc_interval", 2895 .maxlen = sizeof(int), 2896 .mode = 0644, 2897 .proc_handler = proc_dointvec_jiffies, 2898 }, 2899 [NEIGH_VAR_GC_THRESH1] = { 2900 .procname = "gc_thresh1", 2901 .maxlen = sizeof(int), 2902 .mode = 0644, 2903 .proc_handler = proc_dointvec, 2904 }, 2905 [NEIGH_VAR_GC_THRESH2] = { 2906 .procname = "gc_thresh2", 2907 .maxlen = sizeof(int), 2908 .mode = 0644, 2909 .proc_handler = proc_dointvec, 2910 }, 2911 [NEIGH_VAR_GC_THRESH3] = { 2912 .procname = "gc_thresh3", 2913 .maxlen = sizeof(int), 2914 .mode = 0644, 2915 .proc_handler = proc_dointvec, 2916 }, 2917 {}, 2918 }, 2919 }; 2920 2921 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p, 2922 char *p_name, proc_handler *handler) 2923 { 2924 struct neigh_sysctl_table *t; 2925 const char *dev_name_source = NULL; 2926 char neigh_path[ sizeof("net//neigh/") + IFNAMSIZ + IFNAMSIZ ]; 2927 2928 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL); 2929 if (!t) 2930 goto err; 2931 2932 t->neigh_vars[NEIGH_VAR_MCAST_PROBE].data = &p->mcast_probes; 2933 t->neigh_vars[NEIGH_VAR_UCAST_PROBE].data = &p->ucast_probes; 2934 t->neigh_vars[NEIGH_VAR_APP_PROBE].data = &p->app_probes; 2935 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].data = &p->retrans_time; 2936 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].data = &p->base_reachable_time; 2937 t->neigh_vars[NEIGH_VAR_DELAY_PROBE_TIME].data = &p->delay_probe_time; 2938 t->neigh_vars[NEIGH_VAR_GC_STALETIME].data = &p->gc_staletime; 2939 t->neigh_vars[NEIGH_VAR_QUEUE_LEN].data = &p->queue_len_bytes; 2940 t->neigh_vars[NEIGH_VAR_QUEUE_LEN_BYTES].data = &p->queue_len_bytes; 2941 t->neigh_vars[NEIGH_VAR_PROXY_QLEN].data = &p->proxy_qlen; 2942 t->neigh_vars[NEIGH_VAR_ANYCAST_DELAY].data = &p->anycast_delay; 2943 t->neigh_vars[NEIGH_VAR_PROXY_DELAY].data = &p->proxy_delay; 2944 t->neigh_vars[NEIGH_VAR_LOCKTIME].data = &p->locktime; 2945 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].data = &p->retrans_time; 2946 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].data = &p->base_reachable_time; 2947 2948 if (dev) { 2949 dev_name_source = dev->name; 2950 /* Terminate the table early */ 2951 memset(&t->neigh_vars[NEIGH_VAR_GC_INTERVAL], 0, 2952 sizeof(t->neigh_vars[NEIGH_VAR_GC_INTERVAL])); 2953 } else { 2954 dev_name_source = "default"; 2955 t->neigh_vars[NEIGH_VAR_GC_INTERVAL].data = (int *)(p + 1); 2956 t->neigh_vars[NEIGH_VAR_GC_THRESH1].data = (int *)(p + 1) + 1; 2957 t->neigh_vars[NEIGH_VAR_GC_THRESH2].data = (int *)(p + 1) + 2; 2958 t->neigh_vars[NEIGH_VAR_GC_THRESH3].data = (int *)(p + 1) + 3; 2959 } 2960 2961 2962 if (handler) { 2963 /* RetransTime */ 2964 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].proc_handler = handler; 2965 t->neigh_vars[NEIGH_VAR_RETRANS_TIME].extra1 = dev; 2966 /* ReachableTime */ 2967 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].proc_handler = handler; 2968 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME].extra1 = dev; 2969 /* RetransTime (in milliseconds)*/ 2970 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].proc_handler = handler; 2971 t->neigh_vars[NEIGH_VAR_RETRANS_TIME_MS].extra1 = dev; 2972 /* ReachableTime (in milliseconds) */ 2973 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].proc_handler = handler; 2974 t->neigh_vars[NEIGH_VAR_BASE_REACHABLE_TIME_MS].extra1 = dev; 2975 } 2976 2977 snprintf(neigh_path, sizeof(neigh_path), "net/%s/neigh/%s", 2978 p_name, dev_name_source); 2979 t->sysctl_header = 2980 register_net_sysctl(neigh_parms_net(p), neigh_path, t->neigh_vars); 2981 if (!t->sysctl_header) 2982 goto free; 2983 2984 p->sysctl_table = t; 2985 return 0; 2986 2987 free: 2988 kfree(t); 2989 err: 2990 return -ENOBUFS; 2991 } 2992 EXPORT_SYMBOL(neigh_sysctl_register); 2993 2994 void neigh_sysctl_unregister(struct neigh_parms *p) 2995 { 2996 if (p->sysctl_table) { 2997 struct neigh_sysctl_table *t = p->sysctl_table; 2998 p->sysctl_table = NULL; 2999 unregister_net_sysctl_table(t->sysctl_header); 3000 kfree(t); 3001 } 3002 } 3003 EXPORT_SYMBOL(neigh_sysctl_unregister); 3004 3005 #endif /* CONFIG_SYSCTL */ 3006 3007 static int __init neigh_init(void) 3008 { 3009 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL); 3010 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL); 3011 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL); 3012 3013 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info, 3014 NULL); 3015 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL); 3016 3017 return 0; 3018 } 3019 3020 subsys_initcall(neigh_init); 3021 3022